
32 Digital Technical Journal Vol. 10 No. 1 1998

Optimizing compilers are becoming ever more complex
as languages, target architectures, and product features
evolve. Languages contribute to compiler complexity
with their increasing use of abstraction, modularity,
delayed binding, polymorphism, and source reuse,
especially when these attributes are used in combina-
tion. Modern processor architectures are evolving ever
greater levels of internal parallelism in each successive
generation of processor design. In addition, product
feature demands such as support for fast threads and
other forms of external parallelism, integration with
smart debuggers, memory use analyzers, performance
analyzers, smart editors, incremental builders, and feed-
back systems continue to add complexity. At the same
time, traditional compiler requirements such as stan-
dards conformance, compatibility with previous ver-
sions and competitors’ products, good compile speed,
and reliability have not diminished.

All these issues arise in the engineering of Compaq’s
C and C++ compilers for the Alpha Architecture.
Dealing with them requires a disciplined approach to
performance measurement, analysis, and engineering of
the compiler and libraries if consistent improvements in
out-of-the-box and peak performance on Alpha proces-
sors are to be achieved. In response, several engineering
groups working on Alpha software have established
procedures for feature support, performance measure-
ment, analysis, and regression testing.

The operating system groups measure and improve
overall system performance by providing system-level
tuning features and a variety of performance analysis
tools. The Digital Products Division (DPD) Performance
Analysis Group is responsible for providing official
performance statistics for each new processor mea-
sured against industry-standard benchmarks, such as
SPECmarks published by the Standard Performance
Evaluation Corporation and the TPC series of transac-
tion processing benchmarks from the Transaction
Processing Performance Council. The DPD Performance
Analysis Group has established rigorous methods for
analyzing these benchmarks and provides perfor-
mance regression testing for new software versions.

Measurement and
Analysis of C and C++
Performance

Hemant G. Rotithor
Kevin W. Harris
Mark W. Davis

As computer languages and architectures
evolve, many more challenges are being pre-
sented to compilers. Dealing with these issues
in the context of the Alpha Architecture and the
C and C++ languages has led Compaq’s C and
C++ compiler and engineering teams to develop
a systematic approach to monitor and improve
compiler performance at both run time and
compile time. This approach takes into account
five major aspects of product quality: function,
reliability, performance, time to market, and
cost. The measurement framework defines a
controlled test environment, criteria for select-
ing benchmarks, measurement frequency, and
a method for discovering and prioritizing oppor-
tunities for improvement. Three case studies
demonstrate the methodology, the use of mea-
surement and analysis tools, and the resulting
performance improvements.

Digital Technical Journal Vol. 10 No. 1 1998 33

Similarly, the Alpha compiler back-end development
group (GEM) has established performance improve-
ment and regression testing procedures for SPECmarks;
it also performs extensive run-time performance analy-
sis of new processors, in conjunction with refining and
developing new optimization techniques. Finally, con-
sultants working with independent software vendors
(ISVs) help the ISVs port and tune their applications
to work well on Alpha systems.

Although the effort from these groups does con-
tribute to competitive performance, especially on
industry-standard benchmarks, the DEC C and C++
compiler engineering teams have found it necessary to
independently monitor and improve both run-time
and compile-time performance. In many cases, ISV
support consultants have discovered that their applica-
tions do not achieve the performance levels expected
based on industry-standard benchmarks. We have seen
a variety of causes: New language constructs and prod-
uct features are slow to appear in industry bench-
marks, thus these optimizations have not received
sufficient attention. Obsolete or obsolescent source
code remaining in the bulk of existing applications
causes default options/switches to be selected that
inhibit optimizations. Many of the most important
optimizations used for exploiting internal parallelism
make assumptions about code behavior that prove to
be wrong. Bad experiences with compiler bugs induce
users to avoid optimizations entirely. Configuration
and source-code changes made just before a product is
released can interfere with important optimizations.

For all these reasons, we have used a systematic
approach to monitor, improve, and trade off five
major aspects of product quality in the DEC C and
DIGITAL C++ compilers. These aspects are function,
reliability, performance, time to market, and cost.
Each aspect is chosen because it is important in isola-
tion and because it trades off against each of the other
aspects. The objective of this paper is to show how the
one characteristic of performance can be improved
while minimizing the impact on the other four aspects
of product quality.

In this paper, we do not discuss any individual opti-
mization methods in detail; there is a plethora of liter-
ature devoted to these topics, including a paper
published in this Journal.1 Nor do we discuss specific
compiler product features needed for competitive sup-
port on individual platforms. Instead, we show how
the efforts to measure, monitor, and improve perfor-
mance are organized to minimize cost and time to
market while maximizing function and reliability.
Since all these product aspects are managed in the con-
text of a series of product releases rather than a single
release, our goals are frequently expressed in terms of
relationships between old and new product versions.

For example, for the performance aspects, goals along
the following lines are common:

■ Optimizations should not impose a compile-speed
penalty on programs for which they do not apply.

■ The use of unrelated compiler features should not
degrade optimizations.

■ New optimizations should not degrade reliability.
■ New optimizations should not degrade perfor-

mance in any applications.
■ Optimizations should not impose any nonlinear

compile-speed penalty.
■ No application should experience run-time speed

regressions.
■ Specific benchmarks or applications should achieve

specific run-time speed improvements.
■ The use of specific new language features should not

introduce compile-speed or run-time regressions.

In the context of performance, the term measure-
ment usually refers to crude metrics collected during
an automated script, such as compile time, run time,
or memory usage. The term analysis, in contrast,
refers to the process of breaking down the crude mea-
surement into components and discovering how the
measurement responds to changing conditions. For
example, we analyze how compile speed responds to
an increase in available physical memory. Often, a
comprehensive analysis of a particular issue may
require a large number of crude measurements. The
goal is usually to identify a particular product feature
or optimization algorithm that is failing to obey one of
the product goals, such as those listed above, and
repair it, replace it, or amend the goal as appropriate.
As always, individual instances of this approach are
interesting in themselves, but the goal is to maximize
the overall performance while minimizing the devel-
opment cost, new feature availability, reliability, and
time to market for the new version.

Although some literature2–4 discusses specific aspects
of analyzing and improving performance of C and C++
compilers, a comprehensive discussion of the practical
issues involved in the measurement and analysis of
compiler performance has not been presented in the
literature to our knowledge. In this paper, we provide a
concrete background for a practitioner in the field of
compilation-related performance analysis.

In the next section, we describe the metrics associ-
ated with the compiler’s performance. Following that,
we discuss an environment for obtaining stable perfor-
mance results, including appropriate benchmarks,
measurement frequency, and management of the results.
Finally, we discuss the tools used for performance mea-
surement and analysis and give examples of the use of
those tools to solve real problems.

34 Digital Technical Journal Vol. 10 No. 1 1998

Performance Metrics

In our experience, ISVs and end users are most inter-
ested in the following performance metrics:

■ Function. Although function is not usually consid-
ered an aspect of performance, new language and
product features are entirely appropriate to consider
among potential performance improvements when
trading off development resources. From the point
of view of a user who needs a particular feature, the
absence of that feature is indistinguishable from an
unacceptably slow implementation of that feature.

■ Reliability. Academic papers on performance sel-
dom discuss reliability, but it is crucial. Not only is
an unreliable optimization useless, often it preju-
dices programmers against using any optimiza-
tions, thus degrading rather than enhancing overall
performance.

■ Application absolute run time. Typically, the absolute
run time of an application is measured for a bench-
mark with specific input data. It is important to real-
ize, however, that a user-supplied benchmark is often
only a surrogate for the maximum application size.

■ Maximum application size. Often, the end user is
not trying to solve a specific input set in the shortest
time; instead, the user is trying to solve the largest
possible real-world problem within a specific time.
Thus, trends (e.g., memory bandwidth) are often
more important than absolute timings. This also
implies that specific benchmarks must be retired or
upgraded when processor improvements moot their
original rationale.

■ Price/Performance ratio. Often, the most effective
competitor is not the one who can match our
product’s performance, but the one who can give
acceptable performance (see above) with the cheapest
solution. Since compiler developers do not contribute
directly to server or workstation pricing decisions,
they must use the previous metrics as surrogates.

■ Compile speed. This aspect is primarily of interest to
application developers rather than end users.
Compile speed is often given secondary considera-
tion in academic papers on optimization; however, it
can make or break the decision of an ISV consider-
ing a platform or a development environment. Also,
for C++, there is an important distinction between
ab initio build speed and incremental build speed,
due to the need for template instantiation.

■ Result file size. Both the object file and executable
file sizes are important. This aspect was not a partic-
ular problem with C, but several language features
of C++ and its optimizations can lead to explosive
growth in result file size. The most obvious prob-
lems are the need for extensive function inlining

and for instantiation of templates. In addition, for
debug versions of the result files, it is essential to
find a way to suppress repeated descriptions of the
type information for variables in multiple modules.

■ Compiler dynamic memory use. Peak usage, aver-
age usage, and pattern of usage must be regulated
to keep the cost of a minimum development con-
figuration low. In addition, it is important to ensure
that specific compiler algorithms or combinations
of them do not violate the usage assumptions built
into the paging system, which can make the system
unusable during large compilations.

Crude measurements can be made for all or most of
these metrics in a single script. When attempting to
make a significant improvement in one or more met-
rics, however, the change often necessarily degrades
others. This is acceptable, as long as the only cases that
pay a penalty (e.g., in larger dynamic memory use) are
the compilations that benefit from the improved run-
time performance.

As the list of performance metrics indicates, the most
important distinction is made between compile-time
and run-time metrics. In practice, we use automated
scripts to measure compile-time and run-time perfor-
mance on a fairly frequent (daily or weekly during
development) basis.

Compile-Time Performance Metrics
To measure compile-time performance, we use four
metrics: compilation time, size of the generated objects,
dynamic memory usage during compilation, and tem-
plate instantiation time for C++.

Compilation Time The compilation time is measured
as the time it takes to compile a given set of sources,
typically excluding the link time. The link time is
excluded so that only compiler performance is mea-
sured. This metric is important because it directly
affects the productivity of a developer. In the C++ case,
performance is measured ab initio, because our prod-
uct set does not support incremental compilation
below the granularity of a whole module. When opti-
mization of the entire program is attempted, this may
become a more interesting issue. The UNIX shell tim-
ing tools make a distinction between user and system
time, but this is not a meaningful distinction for a com-
piler user. Since compilation is typically CPU intensive
and system time is usually modest, tracking the sum of
both the user and the system time gives the most realis-
tic result. Slow compilation times can be caused by the
use of O (n 2) algorithms in the optimization phases,
but they can also be frequently caused by excessive
layering or modularity due to code reuse or excessive
growth of the in-memory representation of the pro-
gram during compilation (e.g., due to inlining).

Digital Technical Journal Vol. 10 No. 1 1998 35

Size of Generated Objects Excessive size of generated
objects is a direct contributor to slow compile and
link times. In addition to the obvious issues of inlin-
ing and template instantiation, duplication of the type
and naming information in the symbolic debugging
support has been a particular problem with C++.
Compression is possible and helps with disk space, but
this increases link time and memory use even more.
The current solution is to eliminate duplicate informa-
tion present in multiple modules of an application.
This work requires significant support in both the
linker and the debugger. As a result, the implementa-
tion has been difficult.

Dynamic Memory Usage during Compilation Usually
modern compilers have a multiphase design whereby
the program is represented in several different forms in
dynamic memory during the compilation process. For
C and C++ optimized compilations, this involves at
least the following processes:

■ Retrieving the entire source code for a module
from its various headers

■ Preprocessing the source according to the C/C++
rules

■ Parsing the source code and representing it in an
abstract form with semantic information embedded

■ For C++, expanding template classes and functions
into their individual instances

■ Simplifying high-level language constructs into a
form acceptable to the optimization phases

■ Converting the abstract representation to a differ-
ent abstract form acceptable to an optimizer, usu-
ally called an intermediate language (IL)

■ Expanding some low-level functions inline into the
context of their callers

■ Performing multiple optimization passes involving
annotation and transformation of the IL

■ Converting the IL to a form symbolically represent-
ing the target machine language, usually called code
generation

■ Performing scheduling and other optimizations on
the symbolic machine language

■ Converting the symbolic machine language to actual
object code and writing it onto disk

In modern C and C++ compilers, these various inter-
mediate forms are kept entirely in dynamic memory.
Although some of these operations can be performed
on a function-by-function basis within a module, it is
sometimes necessary for at least one intermediate form
of the module to reside in dynamic memory in its
entirety. In some instances, it is necessary to keep mul-
tiple forms of the whole module simultaneously.

This presents a difficult design challenge: how do we
compile large programs using an acceptable amount of
virtual and physical memory? Trade-offs change con-
stantly as memory prices decline and paging algorithms
of operating systems change. Some optimizations even
have the potential to expand one of the intermediate
representations into a form that grows faster than the
size of the program (O(n 3 log(n)), or even O(n 2)). In
these cases, optimization designers often limit the
scope of the transformation to a subset of an individual
function (e.g., a loop nest) or use some other means to
artificially limit the dynamic memory and computation
requirements. To allow additional headroom, upstream
compiler phases are designed to eliminate unnecessary
portions of the module as early as possible.

In addition, the memory management systems are
designed to allow internal memory reuse as effi-
ciently as possible. For this reason, compiler design-
ers at Compaq have generally preferred a zone-based
memory management approach rather than either a
malloc -based or a garbage-collection approach. A
zoned memory approach typically allows allocation
of varying amounts of memory into one of a set of
identified zones, followed by deallocation of the
entire zone when all the individual allocations are no
longer needed. Since the source program is repre-
sented by a succession of internal representations
in an optimizing compiler, a zoned-based memory
management system is very appropriate.

The main goals of the design are to keep the peak
memory use below any artificial limits on the virtual
memory available for all the actual source modules
that users care about, and to avoid algorithms that
access memory in a way that causes excessive cache
misses or page faults.

Template Instantiation Time for C++ Templates are a
major new feature of the C++ language and are heavily
used in the new Standard Library. Instantiation of
templates can dominate the compile time of the mod-
ules that use them. For this reason, template instantia-
tion is undergoing active study and improvement,
both when compiling a module for the first time and
when recompiling in response to a source change. An
improved technique, now widely adopted, retains pre-
compiled instantiations in a library to be used across
compilations of multiple modules.

Template instantiation may be done at either com-
pile time or during link time, or some combination.5

DIGITAL C++ has recently changed from a link-time
to a compile-time model for improved instantiation
performance. The instantiation time is generally pro-
portional to the number of templates instantiated,
which is based on a command-line switch specification
and the time required to instantiate a typical template.

36 Digital Technical Journal Vol. 10 No. 1 1998

Run-Time Performance Metrics
We use automated scripts to measure run-time perfor-
mance for generated code, the debug image size, the pro-
duction image size, and specific optimizations triggered.

Run Time for Generated Code The run time for gen-
erated code is measured as the sum of user and system
time on UNIX required to run an executable image.
This is the primary metric for the quality of generated
code. Code correctness is also validated. Comparing
run times for slightly differing versions of synthetic
benchmarks allows us to test support for specific opti-
mizations. Performance regression testing on both
synthetic benchmarks and user applications, however,
is the most cost-effective method of preventing per-
formance degradations. Tracing a performance regres-
sion to a specific compiler change is often difficult, but
the earlier a regression is detected, the easier and
cheaper it is to correct.

Debug Image Size The size of an image compiled
with the debug option selected during compilation is
measured in bytes. It is a constant struggle to avoid
bloat caused by unnecessary or redundant information
required for symbolic debugging support.

Production Image Size The size of a production
(optimized, with no debug information) application
image is measured in bytes. The use of optimization
techniques has historically made this size smaller, but
modern RISC processors such as the Alpha micro-
processor require optimizations that can increase code
size substantially and can lead to excessive image sizes
if the techniques are used indiscriminately. Heuristics
used in the optimization algorithms limit this size
impact; however, subtle changes in one part of the
optimizer can trigger unexpected size increases that
affect I-cache performance.

Specific Optimizations Triggered In a multiphase
optimizing compiler, a specific optimization usually
requires preparatory contributions from several
upstream phases and cleanup from several down-
stream phases, in addition to the actual transforma-
tion. In this environment, an unrelated change in one
of the upstream or downstream phases may interfere
with a data structure or violate an assumption
exploited by a downstream phase and thus generate
bad code or suppress the optimizations. The genera-
tion of bad code can be detected quickly with auto-
mated testing, but optimization regressions are much
harder to find.

For some optimizations, however, it is possible to
write test programs that are clearly representative
and can show, either by some kind of dumping or
by comparative performance tests, when an imple-
mented optimization fails to work as expected. One

commercially available test suite is called NULLSTONE,6

and custom-written tests are used as well.
In a collection of such tests, the total number of opti-

mizations implemented as a percentage of the total
tests can provide a useful metric. This metric can indi-
cate if successive compiler versions have improved and
can help in comparing optimizations implemented in
compilers from different vendors. The optimizations
that are indicated as not implemented provide useful
data for guiding future development effort.

The application developer must always consider the
compile-time versus run-time trade-off. In a well-
designed optimizing compiler, longer compile times
are exchanged for shorter run times. This relationship,
however, is far from linear and depends on the impor-
tance of performance to the application and the phase
of development.

During the initial code-development stage, a shorter
compile time is useful because the code is compiled
often. During the production stage, a shorter run time
is more important because the code is run often.
Although most of the above metrics can be directly
measured, dynamic memory use can only be indirectly
observed, for example, from the peak stack use and the
peak heap use. As a result, our tests include bench-
marks that potentially make heavy use of dynamic
memory. Any degradation in a newer compiler version
can be deduced from observing the compilation of
such test cases.

Environment for Performance Measurement

In this section, we describe our testing environment,
including hardware and software requirements, crite-
ria for selecting benchmarks, frequency of perfor-
mance measurement, and tracking the results of our
performance measurements.

Compiler performance analysis and measurement
give the most reliable and consistent results in a
controlled environment. A number of factors other
than the compiler performance have the potential of
affecting the observed results, and the effect of such
perturbations must be minimized. The hardware and
software components of the test environment used are
discussed below.

Experience has shown that it helps to have a dedi-
cated machine for performance analysis and measure-
ment, because the results obtained on the same
machine tend to be consistent and can be meaning-
fully compared with successive runs. In addition, the
external influences can be closely controlled, and ver-
sions of system software, compilers, and benchmarks
can be controlled without impacting other users.

Several aspects of the hardware configuration on the
test machine can affect the resulting measurements.
Even within a single family of CPU architectures at
comparable clock speeds, differences in specific imple-

Digital Technical Journal Vol. 10 No. 1 1998 37

types and addresses of program variables. This mode
is commonly specified during code development.

3. Optimize/Production Mode. In the optimize/
production mode, we select the option combina-
tion for generating optimized code (-O compiler
option) for a production image. This mode is most
likely to be used in compiling applications before
shipping to customers.

We prefer to measure compile speed for debug mode,
run speed for production mode, and both speeds for
the default mode. The default mode is expected to lose
only modest run speed over optimize mode, have good
compile speed, and provide usable debug information.

Criteria for Selecting Benchmarks
Specific benchmarks are selected for measuring perfor-
mance based on the ease of measuring interesting
properties and the relevance to the user community.
The desirable characteristics of useful benchmarks are

■ It should be possible to measure individual opti-
mizations implemented in the compiler.

■ It should be possible to test performance for com-
monly used language features.

■ At least some of the benchmarks should be repre-
sentative of widely used applications.

■ The benchmarks should provide consistent results,
and the correctness of a run should be verifiable.

■ The benchmarks should be scalable to newer
machines. As newer and faster machines are devel-
oped, the benchmark execution times diminish. It
should be possible to scale the benchmarks on the
machines, so that useful results can still be obtained
without significant error in measurement.

To meet these diverse requirements, we selected a set
of benchmarks, each of which meets some of the
requirements. We grouped our benchmarks in accor-
dance with the performance metrics, that is, as compile-
time and run-time benchmarks. This distinction is
necessary because it allows us to fine-tune the contents
of the benchmarks under each category. The compile-
time and run-time benchmarks may be further classified
as (1) synthetic benchmarks for testing the performance
of specific features or (2) real applications that indicate
typical performance and combine the specific features.

Compile-Time Benchmarks Examples of synthetic
compile-time benchmarks include the #define inten-
sive preprocessing test, the array intensive test, the
comment intensive test, the declaration processing
intensive test, the hierarchical #include intensive test,
the printf intensive test, the empty #include intensive
test, the arithmetic intensive test, the function defini-
tion intensive test (needs a large memory), and the
instantiation intensive test.

mentations can cause significant performance changes.
The number of levels and the sizes of the on-chip and
board-level caches can have a strong effect on perfor-
mance in a way that depends on algorithms of the
application and the size of the input data set. The size
and the access speed of the main memory strongly
affect performance, especially when the application
code or data does not fit into the cache. The activity on
a network connected to the test system can have an
effect on performance; for example, if the test sources
and the executable image are located on a remote disk
and are fetched over a network. Variations in the
observed performance may be divided into two parts:
(1) system-to-system variations in measurement when
running the same benchmark and (2) run-to-run varia-
tion on the same system running the same benchmark.

Variation due to hardware resource differences
between systems is addressed by using a dedicated
machine for performance measurement as indicated
above. Variation due to network activity can be mini-
mized by closing all the applications that make use of
the network before the performance tests are started
and by using a disk system local to the machine under
test. The variations due to cache and main memory
system effects can be kept consistent between runs by
using similar setups for successive runs of performance
measurement.

In addition to the hardware components of the
setup described above, several aspects of the software
environment can affect performance. The operating
system version used on the test machine should corre-
spond to the version that the users are likely to use on
their machines, so that the users see comparable per-
formance. The libraries used with the compiler are
usually shipped with the operating system. Using dif-
ferent libraries can affect performance because newer
libraries may have better optimizations or new fea-
tures. The compiler switches used while compiling test
sources can result in different optimization trade-offs.
Due to the large number of compiler options sup-
ported on a modern compiler, it is impractical to test
performance with all possible combinations.

To meet our requirements, we used the following
small set of switch combinations:

1. Default Mode. The default mode represents the
default combination of switches selected for the com-
piler when no user-selectable options are specified.
The compiler designer chooses the default combina-
tion to provide a reasonable trade-off between com-
pile speed and run speed. The use of this mode is very
common, especially by novices, and thus is important
to measure.

2. Debug Mode. In the debug mode, we test the option
combination that the programmer would select when
debugging. Optimizations are typically turned off,
and full symbolic information is generated about the

38 Digital Technical Journal Vol. 10 No. 1 1998

Real applications used as compile-time bench-
marks include selected sources from the C compiler,
the DIGITAL UNIX operating system, UNIX utilities
such as awk, the X window interface, and C++ class
inheritance.

Run-Time Benchmarks Synthetic run-time bench-
marks contain tests for individual optimizations for
different data type, storage types, and operators. One
run-time suite called NULLSTONE6 contains tests for
C and C++ compiler optimizations; another test suite
called Bench++7 has tests for C++ features such as vir-
tual function calls, exception handling, and abstraction
penalty (the Haney kernels test, the Stepanov bench-
mark, and the OOPACK benchmark8).

Run-time benchmarks of real applications for the C
language include some of the SPEC tests that are closely
tracked by the DPD Performance Group. For C++, the
tests consist of the groff word processor processing a set
of documents, the EON ray tracing benchmark, the
Odbsim-a database simulator from the University of
Colorado, and tests that call functions from a search
class library.

Acquiring and Maintaining Benchmarks
We have established methods of acquiring, maintain-
ing, and updating benchmarks. Once the desirable
characteristics of the benchmarks have been identified,
useful benchmarks may be obtained from several
sources, notably a standards organization such as
SPEC or a vendor such as Nullstone Corporation. The
public domain can provide benchmarks such as EON,
groff, and Bench++. The use of a public-domain
benchmark may require some level of porting to make
the benchmark usable on the test platform if the origi-
nal application was developed for use with a different
language dialect, e. g., GNU’s gcc.

Sometimes, customers encounter performance prob-
lems with a specific feature usage pattern not anticipated
by the compiler developers. Customers can provide
extracts of code that a vendor can use to reproduce
these performance problems. These code extracts can
form good benchmarks for use in future testing to avoid
reoccurrence of the problem.

Application code such as extracts from the compiler
sources can be acquired from within the organization.
Code may also be obtained from other software devel-
opment groups, e. g., the class library group, the
debugger group, and the operating system group.

If none of these sources can yield a benchmark with
a desirable characteristic, then one may be written
solely to test the specific feature or combination.

In our tests of the DIGITAL C++ compiler, we
needed to use all the sources discussed above to obtain
C++ benchmarks that test the major features of the
language. The public-domain benchmarks sometimes
required a significant porting effort because of com-

patibility issues between different C++ dialects. We
also reviewed the results published by other C++ com-
piler vendors.

Maintaining a good set of performance measurement
benchmarks is necessary for evolving languages such as
C and C++. New standards are being developed for
these languages, and standards compatibility may make
some of a benchmark’s features obsolete. Updating the
database of benchmarks used in testing involves

■ Changing the source of existing benchmarks to
accommodate system header and default behavior
changes

■ Adding new benchmarks to the set when new com-
piler features and optimizations are implemented

■ Deleting outdated benchmarks that do not scale
well to newer machines

In the following subsection, we discuss the fre-
quency of our performance measurement.

Measurement Frequency
When deciding how often to measure compiler per-
formance, we consider two major factors:

■ It is costly to track down a specific performance
regression amid a large number of changes. In fact,
it sometimes becomes more economical to address
a new opportunity instead.

■ In spite of automation, it is still costly to run a suite
of performance tests. In addition to the actual run
time and the evaluation time, and even with signifi-
cant efforts to filter out noise, the normal run-to-
run variability can show phantom regressions or
improvements.

These considerations naturally lead to two obvious
approaches to test frequency:

■ Measuring at regular intervals. During active devel-
opment, measuring at regular intervals is the most
appropriate policy. It allows pinpointing specific
performance regressions most cheaply and permits
easy scheduling and cost management. The interval
selected depends on the amount of development
(number of developers and frequency of new code
check-ins) and the cost of the testing. In our tests,
the intervals have been as frequent as three days and
as infrequent as 30 days.

■ Measuring on demand. Measurement is performed
on demand when significant changes occur, for
example, the delivery of a major new version of a
component or a new version of the operating system.
A full performance test is warranted to establish a
new baseline when a competitor’s product is released
or to ensure that a problem has been corrected.

Both strategies, if implemented purely, have problems.
Frequent measurement can catch problems early but is

Digital Technical Journal Vol. 10 No. 1 1998 39

resource intensive, whereas an on-demand strategy
may not catch problems early enough and may not
allow sufficient time to address discovered problems.
In retrospect, we discovered that the time devoted to
more frequent runs of existing tests could be better
used to develop new tests or analyze known results
more fully.

We concluded that a combination strategy is the best
approach. In our case all the performance tests are run
prior to product releases and after major component
deliveries. Periodic testing is done during active devel-
opment periods. The measurements can be used for
analyzing existing problems, analyzing and comparing
performance with a competing product, and finding
new opportunities for performance improvement.

Managing Performance Measurement Results
Typically, the first time a new test or analysis method is
used, a few obvious improvement opportunities are
revealed that can be cheaply addressed. Long-term
improvement, however, can only be achieved by going
beyond this initial success and addressing the remain-
ing issues, which are either costly to implement or
which occur infrequently enough to make the effort
seem unworthy. This effort involves systematically
tracking the performance issues uncovered by the
analysis and judging the trends to decide which
improvement efforts are most worthwhile.

Our experience shows that rigorously tracking all
the performance issues resulting from the analyses
provides a long list of opportunities for improvement,
far more than can be addressed during the develop-
ment of a single release. It thus became obvious that,
to deploy our development resources most effectively,
we needed to devise a good prioritization scheme.

For each performance opportunity on our list, we
keep crude estimates of three criteria: usage frequency,
payoff from implementation, and difficulty of imple-
mentation. We then use the three criteria to divide the
space of performance issues into equivalence classes.
We define our criteria and estimates as follows:

■ Usage frequency. The usage frequency is said to be
common if the language feature or code pattern
appears in a large fraction of source modules or
uncommon if it appears in only a few modules.
When the language feature or code pattern appears
in most modules for a particular application domain
predominantly, the usage frequency is said to be
skewed. The classic example of skewed usage is the
complex data type.

■ Payoff from implementation. Improvement in an
implementation is estimated as high, moderate, or
small. A high improvement would be the elimina-
tion of the language construct (e.g., removal of
unnecessary constructors in C++) or a significant
fraction of their overhead (e.g., inlining small func-

tions). A moderate improvement would be a 10 to
50 percent increase in the speed of a language fea-
ture. A small improvement such as loop unrolling
is worthwhile because it is common.

■ Difficulty of implementation. We estimate the
resource cost for implementing the suggested
optimization as difficult, straightforward, or easy.
Items are classified based on the complexity of
design issues, total code required, level of risk, or
number and size of testing requirements. An easy
improvement requires little up-front design and
no new programmer or user interfaces, introduces
little breakage risk for existing code, and is typically
limited to a single compiler phase, even if it involves
a substantial amount of new code. A straightfor-
ward improvement would typically require a sub-
stantial design component with multiple options
and a substantial amount of new coding and testing
but would introduce little risk. A difficult improve-
ment would be one that introduces substantial risk
regardless of the design chosen, involves a new user
interface, or requires substantial new coordination
between components provided by different groups.
For each candidate improvement on our list, we

assign a triple representing its priority, which is a
Cartesian product of the three components above:

Priority = (frequency) 3 (payoff) 3 (difficulty)

This classification scheme, though crude and subjec-
tive, provides a useful base for resource allocation.
Opportunities classified as common, high, and easy are
likely to provide the best resource use, whereas those
issues classified as uncommon, small, and difficult are
the least attractive. This scheme also allows manage-
ment to prioritize performance opportunities against
functional improvements when allocating resources
and schedule for a product release.

Further classification requires more judgment and
consideration of external forces such as usage trends,
hardware design trends, resource availability, and
expertise in a given code base. Issues classified as com-
mon and high but difficult are appropriate for a major
achievement of a given release, whereas an opportu-
nity that is uncommon and moderate but easy might
be an appropriate task for a novice compiler developer.

So-called “nonsense optimizations” are often con-
troversial. These are opportunities that are almost
nonexistent in human-written source code, for exam-
ple, extensive operations on constants. Ordinarily they
would be considered unattractive candidates; how-
ever, they can appear in hidden forms such as the result
of macro expansion or as the result of optimizations
performed by earlier phases. In addition, they often
have high per-use payoff and are easy to implement, so
it is usually worthwhile to implement new nonsense
optimizations when they are discovered.

40 Digital Technical Journal Vol. 10 No. 1 1998

Management control and resource allocation issues
can arise when common, high, or easy opportunities
involve software owned by groups not under the
direct control of the compiler developers, such as
headers or libraries.

Tools and Methodology

We begin this section with a discussion of performance
evaluation tools and their application to problems. We
then briefly present the results of three case studies.

Tools and Their Application to Problems
Tools for performance evaluation are used for either
measurement or analysis. Tools for measurement are
designed mainly for accurate, absolute timing. Low
overhead, reproducibility, and stability are more
important than high resolution. Measurement tools
are primarily used in regression testing to identify the
existence of new performance problems. Tools for
analysis, on the other hand, are used to isolate the
source code responsible for the problem. High, rela-
tive accuracy is more important than low overhead or
stability here. Analysis tools tend to be intrusive: they
add instrumentation to either the sources or the exe-
cutable image in some manner, so that enough infor-
mation about the execution can be captured to
provide a detailed profile.

We have constructed adequate automated measure-
ment tools using scripts layered over standard operating
system timing packages. For compile-time measure-
ment, a driver reads the compile commands from a file
and, after compiling the source the specified number
of times, writes the resulting timings to a file. Post-
processing scripts evaluate the usability of the results
(average times, deviations, and file sizes) and compare
the new results against a set of reference results. For
compile-time measurement, the default, debug, and
optimize compilation modes are all tested, as previ-
ously discussed.

These summarized results indicate if the test version
has suffered performance regressions, the magnitude
of these regressions, and which benchmark source is
exhibiting a regression. Analysis of the problem can
then begin.

The tools we use for compile-speed and run-time
analysis are considerably more sophisticated than the
measurement tools. They are generally provided by
the CPU design or operating system tools develop-
ment groups and are widely used for application tun-
ing as well as compiler improvements. We have used
the following compile-speed analysis tools:

■ The compiler’s internal -show statistics feature
gives a crude measure of the time required for each
compiler phase.

■ The gprof and hiprof tools are supplied in the
development suites for DIGITAL UNIX. Both
operate by building an instrumented version of the
test software (the compiler itself in our case). The
gprof tool works with the compiler, the linker, and
the loader; it is available from several UNIX ven-
dors. Hiprof is an Atom tool 9–11 available only on
DIGITAL UNIX; it does not require compiler or
linker support.
The benchmark exhibiting the performance prob-
lem can then be compiled with the profiling version
of the compiler, and the compilation profile can be
captured. Using the display facilities of the tool, we
can analyze the relevant portions of the execution
profile. We can then compare this profile with that
of the reference version to localize the problem to a
specific area of compiler source. Once this informa-
tion is available, a specific edit can be identified as
the cause and a solution can be identified and
implemented. Another round of measurement is
needed to verify the repair is effective, similar to the
procedure for addressing a functional regression.

■ When the problem needs to be pinpointed more
accurately than is possible with these profiling
tools, we use the IPROBE tool, which can provide
instruction-by-instruction details about the execu-
tion of a function.14

We have used the following tools or processes for
run-time analysis:

■ We apply hiprof and gprof in combination, and
the IPROBE tool as described above, to the
run-time behavior of the test program rather than
to its compilation.

■ We analyze the NULLSTONE results by examining
the detailed log file. This log identifies the problem
and the machine code generated. This analysis is usu-
ally adequate since the tests are generally quite simple.

■ If more detailed analysis is needed, e.g., to pin-
point cache misses, we use the highly detailed
results generated by the Digital Continuous
Profiling Infrastructure (DCPI) tool.12,13 DCPI can
display detailed (average) hardware behavior on an
instruction-by-instruction basis. Any scheduling
problems that may be responsible for frequent
cache misses can be identified from the DCPI out-
put, whereas they may not always be obvious from
casually observing the machine code.

■ Finally, we use the estimated schedule dump and
statistical data optionally generated by the GEM
back end.1 This dump tells us how instructions are
scheduled and issued based on the processor archi-
tecture selected. It may also provide information
about ways to improve the schedule.

Digital Technical Journal Vol. 10 No. 1 1998 41

In the rest of this section, we discuss three examples
of applying analysis tools to problems identified by the
performance measurement scripts.

Compile-Time Test Case
Compile-time regression occurred after a new opti-
mization called base components was added to the
GEM back end to improve the run-time performance
of structure references. Table 1 gives compile-time test
results that compare the ratios of compile times using
the new optimized back end to those obtained with
the older back end. The results for the iostream test
indicate a significant degradation of 25 percent in the
compile speed for optimize mode, whereas the perfor-
mance in the other two modes is unchanged.

To analyze this problem, we built hiprof versions of
the two compilers and compiled the iostream bench-
mark to obtain its compilation profile. Figures 1a and
1b show the top contributions in the flat hiprof pro-
files from the two compilers. These profiles indicate
that the number of calls made to cse and gem_il_peep
in the new version is greater than that of the old one
and that these calls are responsible for performance
degradation. Figures 2a and 2b show the call graph
profiles for cse for the two compilers and show the calls
made by cse and the contributions of each component

called by cse. Since these components are included in
the GEM back end, the problem was fixed there.

Run-Time Test Cases
For the run-time analysis, we used two different test
environments, the Haney kernels benchmark and the
NULLSTONE test run against gcc.

Haney Kernels The Haney kernels benchmark is a
synthetic test written to examine the performance of
specific C++ language features. In this run-time test
case, an older C++ compiler (version 5.5) was com-
pared with a new compiler under development (version
6.0). The Haney kernels results showed that the ver-
sion 6.0 development compiler experienced an overall
performance regression of 40 percent. We isolated the
problem to the real matrix multiplication function.
Figure 3 shows the execution profile for this function.

We then used the DCPI tool to analyze perfor-
mance of the inner loop instructions exercised on ver-
sion 6.0 and version 5.5 of the C++ compiler. The
resulting counts in Figures 4a and 4b show that the
version 6.0 development compiler suffered a code
scheduling regression. The leftmost column shows the
average cycle counts for each instruction executed.
The reason for this regression proved to be that a test

Table 1
Ratios of CPU (User and System) Compile Times (Seconds) of the New Compiler to Those of the Old Compiler

File Name Debug Mode Default Mode Optimize Mode

Options -O0 -g -O4 -g0

a1amch2 0.970 0.970 0.930
collevol 0.910 0.780 0.740
d_inh 0.970 0.960 0.960
e_rvirt_yes 0.970 0.980 0.960
interfaceparticle 0.880 0.790 0.730
iostream 0.990 0.980 1.250
pistream 0.890 0.760 0.790
t202 0.970 0.970 1.130
t300 0.980 0.960 1.040
t601 1.010 1.020 1.010
t606 1.000 1.020 1.020
t643 1.020 1.010 1.000
test_complex_excepti 0.960 0.890 0.830
test_complex_math 0.970 0.950 0.950
test_demo 0.950 0.830 0.780
test_generic 1.000 1.020 1.100
test_task_queue6 0.970 0.920 0.960
test_task_rand1 0.950 0.890 0.890
test_vector 0.970 0.920 1.120
vectorf 0.890 0.790 0.850

Averages 0.961 0.920 0.952

42 Digital Technical Journal Vol. 10 No. 1 1998

for pointer disambiguation outside the loop code was
not performed properly in the version 6.0 compiler.
The test would have ensured that the pointers a and t
were not overlapping.

We traced the origin of this regression back to the
intermediate code generated by the two compilers.
Here we found that the version 6.0 compiler used a
more modern form of array address computation in
the intermediate language for which the scheduler had
not yet been tuned properly. The problem was fixed in
the scheduler, and the regression was eliminated.

Initial NULLSTONE Test Run against gcc We measured
the performance of the DEC C compiler in compiling
the NULLSTONE tests and repeated the performance
measurement of the gcc 2.7.2 compiler and libraries
on the same tests. Figures 5a and 5b show the results
of our tests. This comparison is of interest because gcc
is in the public domain and is widely used, being the
primary compiler available on the public-domain
Linux operating system. Figure 5a shows the tests in
which the DEC C compiler performs at least 10 per-
cent better than gcc. Figure 5b indicates the optimiza-

Figure 1
Hiprof Profiles of Compilers

granularity: cycles; units: seconds; total: 48.96 seconds

% cumulative self self total
time seconds seconds calls ms/call ms/call name

2.8 1.37 1.37 10195 0.13 0.13 cse [12]
2.6 2.66 1.29 219607 0.01 0.01 gem_il_peep [31]
2.6 3.93 1.27 515566 0.00 0.00 gem_fi_ud_access_resource [67]
2.4 5.09 1.17 481891 0.00 0.00 gem_vm_get_nz [37]
2.3 6.23 1.14 713176 0.00 0.00 _OtsZero [75]

. . .

(a) Hiprof Profile Showing Instructions Executed with the New Compiler

granularity: cycles; units: seconds; total: 27.49 seconds

% cumulative self self total
time seconds seconds calls ms/call ms/call name

3.0 0.83 0.83 143483 0.01 0.01 gem_il_peep [40]
2.7 1.58 0.75 614350 0.00 0.00 _OtsZero [64]
2.5 2.26 0.68 8664 0.08 0.08 cse [16]
1.7 2.71 0.45 465634 0.00 0.00 gem_fi_ud_access_resource [86]
1.6 3.14 0.43 423144 0.00 0.00 gem_vm_get_nz [36]

. . .

(b) Hiprof Profile Showing Instructions Executed with the Old Compiler

Figure 2
Hierarchical Call Graph Profiles for cse

[12] 14.1 1.37 5.55 10195+9395 cse [12]
2.63 134485/134485 test_for_cse [42]
0.63 134485/134485 update_operands [92]
0.59 102760/102760 test_for_induction [97]
0.34 121243/121243 gem_df_move [136]
0.32 12127/12127 push_effect [149]

. . .

(a) Hierarchical Profile for cse with the New Compiler

[16] 10.5 0.68 2.19 8664+7593 cse [16]
1.04 96554/96554 test_for_cse [56]
0.30 66850/66850 test_for_induction [104]
0.29 96554/96554 update_operands [106]
0.12 87176/87176 move [215]
0.09 7863/7863 pop_effect [267]

. . .

(b) Hierarchical Profile for cse with the Old Compiler

Digital Technical Journal Vol. 10 No. 1 1998 43

tion tests in which the DEC C compiler shows 10 per-
cent or more regression compared to gcc.

We investigated the individual regressions by look-
ing at the detailed log of the run and then examining
the machine code generated for those test cases. In this
case, the alias optimization portion showed that the
regressions were caused by the use of an outmoded
standard15 as the default language dialect (-std0) for
DEC C in the DIGITAL UNIX environment. After we
retested with the -ansi_alias option, these regres-
sions disappeared.

We also investigated and fixed regressions in
instruction combining and if optimizations. Other
regressions, which were too difficult to fix within the
existing schedule for the current release, were added
to the issues list with appropriate priorities.

Conclusions

The measurement and analysis of compiler performance
has become an important and demanding field. The
increasing complexity of CPU architectures and the
addition of new features to languages require the devel-
opment and implementation of new strategies for test-
ing the performance of C and C++ compilers. By
employing enhanced measurement and analysis tech-
niques, tools, and benchmarks, we were able to address
these challenges. Our systematic framework for com-
piler performance measurement, analysis, and prioriti-
zation of improvement opportunities should serve as an
excellent starting point for the practitioner in a situation
in which similar requirements are imposed.

References and Notes

1. D. Blickstein et al., “The GEM Optimizing Compiler
System,” Digital Technical Journal, vol. 4, no. 4
(Special issue, 1992): 121–136.

2. B. Calder, D. Grunwald, and B. Zorn, “Quantifying
Behavioral Differences Between C and C++ Programs,”
Journal of Programming Languages, 2 (1994):
313–351.

3. D. Detlefs, A. Dosser, and B. Zorn, “Memory Alloca-
tion Costs in Large C and C++ Programs,” Software
Practice and Experience, vol. 24, no. 6 (1994):
527–542.

4. P. Wu and F. Wang, “On the Efficiency and Optimiza-
tion of C++ Programs,” Software Practice and Experi-
ence, vol. 26, no. 4 (1996): 453–465.

5. A. Itzkowitz and L. Foltan, “Automatic Template
Instantiation in DIGITAL C++,” Digital Technical
Journal, vol. 10, no. 1 (this issue, 1998): 22–31.

6. NULLSTONE Optimization Categories, URL:
http://www.nullstone.com/htmls/category.htm,
Nullstone Corporation, 1990–1998.

7. J. Orost, “The Bench++ Benchmark Suite,” December
12, 1995. A draft paper is available at http://www
.research.att.com/~orost/bench_plus_plus/paper.html.

8. C++ Benchmarks, Comparing Compiler Performance,
URL: http://www.kai.com/index.html, Kuck and
Associates, Inc. (KAI), 1998.

9. ATOM: User Manual (Maynard, Mass.: Digital Equip-
ment Corporation, 1995).

10. A. Eustace and A. Srivastava, “ATOM: A Flexible
Interface for Building High Performance Program
Analysis Tools,” Western Research Lab Technical Note
TN-44, Digital Equipment Corporation, July 1994.

11. A. Eustace, “Using Atom in Computer Architecture
Teaching and Research,” Computer Architecture
Technical Committee Newsletter, IEEE Computer
Society, Spring 1995: 28–35.

12. J. Anderson et al., “Continuous Profiling: Where Have
All the Cycles Gone?” SRC Technical Note 1997-016,
Digital Equipment Corporation, July 1997; also in
ACM Transactions on Computer Systems, vol. 15, no.
4 (1997): 357–390.

13. J. Dean, J. Hicks, C. Waldspurger, W. Weihl, and G.
Chrysos, “ProfileMe: Hardware Support for Instruction-
Level Profiling on Out-of-Order Processors,” 30th Sym-
posium on Microarchitecture (Micro-30), Raleigh, N.C.,
December 1997.

14. Guide to IPROBE, Installing and Using (Maynard,
Mass.: Digital Equipment Corporation, 1994).

15. B. Kerninghan and D. Richie, The C Programming
Language (Englewood Cliffs, N.J.: Prentice-Hall,
1978).

Figure 3
Haney Loop for Real Matrix Multiplication

void rmatMulHC(Real * t,
const Real * a,
const Real * b,
const int M, const int N, const int K)

{
int i, j, k;
Real temp;

memset(t, 0, M * N * sizeof(Real));

for (j = 1; j <= N; j++)
{

for (k = 1; k <= K; k++)
{

temp = b[k - 1 + K * (j - 1)];
if (temp != 0.0)

{
for (i = 1; i <= M; i++)
t[i - 1 + M * (j - 1)] +=
temp * a[i - 1 + M * (k - 1)];

}
}

}
}

44 Digital Technical Journal Vol. 10 No. 1 1998

Figure 4
DCPI Profiles of the Inner Loop

rmatMulHC__XPfPCfPCfiii:
. . .

3181 0x120014894 0:88270000 lds $f1, 0(t6)
70 0x120014898 0:a3e70080 ldl zero, 128(t6)

6204 0x12001489c 0:89460000 lds $f10, 0(t5)
3396 0x1200148a0 0:58011041 muls $f0,$f1,$f1

13 0x1200148a4 0:47e60412 bis zero, t5, a2
0 0x1200148a8 0:40a09005 addl t4, 0x4, t4

3058 0x1200148ac 0:20c60010 lda t5, 16(t5)
3157 0x1200148b0 0:40a80db4 cmple t4, t7, a4

0 0x1200148b4 0:20e70010 lda t6, 16(t6)
7265 0x1200148b8 0:59411001 adds $f10,$f1,$f1

12784 0x1200148bc 0:9826fff0 sts $f1, -16(t5)
3207 0x1200148c0 0:8967fff4 lds $f11, -12(t6)

0 0x1200148c4 0:8986fff4 lds $f12, -12(t5)
6604 0x1200148c8 0:580b104b muls $f0,$f11,$f11

13054 0x1200148cc 0:598b100b adds $f12,$f11,$f11
13188 0x1200148d0 0:9966fff4 sts $f11, -12(t5)

3205 0x1200148d4 0:89a7fff8 lds $f13, -8(t6)
0 0x1200148d8 0:89c6fff8 lds $f14, -8(t5)

6388 0x1200148dc 0:580d104d muls $f0,$f13,$f13
12862 0x1200148e0 0:59cd100d adds $f14,$f13,$f13
12687 0x1200148e4 0:99a6fff8 sts $f13, -8(t5)

3134 0x1200148e8 0:89e7fffc lds $f15, -4(t6)
0 0x1200148ec 0:8a06fffc lds $f16, -4(t5)

6357 0x1200148f0 0:580f104f muls $f0,$f15,$f15
12705 0x1200148f4 0:5a0f100f adds $f16,$f15,$f15
12748 0x1200148f8 0:99f2000c sts $f15, 12(a2)

. . .

(a) DCPI Profile for This Execution with Version 6.0

rmatMulHC__XPfPCfPCfCiCiCi:
. . .

6351 0x1200194d0 0:88270000 lds $f1, 0(t6)
0 0x1200194d4 0:40a09005 addl t4, 0x4, t4

3131 0x1200194d8 0:89460000 lds $f10, 0(t5)
0 0x1200194dc 0:40a80db4 cmple t4, t7, a4

3215 0x1200194e0 0:20e70010 lda t6, 16(t6)
17968 0x1200194e4 0:58011041 muls $f0,$f1,$f1

0 0x1200194e8 0:20c60010 lda t5, 16(t5)
12870 0x1200194ec 0:59411001 adds $f10,$f1,$f1
12727 0x1200194f0 0:9826fff0 sts $f1, -16(t5)

3228 0x1200194f4 0:8967fff4 lds $f11, -12(t6)
0 0x1200194f8 0:8987fff8 lds $f12, -8(t6)

6233 0x1200194fc 0:89a7fffc lds $f13, -4(t6)
3209 0x120019500 0:580b104b muls $f0,$f11,$f11

0 0x120019504 0:89c6fff4 lds $f14, -12(t5)
3127 0x120019508 0:580c104c muls $f0,$f12,$f12

0 0x12001950c 0:89e6fff8 lds $f15, -8(t5)
3174 0x120019510 0:580d104d muls $f0,$f13,$f13

0 0x120019514 0:8a06fffc lds $f16, -4(t5)
6791 0x120019518 0:59cb100b adds $f14,$f11,$f11
3168 0x12001951c 0:59ec100c adds $f15,$f12,$f12
3066 0x120019520 0:5a0d100d adds $f16,$f13,$f13
6258 0x120019524 0:9966fff4 sts $f11, -12(t5)
3134 0x120019528 0:9986fff8 sts $f12, -8(t5)
3200 0x12001952c 0:99a6fffc sts $f13, -4(t5)
3168 0x120019530 0:f69fffe7 bne a4, 0x1200194d0

. . .

(b) DCPI Profile with Counts with Version 5.5

Digital Technical Journal Vol. 10 No. 1 1998 45

Figure 5a
NULLSTONE Results Comparing gcc with DEC C Compiler, Showing All Improvements of Magnitude 10% or More

==
| NULLSTONE SUMMARY PERFORMANCE IMPROVEMENT REPORT |
| Nullstone Release 3.9b2 |
+--+
| Threshold: Nullstone Ratio Increased by at least 10% |
+------------------+-----------------------------+-----------------------------+
| | Baseline Compiler | Comparison Compiler |
+------------------+-----------------------------+-----------------------------+
Compiler	GCC 2.7.2	DEC Alpha C 5.7-123 bl36
		no restrict
Architecture	DEC Alpha	DEC Alpha
Model	3000/300	3000/300
+------------------+-----------------------------+-----------------------------+		
Optimization	Sample Size	Improvements
+--+--------------+--------------+		
Alias Optimization (by type)	102 tests	6 tests
Alias Optimization (const-qualified)	11 tests	0 tests
Alias Optimization (by address)	52 tests	19 tests
Bitfield Optimization	3 tests	3 tests
Branch Elimination	15 tests	15 tests
Instruction Combining	2510 tests	2026 tests
Constant Folding	56 tests	56 tests
Constant Propagation	15 tests	8 tests
CSE Elimination	2600 tests	2353 tests
Dead Code Elimination	306 tests	278 tests
Integer Divide Optimization	92 tests	15 tests
Expression Simplification	181 tests	120 tests
If Optimization	69 tests	13 tests
Function Inlining	39 tests	39 tests
Induction Variable Elimination	4 tests	3 tests
Strength Reduction	2 tests	1 tests
Hoisting	38 tests	18 tests
Loop Unrolling	16 tests	11 tests
Loop Collapsing	3 tests	3 tests
Loop Fusion	2 tests	2 tests
Unswitching	2 tests	1 tests
Block Merging	1 tests	1 tests
Cross Jumping	4 tests	2 tests
Integer Modulus Optimization	92 tests	26 tests
Integer Multiply Optimization	99 tests	3 tests
Address Optimization	26 tests	20 tests
Pointer Optimization	15 tests	9 tests
Printf Optimization	3 tests	3 tests
Forward Store	3 tests	3 tests
Value Range Optimization	30 tests	0 tests
Tail Recursion	4 tests	2 tests
Register Allocation	4 tests	1 tests
Narrowing	3 tests	0 tests
SPEC Conformance	2 tests	0 tests
Static Declarations	1 tests	1 tests
String Optimization	4 tests	4 tests
Volatile Conformance	90 tests	0 tests
+------------------+-----------------------------+-----------------------------+		
Total Performance Improvements >= 10%	6499 tests	5065 tests
==

46 Digital Technical Journal Vol. 10 No. 1 1998

Biographies

Figure 5b
NULLSTONE Results Comparing gcc with DEC C Compiler, Showing All Regressions of 10% or Worse

==
| NULLSTONE SUMMARY PERFORMANCE REGRESSION REPORT |
| Nullstone Release 3.9b2 |
+--+
| Threshold: Nullstone Ratio Decreased by at least 10% |
+------------------+-----------------------------+-----------------------------+
| | Baseline Compiler | Comparison Compiler |
+------------------+-----------------------------+-----------------------------+
Compiler	GCC 2.7.2	DEC Alpha C 5.7-123 bl36
		no restrict
Architecture	DEC Alpha	DEC Alpha
Model	3000/300	3000/300
+------------------+-----------------------------+-----------------------------+		
Optimization	Sample Size	Regressions
+--+--------------+--------------+		
Alias Optimization (by type)	102 tests	64 tests
Alias Optimization (const-qualified)	11 tests	9 tests
Alias Optimization (by address)	52 tests	7 tests
Instruction Combining	2510 tests	204 tests
Constant Propagation	15 tests	1 tests
CSE Elimination	2600 tests	32 tests
Integer Divide Optimization	92 tests	32 tests
Expression Simplification	181 tests	34 tests
If Optimization	69 tests	14 tests
Hoisting	38 tests	4 tests
Unswitching	2 tests	1 tests
Integer Modulus Optimization	92 tests	40 tests
Integer Multiply Optimization	99 tests	95 tests
Pointer Optimization	15 tests	1 tests
Tail Recursion	4 tests	2 tests
Narrowing	3 tests	2 tests
+------------------+-----------------------------+-----------------------------+		
Total Performance Regressions >= 10%	6499 tests	542 tests
==

Hemant G. Rotithor
Hemant Rotithor received B. S., M. S., and Ph.D. degrees
in electrical engineering in 1979, 1981, and 1989, respec-
tively. He worked on C and C++ compiler performance
issues in the Core Technology Group at Digital Equipment
Corporation for three years. Prior to that, he was an assis-
tant professor at Worcester Polytechnic Institute and a
development engineer at Philips. Hemant is a member
of the program committee of The 10th International
Conference on Parallel and Distributed Computing and
Systems (PDCS ’98). He is a senior member of the IEEE
and a member of Eta Kappa Nu, Tau Beta Pi, and Sigma
Xi. His interests include computer architecture, perfor-
mance analysis, digital design, and networking. Hemant
is currently employed at Intel Corporation.

Kevin W. Harris
Kevin Harris is a consulting software engineer at Compaq,
currently working in the DEC C and C++ Development
Group. He has 21 years of experience working on high-
performance compilers, optimization, and parallel pro-
cessing. Kevin graduated Phi Beta Kappa in mathematics
from the University of Maryland and joined Digital
Equipment Corporation after earning an M.S. in computer
science from the Pennsylvania State University. He has
made major contributions to the DIGITAL Fortran, C,
and C++ product families. He holds patents for techniques
for exploiting performance of shared memory multiproces-
sors and register allocation. He is currently responsible for
performance issues in the DEC C and DIGITAL C++
product families. He is interested in CPU architecture,
compiler design, large- and small-scale parallelism and its
exploitation, and software quality issues.

Digital Technical Journal Vol. 10 No. 1 1998 47

Mark W. Davis
Mark Davis is a senior consulting engineer in the Core
Technology Group at Compaq. He is a member of Compaq’s
GEM Compiler Back End team, focusing on performance
issues. He also chairs the DIGITAL Unix Calling Standard
Committee. He joined Digital Equipment Corporation in
1991 after working as Director of Compilers at Stardent
Computer Corporation. Mark graduated Phi Beta Kappa in
mathematics from Amherst College and earned a Ph. D. in
computer science from Harvard University. He is co-inventor
on a pending patent concerning 64-bit software on
OpenVMS.

