
58 Digital Technical Journal Vol. 10 No. 1 1998

Many of today’s computer applications require compu-
tation power not easily achieved by computer architec-
tures that provide little or no parallelism. A promising
alternative is the parallel architecture, more specifically,
the instruction-level parallel (ILP) architecture, which
increases computation during each machine cycle. ILP
computers allow parallel computation of the lowest
level machine operations within a single instruction
cycle, including such operations as memory loads and
stores, integer additions, and floating-point multiplica-
tions. ILP architectures, like conventional architectures,
contain multiple functional units and pipelined func-
tional units; but, they have a single program counter
and operate on a single instruction stream. Compaq
Computer Corporation’s AlphaServer system, based on
the Alpha 21164 microprocessor, is an example of an
ILP machine.

To effectively use parallel hardware and obtain
performance advantages, compiler programs must
identify the appropriate level of parallelism. For ILP
architectures, the compiler must order the single
instruction stream such that multiple, low-level opera-
tions execute simultaneously whenever possible. This
ordering by the compiler of machine operations to
effectively use an ILP architecture’s increased paral-
lelism is called instruction scheduling. It is an opti-
mization not usually found in compilers for non-ILP
architectures.

Instruction scheduling is classified as local if it
considers code only within a basic block and global if
it schedules code across multiple basic blocks. A dis-
advantage to local instruction scheduling is its inability
to consider context from surrounding blocks. While
local scheduling can find parallelism within a basic
block, it can do nothing to exploit parallelism between
basic blocks. Generally, global scheduling is preferred
because it can take advantage of added program paral-
lelism available when the compiler is allowed to move
code across basic block boundaries. Tjaden and Flynn,1

for example, found parallelism within a basic block
quite limited. Using a test suite of scientific programs,
they measured an average parallelism of 1.8 within
basic blocks. In similar experiments on scientific pro-

Compiler Optimization
for Superscalar Systems:
Global Instruction
Scheduling without
Copies

Philip H. Sweany
Steven M. Carr
Brett L. Huber

The performance of instruction-level parallel
systems can be improved by compiler programs
that order machine operations to increase
system parallelism and reduce execution time.
The optimization, called instruction scheduling,
is typically classified as local scheduling if only
basic-block context is considered, or as global
scheduling if a larger context is used. Global
scheduling is generally thought to give better
results. One global method, dominator-path
scheduling, schedules paths in a function’s
dominator tree. Unlike many other global
scheduling methods, dominator-path schedul-
ing does not require copying of operations
to preserve program semantics, making this
method attractive for superscalar architectures
that provide a limited amount of instruction-
level parallelism. In a small test suite for the
Alpha 21164 superscalar architecture, dominator-
path scheduling produced schedules requiring
7.3 percent less execution time than those pro-
duced by local scheduling alone.

Digital Technical Journal Vol. 10 No. 1 1998 59

grams in which the compiler moved code across basic
block boundaries, Nicolau and Fisher2 found paral-
lelism that ranged from 4 to a virtually unlimited num-
ber, with an average of 90 for the entire test suite.

Trace scheduling3,4 is a global scheduling technique
that attempts to optimize frequently executed paths of
a program, possibly at the expense of less frequently
executed paths. Trace scheduling exploits parallelism
within sequential code by allowing massive migration of
operations across basic block boundaries during schedul-
ing. By addressing this larger scheduling context (many
basic blocks), trace scheduling can produce better sched-
ules than techniques that address the smaller context of a
single block. To ensure the program semantics are not
changed by interblock motion, trace scheduling inserts
copies of operations that move across block boundaries.
Such copies, necessary to ensure program semantics, are
called compensation copies.

The research described here is driven by a desire to
develop a global instruction scheduling technique
that, like trace scheduling, allows operations to cross
block boundaries to find good schedules and that,
unlike trace scheduling, does not require insertion of
compensation copies. Like trace scheduling, DPS first
defines a multiblock context for scheduling and then
uses a local instruction scheduler to treat the larger
context like a single basic block. Such a technique pro-
vides effective schedules and avoids the performance
cost of executing compensation copies. The global
scheduling technique described here is based on the
dominator relation* among the basic blocks of a func-
tion and is called dominator-path scheduling (DPS).

Local Instruction Scheduling

Since DPS relies on a local instruction scheduler, we
begin with a brief discussion of the local scheduling
problem. As the name implies, local instruction sched-
uling attempts to maximize parallelism within each
basic block of a function’s control flow graph. In gen-
eral, this optimization problem is NP-complete.5

However, in practice, heuristics achieve good results.
(Landskov et al.6 give a good survey of early instruction
scheduling algorithms. Allan et al.7 describe how one
might build a retargetable local instruction scheduler.)

List scheduling 8 is a general method often used for
local instruction scheduling. Briefly, list scheduling
typically requires two phases. The first phase builds
a directed acyclic graph (DAG), called the data depen-
dence DAG (DDD), for each basic block in the
function. DDD nodes represent operations to be
scheduled. The DDD’s directed edges indicate that a
node X preceding a node Y constrains X to occur no

later than Y. These DDD edges are based on the formal-
ism of data dependence analysis. There are three basic
types of data dependence, as described by Padua et al.9

■ Flow dependence, also called true dependence or
data dependence. A DDD node M2 is flow depen-
dent on DDD node M1 if M1 executes before M2 and
M1 writes to some memory location read by M2.

■ Antidependence, also called false dependence. A
DDD node M2 is antidependent on DDD node M1

if M1 executes before M2 and M2 writes to a mem-
ory location read by M1, thereby destroying the
value needed by M1.

■ Output dependence. A DDD node M2 is output
dependent on DDD node M1 if M1 executes before
M2 and M2 and M1 both write to the same location.

To facilitate determination and manipulation of
data dependence, the compiler maintains, for each
DDD node, a set of all memory locations used (read)
and all memory locations defined (written) by that
particular DDD node.

Once the DDD is constructed, the second phase
begins when list scheduling orders the graph’s nodes
into the shortest sequence of instructions, subject to
(1) the constraints in the graph, and (2) the resource
limitations in the machine (i.e., a machine is typically
limited to holding only a single value at any time). In
general list scheduling, an ordered list of tasks, called a
priority list, is constructed. The priority list takes its
name from the fact that tasks are ranked such that those
with the highest priority are chosen first. In the context
of local instruction scheduling, the priority list contains
DDD nodes, all of whose predecessors have already
been included in the schedule being constructed.

Expressions, Statements, and Operations

Within the context of this paper, we discuss algorithms
for code motion. Before going further, we need to
ensure common understanding among our readers for
our use of terms such as expressions, statements, and
operations. To start, we consider a computer program
to be a list of operations, each of which (possibly)
computes a right-hand side (rhs) value and assigns the
rhs value to a memory location represented by a left-
hand side (lhs) variable. This can be expressed as

A ← E

where A represents a single memory location and E
represents an expression with one or more operators
and an appropriate number of operands. During dif-
ferent phases of a compiler, operations might be repre-
sented as

■ Source code, a high-level language such as C
■ Intermediate statements, a linear form of three-

address code such as quads or n-tuples10

*A basic block, D, dominates another block, B, if every path from
the root of the control-flow graph for a function to B must pass
through D.

60 Digital Technical Journal Vol. 10 No. 1 1998

■ DDD nodes, nodes in a DDD, ready to be sched-
uled by the instruction scheduler

Important to note about operations, whether repre-
sented as intermediate statements, source code, or
DDD nodes, is that operations include both a set of
definitions and a set of uses.

Expressions, in contrast, represent the rhs of an
operation and, as such, include uses but not defini-
tions. Throughout this paper, we use the terms state-
ment, intermediate statement, operation, and DDD
node interchangeably, because they all represent an
operation, with both uses and definitions, albeit gen-
erally at different stages of the compilation process.
When we use the term expression, however, we mean
an rhs with uses only and no definition.

Dominator Analysis Used in Code Motion

In order to determine which operations can move
across basic block boundaries, we need to analyze the
source program. Although there are some choices
as to the exact analysis to perform, dominator-path
scheduling is based upon a formalism first described by
Reif and Tarjan.11 We summarize Reif and Tarjan’s
work here and then discuss the enhancements needed
to allow interblock movement of operations.

In their 1981 paper, Reif and Tarjan provide a fast
algorithm for determining the approximate birthpoints
of expressions in a program’s flow graph. An expres-
sion’s birthpoint is the first block in the control flow
graph at which the expression can be computed, and
the value computed is guaranteed to be the same as in
the original program. Their technique is based upon
fast computation of the idef set for each basic block of
the control flow graph. The idef set for a block B is
that set of variables defined on a path between B’s
immediate dominator and B. Given that the domina-
tor relation for the basic blocks of a function can be
represented as a dominator tree, the immediate domi-
nator, IDOM, of a basic block B is B’s parent in the
dominator tree.

Expression birthpoints are not sufficient to allow us
to safely move entire operations from a block to one of
its dominators because birthpoints address only the
movement of expressions, not definitions. Operations
in general include not only a computation of some
expression but the assignment of the value computed
to a program variable. Ensuring a “safe” motion for an
expression requires only that no expression operand
move above any possible definition of that operand,
thus changing the program semantics. A similar
requirement is necessary, but not sufficient, for the
variable to which the value is being assigned. In addi-
tion to not moving A above any previous definition of
A, A cannot move above any possible use of A.
Otherwise, we run the risk of changing A’s value for

that previous use. Thus, dominator analysis computes
the iuse set for each basic block and for the idef set.
The iuse set for a block, B, is that set of variables used
on some path between B’s immediate dominator and
B. Using the idef and iuse sets, dominator analysis com-
putes an approximate birthpoint for each operation.

In this paper, we use the term dominator analysis
to mean the analysis necessary to allow code motion of
operations while disallowing compensation copies.
Additionally, we use the term dominator motion for
the general optimization of code motion based upon
dominator analysis.

Enhancing the Reif and Tarjan Algorithm
By enhancing Reif and Tarjan’s algorithm to compute
birthpoints of operations instead of expressions, we
make several issues important that previously had no
effect upon Reif and Tarjan’s algorithm. This section
motivates and describes the information needed to
allow dominator motion, including the use, def, iuse,
and idef sets for each basic block. An algorithmic
description of this dominator analysis information is
included in the section Overview of Dominator-Path
Scheduling and the Algorithm for Interblock Motion.

When we allow code motion to move intermediate
statements (or just expressions) from a block to one of
its dominators, we run the risk that the statement
(expression) will be executed a different number of
times in the dominator block than it would have been
in its original location. When we move only expres-
sions, the risk is acceptable (although it may not be
efficient to move a statement into a loop) since the
value needed at the original point of computation is
preserved. Relative to program semantics, the number
of times the same value is computed has no effect as
long as the correct value is computed the last time.
This accuracy is guaranteed by expression birthpoints.

Consider also the consequences of moving an expres-
sion from a block that is never executed for some partic-
ular input data. Again, it may not be efficient to compute
a value never used, but the computation does not alter
program semantics. When dominator motion moves
entire statements, however, the issue becomes more
complex. If the statement moved assigns a new value to
an induction variable, as in the following example,

n = n + 1

dominator motion would change n’s final value if it
moved the statement to a block where the execution
frequency differed from that of its original block. We
could alleviate this problem by prohibiting motion of
any statement for which the use and def sets are not
disjoint, but the possibility remains that a statement
may define a variable based indirectly upon that vari-
able’s previous value. To remedy the more general
problem, we disallow motion of any statement, S,

Digital Technical Journal Vol. 10 No. 1 1998 61

whose def set intersects with those variables that are
used-before-defined in the basic block in which S resides.

Suppose the optimizer moves an intermediate state-
ment that defines a global variable from a block that
may never be executed for some set of input data into
a dominator block that is executed at least once for
the same input data. Then the optimized version has
defined a variable that the unoptimized function did
not, possibly changing program semantics. We can be
sure that such motion does not change the semantics
of that function being compiled; but there is no mech-
anism, short of compiling the entire program as a sin-
gle unit, to ensure that defining a global variable in this
function will not change the value used in another
function. Thus, to be conservative and ensure that
it does not change program semantics, dominator
motion prohibits interblock movement of any state-
ment that defines a global variable. At first glance, it
may seem that this prohibition cripples dominator
motion’s ability to move any intermediate statements
at all; but we shall see that such is not the case.

One final addition to Reif and Tarjan information is
required to take care of a subtle problem. As discussed
above, dominator analysis uses the idef and iuse sets to
prevent illegal code motion. The use of these sets was
assumed to be sufficient to ensure the legality of code
motion into a dominator block; unfortunately, this is
not the case. The problem is that a definition might
pass through the immediate dominator of B to reach
a use in a sibling of B in the dominator tree. If there
were a definition of this variable in B, but the variable
was not defined on any path from the immediate dom-
inator, there would be nothing in dominator analysis
to prevent the definition from being moved into the
dominator. But that would change the program’s
semantics. Figure 1 shows the control-flow graph for a
function called findmax(), with only the statements
referring to register r7. Register r7 is defined in blocks
B3 and B7, and referenced in B9. This means that r7
is live-out of B5 and live-in to B8, but not live-in to
B7; there is a definition of r7 in B3 that reaches B8.
Because there is no definition or use between B7 and
its immediate dominator B5, the idef and iuse sets of
B7 are empty; thus, dominator analysis, as described
above, would allow the assignment of r7 to move
upward to block B5. This motion is illegal; it changes
the definition in B3. Moving the operation from B7 to
B5 changes the conditional assignment of r7 to an
unconditional one.

To prevent this from happening, we can insert the
variable into the iuse set of the block B, in which we
wish the statement to remain. We do not, however,
want to add to the iuse set unnecessarily. The solution
is to add each variable, V, that is live-in to any of B’s
siblings in the dominator tree, but not into B, or to B’s

iuse set. This will prevent any definition of V that
might exist in B from moving up. If there is a defini-
tion of V in B, but V is live-in to B, there must be some
use of V in B before the definition, so it could not move
upward in any case.

Measurement of Dominator Motion
To measure the motion possible in C programs,
Sweany12 defined dominator motion as the movement
of each intermediate statement to its birthpoint as
defined by dominator analysis and by the number of
dominator blocks each statement jumps during such
movement. Sweany’s choice of intermediate state-
ments (as contrasted with source code, assembly lan-
guage, or DDD nodes) is attributed to the lack of
machine resource constraints at that level of program
abstraction. He envisioned dominator motion as an
upper bound on the motion available in C programs
when compensation copies are included. In the test
suite of 12 C programs compiled, more than 25 per-
cent of all intermediate statements moved at least one
dominator block upwards toward the root of the dom-
inator tree. One function allowed more than 50 per-
cent of the statements to be hoisted an average of
nearly eight dominator blocks. The considerable
amount of motion (without copies) available at the
intermediate statement level of program abstraction

ENTRY

B9
= r7

EXIT
B7
r7 =

B3
r7 =

B4

B5

B8

Figure 1
Control Flow Graph for the Function findmax()

62 Digital Technical Journal Vol. 10 No. 1 1998

provided us with the motivation to use similar analysis
techniques to facilitate global instruction scheduling.

Overview of Dominator-path Scheduling and the
Algorithm for Interblock Motion

Since experiments show that dominator analysis allows
considerable code motion without copies, we chose to
use dominator analysis as the basis for the instruction
scheduling algorithm described here, namely dominator-
path scheduling. As noted above, DPS is a global
instruction scheduling method that does not require
copies of operations that move from one basic block to
another. DPS performs global instruction scheduling by
treating a group of basic blocks found on a dominator
tree path as a single block, scheduling the group as a
whole. In this regard, it resembles trace scheduling,
which schedules adjacent basic blocks as a single block.
DPS’s foundation is scheduling instructions while mov-
ing operations among blocks according to both the
opportunities provided by and the restrictions imposed
by dominator analysis.

The question arises as to how to exploit dominator
analysis information to permit code motion at the
instruction level during scheduling. DPS is based on
the observation that we can use idef and iuse sets to
allow operations to move from a block to one of its
dominators during instruction scheduling. Instruction
scheduling can then choose the most advantageous
position for an operation that is placed in any one of
several blocks. Because machine operations are incor-
porated in nodes of the DDD used in scheduling and,
like intermediate statements, DDD nodes are repre-
sented by def and use sets, the same analysis performed
on intermediate statements can also be applied to a
basic block’s DDD nodes.

The same motivation that drives trace scheduling—
namely that scheduling one large block allows better use
of machine resources than scheduling the same code as
several smaller blocks—also applies to DPS. In contrast
to trace scheduling, DPS does not allow motion of
DDD nodes when a copy of a node is required and does
not incur the code explosion due to copying that trace
scheduling can potentially produce. For architectures
with moderate instruction-level parallelism, DPS may
produce better results than trace scheduling, because
the more limited motion may be sufficient to make
good use of machine resources, and unlike trace sched-
uling, no machine resources are devoted to executing
semantic-preserving operation copies.

Much like traces,* the dominator path’s blocks can
be chosen by any of several methods. One method is a
heuristic choice of a path based on length, nesting
depth, or some other program characteristic. Another
is programmer specification of the most important

paths. A third is actual profiling of the running pro-
gram. We visit this issue again in the section Choosing
Dominator Paths. First, however, we need to discuss
the algorithmic details of DPS.

Once DPS selects a dominator path to schedule, it
requires a method to combine the blocks’ DDDs into
a single DDD for the entire dominator path. In our
compiler, this task is performed by a DDD coupler,13

which is designed for the purpose. Given the DDD
coupler, DPS proceeds by repeatedly

■ Choosing a dominator path to schedule
■ Using the DDD coupler to combine each block’s

DDD on the chosen dominator path
■ Scheduling the combined DDD as a single block

The dominator-path scheduling algorithm, detailed
in this section, is summarized in Figures 2 and 3.

A significant aspect of the DPS process is to ensure
“appropriate” interblock motion of DDD nodes and
to prohibit “illegal” motion. As noted earlier, the
combined DDD for a dominator path includes control
flow. Therefore, when DPS schedules a group of
blocks represented by a single DDD, it needs a mecha-
nism to map correctly the scheduled instructions to
the basic blocks. The mechanism is easily accom-
plished by the addition of two special nodes to each
block’s DDD. Called BlockStart and BlockEnd, these
special nodes represent the basic block boundaries.
Since dominator-path scheduling does not allow
branches to move across block boundaries, each
BlockStart and BlockEnd node is initially “tied” (with
DDD arcs) to the branch statement of the block, if any.
Because BlockStart and BlockEnd are nodes in the
eventually combined DDD, they are scheduled like all
other nodes of the combined DDD. After scheduling,
all instructions between the instruction containing the
BlockStart node for a block and the instruction con-
taining the BlockEnd node for that block are consid-
ered instructions for that block. Next, DPS must
ensure that the BlockStart and BlockEnd DDD nodes
remain ordered (in the scheduled instructions) relative
to one another and to the BlockStart and BlockEnd
nodes for any other block. To do so, DPS adds use and
def information to the nodes to represent a pseudore-
source, BlockBoundary. Because each BlockStart
node defines BlockBoundary and each BlockEnd
node uses BlockBoundary, no BlockEnd node can be
scheduled ahead of its associated BlockStart node
(because of flow dependence.) Also, a BlockStart node
cannot be scheduled before its dominator block’s
BlockEnd node (because of antidependence). By
establishing these imaginary dependencies, DPS
ensures that the DDD coupler adds arcs between all
BlockStart and BlockEnd nodes.

*groups of blocks to be scheduled together in trace scheduling

Digital Technical Journal Vol. 10 No. 1 1998 63

operations that instruction scheduling allows. In dom-
inator motion, intermediate statements move in only
one direction, i.e., toward the top of the function’s
control flow graph, not from a dominator block to a
dominated one. This one-directional motion is rea-
sonable when attempting to move intermediate state-
ments because one statement’s movement will likely
open possibilities for more motion in the same direc-
tion by other statements. When statements move in
different directions, one statement’s motion might
inhibit another’s movement in the opposite direction.
The goal of dominator motion is to move statements as
far as possible in the control flow graph. In contrast, the
goal of DPS is not to maximize code motion, but rather
to find, for each operation, O, that location for O that
will yield the shortest schedule. Thus our goal has
changed from that of dominator motion. To gain the
full benefit from DPS, we wish to allow operations to
move past block boundaries in either direction. To per-
mit bidirectional motion, we use the post-dominator
relation, which says that a basic block, PD, is a post-
dominator of a basic block B if all paths from B to the
function’s exit must pass through PD. Using this strat-
egy, we similarly define post-idef and post-iuse sets. In

Looking back to dominator analysis, we see that
interblock motion is prohibited if the operation being
moved

■ Defines something that is included in either the
idef or iuse set

■ Uses something included in the idef set for the
block in which the operation currently resides
To obtain the same prohibitions in the combined

DDD, we add the idef set for a basic block, B, to the
def set B’s BlockStart node. Similarly, we add the iuse
set for B to the use set of B’s BlockStart node. Thus we
enforce the same restriction on movement that domi-
nator analysis imposed upon intermediate statements
and ensure that any interblock motion preserves pro-
gram semantics. In a similar manner, DPS includes the
restrictions on movement of operations that define
either global variables or induction variables. Figure 3
gives an algorithmic description of the process of
“doping” the BlockStart and BlockEnd nodes to pre-
vent disallowed code motion.

DPS is complicated by factors not relevant for dom-
inator motion of intermediate statements. Foremost is
the complexity imposed by the bidirectional motion of

Figure 2
Dominator-path Scheduling Algorithm

Algorithm Dominator-Path Scheduling
Input:

Function Control Flow Graph
Dominator Tree
Post-Dominator Tree

Output:
Scheduled instructions for the function

Algorithm:
While at least one Basic Block is unscheduled

Heuristically choose a path B1, B2,…, Bn in the Dominator Tree that includes
only unscheduled Basic Blocks.

Perform dominator analysis to compute IDef and IUse sets

/* Build one DDD for the entire dominator path */
CombinedDDD = B1

For i = 2 to n
T = InitializeTransitionDDD (Bi–1, Bi)
CombinedDDD = Couple(CombinedDDD,T)
CombinedDDD = Couple (CombinedDDD, Bi)

Perform list scheduling on CombinedDDD
Mark each block of DP scheduled
Copy scheduled instructions to the Blocks of the path (instructions between the
BlockStart and BlockEnd nodes for a Block are “written” to that Block)

End While

64 Digital Technical Journal Vol. 10 No. 1 1998

fact, it is not difficult to compute all these quantities
for a function. The simplest way is to logically reverse
the direction of all the control flow graph arcs and per-
form dominator analysis on the resulting graph.
Having computed the post-dominator tree, DPS
chooses dominator paths such that the dominated
node is a post-dominator of its immediate predecessor
in a dominator path. This choice allows operations to
move “freely” in both directions. Of course, this may
be too limiting on the choice of dominator paths. To
allow for the possibility that nodes in a dominator path
will not form a post-dominator relation, DPS needs a
mechanism to limit bidirectional motion when
needed. Again, we rely on the technique of adding
dependencies to the combined DDD. In this case
(assuming that DPS is scheduling paths in the forward
dominator tree), for any basic block, B, whose succes-

sor, S, in the forward dominator path does not post-
dominate B, DPS adds B’s def set to the use set of the
BlockEnd node associated with B. In similar fashion,
we add B’s use set to B’s BlockEnd node’s def set.
This technique prevents any DDD node originally in
B from moving downward in the dominator path.

Choosing Dominator Paths

DPS allows code movement along any dominator
path, but there are many ways to select these paths. An
investigation of the effects of dominator-path choice
on the efficiency of generated schedules tells us that
the choice of path is too important to be left to arbi-
trary selection; twice the average percent speedup* for
several functions can often be achieved with a simple,

Figure 3
Initialize Transition DDD Algorithm

Algorithm InitializeTransitionDDD(B1, B2)
Input:

A Transition DDD templates, with a Dummy DDDNode
for B1’s block end and one for B2’s block start
Two basic blocks, B1 and B2 that we wish to couple
Dominator Tree
Post-Dominator Tree
The following dataflow information

Def, Use, IDef, and IUse sets for B1 and B2

Used-Before-Defined set for B2

Post-IDef, and Post-IUse sets for B1 and B2

B2’s “sibling” set, defined to include any variable
live-in to a dominator-tree sibling of B2, but not
live-in to B2

A basic block DDD for each of B1 and B2

Output:
An initialized Transition DDD, T

Algorithm:
T = TransitionDDD
/* “Fix” set for global and induction variables. */
Add set of global variables to B2’s IUse
Add B2’s Used-Before-Defined to B2’s IUse
Add B2’s sibling set to B2’s IUse

If B2 does not post-dominate B1

Add B1’s Use set to T’s BlockEnd Def set
Add B1’s Def set to T’s BlockEnd Use set

Else
Add B1’s Post-IDef set to T’s BlockEnd Def set
Add B1’s Post-IUse set to T’s BlockEnd Use set

Add B2’s IDef set to T’s BlockStart Def set
Add B2’s IUse set to T’s BlockStart Use set
Return T

*(unoptimized_speed – optimized_speed)/unoptimized_speed

Digital Technical Journal Vol. 10 No. 1 1998 65

well-chosen heuristic. Some functions have a potential
percent speedup almost four times the average. Thus,
it is important to find a good, generally applicable
heuristic to select the dominator paths.

Unfortunately, it is not practical to schedule all of
the possible partitionings for large functions. If we
allow a basic block to be included in only one domina-
tor path, the formula for the number of distinct parti-
tionings of the dominator tree is

P [outdeg(n) + 1]
n e N

where N is the set of nodes of the dominator tree.14

Although the number of possible paths is not prohibi-
tive for small dominator trees, larger trees have a pro-
hibitively large number. For example, whetstone’s
main(), with 49 basic blocks, has almost two trillion
distinct partitionings.

To evaluate differences in dominator-path choices,
we scheduled a group of small functions with DPS
using every possible choice of dominator path. The
target architecture for this study was a hypothetical
6-wide long-instruction-word (LIW) machine, which
was simulated and in which it was assumed that all
cache accesses were hits.

The results of exhaustive dominator-path testing
show, as expected, that varying the choice of domina-
tor paths significantly affects the performance of
scheduling. For all functions of at least two basic
blocks, DPS showed improvement over local schedul-
ing for at least one of the possible choices of domina-
tor paths. Table 1 shows the best, average, and worst
percent speedup over local scheduling found for all
functions that had a “best” speedup of over 2 percent;
it also shows the speedup of the original implementa-

tion of DPS and the number of distinct dominator tree
partitionings. The original implementation of DPS
included a single, simple heuristic to choose domina-
tor paths. More specifically, to choose dominator paths
within a group, G, of contiguous blocks at the same
nesting level, the compiler continues to choose a
block, B, to “expand.” Expansion of B initializes a new
dominator path to include B and adds B’s dominators
until no more can be added. The algorithm then starts
another dominator path by expanding another (as yet
unexpanded) block of G. The first block of G chosen
to expand is the tail block, T, in an attempt to obtain as
long a dominator path as possible.

Unfortunately, not all functions are small enough to
be tested by performing DPS for each possible parti-
tioning of the dominator tree. Therefore, we defined
37 different heuristic methods of choosing dominator
trees, based upon groupings of six key heuristic factors.

The maximum path lengths of the basic guidelines
were adjusted to produce actual heuristics. We used
the heuristic factors from which the individual heuris-
tics were constructed; each seemed likely either to
mimic the observed characteristics of the best path
selection or to allow more freedom of code motion
and, therefore, more flexibility in filling “gaps.”

■ One nesting level—Group blocks from the same
nesting level of a loop. Each block is in the same
strongly connected component, so the blocks tend
to have similar restrictions to code motion. For a
group of blocks to be a strongly connected compo-
nent, there must be some path in the control flow
graph from each node in the component to all the
other nodes in the component. Since the function
will probably repeat the loop, it seems likely that
the scheduler will be able to overlap blocks in it.

Table 1
Percent of Function Speedup Improvement Using DPS Path Choices over Local Scheduling

Percent Speedup

No. Dominator
Function Name Best Average Worst Original Tree Partitions

bubble 39.2 10.6 – 0.1 11.7 72
readm 32.5 9.3 – 0.2 32.5 48
solve 27.8 9.9 – 0.2 27.8 96
queens 25.4 8.3 – 0.4 – 0.4 96
swaprow 23.1 5.8 – 3.7 19.5 24
print(g) 22.0 9.1 – 0.2 22.0 8
findmax 21.3 6.2 – 0.3 8.7 18
copycol 18.5 5.6 – 5.0 19.9 8
elim 14.3 2.3 – 3.8 10.2 576
mult 13.7 2.1 – 3.8 10.3 96
subst 12.9 2.4 – 4.9 4.9 96
print(8) 12.5 6.2 0.0 12.5 8

66 Digital Technical Journal Vol. 10 No. 1 1998

■ Longest path—Schedule the longest available path.
This heuristic class allows the maximum distance
for code motion.

■ Postdominator—Follow the postdominator relation
in the dominator tree. When a dominator block, P, is
succeeded by a non-postdominator block, S, our
compiler adds P’s def set to the use set of P’s
BlockEnd node and the use set to the def set to
prevent any code motion from P to S. If P is instead
succeeded by its postdominator block, no such mod-
ification is necessary, and code would be allowed to
move in both directions. Intuitively, the postdomina-
tor relation is the exact inverse of the dominator rela-
tion, so code can move down, into a postdominator,
as it moves up into a dominator. Further, the simple
act of adding nodes to the DDD will complicate list
scheduling, making it harder for the scheduler to
generate the most efficient schedule.

■ Non-postdominator—Follow a non-postdominator
in the dominator tree. This heuristic class generally
means adding loop body blocks to the path. Notice
that this seems at odds with the previous heuristic
class. The previous class was suggested by intuition
about the scheduler, and this one by observation of
path behavior.

■ idef size—Group by idef set size. The larger the
idef size, the more interference there is to code
motion. A small idef size will probably allow more
code motion, so we try to add blocks with small
idef sizes.

■ Density—Group by operation density. We define
the density of each basic block as the number of
nodes in the DDD divided by the number of instruc-
tions required for local scheduling. A dense block
already has close to its maximum number of opera-
tions; adding or removing operations will probably
not improve the schedule. For this reason, we want
to avoid scheduling dense blocks together. Two
methods are tried: scheduling dense blocks with
sparse blocks and putting sparse blocks together.

The heuristic factors were used to make individual
heuristics by changing the limit on the possible num-
ber of blocks in a path. It was reasonable to set limits
for four factors: postdominator, non-postdominator,
idef size, and density. We tried path length limits in
blocks of 2, 3, 4, 5, and unlimited, making a total of
five heuristics from each heuristic factor.

Running DPS using each of the heuristic methods
and comparing the efficiency of the resulting code
leads to several conclusions about effective heuristics
for choosing DPS’s dominator paths. For some heuris-
tics, we can achieve the best schedules for DPS by
using paths that rarely exceed three blocks. For any
particular class of heuristics, we can achieve the best
schedule with paths limited to five blocks or fewer.

Consequently, path lengths can be limited without
lowering the efficiency of generated code, and longer
paths, which increase scheduling time, can be avoided.

Since no one heuristic performed well for all func-
tions, we advise using a combination of heuristics, i.e.,
schedule by using each of three heuristics and taking
the best schedule. The “combined” heuristic includes
the following:

■ Instruction density, limit to five blocks
■ One nesting level on path, limit to five blocks
■ Non-postdominator, unlimited length

Frequency-based List Scheduling

Like some other global schedulers, DPS uses a local
scheduling algorithm (list scheduling) on a global con-
text, namely the meta-blocks built by DPS. This algo-
rithm raises the possibility of moving code from less
frequently executed blocks to more frequently executed
blocks. At first glance, this practice seems to be a bad idea.

In theory, to best schedule any meta-block, an
instruction scheduler must account for the differing
cost of the instructions within the meta-block. If a sin-
gle meta-block includes multiple nesting levels, the
scheduler must recognize that instructions added to
blocks with higher nesting levels are more costly than
those added to blocks with lower nesting levels. Even
within a loop, there exists the potential for consider-
able variation in the execution frequencies of different
blocks in the meta-block due to control flow. Of
course variable execution frequency is not an issue in
traditional local scheduling because, within the con-
text of a single basic block, each DDD node is exe-
cuted the same number of times, namely, once each
time execution enters the block.

To address the issue of differing execution frequen-
cies within meta-blocks scheduled as a single block by
DPS, we investigated frequency-based list scheduling
(FBLS),15 an extension of list scheduling that provides
an answer to this difficulty by considering that execu-
tion frequencies differ within sections of the meta-
blocks. FBLS uses a greedy method to place DDD nodes
in the lowest-cost instruction possible. FBLS amends
the basic list-scheduling algorithm by revising only the
DDD node placement policy in an attempt to reduce
the run-time cycles required to execute a meta-block.

Unfortunately, although FBLS makes intuitive sense,
we found that DPS produced worse schedules with
FBLS than it produced with a naive local scheduling
algorithm that ignored frequency differences within
DPS’s meta-blocks. Therefore, the current imple-
mentation of DPS ignores the execution frequency
differences between basic blocks, both in choosing
dominator paths to schedule and in scheduling those
dominator-path meta-blocks.

Digital Technical Journal Vol. 10 No. 1 1998 67

Evaluation of Dominator-path Scheduling

To measure the potential of DPS to generate more
efficient schedules than local scheduling for commer-
cial superscalar architectures, we ran a small test suite
of C programs on an Alpha 21164 server. The Alpha
server is a superscalar architecture capable of issuing
two integer and two floating-point instructions each
cycle. Our compiler estimates the effectiveness of a
schedule by modeling the 21164 as an LIW architec-
ture with all operation latencies known at compile
time. Of course this model was used only within the
compiler itself. Our results measured changes in
21164 execution time (measured with the UNIX
“time” command) required for each program.

Our test suite of 14 C programs includes 8 programs
that use integer computation only and 6 programs that
include floating-point computation. We separated
those groups because we see dramatic differences in
DPS’s performance when viewing integer and floating-
point programs. To choose dominator paths, we used
the combined heuristic recommended by Huber.14

Table 2 summarizes the results of tests we con-
ducted to compare the execution times of programs
using DPS scheduling with those using local schedul-
ing only. The table lists the programs used in the test
suite and the percent improvement in execution times
for DPS-scheduled programs. The execution time

measurements were made on an Alpha 21164 server
running at 250 megahertz with data cache sizes of 8
kilobytes, 96 kilobytes, and 4 megabytes.

Looking at Table 2, we see that, in general, DPS
improved the integer programs less than it improved
the floating-point programs. The range of improve-
ments for integer programs was from 0.7 percent for
Dhrystone to 7.3 percent each for 8-Queens and for
SymbolTable. Summing all the improvements and
dividing by eight (the number of integer programs)
gives an “average” of 4.7 percent improvement for the
integer programs. DPS improved some of the floating-
point programs even more significantly than the inte-
ger programs. The range of improvements for the six
floating-point programs was from 3.7 percent for Dice
(a simulation of rolling a pair of dice 10,000,000 times
using a uniform random number generator) to 17.6
percent improvement for the finite difference pro-
gram. The average for the six floating-point programs
was 10.8 percent. This suggests, not surprisingly, that
the Alpha 21164 provides more opportunities for
global scheduling improvement when floating-point
programs are being compiled.

Even within the six floating-point programs, how-
ever, we see a distinct bi-modal behavior in terms of
execution-time improvement. Three of the programs
range from 12.3 percent to 17.6 percent improve-
ment, whereas three are below 10 percent (and two of
those significantly below 10 percent). A reason for this
wide range is the use of global variables. Remember
that DPS forbids the motion of global variable defini-
tions across block boundaries. This is necessary to
ensure correct program semantics. It is hardly a coinci-
dence that both Dice and Whetstone include only
global floating-point variables, whereas Livermore’s
floating-point variables are mixed about half local
and half global, and the three better performers use
almost no global variables. Thus we conclude that, for
floating-point programs with few global variables, we
can expect improvements of roughly 12 to 15 percent
in execution time. Inclusion of global variables and
exclusion of floating-point values will, however,
decrease DPS’s ability to improve execution time for
the Alpha 21164.

Related Work

As we have discussed, local instruction scheduling can
find parallelism within a basic block but cannot exploit
parallelism between basic blocks. Several global sched-
uling techniques are available, however, that extract
parallelism from a program by moving operations
across block boundaries and subsequently inserting
compensation copies to maintain program semantics.
Trace scheduling3 was the first of these techniques to
be defined. As previously mentioned, trace scheduling

Table 2
Percent DPS Scheduling Improvements over Local
Scheduling of Programs

Percent Execution
Program Time Improvement

8- Queens 7.3
SymbolTable 7.3
BubbleSort 5.0
Nsieve 6.1
Heapsort 6.0
Killcache 2.6
TSP 2.4
Dhrystone 0.7

C integer average 4.7

Dice 3.7
Whetstone 5.4
Matrix Multiply 16.2
Gauss 12.3
Finite Difference 17.6
Livermore 9.3

C floating-point average 10.8

Overall average 7.3

requires compensation copies. Other “early” global
scheduling algorithms that require compenstation
copies include Nicolau’s percolation scheduling 16,17

and Gupta’s region scheduling.18 A recent and quite
popular extension of trace scheduling is Hwu’s
SuperBlock scheduling.19,20 In addition to these more
general, global scheduling methods, significant results
have been obtained by software pipelining, which is a
technique that overlaps iterations of loops to exploit
available ILP. Allan et al.21 provide a good summary,
and Rau22 provides an excellent tutorial on how modulo
scheduling, a popular software pipelining technique,
should be implemented. Promising recent techniques
have focused on defining a meta-environment, which
includes both global scheduling and software pipelin-
ing. Moon and Ebcioglu23 present an aggressive tech-
nique that combines software pipelining and global
code motion (with copies) into a single framework.
Novak and Nicolau24 describe a sophisticated schedul-
ing framework in which to place software pipelining,
including alternatives to modulo scheduling. While
providing a significant number of excellent global
scheduling alternatives, none of these techniques pro-
vides global scheduling without the possibility of code
expansion (copy code) as DPS does.

To address the issue of producing schedules without
operation copies, Bernstein25–27 defined a technique he
calls global instruction scheduling (GPS) that allows
movement of instructions beyond block boundaries
based upon the program dependence graph (PDG).28 In
a test suite of four programs run on IBM’s RS/6000,
Bernstein’s method showed improvement of roughly
7 percent over local scheduling for two of the programs,
with no significant difference for the others.

Comparing DPS to Bernstein’s method, we see that
both allow for interblock motion without copies.
Bernstein also allows for interblock movement requir-
ing duplicates that DPS does not. Interestingly,
Bernstein’s later work27 does not make use of this abil-
ity to allow motion that requires duplication of opera-
tions, suggesting that, to date, he has not found such
motion advisable for the RS/6000 architecture to
which his techniques have been applied. Bernstein
allows operation movement in only one direction,
whereas DPS allows operations to move from a domi-
nator block to a postdominator. This added flexibility is
an advantage to DPS. Of possibly greater significance,
DPS uses the local instruction scheduler to place opera-
tions. Bernstein uses a separate set of heuristics to move
operations in the PDG and then uses a subsequent local
scheduling pass to order operations within each block.
Fisher3 argues that incorporating movement of opera-
tions with the scheduling phase itself provides better
scheduling than dividing the interblock motion and
scheduling phases. Based on that criterion alone, DPS
has some advantages over Bernestein’s method.

Conclusions

It is commonly accepted that to exploit the perfor-
mance benefits of ILP, global instruction scheduling is
required. Several varieties of global instruction sched-
uling exist, most requiring compensation copies to
ensure proper program semantics when operations
cross block boundaries during instruction scheduling.
Although such global scheduling with compensation
copies may be an effective strategy for architectures
with large degrees of ILP, another approach seems
reasonable for more limited architectures, such as cur-
rently available superscalar computers.

This paper outlines DPS, a global instruction sched-
uling technique that does not require compensation
copies. Based on the fact that more than 25 percent of
intermediate statements can be moved upward at least
one dominator block in the control flow graph with-
out changing program semantics, DPS schedules paths
in a function’s dominator tree as meta-blocks, making
use of an extended local instruction scheduler to
schedule dominator paths.

Experimental evidence shows that DPS does indeed
produce more efficient schedules than local schedul-
ing for Compaq’s Alpha 21164 server system, particu-
larly for floating-point programs that avoid the use of
global variables. This work has demonstrated that con-
siderable flexibility in placement of code is possible
even when compensation copies are not allowed.
Although more research is required to look into
possible uses for this flexibility, the global instruction
scheduling method described here (DPS) shows
promise for ILP architectures.

Acknowledgments

This research was supported in part by an External
Research Program grant from Digital Equipment
Corporation and by the National Science Foundation
under grant CCR-9308348.

References

1. G. Tjaden and M. Flynn, “Detection of Parallel Exe-
cution of Independent Instructions,” IEEE Transac-
tions on Computers, C-19(10) (October 1970):
889–895.

2. A. Nicolau and J. Fisher, “Measuring the Parallelism
Available for Very Long Instruction Word Architec-
tures,” IEEE Transactions on Computers, 33(11)
(November 1984): 968–976.

3. J. Fisher, “Trace Scheduling: A Technique for Global
Microcode Compaction,” IEEE Transactions on Com-
puters, C-30(7) (July 1981): 478–490.

68 Digital Technical Journal Vol. 10 No. 1 1998

Digital Technical Journal Vol. 10 No. 1 1998 69

18. R. Gupta and M. Soffa, “Region Scheduling: An
Approach for Detecting and Redistributing Paral-
lelism,” IEEE Transactions on Software Engineering,
16(4) (April 1990): 421–431.

19. S. Mahlke, W. Chen, W.-M. Hwu, B. Rao, and M.
Schlansker, “Sentinel Scheduling for VLIW and Super-
scalar Processors,” Proceedings of the 5th Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Systems,
Boston, Mass. (October 1992): 238–247.

20. C. Chekuri, R. Johnson, R. Motwani, B. Natarajan, B.
Rau, and M. Schlansker, “Profile-Driven Instruction-
Level-Parallel Scheduling with Application to Super
Blocks,” Proceedings of the 29th International Sym-
posium on Microarchitecture (MICRO-29), Paris,
France (December 1996): 58–67.

21. V. Allan, R. Jones, R. Lee, and S. Allan, “Software
Pipelining,” ACM Computing Surveys, 27(3) (Septem-
ber 1995).

22. B. Rau, “Iterative Modulo Scheduling: An Algorithm
for Software Pipelining Loops,” Proceedings of the
27th International Symposium on Microarchitecture
(MICRO-27), San Jose, Calif. (December 1994): 63–74.

23. S.-M. Moon and K. Ebcioglu, “Parallelizing Nonnu-
merical Code with Selective Scheduling and Software
Pipelining,” ACM Transactions on Programming
Languages and Systems, 18(6) (November 1997):
853–898.

24. S. Novak and A. Nicolau, “An Efficient Global Resource-
Directed Approach to Exploiting Instruction-Level Paral-
lelism,” Proceedings of the 1996 International Conference
on Parallel Architectures and Compiler Techniques
(PACT 96), Boston, Mass. (October 1996): 87–96.

25. D. Bernstein and M. Rodeh, “Global Instruction
Scheduling for Superscalar Machines,” Proceedings of
the ACM SIGPLAN 1991 Conference on Programming
Language Design and Implementation, Toronto,
Canada (June 1991): 241–255.

26. D. Bernstein, D. Cohen, and H. Krawczyk, “Code
Duplication: An Assist for Global Instruction Schedul-
ing,” Proceedings of the 24th International Symposium
on Microarchitecture (MICRO-24), Albuquerque,
N. Mex. (November 1991): 103–113.

27. D. Bernstein, D. Cohen, Y. Lavon, and V. Rainish,
“Performance Evaluation of Instruction Scheduling
on the IBM RS/6000,” Proceedings of the 25th Inter-
national Symposium on Microarchitecture (MICRO-
25), Portland, Oreg. (December 1992): 226–235.

28. J. Ferrante, K. Ottenstein, and J. Warren, “The Pro-
gram Dependence Graph and Its Use in Optimiza-
tion,” ACM Transactions on Programming Languages
and Systems, 9(3) (July 1987): 319–349.

4. J. Ellis, Bulldog: A Compiler for VLIW Architectures
(Cambridge, MA: MIT Press, 1985), Ph.D. thesis,
Yale University (1984).

5. D. DeWitt, “A Machine-Independent Approach to the
Production of Optimal Horizontal Microcode,” Ph.D.
thesis, University of Michigan, Ann Arbor, Mich.
(1976).

6. D. Landskov, S. Davidson, B. Shriver, and P. Mallett,
“Local Microcode Compaction Techniques,” ACM
Computing Surveys, 12(3) (September 1980):
261–294.

7. V. Allan, S. Beaty, B. Su, and P. Sweany, “Building a
Retargetable Local Instruction Scheduler,” Software —
Practice & Experience, 28(3) (March 1998): 249–284.

8. E. Coffman, Computer and Job-Shop Scheduling
Theory (New York: John Wiley & Sons, 1976).

9. D. Padua, D. Kuck, and D. Lawrie, “High-Speed Mul-
tiprocessors and Compilation Techniques,” IEEE Trans-
actions on Computers, C-29(9) (September 1980):
763–776.

10. A. Aho, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques, and Tools (Reading, MA: Addison-
Wesley, 1986).

11. H. Reif and R. Tarjan, “Symbolic Program Analysis in
Almost-Linear Time,” Journal of Computing, 11 (1)
(February 1981): 81–93.

12. P. Sweany, “Interblock Code Motion without Copies,”
Ph.D. thesis, Computer Science Department, Col-
orado State University (1992).

13. R. Mueller, M. Duda, P. Sweany, and J. Walicki,
“Horizon: A Retargetable Compiler for Horizontal
Microarchitectures,” IEEE Transactions on Software
Engineering: Special Issue on Microprogramming,
14(5) (May 1998): 575–583.

14. B. Huber, “Path-Selection Heuristics for Dominator-
Path Scheduling,” Master’s thesis, Department of Com-
puter Science, Michigan Technological University
(1995).

15. M. Bourke, P. Sweany, and S. Beaty, “Extending List
Scheduling to Consider Execution Frequency,” Pro-
ceedings of the 28th Hawaii International Conference
on System Sciences (January 1996).

16. A. Nicolau, “Percolation Scheduling: A Parallel Com-
pilation Technique,” Technical Report TR85-678,
Department of Computer Science, Cornell University
(May 1985).

17. A. Aiken and A. Nicolau, “A Development Environ-
ment for Horizontal Microcode,” IEEE Transactions
on Software Engineering, 14(5) (May 1988):
584–594.

70 Digital Technical Journal Vol. 10 No. 1 1998

Philip H. Sweany
Associate Professor Phil Sweany has been a member of
Michigan Technological University’s Computer Science
faculty since 1991. He has been investigating compiler
techniques for instruction-level parallel (ILP) architectures,
co-authoring several papers on instruction scheduling, reg-
ister assignment, and the interaction between these two
optimizations. Phil has been the primary designer and
implementer of Rocket, a highly optimizing compiler that
is easily retargetable for a wide range of ILP architectures.
His research has been significantly assisted by grants from
Digital Equipment Corporation and the National Science
Foundation. Phil received a B.S. in computer science in
1983 from Washington State University, and M.S. and
Ph.D. degrees in computer science from Colorado State
University in 1986 and 1992, respectively.

Steven M. Carr
Steve Carr is an assistant professor in the Department of
Computer Science at Michigan Technological University.
The focus of his research at the university is memory-
hierarchy management and optimization of instruction-
level parallel architectures. Steve’s research has been sup-
ported by both the National Science Foundation and
Digital Equipment Corporation. He received a B.S. in
computer science from Michigan Technological University
in 1987 and M.S. and Ph.D. degrees from Rice University
in 1990 and 1993, respectively. Steve is a member of ACM
and an IEEE Computer Society Affiliate.

Brett L. Huber
Raised in Hope, Michigan, Brett earned B.S. and M.S.
degrees in computer science at Michigan Technological
University in Michigan’s historic Keweenaw Peninsula. He
is an engineer in the Software Development Systems group
at Texas Instruments, Inc., and is currently developing an
optimizing compiler for the TMS320C6x family of VLIW
digital signal processors. Brett is a member of the ACM
and an IEEE Computer Society Affiliate.

Biographies

