22

Automatic Template
Instantiation In
DIGITAL C++

Automatic template instantiation in DIGITAL C++
version 6.0 employs a compile-time scheme that
generates instantiation object files into a reposi-
tory. This paper provides an overview of the C++
template facility and the template instantiation
process, including manual and automatic instan-
tiation techniques. It reviews the features of
template instantiation in DIGITAL C++ and
focuses on the development and implemen-
tation of automatic template instantiation in
DIGITAL C++ version 6.0.

Digital Technical Journal Vol. 10 No.1 1998

Avrum E. Itzkowitz
Lois D. Foltan

The template facility within the C++ language allows
the user to provide a template for a class or function
and then apply specific arguments to the template
to specify a type or function. The process of applying
arguments to a template, referred to as template instan-
tiation, causes specific code to be generated to imple-
ment the functions and static data members of the
instantiated template as needed by the program.
Automatic template instantiation relieves the user of
determining which template entities need to be instan-
tiated and where they should be instantiated.

In this paper, we review the C++ template facility and
describe approaches to implementing automatic tem-
plate instantiation. We follow that with a discussion of
the facilities, rationale, and experience of the DIGITAL
C++ automatic template instantiation support. We
then describe the design of the DIGITAL C++ version
6.0 automatic template instantiation facility and indi-
cate areas to be explored for further improvement.

C++ Template Facility

The C++ language provides a template facility that
allows the user to create a family of classes or functions
that are parameterized by type.? For example, a user
may provide a Stack template, which defines a stack
class for its argument type. Consider the following
template declaration:
template <class T> class Stack {

T *top_of_stack;
public:

void push(T arg);

void pop(T& arg);

The act of applying the arguments to the template
is referred to as template instantiation. An instantia-
tion of a template creates a new type or function that
is defined for the specified types. Stack<int> creates
a class that provides a stack of the type int.
Stack<user_class> creates a class that provides a stack
of'user_class. The types int and user_class are the argu-
ments for the template Stack.

In general, a template needs to be instantiated when
it is referenced. When a class template is instantiated,
only those member functions and static data members
that are referenced are also instantiated. In the Stack
example, the member function Push of the class
Stack<int> needs to be instantiated only if it is used.
Template functions and static data members have
global scope; therefore, only one instantiation of each
should be in a user’s application. Since source files are
compiled separately and combined later at link time to
produce an executable, the compiler alone is not able
to ensure that one and only one instance of a specific
template is efficiently generated for any given exe-
cutable. That is, the compiler by itself is not able to
know whether the function or variable definition for a
specific template is satisfied by code generated in
another object module.

The C++ Standard provides facilities for the user to
specify where a template entity should be instantiated.!
When the user explicitly specifies template instantia-
tion, the user then becomes responsible for ensuring
that there is only one instantiation of the template
function or static data member per application. This
responsibility can necessitate a considerable amount of
work. However, the compiler and linker working
together can provide effective template instantiation
without specific user direction.

In the following section, we present the various
approaches that can be used for template instantiation.

Template Instantiation Techniques

Template instantiation techniques can be broadly cat-
egorized as either manual or automatic. With manual
instantiation, the compilation system responds to user
directives to instantiate template entities. These direc-
tives can be in the source program, or they may be
command-line options. With automatic instantiation,
the compilation system, including the linker, decides
which instantiations are required and attempts to pro-
vide them for the user’s application.

Manual Instantiation

Manual template instantiation is the act of manually
specifying that a template should be instantiated in the
file that is being compiled. This instantiation is given
global external linkage, so that references to the
instantiation that are made in other files resolve to this
template instantiation. Manual template instantiation
includes explicit instantiation requests and pragmas as
well as command-line options.

Explicit Instantiation Requests and Pragmas The
compilation system instantiates those template entities
that the user specifies for instantiation. The specification
can be made using the C++ explicit template instantia-
tion syntax or may be made using implementation-

defined directives or pragmas. Since instantiations are
given global external linkage, the user must ensure
that the specified template instantiations appear only
once throughout all the modules that compose the
program. When only this mode of instantiation is
used, the user also must ensure that all required tem-
plate instantiations are specified to avoid unresolved
symbols at link time.

Command-line Instantiation Command-line options
can be used to specify template instantiation. They are
similar in operation to the explicit instantiation requests,
except they indicate groups of templates that should be
instantiated, rather than naming specific templates to be
instantiated. The command-line options include

= Instantiate All Templates. A command-line option
can direct the compiler to instantiate all template
entities whose definitions are known during compi-
lation and whose argument types are specified. This
has the advantage of specifying many template
instantiations at once. The user must still ensure
that no template instantiation happens more than
once in the program and that all required instantia-
tions are satisfied. Due to these requirements, the
user cannot usually specify this option on more than
one source-file compilation in the program. This
option can also cause the instantiation of templates
that are not used by the program.

= Instantiate Used Templates. A command-line option
can be used to direct the compiler to instantiate
only those template entities that are used by the
source code and whose definitions are known at
compilation. As in the previous technique, the user
must ensure that no template instantiation happens
more than once in the program and that all required
instantiations are satisfied. Due to these require-
ments, the user cannot usually specify this option
on more than one source-file compilation in the
program.

= Instantiate Used Templates Locally. This command-
line option works like the instantiate used templates
option, except that it defines each template instan-
tiation locally in the current compilation. This option
has the advantage of providing complete template
instantiation coverage for the program, as long as
the definitions of the used templates are available in
cach module. Since all template instantiations are
given local scope, there is no potential problem
with multiply defined instantiations when the
program is linked. The major problem with this
technique is that the user’s application can be
unnecessarily large, since the same template instan-
tiations could appear within multiple object files
used to link the application. This technique will fail
if the instantiations must have global scope such as
a class’s static data members.

Digital Technical Journal Vol.10 No.1 1998

23

Figure 1 shows an example of a template function,
template_func, that contains a locally defined static
variable. As shown in the figure, the object files of both
A and B contain local copies of template_func instanti-
ated with int. Each instance of template_func<int>
defines its own version of static variable x. In this case,
directing the compiler to instantiate used templates
locally yields a different result than instantiating all or
used templates globally.

If we give the static data members global scope and
ensure that they are properly defined and initialized by
executable code rather than by static initialization, we
can solve the static data members problem. The appli-
cation, however, remains unnecessarily large, because
multiple copies of the instantiated templates can be
present in the executable.

Automatic Instantiation

Automatic template instantiation relieves the user of
the burden of determining which templates must be
instantiated and where in the application those instanti-
ations should take place. Automatic template instantia-
tion can be divided into two categories: compile-time
instantiation, whereby the decision about what should
be instantiated is made at compile time, and link-time
instantiation, whereby decisions about template instan-
tiation are made when the user’s application is linked.
In both cases, specific link-time support is needed to
select the required instantiations for the executable.

Compile-time Instantiation Two major techniques
can be used to perform automatic template instantia-
tion at compile time. The choice between the two
depends upon the facilities available in the linker.
Microsoft Visual C++ instantiates templates at compile
time using a strategy similar to the instantiate used
templates command-line option described previously.?

/ltemplate.hxx
#include <iostream.h>

Each instantiation is placed in the communal data sec-
tion (COMDAT) of the current compilation’s object
file. Each object file contains a copy of every template
instantiation needed by that compilation unit.
COMDATs are sections that have an attribute that tells
the linker to accept, without issuing a warning, multi-
ple definitions of a symbol defined in the section.* If
more than one object file defines that symbol, only the
section from one object file is linked into the image
and the rest are discarded, along with all symbols in
the symbol table defined in the discarded section con-
tribution. At link time, the linker resolves an instantia-
tion reference by choosing one of the instantiations
defined in an individual object file’s COMDAT. The
resulting user’s application executable has a single
copy of each requested instantiation.

When such linker support is not available, another
mechanism must be used to control compile-time
instantiation. One such approach is to use a repository
to contain the generated instantiations. The compiler
creates the instantiations in the repository instead of
the current compilation’s object file. At link time, the
linker includes any requested instantiations from the
repository. As a performance improvement, the com-
piler can also decide whether an instantiation needs to
be generated from the state of the repository. If the
requested instantiation is in the repository and can be
determined to be up to date, the compiler does not
need to regenerate the instantiation.

Link-time Instantiation The decision to instantiate can
be left until link time. The linker can find the instantia-
tions that are needed and direct the compiler to generate
those instantiations. McCluskey describes one link-time
instantiation scheme.*® The compiler logs every class,
union, struct, or enum in a name-mapping file in a repos-
itory. Every declared template is also logged in the name-

template <class T> void template_func (T p)

static Tx =0;
cout << X + p;
X++;
}
/IA.cxx /IB.cxx

#include “template.hxx” #include “template.hxx”

extern void b_func();
int main()

1.
template_func(10);
b_func(); /1.
return O; }

void b_func(void)

template_func(zd);

Figure 1

Template Function Containing a Locally Defined Static Variable

Digital Technical Journal Vol.10 No.1 1998

mapping file. At link time, a prelinker determines which
template instantiations are required. The prelinker builds
temporary instantiation source files in the repository to
satisfy the referenced instantiations, compiles them, and
adds the resulting object files to the linker input.
Consider the example in Figure 2.

During the compilation of main.cxx, a name-
mapping file is built in the repository and the location
of the user-defined class C and the function template,
perform_some_function, are recorded. From the infor-
mation stored in the name-mapping file, an instan-
tiation source file is then created in the repository.
Figure 3 shows the contents of the instantiation source
file created to satisty perform_some_function<Cs.

The prelinker then compiles the instantiation source
file by invoking the compiler in a special directed mode,
which directs the compiler to generate code only for
specific template instantiations that are listed on the
command line. The compiler then generates the defin-
ition of perform_some_function<C> in the resulting
object file. The resulting object now satisfies the
instantiation request and is included as part of the
application’s final link. To build the instantiation
source files easily, the implementation of this scheme
generally requires that template declarations, template
definitions, and any argument types used to instantiate
a class or function template must appear in separate,
related header files.

The Edison Design Group has developed another
approach to link-time instantiation.” In this approach,
the compiler records where template instantiations are
used and where they can be instantiated. At link time,
a prelinker assigns template instantiations by recording
the assignments in a specially generated file that corre-

/IC_class.hxx
class C {
public:
I ..
h

/ltemplate.hxx

/* perform_some_function(C&) */
#include “template.hxx”

#include “template.cxx”

#include “C_class.h”

Figure 3
Example of an Instantiation Source File

sponds to the particular source file that can success-
fully instantiate the user’s request. Compiling and pre-
linking the program used in Figure 2 generates an
instantiation assignment file for main.cxx. This file
contains information concerning the command-line
options specified, the user’s current working directory,
and a list of instantiations that should be instantiated.
Main.cxx now owns the responsibility of instantiating
perform_some_function<Cs. The prelinker recompiles
the source files, such as main.cxx, that have changes in
their template instantiation assignments. The process
is repeated until there are no changes made to the
instantiation assignments. Then the final link can be
completed.

This approach has the advantage of requiring no
special file structure to support automatic template
instantiation. It is generally faster and simpler than
McCluskey’s approach, because fewer files are com-
piled in the generation of the needed instantiations
and the instantiations are generated in the context of
the user’s source code. In addition, the assignment of
instantiations to source files can be preserved between
recompilations of the source code, so that unless the
structure of the application changes, the needed instanti-
ations will be available without additional recompilation.

template <class T> void perform_some_function(T ¶m);

/ltemplate.cxx

template <class T> void perform_some_function(T ¶m) { }

/Imain.cxx
#include “C_class.hxx”
#include “template.hxx”

int main()
Cc;
perform_some_function(c);
return O;

}

Figure 2
Example of a Link-time Instantiation Scheme (McCluskey)

Digital Technical Journal Vol.10 No.1 1998

25

26

Comparison of Manual and Automatic Instantiation
Techniques

The manual instantiation techniques require planning
on the part of the user to ensure that needed instantia-
tions are present, that no extraneous instantiations are
generated, and that each needed instantiation appears
exactly once within the application. With manual
instantiation, the user has the advantage of gaining
explicit control over all template instantiations.
Although the strategy of instantiating used templates
locally requires less planning, it does so at the cost of
object file size and the restricted use of templates when
static data members are present or when static data is
defined locally within a function template instantiation.

Automatic template instantiation provides template
instantiation with no explicit action on the part of the
user. Compile-time instantiation requires either spe-
cific linker support to select a single template instanti-
ation from potentially many candidates, or support by
the compiler to generate instantiations in separate
object files while compiling the user’s source code.
Relying on linker support allows the compiler to effi-
ciently generate instantiations at the cost of larger
object files; however, the user loses control over which
instantiation is used in the executable file. Although
the use of separate instantiation object files usually
takes more time at compilation than the linker-support
method, it results in more compact object files and can
provide the user with more control over which instan-
tiation is used in the executable file.

Link-time instantiation provides template instan-
tiation that is tailored to the needs of the executable
file. The primary cost is link-time performance, since
generation of instantiations occurs at link time.
Another disadvantage of link-time instantiation can be
observed when building object-code libraries. Either
the library must contain all the instantiations that it
requires, or the user who wants to link with the library
must have access to all the machinery to create instan-
tiations. Creating a library’s instantiations involves
extra steps during library construction. All the object
files to be included in the library must be prelinked,
so that the needed instantiations are generated. If
instantiations are included in the individual object
files in the library, as in the Edison Design Group
approach, unintended modules may be linked from
the library to provide the needed instantiations.
Consider the following scenario, in which object
files A and B are included in the library. Both files
require the instantiation of perform_some_function<int>.
When these files are prelinked, the instantiation of
perform_some_function<int> is assigned to one of
the files, say A. If an application that is being linked
against the library requires that the object file B be
linked into the executable, then the object file A is also
linked. Here the instantiation needed by B was instan-

Digital Technical Journal Vol.10 No.1 1998

tiated in A even though the executable never refer-
enced anything explicitly defined in file A. This can
yield an unnecessarily large executable.

In the next section, we review the template instan-
tiation support in earlier versions of DIGITAL C++
and then discuss the rationale and design of the auto-
matic template instantiation facility in version 6.0 of
DIGITAL C++.

DIGITAL C++ Template Instantiation Experience

As the use of C++ templates has grown, DIGITAL
C++ has been enhanced to support the need for
improved instantiation techniques. The initial release
of DIGITAL C++ occurred before the C++ standard-
ization process had matured, so that the language sup-
ported was based on The Annotated C++ Reference
Manual, referred to as the ARM.® The ARM defined
template functionality, but it did not provide guidance
for either manual or automatic template instantiation.
Thus it was necessary to provide a DIGITAL C++-
specific mechanism for template instantiation.

DIGITAL C++ Manual Template Instantiation

The #pragma define_template directive and the instan-
tiate all command-line option, -define_templates, have
been supported since the initial release of DIGITAL
C++.

In Figure 4, the define_template pragma directs the
compiler to instantiate class template, C, with type int.
When the compiler detects the use of the pragma, it
creates an internal C<int> type node and traverses the
list of static data members and member functions
defined within the class. If the definitions of these
members are present at the point the pragma is speci-
fied, the compiler materializes each with type int.

As the C++ language developed and template usage
increased, users found manual template instantiation
to be very labor intensive and requested an automated
method.

DIGITAL C++ Version 5.3 Automatic Template
Instantiation

Automatic template instantiation capability became a
serious issue during the planning stages of DIGITAL
C++ version 5.3. The use of templates was increasing
rapidly, and many new third-party libraries, such as
Rogue Wave Software’s Tools.h++, contained a signif-
icant use of templates. Due to this growing need, the
requirements were straightforward. The support had
to be easy to use, have a short design phase, be quickly
implementable on both the DIGITAL UNIX and the
OpenVMS platforms, and provide reasonable perfor-
mance. Because McCluskey’s approach had been used
in several implementations, it presented itself as our
best option.

template <class T> class C {
public:
void mem_funcl(T p);
void mem_func2(T p);

h
template <class T> void C<T>::mem_func1(T p) { //. ..}
template <class T> void C<T>::mem_func2(T p) {//. ..}

#pragma define_template C<int>

Figure 4
The define_template Pragma

DIGITAL made two major changes to McCluskey’s
approach to take advantage of the DIGITAL C++
compiler design. First, we allowed instantiation
source files to be created at compile time instead of
link time. This eliminated the need for McCluskey’s
name-mapping file and simplified the prelinking
process considerably. Since the needed source files
existed in the repository, there was no need to decon-
struct the required template instantiations to deter-
mine their arguments and types.

The second change addressed the transitive closure
problem. Figure 5 shows an example of the class tem-
plate Buffer being instantiated with the user-defined type
C. After compilation of app.cxx with the McCluskey

/IB_class.hxx
class B {//. .. h

I

/IBuffer.hxx
template <class T> class Buffer {

T *buffer;
int num_of_items;
public:
void add_item(T *);
In ..
h

/lapp.cxx

#include “B_class.hxx”
#include “C_class.hxx”
#include “Buffer.hxx”

void f(void)
{
Cc;

Buffer<C> c_buffer;
c_buffer.add_item(&c);

//Buffer.cxx
template <class T>

approach, the name-mapping file contained definition
locations of class B and class C. However, it did not con-
tain any indication that class C had a data member that
relied on the definition of class B. From the information
in the name-mapping file, the prelinker then created an
instantiation source file that included only C_class.hxx,
Buffer.hxx, and Buffer.cxx. When this instantiation
source file was compiled, an error resulted complaining
that B is an undefined type whose size is unknown.

We solved this problem in DIGITAL C++ version
5.3 by including all the top-level header files included
by the current compilation unit in any instantiation
source files created. This ensured that B_class.hxx
would be included in the generated instantiation file.

/IC_class.hxx
class C {
B data_mem;
public:

void Buffer<T>::add_item(T *p) { }

Figure 5
Instantiation of the Class Template Buffer

Digital Technical Journal Vol.10 No.1 1998

27

28

Despite the fact that this type of automatic link-
time instantiation scheme was being widely used
in the industry, the results of using a modified
McCluskey approach were mixed. Stroustrup has
described the general problems with McCluskey’s
approach.” We found that our implementation suf-
fered particularly from poor link-time performance
and so did not satisfy our users’ needs.

DIGITAL C++ Version 6.0 Automatic Template
Instantiation

DIGITAL C++ version 6.0 is a complete reimplemen-
tation of DIGITAL C++, with emphasis on ANSI C++
conformance. It is implemented using a completely
new code base, which includes the industry-standard
C++ front end from the Edison Design Group and a
standard class library from Rogue Wave.

From our experience with template instantiation
in DIGITAL C++ versions 5.3 through 5.6, we con-
cluded that the most important issue that should
be addressed in the design and implementation of
the automatic template instantiation facility was the
compile- and link-time performance. The primary
goal was to have the performance of automatic tem-
plate instantiation substantially exceed the perfor-
mance of version 5.6. Another important goal was
to remove the restriction of template declaration and
definition placement in header files. In addition, the
automatic template instantiation facility in version 6.0
had to be culturally compatible with the previous
implementation. The user had to be able to move
sources and objects to different directories, easily
build archived and shared libraries, share instantia-
tions between various applications, and have error
diagnostics reported at the earliest possible moment in
the instantiation process.

Design and Implementation We decided to use a
compile-time instantiation model as the basis for our
implementation. Since we were using the Edison
Design Group’s front end, we seriously considered
using their link-time model. However, the compile-
time model seemed advantageous for several reasons.
First, there are significant complications (as described
in the section Comparison of Manual and Automatic
Instantiation Techniques) when trying to build
libraries with a compiler that uses the Edison Design
Group link-time model. In addition, the link-time
model requires recompilations that limit performance
in many typical cases of template use. We recognized
that the link-time model could provide better perfor-
mance in some cases, but these would be in the minor-
ity. Finally, the implementation of the link-time model
would require substantially more implementation
effort on the OpenVMS platform. The version of the
Edison Design Group front end being used to build
DIGITAL C++ version 6.0 required tools to scan a

Digital Technical Journal Vol.10 No.1 1998

user’s object files for information concerning which
modules could instantiate requested templates. Similar
functionality would need to be implemented for the
OpenVMS platform.

We preserved the concept of the template reposi-
tory as a directory that contains the individual tem-
plate instantiation object files. The repository stores
one object file for each template function, member
function, static data member, and virtual table that is
generated by automatic template instantiation. The
file name of the instantiation object file is derived from
the name of the instantiation’s external name. At com-
pile time, the front end generates intermediate code
for all templates that are needed in the compilation
unit and can be instantiated. A tree walk is performed
over the intermediate code to find all entities that are
needed by each generated template instantiation. The
code generator is called to generate code for the user-
specified object file and is then called repeatedly for
cach template instantiation to generate the instantia-
tion object files in the repository.

The compiler generally considers an instantiation to
be needed when it is referenced from a context that is
itself needed, such as in a function with global visibility or
by the initialization of a variable that is needed. Virtual
member functions are needed when a constructor for
the class is needed. Thus, all virtual function definitions
should be visible in a compilation unit that requires a
constructor for the class. Each instantiation that is gener-
ated with automatic instantiation is marked as potentially
being in its own object file in the repository.

The intermediate representation of each generated
instantiation is walked to determine what other entities
it references. At this point, the instantiation is a candi-
date to be generated in its own object file, but it can
sometimes be generated as part of the user-specified
object file. If the instantiation references an entity that
is local to the compilation unit, such as a static func-
tion, and that local entity is nonconstant and statically
initialized, the instantiation is merged into the user-
specified object file rather than generated in its own
object file. As an alternative, we could have chosen to
change the local entity into a global entity with a
unique name and generate the instantiation in its own
object file. We chose not to do this in order to make it
casier to share a repository between applications. With
this alternative, the instantiation in the repository
requires the object file containing the local entity’s def-
inition, which may be in another application. Note that
any application that contains more than one definition
of the same instantiation that references a nonconstant
local entity is a nonstandard-conforming application.
This is a violation of the one definition rule.” Consider
the following code fragment:
static int j;
template <class T> int func (T arg) { return j; }
int var = func(2.5);

The reference to the static variable jin the template
function, func, prevents the template from being gen-
erated into its own object file in the repository.

When the individual instantiations are walked, we
mark each global entity that is defined in the compila-
tion unit so that the definition is replaced by an exter-
nal reference when the instantiation object file is
generated. Consider the following code fragment:

void print_count(const char * s, int ivar)

cout<< s <<"" << jvar;

}
template <class T> void func (T arg)

static int count = O;
print_count(“count”, count++);

The function, print_count, is defined in the source
file and generated as a defined function in the user-
specified object file. The template function, func, refer-
ences the function, print_count. When the code for
func is generated in its own object file, the reference to
print_count must be changed from a reference to a
defined function to a reference to an external function.
By default, each needed instantiation is generated by
every compilation that requires the instantiation. This
is the safe default because it ensures that instantiations
in the repository are up to date. However, there will
probably be some compilation overhead from regener-
ating instantiations that may already be up to date. We
believed that the overhead of regenerating instantia-
tions would typically be relatively small. For applica-
tions with a high overhead of instantiation, such as a
large number of source files using the same large num-
ber of template instantiations, we provided a compila-
tion option to control the generation of template
instantiations to improve compile-time performance.
The generation of instantiation object files only
when they are actually required is a difficult problem.
Fine-grain dependency information would have to be
kept for each instantiation object file. Such depen-
dency information would need to reflect those files that
are required to successfully generate the instantiation
and record which command-line options the user speci-
fied to the compiler. We suspected that the overhead
involved with gathering and checking the information
might be an appreciable percentage of the time it would
take to do the instantiation, and thus it would not give
us the performance improvement that we wanted.
Instead, we decided to provide an option that allows
the user to decide when instantiations are generated.
We refer to this as the template time-stamp option,
-ttimestamp. When using the time-stamp option, the
compiler looks in the repository for a file named
TIMESTAMP. If the file is not found, it is created. The
modification time of this file is referred to as the time

stamp. When generating an instantiation, the compiler
looks in the repository to see if the instantiation object
file exists. If it does not exist, it is generated. If the file
already exists, its modification time is compared to the
time stamp. If the modification time is later than the
time stamp, the instantiation is assumed to be up to
date and is not regenerated. Otherwise, the instantia-
tion is generated. The user can control the generation
of instantiation object files by changing the modifica-
tion time of the TIMESTAMP file.

The time-stamp option would typically be used in
a makefile or a shell script that compiles and builds
an entire application. Before invoking make or the
shell script, the user would make certain that no
TIMESTAMP file resided in the repository. This
would ensure that each needed instantiation would be
generated exactly once during all the compilations
done by the build procedure.

Much of the C++ linker support in version 5.6 was
reused with only minor modifications for version
6.0. The compiler is presented with a single repository
into which the instantiation object files are written.
Multiple repositories can be specified at link time, and
cach can be searched for instantiations that are needed
by the executable file. The linker is used in a trial link
mode to generate a list of all the unresolved external
references. This list is then used to search the reposito-
ries to find the needed instantiation files, and the
process is repeated until no more instantiations are
needed or can be satisfied from the repository. The
link then proceeds as any normal link, adding the list
of instantiation object files to the list of object files
and libraries as specified by the user.

If a vendor is creating a library rather than an exe-
cutable file, the instantiations needed by the modules
in the library can be provided in either of two ways: (1)
The library vendor can put the needed instantiations
in the library by adding the files in the repository to
the library file. (2) The library vendor can provide the
repository with the library and require that library
users link with the repository as well. Note that instan-
tiations placed in the library are fixed when the library
is created. Since the library is included in the trial link
of an application, any instantiation in the library takes
precedence over the same named instantiation in a
repository.

Results In a number of tests, DIGITAL C++ version
6.0 showed improved performance over version 5.6.
We tested a variety of user code samples that use tem-
plates to varying degrees and found that build times for
version 6.0 decreased substantially compared to the
version 5.6 compiler. Examples of two typical C++
applications used in our tests are the publicly available
EON ray-tracing benchmark and a subset of tests from
our Standard Template Library (STL) test suite. For

Digital Technical Journal Vol.10 No.1 1998

29

30

the EON benchmark, the build time for version 6.0 was
reduced to 28 percent of the build time for version 5.6.
For the STL tests, the build time for version 6.0 was
reduced to 19 percent of the build time for version 5.6.
The number of files in the repository also decreased
significantly because version 6.0 generates only instan-
tiation object files instead of the instantiation source,
command, dependency, and object files of version 5.6.
For EON, the version 6.0 repository contained 88 files
compared to 260 files in version 5.6.

Using the time-stamp option, build time for the
EON benchmark was reduced by only 5 percent com-
pared to the default instantiation strategy. The real
benefit of the time-stamp option comes with applica-
tions that use the same template instantiations in many
compilation units. For example, in one user’s test case,
build times dropped from roughly 18 hours with the
default instantiation to 3 hours when using the time-
stamp option.

In the next section, we conclude our paper with a dis-
cussion of further work that can improve the perfor-
mance and usability of automatic template instantiation.

Future Research

We continue to investigate approaches and techniques
to improve the usability and performance of the auto-
matic template instantiation facility. Optimal usability
and performance would seem to require a development
environment completely integrated for C++. This envi-
ronment would keep track of all entity definitions and
usage and would be able to limit all instantiation gener-
ation to the minimum needed. This approach would
require a great deal of development work and might be
difficult to integrate with existing customer develop-
ment methodologies. Therefore, we focus on more
modest techniques that approximate the optimal case.

We are exploring ways to improve both performance
and usability in the management of dependency infor-
mation. We continue to look at approaches for using
dependencies that can be reliable, automatic, and fast.
We also continue to investigate ways to gather and check
fine-grained dependency information for the instanti-
ation object files, though performance is a concern.
One approximation to the fine-grain dependency
information that we are investigating is a larger grain
dependency scheme. This technique creates a time
stamp from the latest creation time of any source file
included during compilation of a given module. Any
instantiation object file in the repository whose modi-
fication time is later than this time stamp would not be
regenerated. This approach is more automatic and can
potentially yield better performance than our current
time-stamp option, but it would not be sensitive to
changes on the command line or changes to the struc-

Digital Technical Journal Vol.10 No.1 1998

ture of the files used to generate the instantiation. For
example, if the user specified an include directory
of old_include on the initial compilation and later
specified an include directory of new_include, this
approach would not recognize that different files were
being included.

Another approach to improving application build
performance is to support a build facility that can
make use of template information in determining
dependency. Currently, each user-specified object file
is dependent on all the included files necessary to
create instantiation object files for template requests.
When a change is made to a template definition, all the
sources that reference the template need to be recom-
piled. A build facility designed to be sensitive to tem-
plate instantiation could detect that a change in the
template definition was limited to the instantiation
object file. It could then instruct the compiler to sup-
press the regeneration of object files for source files
that are only being recompiled due to the change in
the template instantiation. Such a facility could also
suppress the recompilation of any source file that
would only reproduce the changes to instantiations
that were already regenerated.

Because we recognize that link-time instantiation
can perform better in some cases than the compile-time
approach, we are investigating the link-time instantia-
tion model as a user option.

Finally, we continue to look at ways to reduce the
cost of generating each instantiation. For example, by
default the compiler compresses the generated object
files. Although most instantiation object files are small,
many of them are potentially generated in a single com-
pilation. As a result, the time to compress all the instan-
tiation object files can be significant. Improvements
such as not compressing small object files and/or
improving the algorithm of the object file compression
implementation itself could yield significant perfor-
mance improvement. In addition to improvements
that would reduce the overhead of generating instanti-
ations, we are also researching ways to reduce the num-
ber of instantiation object files. For example, we might
combine all the virtual functions of a class into a single
instantiation object file in the repository.

Summary

As with most engineering problems, no single approach
to the automatic instantiation of templates is optimal for
all potential uses of templates. Based on our experience
with providing template support in DIGITAL C++, we
chose to implement a compile-time automatic template
instantiation scheme for version 6.0 that generates
instantiation object files into a repository. This choice
allows users to better control when template instantia-

tion occurs. In addition, it provides a substantial
improvement in performance of template instantiation
over version 5.6 and reduces the restrictions on the
location of template declarations and definitions. We
continue to investigate the template-instantiation imple-
mentation to further improve compile- and link-time
performance and ease of use.

Acknowledgment

The authors wish to acknowledge Bevin Brett, who
contributed substantially to the design and implemen-
tation of the needed walk and instantiation object file
generation for DIGITAL C++ version 6.0, and
Hemant Rotithor, who provided the performance
measurements for DIGITAL C++ version 6.0 versus
version 5.6. The authors also wish to acknowledge
Charlie Mitchell, Coleen Phillimore, Rich Phillips, and
Harold Seigel for their contributions to the design and
implementation of the DIGITAL C++ automatic tem-
plate instantiation.

References

1. ISO/IEC Standard 14882, Programming Language
C++, 1998.

2. B. Stroustrup, The C++ Programming Language,
Third Edition (Reading, Mass.: Addison-Wesley,
1997).

3. Microsoft Visual C++ 5.0, On-line Help, “Templates,
C++.”

4. Microsoft Corporation, “Microsoft Portable Exe-
cutable and Common Object File Format Specifica-
tion,” Revision 5.0, Section 5.5.6, Microsoft
Developer’s Network (October 1997).

5. G. McCluskey, “An Environment for Template Instan-
tiation,” The C++ Report, vol. 4, no. 2 (1992).

6. G. McCluskey and R. Murray, “Template Instantiation
for C++,” Sigplan Notices, vol. 27, no. 12 (1992):
47-56.

7. Edison Design Group, “Template Instantiation in the
EDG C++ Front End,” Note to the ANSI C++ Com-
mittee, X3J16,/95-0163, WG21 /N0763.

8. M. Ellis and B. Stroustrup, 7The Annotated C++ Refer-
ence Manual (Reading, Mass.: Addison-Wesley,
1990).

9. B. Stroustrup, The Design and Evolution of C++
(Reading, Mass.: Addison-Wesley, 1994): 366.

10. B. Stroustrup, The C++ Programming Language,
Third Edition (Reading, Mass.: Addison-Wesley,
1997):203-205.

Biographies

Avrum E. Itzkowitz

Avrum Itzkowitz was a contractor /consultant at DIGITAL
from September 1995 through December 1997. During
that time, he worked as part of the DIGITAL C++ develop-
ment team, designing and implementing much of the sup-
port for the automatic template instantiation facility in
DIGITAL C++ version 6.0. Avrum also designed and
implemented template instantiation tests. He is currently a
senior software architect engineer at GTE Internetworking.
He holds a B.S. (1972) in electrical engineering from
Northwestern University and M.S. (1976) and Ph.D.
(1979) degrees in computer science from the University

of Tllinois. Avrum is a member of the ACM, the IEEE-
Computer Society, and SIGPLAN.

Lois D. Foltan

Lois Foltan is a principal software engineer at Compagq.
Her areas of expertise include support for C++ automatic
template instantiation and the DIGITAL C++ object
model. She was a member of the DEC C/C++ compiler
team for eight years. During that time, she contributed
to the first GEM-based DEC C and DEC C++ compilers.
Recently, she joined the Digital Java team. Lois received a
B.S. in computer science from the University of Vermont
in 1988.

Digital Technical Journal Vol.10 No.1 1998

31

