
48 Digital Technical Journal Vol. 10 No. 1 1998

When two or more address expressions reference the
same memory location, these address expressions are
aliases for each other. A compiler performs alias analy-
sis to detect which address expressions do not refer-
ence the same memory locations. Good alias analysis is
essential to the generation of efficient code. Code
motion out of loops, common subexpression elimina-
tion, allocation of variables to registers, and detection
of uninitialized variables all depend upon the compiler
knowing which objects a load or a store operation
could reference. 

Address expressions may be symbol expressions 
or pointer expressions. In the C and C++ languages, 
a compiler always knows what object a symbol expres-
sion references. The same is not true with pointer
expressions. Determining which objects a pointer
expression may reference is an ongoing topic of
research. 

Most of the research in this area focuses on the use
of techniques that track which object a pointer expres-
sion might point to.1,2 When these techniques cannot
make this determination, they assume that the pointer
expression points to any object whose address has
been taken. These techniques generally ignore the
type information available to the source program. The
best techniques perform interprocedural analysis to
improve their accuracy. Although effective, the cost of
analyzing a complete program can make this analysis
impractical. 

In contrast, the DEC C and DIGITAL C++ compil-
ers use high-level type information as they perform
alias analysis on a routine-by-routine basis. Limiting alias
analysis to within a routine reduces its cost, albeit at
the cost of reducing its effectiveness. 

The use of this type information results in slight
improvements in the performance of some standard-
conforming C and C++ programs. These improve-
ments come at little expense in terms of compilation
time. There is, however, a risk that the use of this type
information on nonstandard-conforming C or C++
programs may result in the compiler producing code
that exhibits unexpected behavior. 

Alias Analysis in the 
DEC C and DIGITAL C++
Compilers 

August G. Reinig 

During alias analysis, the DEC C and DIGITAL C++
compilers use source-level type information to
improve the quality of code generated. Without
the use of type information, the compilers
would have to assume that any assignment
through a pointer expression could modify any
pointer-aliased object. In contrast, through the
use of type information, the compilers can
assume that such an assignment can modify
only those objects whose type matches that 
referenced by the pointer. 



Digital Technical Journal Vol. 10 No. 1 1998 49

The C and C++ Type Systems

Research available on the use of type information dur-
ing alias analysis involves languages other than C and
C++.3 Traditionally, C is a weakly typed language. A
pointer that references one type may actually point to
an object of a different type. For this reason, most
alias-analysis techniques ignore type information when
analyzing programs written in C. 

The ISO Standard for C defines a much stronger
typing system.4 In ISO Standard C, a pointer expres-
sion can access an object only if the type referenced by
the pointer meets the following criteria: 

■ It is compatible with the type of the object, ignor-
ing type qualifiers and signedness. 

■ It is compatible with the type of a member of an
aggregate or union or submembers thereof, ignor-
ing type qualifiers and signedness. 

■ It is the char type. 

Thus, in Figure 1, the pointer p can point to A, B,
C, or S (through S.sub.m) but not to T or F. The
pointer q, being a pointer to char, can refer to any of
A, B, C, S, T, or F. 

The proposed ISO Standard for C++ defines a simi-
lar typing system for C++.5 The strength of the
Standard C and C++ type systems allows the DEC C
and DIGITAL C++ compilers to use type information
during alias analysis. 

Many existing C applications do not conform to the
Standard C typing rules. They use cast expressions to
circumvent the Standard C type system. To support
these applications, the DEC C compiler has a mode
whereby it ignores type information during alias analy-
sis. The DIGITAL C++ compiler also has such a mode.
This mode exists to support those C++ programmers
who circumvent the C++ type system. 

The Side-effects Package

The DEC C and DIGITAL C++ compilers are GEM
compilers.6 The GEM compiler system includes a
highly optimizing back end. This back end uses the
GEM data access model to determine which objects a
load or a store may access. GEM compiler front ends
augment the GEM data access model with a side-
effects package, i.e., an alias-analysis package. The
side-effects package provides the GEM optimizer
additional information about loads and stores using
language-specific information otherwise unavailable
to the GEM optimizer. 

The DEC C and DIGITAL C++ compilers share a
common side-effects package. The DEC C and C++
side-effects package 

■ Determines which symbols, types, and parts thereof
a routine references 

■ Determines the possible side effects of these references 
■ Answers queries from the GEM optimizer regarding

the effects and dependencies of memory accesses 

Preserving Memory Reference Information 
The DEC C and DIGITAL C++ front ends perform
lexical analysis and parsing of the source program,
generating a GEM intermediate language (GEM IL)
graph representation of the source program.6 A tuple
is a node in the GEM IL and represents an operation in
the source program. 

As the DEC C and DIGITAL C++ front ends gener-
ate GEM IL, they annotate each fetch (read) and store
(write) tuple with information describing the object
being read or written. The front ends annotate fetches
and stores of symbols with information about the sym-
bol. They annotate fetches and stores through pointers
with information about the type the pointer references.
The annotation information includes information
describing exactly which bytes of the symbol or type
the tuple accesses. This allows the side-effects package
to differentiate between access to two different mem-
bers of a structure. 

Arrays Neither the DEC C nor the DIGITAL C++
front end differentiates between accesses to different
elements of an array. Both assume that all array accesses
are to the first element of the array. The GEM optimizer
does extensive analysis of array references.7 Being flow
insensitive, the DEC C and C++ side-effects package
can, at best, differentiate between two array references
that both use constant indices. The GEM optimizer can
do much more. 

What the GEM optimizer cannot do, however, is
determine that an assignment through a pointer to an
int does not change any value in an array of doubles.
This is the purpose of the DEC C and C++ side-effects
package. Mapping all array accesses to access the first

Figure 1
Code Fragment Associated with the Explanation of the
Standard C Aliasing Rules

int A; 
signed int const B; 
unsigned int volatile C; 
struct { 

struct { 
int m; 

} sub; 
} S; 
struct { 

short z; 
} T; 
float F; 

int *p; 
char *q; 



50 Digital Technical Journal Vol. 10 No. 1 1998

element of an array does not hinder this purpose and
simplifies alias analysis of arrays. 

Tuple Annotation Example For the program fragment
in Figure 2, the DEC C and DIGITAL C++ front ends
generate the annotated tuples displayed in Table 1. 

Intraprocedural Effects Analysis 
The GEM optimizer makes several optimization passes
over a routine. During each optimization pass, the
DEC C and C++ side-effects package provides alias
analysis information to the GEM optimizer by means
of the following procedures: 

■ Examining each tuple within the routine that refer-
ences (reads or writes) memory, allocating effects
classes that represent the memory that the tuple 
references 

■ Performing type-based alias analysis 
■ Responding to alias-analysis queries from the GEM

optimizer 

To determine the possible side effects of a memory
access, the side-effects package partitions memory into
effects classes. An effects class represents all or part of

an object. To minimize the number of effects classes
under consideration, the side-effects package creates
effects classes for only those object regions referenced
within the current routine. 

Having created effects classes for each referenced
object region within the current routine, the side-
effects package then associates a signature with each
effects class. The signature for an effects class records
the possible side effects of referencing the effects class.
The side-effects package uses this signature to respond
to queries from the GEM optimizer about the effects
and dependencies of tuples and symbols within the
current routine. 

Allocating Effects Classes There are two kinds of
effects classes. The first kind represents a region of an
individual object. The second kind represents a region
of all allocated objects of a particular type. Allocated
objects are those created by the malloc() function
and its relatives or the C++ new operator. 

As it processes the tuples within a routine, the side-
effects package examines the memory reference infor-
mation associated with the tuple. The side-effects
package creates an effects class for each different set of
memory reference information it encounters. Two sets
of memory reference information are different if they
contain different start- or end-offset information or
different symbol information. 

Two sets of memory reference information that
contain different type information are different only if
the two types are not effects equivalent. Two types are
effects equivalent if they differ only in their signedness
or their type qualifiers. The signed int type and the
volatile unsigned int type are effects equivalent. An
assignment through a pointer to a signed int may
change the value of a volatile unsigned int. 

Typically, an effects class represents a complete
object or an individual member of a structure. An
effects class may represent a subregion of the region
represented by another effects class. This occurs when-
ever code references a whole structure as well as indi-
vidual members of the structure. In the case of unions,

Figure 2
Code Fragment Associated with Tuple Annotation
Example

struct S { 
int x; 
int y; 

} v1, v2; 
int i; 
double d[3]; 
struct S *p; 

p->x = 3; 
v1.y = 3; 
v2 = v1; 
d[i] = d[0]; 

Table 1 
Tuple Annotations 

C/C++ Source Annotation Annotation 
Expression Tuple Symbol Type Start Byte End Byte

Fetch p p struct S * 0 7
p->x = 3; Store p->x none struct S 0 3
v1.y = 3 Store v1.y v1 struct S 4 7

Fetch v1 v1 struct S 0 7
v2 = v1 Store v2 v2 struct S 0 7

Fetch d[0] d double 0 7
d[i] = d[0] Fetch i i int 0 3

Store d[i] d double 0 7



Digital Technical Journal Vol. 10 No. 1 1998 51

if two members occupy exactly the same memory loca-
tions, a single effects class represents both members. 

For the program fragment in Figure 3, the side-
effects package creates the effects classes displayed in
Table 2. 

There is only one effects class for *uip and *ip since
uip and ip may point to the same object. There are no
effects classes for bytes 0 through 3 of s and struct S as
there are no references to s.x or sp->x. By allocating
effects classes for only those object regions referenced
within the routine, the side-effects package greatly
reduces both the number of effects classes and the
time required to perform alias analysis. 

In the traditional C type system, a pointer expres-
sion may point to anything, regardless of type. To rep-
resent this, the side-effects package creates exactly one
effects class to represent allocated objects. It ignores
the type and the start- and end-offset information. 

Using the traditional C type system, for the program
fragment shown in Figure 3, the side-effects package
creates the effects classes displayed in Table 3. Here,
effects class 7 replaces effects classes 7 through 11 in
Table 2. All the differentiation by types disappears. 

Effects-class Signatures Having created the effects
classes, the side-effects package associates a signature
with each effects class. In addition, it associates an
effects-class signature with each tuple within the rou-
tine and each symbol referenced within the routine. 

An effects-class signature records the possible side
effects of referencing an effects class. A reference to
one effects class may reference another effects class.
The effects class for a load through a pointer to an int
indicates that the load references an allocated int
object. The pointer to an int may actually reference a
pointer-aliased int symbol or an int member of a struc-
ture or union. 

An effects-class signature is a subset of all the effects
classes that might be referenced by a tuple. There is
only one requirement for an effects-class signature: If
two tuples may refer to the same part of memory, the
intersection of their respective effects-class signatures
must be non-null. If two tuples cannot refer to the
same part of memory, it is desirable that the intersec-
tion of their effects-class signatures is null. An empty
intersection leads to more optimization opportunities. 

The most obvious rule for building an effects-class
signature is to include in it all the effects classes that
might be touched by a reference to the effects class.
This leads to suboptimal code in cases such as that
shown in Figure 4. 

There are three effects classes for this code, s<0,3>,
s<4,7>, and s<0,7>, generated by references to s.x, s.y,
and s, respectively. If the effects-class signature for
s<0,3> includes both s<0,3> and s<0,7> and the
effects-class signature for s<4,7> includes both s<4,7>
and s<0,7>, then the intersection of these two effects-

Figure 3
Code Fragment Associated with Allocating Effects Classes

struct S { 
int x; 
struct T { 

int y; 
float z; 

} t; 
} s; 
struct S *sp; 
signed int *ip; 
unsigned int *uip; 
float *fp; 

*uip = *ip; 
*fp = 2; 
sp->t = s.t; 
sp->t.y = 2; 
s = *sp; 

Table 2 
Effects Classes Using the Standard C Type Rules 

Type or Source Generating 
Effects Class Symbol Start Offset End Offset Effects Class

1 s 0 11 s
2 s 4 11 s.t
3 sp 0 7 sp
4 fp 0 7 fp
5 ip 0 7 ip
6 uip 0 7 uip
7 struct S 0 11 *sp
8 struct S 4 11 sp->t
9 struct S 4 7 sp->t.y

10 float 0 3 *fp
11 int 0 3 *uip and *ip 



52 Digital Technical Journal Vol. 10 No. 1 1998

class signatures is non-null. This falsely indicates that
s.x and s.y may refer to the same memory location. This
forces GEM to generate code that stores s.y after stor-
ing to s.x. 

The DEC C and C++ side-effects package uses more
effective rules for building effects-class signatures. These
rules offer more optimization opportunities while pre-
serving necessary dependency information. 

Effects-class Signatures for Symbols If an effects class
represents a region A of a symbol, its signature includes
itself. Its signature also includes all effects classes repre-
senting regions of the symbol wholly contained within
A. Finally, it includes any effects class representing a
region of the symbol that partially overlaps A. It does
not include effects classes representing regions of the
symbol that do not overlap A or that wholly contain A. 

Table 4 gives the symbol effects-class signatures for
the three effects classes under discussion. 

The inclusion of subregions in an effects-class signa-
ture means that references to symbols interfere with
references to members therein and vice versa. Excluding
super-regions in an effects-class signature means that

references to two separate members of a symbol do
not interfere with each other. In Table 4, the effects-
class signatures for s<0,3> and s<4,7> do not interfere
with each other. Both signatures interfere with the
effects-class signature for s<0,7>. 

The inclusion of effects classes representing partially
overlapping regions of a symbol allows for the correct
representation of the side effects of referencing sub-
members of complex unions. 

Effects-class Signatures for Types If an effects class
represents a region of a type, the contents of its signa-
ture depends upon the type. If the type is the char type,
the effects-class signature contains all the effects classes
representing regions of other types or pointer-aliased
symbols. This reflects the C and C++ type rules, which
state that a pointer to a char can point to anything. 

If the type is some type T other than char, the effects-
class signature contains effects classes representing: 

■ Those regions of T that overlap the region of T the
effects class represents, using the same overlap rules
as for symbols 

■ Any region of a pointer-aliased symbol whose type
is compatible to T, ignoring type qualifiers and
signedness 

■ A region of a pointer-aliased aggregate or union
symbol that contains a member or submember
whose type is compatible to T, ignoring type quali-
fiers and signedness 

■ A region of an aggregate or union type that con-
tains a member or submember whose type is com-
patible to T, ignoring type qualifiers and signedness 

Table 5 gives the signatures for the effects classes in
Table 2, assuming that the symbol s is pointer aliased. 

Including the effects classes of symbols in the effects-
class signatures of types records the interference of 
references through pointers with references to pointer-
aliased symbols. In Figure 3, the pointer uip points to
an unsigned int. The member s.t.y has type int. Thus,
uip may point to s.t.y. The member s.t contains s.t.y.
Thus, the signature for the effects-class int<0,3> con-

Figure 4
Example of Problematic Code for the Naïve Rule for
Building Effects-class Signatures 

Table 3 
Effects Classes Using the Traditional C Type Rules 

Effects Class Type or Symbol Start Offset End Offset Source Generating Effects Class

1 s 0 11 s
2 s 4 11 s.t
3 sp 0 7 sp
4 fp 0 7 fp
5 ip 0 7 ip
6 uip 0 7 uip
7 char 0 1 *sp, sp->t, *uip, sp->t.y, *fp, *ip

struct S { 
int x; 
int y; 

} s; 
s.x = ...; 
s.y = ...; 
return s; 

Table 4 
Symbol Effects-class Signatures 

Effects Class Effects-class Signature

s<0,3> s<0,3>
s<4,7> s<4,7>
s<0,7> <0,3>, s<4,7>, s<0,7>



Digital Technical Journal Vol. 10 No. 1 1998 53

Responding to Optimizer Queries During optimiza-
tion, the optimizer makes two types of queries to the
side-effects analysis routines: dominator-based queries
and nondominator-based queries. 

When doing nondominator-based optimizations, the
optimizer uses a bit vector to represent those objects a
write may change (its effects). A similar bit vector repre-
sents those objects whose value a read may fetch (its
dependencies). Each bit in the bit vector represents an
effects class. If a tuple’s effects-class signature contains
an effects class, that effects class’s bit is set in the tuple’s
bit vector. The optimizer uses the union of the bit vec-
tors associated with a set of tuples to represent the com-
bined effects or dependencies of those tuples. 

Dominator-based queries involve finding the near-
est dominating tuple that might write to the same
memory location as the tuple in question. Tuple A
dominates tuple B if every path from the start of the
routine to B goes through A.8 If both tuples A and C
dominate B, tuple A is the nearer dominator if C dom-
inates A. 

When doing dominator-based optimizations, the
side-effects package represents the tuples in the cur-
rent dominator chain as a stack, adding and removing
tuples from the stack as GEM moves from one path 
in the routine’s dominator tree to another. Searching 
a single stack for the nearest dominating tuple that
might write the same memory as the tuple in question
references could lead to O(N 2) performance, where N
is the number of tuples in the dominator chain. This
worst-case behavior occurs when none of the tuples in
a dominator chain affects any subsequent tuple in the
chain. Each time the side-effects package searches the
stack, it examines all the tuples in the stack. 

To avoid this, the DEC C and C++ side-effects pack-
age creates a stack for each effects class. When pushing
a tuple, the side-effects package pushes the tuple on
each stack associated with an effects class in the tuple’s
effects-class signature. When the GEM optimizer tells
the side-effects package to find the nearest dominating
write for a tuple, the side-effects package need only
choose the nearest of those tuples that are on the top
of the stacks associated with the tuple’s effects-class
signature. It need only look at the top of each stack,
because a tuple would not be in the stack unless it
might affect objects in the effects class associated with
the stack. 

The multistack worst-case behavior is O(NC). There
are C separate stacks, one for each effects class. The
effects-class signature for each effects class may con-
tain all the other effects classes. This would mean that
each of the N tuples in the dominator chain would
appear in each of the stacks. 

Although the worst-case behavior for the multistack
case is no better than the single-stack case (C may be
equal to N ), in practice there are often more tuples
within a routine than effects classes. Furthermore,

tains the effects-class s<4,11>. This means that the
load of s.t depends upon the store through uip. 

Including the effects classes of types in the signa-
tures of the effects classes of other types records the
interference of references through a pointer with ref-
erences through pointers to other types. In Figure 3,
the pointer fp points to a float object. The member 
sp->t.z has type float. Thus, fp may point to sp->t.z.
The member sp->t contains sp->t.z. Thus, the signa-
ture for the effects-class float<0,3> contains the effects-
class struct S<4,11>. This reflects the fact that the
store to sp->t.y depends upon the store through fp,
i.e., it must occur after the store through fp. 

Even though the signature for the effects-class
float<0,3> contains the effects-class struct S<4,11>
(sp->t), it does not contain the effects-class struct
S<4,7> (sp->t.y). There is no float member of struct 
S whose position within struct S overlaps bytes 4
through 7 of struct S. There is a float member of struct
S, namely z, whose position within struct S overlaps
bytes 4 through 11 of struct S. The signature for the
effects-class float<0,3> would not contain the effects-
class s<0,3> if it existed. There is no float member of s
whose position overlaps bytes 0 through 3 of s. 

Additional Effects-class Signatures The side-effects
package creates a special effects-class signature repre-
senting the side effects of a call. A called procedure
may reference the following: 

■ Any pointer-aliased symbol (by means of a refer-
ence through a pointer) 

■ Any allocated object (by means of a reference
through a pointer) 

■ Any nonlocal symbol (by means of direct access) 
■ Any local static symbol (by means of recursion) 

The effects signature for a call includes all the effects
classes representing these objects. 

Table 5 
Type Effects-class Signatures 

Number Effects Class Effects-class Signature

1 s<0,11> 1, 2
2 s<4,11> 2
3 sp<0,7> 3
4 fp<0,7> 4
5 ip<0,7> 5
6 uip<0,7> 6
7 struct S<0,11> 1, 2, 7, 8, 9
8 struct S<4,11> 1, 2, 8, 9
9 struct S<4,7> 1, 2, 9

10 float<0,3> 1, 2, 7, 8, 10
11 int<0,3> 1, 2, 7, 8, 9, 11



54 Digital Technical Journal Vol. 10 No. 1 1998

effects-class signatures often contain a small number
of effects classes. A small number of effects classes in
an effects-class signature means that there are a small
number of stacks to consider. Choosing the nearest
dominator from among the top tuples on these stacks
requires examining only a small number of tuples. 

Cost of Using Type Information

When compiling all of the SPECint95 test suite9 using
high optimization, alias analysis accounts for approxi-
mately 5 percent of the compilation time. The use of
Standard C type rules during alias analysis increases
compilation time by less than 0.2 percent (time mea-
sured in number of cycles consumed by the compiler
as reported by Digital Continuous Profiling Infra-
structure [DCPI]10). The increase in compilation time
varies from program to program but never exceeds 
0.5 percent. Handling the extra effects classes gener-
ated by using Standard C type aliasing information
accounted for most of the increase. 

Potentially, the cost of including type-aliasing infor-
mation could be huge. Calculating which effects classes
a reference through a char * pointer could touch is
straightforward as shown by the algorithm in Figure 5. 

A much more complicated process is required to
calculate which effects classes could be touched by a
reference through a pointer to a type other than char.
The algorithm in Figure 6 performs this process. 

Fortunately, the innermost section of this loop is
rarely executed. The innermost section executes only
if a routine references a structure either through a
pointer or a pointer-aliased symbol, that structure
contains a substructure, and the routine references the
substructure through a pointer. 

Effectiveness

The benchmark programs from the SPECint95 suite
offer some convenient test cases for measuring the 
effectiveness of type-based alias analysis. The sources are
readily available and portable. The programs conform
to alias rules established by the American National
Standards Institute (ANSI) and are compute intensive.
Unfortunately, they do not contain floating-point cal-
culations. This reduces the number of different types
used in the programs. Type-based alias analysis works
best when there are many different types in use. 

Three of the SPECint95 programs show no improve-
ment when compiled using the Standard C typing rules
as opposed to using the traditional C typing rules.
These programs, namely compress, go, and li, do not
use many different types and pointers to them. When
all the pointers in a program are pointers to ints (go),
there is only one effects class for all pointer accesses.
Because the compiler has no way to differentiate
among the objects touched by a dereference of a
pointer expression, it generates identical code for these
programs, regardless of the type rules used. The gen-
erated code for li differs only slightly and only for
infrequently executed routines. 

Changes in generated code for the remaining five
benchmarks are more prevalent. Two benchmarks,
ijpeg and perl, show a small reduction in the number
of loads executed but no meaningful reduction in the
total number of instructions executed. The other
three SPECint95 benchmarks show varying degrees 
of reduction in both the number of loads executed
(see Table 6) and the total number of instructions 
executed (see Table 7). 

Figure 5
Calculation of the Effects-class Signature of the Type char * 

foreach pointer aliased symbol 
foreach effects class representing a region of the symbol 

add that effects class to the effects class signature for char

Figure 6
Calculation of the Effects-class Signature for Types Other Than char

foreach pointer aliased symbol or type referenced through a pointer 
foreach member therein 

if the member’s type is referenced through pointer 
foreach effects class representing a region of the member’s type 

foreach effects class representing a region of the symbol or type 
referenced through a pointer 

if the two effects class regions overlap 
add the symbol’s or pointer’s effects class to the effects 

class signature associated with the effect class 
representing the member’s type



Digital Technical Journal Vol. 10 No. 1 1998 55

The load and instruction counts are those reported
by using Atom’s pixie tool on the SPECint95 binaries
to generate pixstat data.11,12 The compiler used was a
development C compiler. All compilations used the
following switches: -fast, -O4, -arch ev56, and 
-inline speed. The compilations using the
Standard C type system used the -ansi_alias
switch. The compilations using the traditional C type
system used the -noansi_alias switch. The bench-
mark binaries were run using the reference data set. 

DCPI10 measurements of the reduction in the num-
ber of cycles consumed by these SPECint95 bench-
marks showed no consistent reductions. Run-to-run
variability in the data collected swamped any cycle-
time reductions that might have occurred. Similarly,
measurements of gains in SPECint959 results due to
the use of type information during alias analysis showed
no significant changes. 

Changes in Generated Code

The code-generation changes one sees in the SPECint95
benchmarks are exactly what one would expect. 

The use of type information during alias analysis
reduces the number of redundant loads. An example
of this occurs in ijpeg, which contains the code sequence: 
main->rowgroup_ctr 

= (JDIMENSION)(cinfo->min_DCT_scaled_size + 1); 
main->rowgroups_avail 

= (JDIMENSION)(cinfo->min_DCT_scaled_size + 2); 

in process_data_context. Using the traditional C type
system, the compiler must assume that main->row
group_ctr is an alias for cinfo->min_DCT_scaled_size.

Thus, it must generate code that loads cinfo->min_
DCT_scaled_size twice. The Standard C type system
allows the compiler to generate only one load of 
cinfo->min_DCT_scaled_size. 

Several of the benchmarks contain code similar to
the following from conversion_recipe in gcc: 
curr.next->list->opcode = -1; 
curr.next->list->to = from; 
curr.next->list->cost = 0; 
curr.next->list->prev = 0; 

Using traditional C type rules, the compiler must gen-
erate four loads of curr.next->list. The compiler must
assume that the pointer curr.next->list may point to
itself, making curr.next->list->member an alias for
curr.next->list. The Standard C type rules allow the
compiler to assume that curr.next->list does not point
to itself. This allows the compiler to generate code that
reuses the result of the first load of curr.next->list,
eliminating three redundant loads. 

In another example in gcc, the use of Standard C
type rules allows the compiler to move a load outside a
loop. The following loop occurs in fixup_gotos: 
for (; lists; lists = TREE_CHAIN (lists)) 

if (TREE_CHAIN (lists) 
== thisblock->data.block.outer_cleanups) 

TREE_ADDRESSABLE (lists) = 1 

Standard C type rules tell the compiler that the store
generated by TREE_ADDRESSABLE (lists) = 1 
cannot modify thisblock->data.block.outer_cleanups.
This allows the compiler to generate code that fetches
thisblock->data.block.outer_cleanups once before
entering the loop. Using traditional C type rules, 
the compiler must generate code that fetches 

Table 6 
Number of Loads Executed by the Select SPECint95 Benchmarks 

Millions of Loads Millions of Loads
SPEC Benchmark Using Type Information without Type Information Percent Reduction

gcc 10,268 10,365 0.9
ijpeg 16,853 16,888 0.2
m88ksim 13,889 14,157 1.9
perl 11,260 11,296 0.3 
vortex 18,994 19,207 1.1

Table 7 
Number of Instructions Executed by the Select SPECint95 Benchmarks 

Millions of Instructions Millions of Instructions 
SPEC Benchmark Using Type Information without Type Information Percent Reduction

gcc 42,830 42,935 0.2
ijpeg 82,844 82,834 0.0
m88ksim 72,490 73,155 0.9
perl 45,219 45,252 0.1 
vortex 80,093 80,607 0.6



56 Digital Technical Journal Vol. 10 No. 1 1998

thisblock->data.block.outer_cleanups each time it 
traverses the loop. 

Not only can type information reduce the number
of redundant loads, it can reduce the number of redun-
dant stores. In m88ksim, there are many routines simi-
lar to the following: 
int ffirst(struct instruction *cmd, union opcode *ptr) { 

... 
ptr->gen.opc1 = 0x3d; 
ptr->gen.dest = operands.value[0]; 
ptr->gen.opc2 = cmd->opc.rrr; 
ptr->gen.src2 = operands.value[1]; 
return(0); 

} 

where opc1, dest, opc2, and src2 are bit fields sharing
the same 32 bits (longword). Using traditional C typ-
ing rules, ptr->gen and cmd->opc may be aliases for
each other. Thus to implement the above routine, the
compiler must generate code that performs the fol-
lowing actions: 

■ Load ptr->gen 
■ Update bit fields ptr->gen.opc1 and ptr->gen.dest 
■ Store ptr->gen 
■ Load cmd->opc.rrr 
■ Update bit fields ptr->gen.opc2 and ptr->gen.src2 
■ Store ptr->gen 

Using Standard C typing rules, the compiler does not
have to generate the first store of ptr->gen. The assign-
ments to ptr->gen.opc1 and ptr->gen.dest cannot
change cmd->opc.rrr. In this case, alias analysis that is
not type based would have a difficult time detecting
that ptr->gen and cmd->opc do not alias each other.
M88ksim never calls ffirst directly. It calls it by means
of an array-indexed function pointer. 

A Note of Caution

Many C programs do not adhere to the Standard C
aliasing rules. Through the use of explicit casting and
implicit casting, they access objects of one type by means
of pointers to other types. More aggressive optimization
by GEM combined with more detailed alias-analysis
information from the DEC C and C++ side-effects
package increasingly results in these programs exhibit-
ing unexpected behavior when the compiler uses
Standard C aliasing rules. 

Passing a pointer to one type to a routine that
expects a pointer to another type works as expected,
until the GEM optimizer inlines the called procedure.
If the procedure is not inlined, the DEC C and C++
side-effects package must assume that the call conflicts
with all pointer accesses before and after the call. Once
GEM inlines the routine, the side-effects package is
free to assume that references using the inlined pointer
do not conflict with references using the pointer at the
call site. The two pointers point to two different types. 

A recent example of this problem occurred in the
gcc program in the SPECint95 benchmark suite. All
programs in this suite are supposed to conform to the
Standard C type-aliasing rules. Because of an improve-
ment to the GEM optimizer, this benchmark started
to give unexpected results. In rtx_alloc, gcc clears a
structure by treating it as an array of ints, assigning
zero to each element of the array. Subsequent to zero-
ing this structure, gcc assigns a value to one of the
fields in the structure. Through a series of valid opti-
mizations (given the incorrect type information), the
resulting code did not clear all the fields in the struc-
ture. This left uninitialized data in the structure,
resulting in gcc behaving in an unexpected manner. 

To avoid potential problems, the DEC C compiler,
by default, does not use the Standard C type rules
when performing alias analysis. The user of the com-
piler has to explicitly assert that the program does fol-
low the Standard C type rules through the use of a
command-line switch. 

The DIGITAL C++ compiler does assume that the
C++ program it is compiling adheres to the Standard
C++ type rules. A user of the DIGITAL C++ compiler
can use a command-line switch to inform the compiler
that it should use traditional C type rules when per-
forming alias analysis. 

Summary

Using Standard C type information during alias analysis
does improve the generated code for some C and C++
programs. The compilation cost of using type informa-
tion is small. Except for rare cases, performance gains
resulting from these code improvements are small. Any
programs compiled using type information during alias
analysis must strictly adhere to the Standard C and C++
aliasing rules. If not, the optimizer may generate code
that produces unexpected results. 

Acknowledgments

The author would like to thank Dave Blickstein, Mark
Davis, Neil Faiman, Steve Hobbs, and Bill Noyce of
the GEM team for their advice and reviews of this
work. Dave Blickstein and Neil Faiman also did work
in the GEM optimizer to ensure that the DEC C and
C++ side-effects package had all the information it
needed to do alias analysis correctly and to ensure that
the GEM optimizer effectively used the information
the side-effects package provided. Thanks also to John
Henning of the CSD Performance Group and Jeannie
Lieb of the GEM team for their help using the
SPECint95 benchmark suite. A final word of thanks
goes to Bob Morgan for suggesting that I write this
paper and to my management for supporting my
doing so. 



Digital Technical Journal Vol. 10 No. 1 1998 57

References and Notes

1. R. Wilson and M. Lam, “Efficient Context-Sensitive
Pointer Analysis for C Programs,” Proceedings of the
ACM SIGPLAN ’95 Conference on Programming Lan-
guage Design and Implementation, La Jolla, Calif.
(June 1995): 1–12. 

2. D. Coutant, “Retargetable High-Level Alias Analysis,”
Proceedings of the 13th Annual Symposium on Prin-
ciples of Programming Languages, St. Petersburg
Beach, Fla. (January 1986): 110–118. 

3. A. Diwan et al., “Type-Based Alias Analysis,” Proceed-
ings of the 1998 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation,
Montreal, Canada (June 1998): 106–117. 

4. Joint Technical Committee ISO/IEC JTC 1, “The C
Programming Language,” International Standard
ISO/IEC 9899:1990, section 6.3 Expressions. 

5. “Working Paper for Draft Proposed International
Standard for Information Systems—Programming
Language C++,” WG21/N1146, November 1997,
section 3.10. 

6. D. Blickstein et al., “The GEM Optimizing Compiler
System,” Digital Technical Journal, vol. 4, no. 4 (Spe-
cial Issue, 1992): 121–136. 

7. R. Crowell et al., “The GEM Loop Transformer,”
Digital Technical Journal, vol. 10, no. 2, accepted for
publication.

8. A. Aho, R. Sethi, and J. Ullman, Compilers Principles,
Techniques, and Tools (Reading, Mass: Addison-
Wesley, 1986): 104. 

9. Information about the SPEC benchmarks is available
from the Standard Performance Evaluation Corpora-
tion at http://www.specbench.org/. 

10. J. Anderson et al., “Continuous Profiling: Where Have
All the Cycles Gone?” Proceedings of the Sixteenth
ACM Symposium on Operating System Principles, Sait-
Malo, France (October 1997): 15–26. 

11. A. Srivastava and A. Eustace, “ATOM: A System for
Building Customized Program Analysis Tools,” Pro-
ceedings of the ACM SIGPLAN ’94 Conference on Pro-
gramming Language Design and Implementation,
Orlando, Fla. (June 1994): 196–205. 

12. UMIPS-V Reference Manual (pixie and pixstats) 
(Sunnyvale, Calif.: MIPS Computer Systems, 1990). 

Biography

August G. Reinig 
August Reinig is a principal software engineer, currently
working on debugger support in the DIGITAL C++ 
compiler. In addition to his work on the DEC C and C++
side-effects package, August implemented a Java-based 
distributed test system for the DEC C and DIGITAL C++
compilers and a parallel build system for the DEC C and
DIGITAL C++ compilers. The distributed test system
simultaneously runs multiple tests on different machines
and is fault tolerant. Before joining the DEC C and C++
team, he contributed to an advanced development incre-
mental compiler project, which led to two patents,
“Method and Apparatus for Software Testing Using a
Testing Technique to Test Compilers” and “Method 
and Apparatus for Testing Software.” He earned a B.S. in
mathematics (magna cum laude) from Dartmouth College
in 1980 and an M.S. in computer science from Harvard
University in 1997. He is a member of Phi Beta Kappa. 


