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The affordability of shared memory multiprocessors
offers the potential of supercomputer-class performance
to the general public. Typically used in a multiprogram-
ming mode, these machines increase throughput by
running several independent applications in parallel.
But multiple processors can also work together to 
speed up single applications. This requires that ordinary
sequential programs be rewritten to take advantage of
the extra processors.1–4 Automatic parallelization with a
compiler offers a way to do this. 

Parallelizing compilers face more difficult challenges
from multiprocessors than from vector machines, which
were their initial target. Using a vector architecture effec-
tively involves parallelizing repeated arithmetic opera-
tions on large data streams—for example, the innermost
loops in array-oriented programs. On a multiprocessor,
however, this approach typically does not provide suffi-
cient granularity of parallelism: Not enough work is 
performed in parallel to overcome processor synch-
ronization and communication overhead. To use a 
multiprocessor effectively, the compiler must exploit
coarse-grain parallelism, locating large computations
that can execute independently in parallel. 

Locating parallelism is just the first step in produc-
ing efficient multiprocessor code. Achieving high per-
formance also requires effective use of the memory
hierarchy, and multiprocessor systems have more com-
plex memory hierarchies than typical vector machines:
They contain not only shared memory but also multi-
ple levels of cache memory. 

These added challenges often limited the effectiveness
of early parallelizing compilers for multiprocessors, so
programmers developed their applications from scratch,
without assistance from tools. But explicitly managing an
application’s parallelism and memory use requires a great
deal of programming knowledge, and the work is tedious
and error-prone. Moreover, the resulting programs are
optimized for only a specific machine. Thus, the effort
required to develop efficient parallel programs restricts
the user base for multiprocessors. 

This article describes automatic parallelization tech-
niques in the SUIF (Stanford University Intermediate
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Format) compiler that result in good multiprocessor
performance for array-based numerical programs. We
provide SUIF performance measurements for the com-
plete NAS and SPECfp95 benchmark suites. Overall, the
results for these scientific programs are promising. The
compiler yields speedups on three fourths of the pro-
grams and has obtained the highest ever performance on
the SPECfp95 benchmark, indicating that the compiler
can also achieve efficient absolute performance.

Finding Coarse-grain Parallelism 

Multiprocessors work best when the individual proces-
sors have large units of independent computation, but
it is not easy to find such coarse-grain parallelism. First
the compiler must find available parallelism across pro-
cedure boundaries. Furthermore, the original compu-
tations may not be parallelizable as given and may first
require some transformations. For example, experience
in parallelizing by hand suggests that we must often
replace global arrays with private versions on different
processors. In other cases, the computation may 
need to be restructured—for example, we may have to
replace a sequential accumulation with a parallel reduc-
tion operation. 

It takes a large suite of robust analysis techniques to
successfully locate coarse-grain parallelism. General
and uniform frameworks helped us manage the com-
plexity involved in building such a system into SUIF.
We automated the analysis to privatize arrays and to
recognize reductions to both scalar and array variables.
Our compiler’s analysis techniques all operate seam-
lessly across procedure boundaries. 

Scalar Analyses 
An initial phase analyzes scalar variables in the programs.
It uses techniques such as data dependence analysis,
scalar privatization analysis, and reduction recognition 
to detect parallelism among operations with scalar vari-
ables. It also derives symbolic information on these scalar
variables that is useful in the array analysis phase. Such
information includes constant propagation, induction
variable recognition and elimination, recognition of
loop-invariant computations, and symbolic relation
propagation.5,6

Array Analyses 
An array analysis phase uses a unified mathematical
framework based on linear algebra and integer linear
programming.3 The analysis applies the basic data
dependence test to determine if accesses to an array
can refer to the same location. To support array priva-
tization, it also finds array dataflow information that
determines whether array elements used in an iteration
refer to the values produced in a previous iteration.

Moreover, it recognizes commutative operations on
sections of an array and transforms them into parallel
reductions. The reduction analysis is powerful enough
to recognize commutative updates of even indirectly
accessed array locations, allowing parallelization of
sparse computations. 

All these analyses are formulated in terms of integer
programming problems on systems of linear inequali-
ties that represent the data accessed. These inequalities
are derived from loop bounds and array access func-
tions. Implementing optimizations to speed up com-
mon cases reduces the compilation time. 

Interprocedural Analysis Framework 
All the analyses are implemented using a uniform
interprocedural analysis framework, which helps man-
age the software engineering complexity. The frame-
work uses interprocedural dataflow analysis,4 which is
more efficient than the more common technique of
inline substitution.1 Inline substitution replaces each
procedure call with a copy of the called procedure,
then analyzes the expanded code in the usual intrapro-
cedural manner. Inline substitution is not practical for
large programs, because it can make the program too
large to analyze. 

Our technique analyzes only a single copy of each
procedure, capturing its side effects in a function. This
function is then applied at each call site to produce
precise results. When different calling contexts make it
necessary, the algorithm selectively clones a procedure
so that code can be analyzed and possibly parallelized
under different calling contexts (as when different
constant values are passed to the same formal parame-
ter). In this way the full advantages of inlining are
achieved without expanding the code indiscriminately. 

In Figure 1 the boxes represent procedure bodies,
and the lines connecting them represent procedure
calls. The main computation is a series of four loops to
compute three-dimensional fast Fourier transforms.
Using interprocedural scalar and array analyses, the
SUIF compiler determines that these loops are paral-
lelizable. Each loop contains more than 500 lines of
code spanning up to nine procedures with up to 42
procedure calls. If this program had been fully inlined,
the loops presented to the compiler for analysis would
have each contained more than 86,000 lines of code. 

Memory Optimization 

Numerical applications on high-performance micro-
processors are often memory bound. Even with one or
more levels of cache to bridge the gap between proces-
sor and memory speeds, a processor may still waste half
its time stalled on memory accesses because it frequently
references an item not in the cache (a cache miss). This
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memory bottleneck is further exacerbated on multi-
processors by their greater need for memory traffic,
resulting in more contention on the memory bus. 

An effective compiler must address four issues that
affect cache behavior: 

■ Communication: Processors in a multiprocessor
system communicate through accesses to the same
memory location. Coherent caches typically keep
the data consistent by causing accesses to data writ-
ten by another processor to miss in the cache. Such
misses are called true sharing misses. 

■ Limited capacity: Numeric applications tend to have
large working sets, which typically exceed cache
capacity. These applications often stream through
large amounts of data before reusing any of it,
resulting in poor temporal locality and numerous
capacity misses. 

■ Limited associativity: Caches typically have a small
set associativity; that is, each memory location can
map to only one or just a few locations in the cache.
Conflict misses—when an item is discarded and
later retrieved—can occur even when the applica-
tion’s working set is smaller than the cache, if the
data are mapped to the same cache locations. 

■ Large line size: Data in a cache are transferred in
fixed-size units called cache lines. Applications that
do not use all the data in a cache line incur more
misses and are said to have poor spatial locality. On
a multiprocessor, large cache lines can also lead to
cache misses when different processors use differ-

ent parts of the same cache line. Such misses are
called false sharing misses. 

The compiler tries to eliminate as many cache misses as
possible, then minimize the impact of any that remain by 

■ ensuring that processors reuse the same data as
many times as possible and 

■ making the data accessed by each processor con-
tiguous in the shared address space. 

Techniques for addressing each of these subproblems
are discussed below. Finally, to tolerate the latency of
remaining cache misses, the compiler uses compiler-
inserted prefetching to move data into the cache before
it is needed. 

Improving Processor Data Reuse 
The compiler reorganizes the computation so that each
processor reuses data to the greatest possible extent.7–9

This reduces the working set on each processor,
thereby minimizing capacity misses. It also reduces
interprocessor communication and thus minimizes
true sharing misses. To achieve optimal reuse, the com-
piler uses affine partitioning. This technique analyzes
reference patterns in the program to derive an affine
mapping (linear transformation plus an offset) of the
computation of the data to the processors. The affine
mappings are chosen to maximize a processor’s reuse
of data while maintaining sufficient parallelism to keep
all processors busy. The compiler also uses loop block-
ing to reorder the computation executed on a single
processor so that data is reused in the cache. 
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Figure 1
The compiler discovers parallelism through interprocedural array analysis. Each of the four parallelized loops at left consists of
more than 500 lines of code spanning up to nine procedures (boxes) with up to 42 procedure calls (lines). 
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Making Processor Data Contiguous 
The compiler tries to arrange the data to make a
processor’s accesses contiguous in the shared address
space. This improves spatial locality while reducing
conflict misses and false sharing. SUIF can manage
data placement within a single array and across multi-
ple arrays. The data-to-processor mappings computed
by the affine partitioning analysis are used to deter-
mine the data being accessed by each processor. 

Figure 2 shows how the compiler’s use of data per-
mutation and data strip-mining10 can make contiguous
the data within a single array that is accessed by one
processor. Data permutation interchanges the dimen-
sions of the array—for example, transposing a two-
dimensional array. Data strip-mining changes an
array’s dimensionality so that all data accessed by the
same processor are in the same plane of the array. 

To make data across multiple arrays accessed by the
same processor contiguous, we use a technique called
compiler-directed page coloring.11 The compiler uses

its knowledge of the access patterns to direct the oper-
ating system’s page allocation policy to make each
processor’s data contiguous in the physical address
space. The operating system uses these hints to deter-
mine the virtual-to-physical page mapping at page
allocation time. 

Experimental Results 

We conducted a series of performance evaluations to
demonstrate the impact of SUIF’s analyses and opti-
mizations. We obtained measurements on a Digital
AlphaServer 8400 with eight 21164 processors, each
with two levels of on-chip cache and a 4-Mbyte exter-
nal cache. Because speedups are harder to obtain on
machines with fast processors, our use of a state-of-
the-art machine makes the results more meaningful
and applicable to future systems. 

We used two complete standard benchmark suites
to evaluate our compiler. We present results for the 10
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Figure 2
Data transformations can make the data accessed by each processor contiguous in the shared address space. In the two
examples above, the original arrays are two-dimensional; the axes are identified to show that elements along the first axis 
are contiguous. First the affine partitioning analysis determines which data elements are accessed by the same processor 
(the shaded elements are accessed by the first processor.) Second, data strip-mining turns the 2D array into a 3D array, 
with the shaded elements in the same plane. Finally, applying data permutation rotates the array, making data accessed 
by each processor contiguous. 
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programs in the SPECfp95 benchmark suite, which is
commonly used for benchmarking uniprocessors. We
also used the eight official benchmark programs from
the NAS parallel-system benchmark suite, except for
embar; here we used a slightly modified version from
Applied Parallel Research. 

Figure 3 shows the SPECfp95 and NAS speedups,
measured on up to eight processors on a 300-MHz
AlphaServer. We calculated the speedups over the best
sequential execution time from either officially reported
results or our own measurements. Note that mgrid and
applu appear in both benchmark suites (the program
source and data set sizes differ slightly).

To measure the effects of the different compiler
techniques, we broke down the performance obtained
on eight processors into three components. In Figure
4, baseline shows the speedup obtained with paral-
lelization using only intraprocedural data dependence
analysis, scalar privatization, and scalar reduction
transformations. Coarse grain includes the baseline

techniques as well as techniques for locating coarse-
grain parallel loops—for example, array privatization
and reduction transformations, and full interproce-
dural analysis of both scalar and array variables.
Memory includes the coarse-grain techniques as well
as the multiprocessor memory optimizations we
described earlier. 

Figure 3 shows that of the 18 programs, 13 show good
parallel speedup and can thus take advantage of additional
processors. SUIF’s coarse-grain techniques and memory
optimizations significantly affect the performance of half
the programs. The swim and tomcatv programs show
superlinear speedups because the compiler eliminates
almost all cache misses and their 14 Mbyte working sets 
fit into the multiprocessor’s aggregate cache. 

For most of the programs that did not speed up, the
compiler found much of their computation to be par-
allelizable, but the granularity is too fine to yield good
multiprocessor performance on machines with fast
processors. Only two applications, fpppp and buk, have
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Figure 3
SUIF compiler speedups over the best sequential time achieved on the (a) SPECfp95 and (b) NAS parallel benchmarks. 
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require that the software be generally available. The
ratios we obtained are nevertheless valid in assessing
our compiler’s performance.) The geometric mean of
the SPEC ratios improves over the uniprocessor execu-
tion by a factor of 3 with four processors and by a fac-
tor of 4.3 with eight processors. Our eight-processor
ratio of 63.9 represents a 50 percent improvement
over the highest number reported to date.12

no statically analyzable loop-level parallelism, so they
are not amenable to our techniques. 

Table 1 shows the times and SPEC ratios obtained
on an eight-processor, 440-MHz Digital AlphaServer
8400, testifying to our compiler’s high absolute per-
formance. The SPEC ratios compare machine perfor-
mance with that of a reference machine. (These are
not official SPEC ratings, which among other things
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Figure 4
The speedup achieved on eight processors is broken down into three components to show how SUIF’s memory optimization
and discovery of coarse-grain parallelism affected performance.

Table 1
Absolute Performance for the SPECfp95 Benchmarks Measured on a 440-MHz Digital AlphaServer Using One
Processor, Four Processors, and Eight Processors 

Execution Time (secs) SPEC Ratio 

Benchmark 1P 4P 8P 1P 4P 8P

tomcatv 219.1 30.3 18.5 16.9 122.1 200.0
swim 297.9 33.5 17.2 28.9 256.7 500.0
su2cor 155.0 44.9 31.0 9.0 31.2 45.2
hydro2d 249.4 61.1 40.7 9.6 39.3 59.0
mgrid 185.3 42.0 27.0 13.5 59.5 92.6
applu 296.1 85.5 39.5 7.4 25.7 55.7
turb3d 267.7 73.6 43.5 15.3 55.7 94.3
apsi 137.5 141.2 143.2 15.3 14.9 14.7
fpppp 331.6 331.6 331.6 29.0 29.0 29.0
wave5 151.8 141.9 147.4 19.8 21.1 20.4
Geometric Mean 15.0 44.4 63.9
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Editors’ Note: With the following section, the authors
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since the publication of their paper in Computer in
December 1996. 

Addendum: The Status and Future of SUIF 

Public Availability of SUIF-parallelized Benchmarks 
The SUIF-parallelized versions of the SPECfp95
benchmarks used for the experiments described in this
paper have been released to the SPEC committee and
are available to any license holders of SPEC (see
http://www.specbench.org/osg/cpu95/par-research).
This benchmark distribution contains the SUIF out-
put (C and FORTRAN code), along with the source
code for the accompanying run-time libraries. We expect
these benchmarks will be useful for two purposes: 
(1) for technology transfer, providing insight into how
the compiler transforms the applications to yield the
reported results; and (2) for further experimentation,
such as in architecture-simulation studies. 

The SUIF compiler system itself is available from the
SUIF web site at http://www-suif.stanford.edu. This
system includes only the standard parallelization analy-
ses that were used to obtain our baseline results. 

New Parallelization Analyses in SUIF 
Overall, the results of automatic parallelization reported
in this paper are impressive; however, a few applica-
tions either do not speed up at all or achieve limited
speedup at best. The question arises as to whether
SUIF is exploiting all the available parallelism in these
applications. Recently, an experiment to answer this
question was performed in which loops left unparal-
lelized by SUIF were instrumented with run-time tests
to determine whether opportunities for increasing the
effectiveness of automatic parallelization remained in
these programs.1 Run-time testing determined that
eight of the programs from the NAS and SPEC95fp
benchmarks had additional parallel loops, for a total of
69 additional parallelizable loops, which is less than 5%
of the total number of loops in these programs. Of
these 69 loops, the remaining parallelism had a signifi-
cant effect on coverage (the percentage of the pro-
gram that is parallelizable) or granularity (the size of
the parallel regions) in only four of the programs: apsi,
su2cor, wave5, and fftpde. 

We found that almost all the significant loops in
these four programs could potentially be parallelized
using a new approach that associates predicates with
array data-flow values.2 Instead of producing conserv-
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ative results that hold for all control-flow paths and all
possible program inputs, predicated array data-flow
analysis can derive optimistic results guarded by predi-
cates. Predicated array data-flow analysis can lead to
more effective automatic parallelization in three ways:
(1) It improves compile-time analysis by ruling out
infeasible control-flow paths. (2) It provides a frame-
work for the compiler to introduce predicates that, if
proven true, would guarantee safety for desirable data-
flow values. (3) It enables the compiler to derive low-cost
run-time parallelization tests based on the predicates
associated with desirable data-flow values. 

SUIF and Compaq‘s GEM Compiler 
The GEM compiler system is the technology Compaq
has been using to build compiler products for a variety
of languages and hardware/software platforms.3

Within Compaq, work has been done to connect SUIF
with the GEM compiler. SUIF’s intermediate repre-
sentation was converted into GEM’s intermediate rep-
resentation, so that SUIF code can be passed directly
to GEM’s optimizing back end. This eliminates the
loss of information suffered when SUIF code is trans-
lated to C/FORTRAN source before it is passed to
GEM. It also enables us to generate more efficient
code for Alpha-microprocessor systems. 

SUIF and the National Compiler Infrastructure 
The SUIF compiler system was recently chosen to be
part of the National Compiler Infrastructure (NCI)
project funded by the Defense Advanced Research
Projects Agency (DARPA) and the National Science
Foundation (NSF). The goal of the project is to
develop a common compiler platform for researchers
and to facilitate technology transfer to industry. The

SUIF component of the NCI project is the result of the
collaboration among researchers in five universities
(Harvard University, Massachusetts Institute of
Technology, Rice University, Stanford University,
University of California at Santa Barbara) and one
industrial partner, Portland Group Inc. Compaq is a
corporate sponsor of the project and is providing the
FORTRAN front end. 

A revised version of the SUIF infrastructure (SUIF
2.0) is being released as part of the SUIF NCI project
(a preliminary version of SUIF 2.0 is available at the
SUIF web site). The completed system will be
enhanced to support parallelization, interprocedural
analysis, memory hierarchy optimizations, objected-
oriented programming, scalar optimizations, and
machine-dependent optimizations. An overview of
the SUIF NCI system is shown in Figure A1. See
www-suif.stanford.edu/suif/NCI/suif.html for more
information about SUIF and the NCI project, includ-
ing a complete list of optimizations and a schedule. 
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