
Digital Technical Journal Vol. 10 No. 1 1998 81

Introduction

In software development, it is common practice to
debug a program that has been compiled with little or
no optimization applied. The generated code closely
corresponds to the source and is readily described by a
simple and straightforward debugging symbol table. A
debugger can interpret and control execution of the
code in a fashion close to the user’s source-level view
of the program.

Sometimes, however, developers find it necessary or
desirable to debug an optimized version of the pro-
gram. For instance, a bug—whether a compiler bug or
incorrect source code—may only reveal itself when
optimization is applied. In other cases, the resource
constraints may not allow the unoptimized form to be
used because the code is too big and/or too slow. Or,
the developer may need to start analysis using the
remains, such as a core file, of the failed program,
whether or not this code has been optimized. Whatever
the reason, debugging optimized code is harder than
debugging unoptimized code—much harder—because
optimization can greatly complicate the relationship
between the source program and the generated code.

Zellweger1 introduced the terms expected behavior
and truthful behavior when referring to debugging
optimized code. A debugger provides expected behav-
ior if it provides the behavior a user would experience
when debugging an unoptimized version of a pro-
gram. Since achieving that behavior is often not possi-
ble, a secondary goal is to provide at least truthful
behavior, that is, to never lie to or mislead a user. In
our experience, even truthful behavior can be chal-
lenging to achieve, but it can be closely approached.

This paper describes three improvements made to
Compaq’s GEM back-end compiler system and to
OpenVMS DEBUG, the debugging component of the
OpenVMS Alpha operating system. These improve-
ments address

1. Split lifetime variables and currency determination
2. Semantic events
3. Inlining

Debugging Optimized
Code: Concepts and
Implementation on
DIGITAL Alpha Systems

Ronald F. Brender
Jeffrey E. Nelson
Mark E. Arsenault

Effective user debugging of optimized code has
been a topic of theoretical and practical interest
in the software development community for
almost two decades, yet today the state of the
art is still highly uneven. We present a brief sur-
vey of the literature and current practice that
leads to the identification of three aspects of
debugging optimized code that seem to be
critical as well as tractable without extraordi-
nary efforts. These aspects are (1) split lifetime
support for variables whose allocation varies
within a program combined with definition
point reporting for currency determination,
(2) stepping and setting breakpoints based on
a semantic event characterization of program
behavior, and (3) treatment of inlined routine
calls in a manner that makes inlining largely
transparent. We describe the realization of
these capabilities as part of Compaq’s GEM
back-end compiler technology and the debug-
ging component of the OpenVMS Alpha oper-
ating system.

82 Digital Technical Journal Vol. 10 No. 1 1998

Before presenting the details of this work, we dis-
cuss the alternative approaches to debugging optimized
code that we considered, the state of the art, and the
operating strategies we adopted.

Alternative Approaches
Various approaches have been explored to improve
the ability to debug optimized code. They include
the following:

■ Enhance debugger analysis
■ Limit optimization
■ Limit debugging to preplanned locations
■ Dynamically deoptimize as needed
■ Exploit an associated program database

We touch on these approaches in turn.
In probably the oldest theoretical analysis that

supports debugging optimized code, Hennessy2 stud-
ies whether the value displayed for a variable is current,
that is, the expected value for that variable at a given
point in the program. The value displayed might not
be current because, for example, assignment of a later
value has been moved forward or the relevant assign-
ment has been delayed or omitted. Hennessy postu-
lates that a flow graph description of a program is
communicated to the debugger, which then solves
certain flow analysis equations in response to debug
commands to determine currency as needed.
Copperman3 takes a similar though much more gen-
eral approach. Conversely, commercial implementa-
tions have favored more complete preprocessing of
information in the compiler to enable simpler debug-
ger mechanisms.4–6

If optimization is the “problem,” then one approach
to solving the problem is to limit optimization to only
those kinds that are actually supported in an available
debugger. Zurawski7 develops the notion of a recovery
function that matches each kind of optimization. As an
optimization is applied during compilation, the com-
pensating recovery function is also created and made
available for later use by a debugger. If such a recovery
function cannot be created, then the optimization is
omitted. Unfortunately, code-motion-related optimi-
zations generally lack recovery functions and so must
be foregone. Taking this approach to the extreme
converges with traditional practice, which is simply to
disable all optimization and debug a completely unop-
timized program.

If full debugger functionality need only be provided
at some locations, then some debugger capabilities can
be provided more easily. Zurawski7 also employed this
idea to make it easier to construct appropriate recov-
ery functions. This approach builds on a language-
dependent concept of inspection points, which

generally must include all call sites and may corre-
spond to most statement boundaries. His experience
suggests, however, that even limiting inspection points
to statement boundaries severely limits almost all kinds
of optimization.

Hölzle et al.8 describe techniques to dynamically
deoptimize part of a program (replace optimized code
with its unoptimized equivalent) during debugging to
enable a debugger to perform requested actions. They
make the technique more tractable, in part by delaying
asynchronous events to well-defined interruption
points, generally backward branches and calls. Opti-
mization between interruption points is unrestricted.
However, even this choice of interruption points
severely limits most code motion and many other
global optimizations.

Pollock and others9,10 use a different kind of deopti-
mization, which might be called preplanned, incre-
mental deoptimization. During a debugging session,
any debugging requests that cannot be honored
because of optimization effects are remembered so
that a subsequent compilation can create an exe-
cutable that can honor these requests. This scheme is
supported by an incremental optimizer that uses a pro-
gram database to provide rapid and smooth forward
information flow to subsequent debugging sessions.

Feiler11 uses a program database to achieve the bene-
fits of interactive debugging while applying as much
static compilation technology as possible. He describes
techniques for maintaining consistency between the
primary tree-based representation and a derivative
compiled form of the program in the face of both
debugging actions and program modifications on-the-
fly. While he appears to demonstrate that more is possi-
ble than might be expected, substantial limitations still
exist on debugging capability, optimization, or both.

A comprehensive introduction and overview to these
and other approaches can be found in Copperman3 and
Adl-Tabatabi.12 In addition, “An Annotated Biblio-
graphy on Debugging Optimized Code” is available
separately on the Digital Technical Journal web site at
http://www.digital.com/info/DTJ. This bibliography
cites and summarizes the entire literature on debugging
optimized code as best we know it.

State of the Art
When we began our work in early 1994, we assessed
the level of support for debugging optimized code
that was available with competitive compilers. Because
we have not updated this assessment, it is not appro-
priate for us to report the results here in detail. We do
however summarize the methodology used and the
main results, which we believe remain generally valid.

We created a series of example programs that pro-
vide opportunities for optimization of a particular kind

Digital Technical Journal Vol. 10 No. 1 1998 83

or of related kinds, and which could lead a traditional
debugger to deviate from expected behavior. We com-
piled and executed these programs under the control
of each system’s debugger and recorded how the sys-
tem handled the various kinds of optimization. The
range of observed behaviors was diverse.

At one extreme were compilers that automatically
disable all optimization if a debugging symbol table is
requested (or, equivalently for our purposes, give an
error if both optimization and a debugging symbol
table are requested). For these compilers, the whole
exercise becomes moot; that is, attempting to debug
optimized code is not allowed.

Some compiler/debugger combinations appeared
to usefully support some of our test cases, although
none handled all of them correctly. In particular, none
seemed able to show a traceback of subroutine calls
that compensated for inlining of routine calls and all
seemed to produce a lot of jitter when stepping by line
on systems where code is highly scheduled.

The worst example that we found allowed compila-
tion using optimization but produced a debugging
symbol table that did not reflect the results of that opti-
mization. For example, local variables were described
as allocated on the stack even though the generated
code clearly used registers for these variables and never
accessed any stack locations. At debug time, a request
to examine such a variable resulted in the display of the
irrelevant and never-accessed stack locations.

The bottom line from this analysis was very clear:
the state of the art for support of debugging opti-
mized code was generally quite poor. DIGITAL’s
debuggers, including OpenVMS DEBUG, were not
unusual in this regard. The analysis did indicate some
good examples, though. Both the CONVEX CXdb4,5

and the HP 9000 DOC6 systems provide many valu-
able capabilities.

Biases and Goals
Early in our work, we adopted the following strategies:

■ Do not limit or compromise optimization in any way.
■ Stay within the framework of the traditional edit-

compile-link-debug cycle.
■ Keep the burden of analysis within the compiler.

The prime directive for Compaq’s GEM-based
compilers is to achieve the highest possible perfor-
mance from the Alpha architecture and chip technol-
ogy. Any improvements in debugging such optimized
code should be useful in the face of the best that a
compiler has to offer. Conversely, if a programmer has
the luxury of preparing a less optimized version for
debugging purposes, there is little or no reason for
that version to be anything other than completely

unoptimized. There seems to be no particular benefit
to creating a special intermediate level of combined
debugger/optimization support.

Pragmatically, we did not have the time or staffing
to develop a new optimization framework, for exam-
ple, based on some kind of program database. Nor
were we interested in intruding into those parts of the
GEM compiler that performed optimization to create
more complicated options and variations, which might
be needed for dynamic deoptimization or recovery
function creation.

Finally, it seemed sensible to perform most analysis
activities within the compiler, where the most complete
information about the program is already available. It is
conceivable that passing additional information from
the compiler to the debugger using the object file
debugging symbol table might eventually tip the bal-
ance toward performing more analysis in the debugger
proper. The available size data (presented later in this
paper in Table 3) do not indicate this.

We identified three areas in which we felt enhanced
capabilities would significantly improve support for
debugging optimized code. These areas are

1. The handling of split lifetime variables and currency
determination

2. The process of stepping though the program
3. The handling of procedure inlining

In the following sections we present the capabilities we
developed in each of these areas together with insight
into the implementation techniques employed.

First, we review the GEM and OpenVMS DEBUG
framework in which we worked. The next three sec-
tions address the new capabilities in turn. The last
major section explores the resource costs (compile-
time size and performance, and object and image
sizes) needed to realize these capabilities.

Starting Framework

Compaq’s GEM compiler system and the OpenVMS
DEBUG component of the OpenVMS operating
system provide the framework for our work. A brief
description of each follows.

GEM
The GEM compiler system13 is the technology
Compaq is using to build state-of-the-art compiler
products for a variety of languages and hardware and
software platforms. The GEM system supports a range
of languages (C, C++, FORTRAN including HPF,
Pascal, Ada, COBOL, BLISS, and others) and has been
successfully retargeted and rehosted for the Alpha,
MIPS, and Intel IA-32 architectures and for the

84 Digital Technical Journal Vol. 10 No. 1 1998

OpenVMS, DIGITAL UNIX, Windows NT, and
Windows 95 operating systems.

The major components of a GEM compiler are the
front end, the optimizer, the code generator, the final
code stream optimizer, and the compiler shell.

■ The front end performs lexical analysis and parsing
of the source program. The primary outputs are
intermediate language (IL) graphs and symbol
tables. Front ends for all source languages translate
to the same common representation.

■ The optimizer transforms the IL generated by the
front end into a semantically equivalent form that
will execute faster on the target machine. A signifi-
cant technical achievement is that a single optimizer
is used for all languages and target platforms.

■ The code generator translates the IL into a list of
code cells, each of which represents one machine
instruction for the target hardware. Virtually all the
target machine instruction-specific code is encapsu-
lated in the code generator.

■ The final phase performs pattern-based peephole
optimizations followed by instruction scheduling.

■ The shell is a portable interface to the external envi-
ronment in which the compiler is used. It provides
common compiler functions such as listing genera-
tors, object file emitters, and command line proces-
sors in a form that allows the other components to
remain independent of the operating system.

The bulk of the GEM implementation work described
in this paper occurs at the boundary between the final
phase and the object file output portion of the shell. A
new debugging optimized code analysis phase exam-
ines the generated code stream representation of the
program, together with the compiler symbol table, to
extract the information necessary to pass on to a
debugger through the debugging symbol table. Most
of the implementation is readily adapted to different
target architectures by means of the same instruction
property tables that are used in the code generator and
final optimizer.

OpenVMS DEBUG
The OpenVMS Alpha debugger, originally developed
for the OpenVMS VAX system,14 is a full-function,
source-level, symbolic debugger. It supports symbolic
debugging of programs written in BLISS, MACRO-32,
MACRO-64, FORTRAN, Ada, C, C++, Pascal, PL/1,
BASIC, and COBOL. The debugger allows the user to
control the execution and to examine the state of a
program. Users can

■ Set breakpoints to stop at certain points in the program
■ Step through the execution of the program a line at

a time

■ Display the source-level view of the program’s exe-
cution using either a graphical user interface or a
character-based user interface

■ Examine user variables and hardware registers
■ Display a stack traceback showing the current call

stack
■ Set watch points
■ Perform many other functions15

Split Lifetime Variables and Currency
Determination

Displaying (printing) the value of a program variable is
one of the most basic services that a debugger can pro-
vide. For unoptimized code and traditional debug-
gers, the mechanisms for doing this are generally
based on several assumptions.

1. A variable has a single allocation that remains fixed
throughout its lifetime. For a local or a stack-allocated
variable that means throughout the lifetime of the
scope in which the variable is declared.

2. Definitions and uses of the values of user variables
occur in the same order in the generated code as
they do in the original program source.

3. The set of instructions that belong to a given scope
(which may be a routine body) can be described by
a single contiguous range of addresses.

The first and second assumptions are of interest in this
discussion because many GEM optimizations make
them inappropriate. Split lifetime optimization (dis-
cussed later in this section) leads to violation of the first
assumption. Code motion optimization leads to viola-
tion of the second assumption and thereby creates the
so-called currency problem. We treat both of these prob-
lems together, and we refer to them collectively as split
lifetime support. Statement and instruction scheduling
optimization leads to violation of the third assumption.
This topic is addressed later, in the section Inlining.

Split Lifetime Variable Definition
A variable is said to have split lifetimes if the set of
fetches and stores of the variable can be partitioned
such that none of the values stored in one subset are
ever fetched in another subset. When such a partition
exists, the variable can be “split” into several indepen-
dent “child” variables, each corresponding to a parti-
tion. As independent variables, the child variables can
be allocated independently. The effect is that the
original variable can be thought to reside in different
locations at different points in time—sometimes in a
register, sometimes in memory, and sometimes
nowhere at all. Indeed, it is even possible for the differ-
ent child variables to be active simultaneously.

Digital Technical Journal Vol. 10 No. 1 1998 85

Split Lifetime Example A simple example of a split
lifetime variable can be seen in the following straight-
line code fragment:
A = ...; ! Define (assign value to) A
...
B = ...A...; ! Use definition (value of) A
A = ...; ! Define A again
...
C = ...A...; ! Use latter definition A

In this example, the first value assigned to variable A is
used later in the assignment to variable B and then
never used again. A new value is assigned to A and
used in the assignment to variable C.

Without changing the meaning of this fragment, we
can rewrite the code as
A1 = ... ; ! Define A1
...

B = ... A1... ; ! Use A1
A2 = ... ; ! Define A2
...

C = ... A2... ; ! Use A2

where variables A1 and A2 are split child variables of A.
Because A1 and A2 are independent, the following

is also an equivalent fragment:
A1 = ... ; ! Define A1
...

A2 = ... ; ! Define A2
B = ... A1... ; ! Use A1
...

C = ... A2... ; ! Use A2

Here, we see that the value of A2 is assigned while the
value of A1 is still alive. That is, the split children of a
single variable have overlapping lifetimes.

This example illustrates that split lifetime optimi-
zation is possible even in simple straight-line code.
Moreover, other optimizations can create opportuni-
ties for split lifetime optimization that may not be
apparent from casual examination of the original
source. In particular, loop unrolling (in which the
body of a loop is replicated several times in a row)
can create loop bodies for which split lifetime opti-
mization is feasible and desirable.

Variables of Interest Our implementation deals only
with scalar variables and parameters. This includes
Alpha’s extended precision floating-point (128-bit

X_Floating) variables as well as variables of any of the
complex types (see Sites16). These latter variables are
referred to as two-part variables because each requires
two registers to hold its value.

Currency Definition
The value of a variable in an optimized program is cur-
rent with respect to a given position in the source pro-
gram if the variable holds the value that would be
expected in an unoptimized version of the program.
Several kinds of optimization can lead to noncurrent
variables. Consider the currency example in Figure 1.

As shown in Figure 1, the optimizing compiler has
chosen to change the order of operations so that line 4
is executed prior to line 3. Now suppose that execu-
tion has stopped at the instruction in line 3 of the
unoptimized code, the line that assigns a value to vari-
able C.

Given a request to display (print) the value of A,
a traditional debugger will display whatever value
happens to be contained in the location of A, which
here, in the optimized code, happens to be the result
of the second assignment to A. This displayed value
of A is a correct value, but it is not the expected
value that should be displayed at line 3. This scenario
might easily mislead a user into a frustrating and
fruitless attempt to determine how the assignment
in line 1 is computing and assigning the wrong
value. The problem occurs because the compiler has
moved the second assignment so that it is early rela-
tive to line 3.

Another currency example can be seen in the frag-
ment (taken from Copperman3) that appears in Figure
2. In this case, the optimizing compiler has chosen to
omit the second assignment to variable A and to assign
that value directly into the actual parameter location
used for the call of routine FOO. Suppose that the
debugger is stopped at the call of routine FOO. Given
a request to display A, a traditional debugger is likely
to display the result of the first assignment to A. Again,
this value is an actual value of A, but it is not the
expected value.

Alternatively, it is possible that prior to reaching the
call, the optimizing compiler has decided to reuse the

Line Unoptimized Optimized
1 A = ...; ! Define A A = ...;
2 B = ...A...; ! Use A B = ...A...;
3 C = ...; ! C does not depend on A A = ...;
4 A = ...; ! Define A C = ...;
5 D = ...A...; ! Use second definition of A D = ...A...;

Figure 1
Currency Example 1

86 Digital Technical Journal Vol. 10 No. 1 1998

locations hold values of user variables at any given
point in the program and combine this with the set of
definition locations that provide those values. Because
there may be more than one source location, the user
is given the basic information to determine where in
the source the value of a variable may have originated.
Consequently, the user can determine whether the
value displayed is appropriate for his or her purpose.

Compiler Processing
A compiler performs most split lifetime analysis on a
routine-by-routine basis. A preliminary walk over the
entire symbol table identifies the variable symbols that
are of interest for further analysis. Then, for each rou-
tine, the compiler performs the following steps:

■ Code cell prepass
■ Flow graph construction
■ Basic block processing
■ Parameter processing
■ Backward propagation
■ Forward propagation
■ Information promotion and cleanup

After the compiler completes this processing for
all routines, a symbol table postwalk performs final
cleanup tasks. The following contains a brief discus-
sion of these steps.

In this summary, we highlight only the main charac-
teristics of general interest. In particular, we assume that
each location, such as a register, is independent of all
other locations. This assumption is not appropriate to
locations on the stack because variables of different sizes

location that originally held the first value of A for
another purpose. In this case, no value of A is available
to display at the call of routine FOO.

Finally, consider the example shown in Figure 3,
which illustrates that the currency of a variable is not a
property that is invariant over time. Suppose that exe-
cution is stopped at line 5, inside the loop. In this case,
A is not current during the first time through the loop
body because the actual value comes from line 3
(moved from inside the loop); it should come from
line 1. On subsequent times through the loop, the
value from line 3 is the expected value, and the value of
A is current.

As discussed earlier, most approaches to currency
determination involve making certain kinds of flow
graph and compiler optimization information avail-
able to the debugger so that it can report when a dis-
played value is not current. However, we wanted to
avoid adding major new kinds of analysis capability to
DIGITAL’s debuggers.

More fundamentally, as the degree of optimization
increases, the notion of current position in the program
itself becomes increasingly ambiguous. Even when the
particular instruction at which execution is pending can
be clearly and unequivocally related to a particular source
location, this location is not automatically the best one to
use for currency determination. Nevertheless, the source
location (or set of locations) where a displayed value was
assigned can be reliably reported without needing to
establish the current position.

Accordingly, we use an approach different than
those considered in the literature. We use a straight-
forward flow analysis formulation to determine what

Line Unoptimized Optimized
1 A = expression1; A = expression1;
2 B = ...A...; ! Use 1st def. of A B = ...A...;
3 A = expression2;
4 FOO(A); ! Use 2nd def. of A FOO(expression2);

Figure 2
Currency Example 2

Line Unoptimized Optimized
1 A = ...; A = ...;
2 ...A...; ...A...;
3 A = ...;
4 while (...) { while (...) {
5 ...; ...;
6 A = ...; // A is loop invariant
7 } }

Figure 3
Currency Example 3

Digital Technical Journal Vol. 10 No. 1 1998 87

may overlay each other. The complexity of dealing with
overlapping allocations is beyond the scope of this paper.

Of special importance in this processing is the fact
that each operand of every instruction includes a base
symbol field that refers to the compiler’s symbol table
entry for the entity that is involved.

Symbol Table Prewalk The symbol table prewalk
identifies the variables of interest for analysis. As dis-
cussed, we are interested in scalars corresponding to
user variables (not compiler-created temporaries),
including Alpha’s extended precision floating-point
(128-bit X_Floating) and complex values.

DIGITAL’s FORTRAN implementations pass para-
meters using a by-reference mechanism with bind
(rather than copy-in/copy-out) semantics. GEM treats
the hidden reference value as a variable that is subject
to split lifetime optimization. Since the reference vari-
able must be available to effect operations on the logi-
cal parameter variable, it follows that both the abstract
parameter and its reference value must be treated as
interesting variables.

Code Cell Prepass The code cell prepass performs a
single walk over all code cells to determine

■ The maximum and minimum offsets in the stack
frame that hold any interesting variables

■ The highest numbered register that is actually refer-
enced by the code

■ Whether the stack frame uses a frame pointer that is
separate from the stack pointer

The compiler uses these characteristics to preallocate
various working storage areas.

Flow Graph Construction A flow graph is built, in
which each basic block is a node of the graph.

Basic Block Processing Basic block processing per-
forms a kind of symbolic execution of the instructions
of each block, keeping track of the effect on machine
state as execution progresses.

When an instruction operand writes to a location
with a base symbol that indicates an interesting vari-
able, the compiler updates the location description to
indicate that the variable is now known to reside in
that location—this begins a lifetime segment. The
instruction that assigned the value is also recorded
with the lifetime segment.

If there was previously a known variable in that loca-
tion, that lifetime segment is ended (even if it was for
the same variable). The beginning and ending instruc-
tions for that segment are then recorded with the vari-
able in the symbol table.

When an instruction reads an operand with a base
symbol that indicates an interesting variable, some
more unusual processing applies.

If the variable being read is already known to
occupy that location, then no further processing is
required. This is the most common case.

If the location already contains some other known
variable, then the variable being read is added to the
set of variables for that location. This situation can
arise when there is an assignment of one variable to
another and the register allocator arranges to allocate
them both to the same location. As a result, the assign-
ment happens implicitly.

If the location does not contain a known variable
but there is a write operation to that location earlier in
the same block (a fact that is available from the loca-
tion description), the prior write is retroactively
treated as though it did write that variable at the earlier
instruction. This situation can arise when the result of
a function call is assigned to a variable and the register
allocator arranges to allocate that variable in the regis-
ter where the call returns its value. The code cell repre-
sentation for the call contains nothing that indicates a
write to the variable; all that is known is that the return
value location is written as a result of the call. Only
when a later code cell indicates that it is using the value
of a known variable from that location can we infer
more of what actually happened.

If the location does not contain a known variable and
there is no write to that same location earlier in this
same basic block, then the defining instruction cannot
be immediately determined. A location description is
created for the beginning of the basic block indicating
that the given variable or set of variables must have
been defined in some predecessor block. Of course, the
contents known as a result of the read operation can
also propagate forward toward the end of the block,
just as for any other read or write operation.

Special care is needed to deal with a two-part variable.
Such a variable does not become defined until both
instructions that assign the value have been encoun-
tered. Similarly, any reuse of either of the two locations
ends the lifetime segment of the variable as a whole.

At the end of basic block processing, location
descriptions specify what is known about the contents
of each location as a result of read and write operations
that occurred in the block. This description indicates
the set of variables that occupy the location, or that the
location was last written by some value that is not the
value of a user variable, or that the location does not
change during execution of the block.

Parameter Processing The compiler models parame-
ters as locations that are defined with the contents of a
known variable at the entry point of a routine.

88 Digital Technical Journal Vol. 10 No. 1 1998

Backward Propagation Backward propagation iter-
ates over the flow graph and uses the locations with
known contents at the beginning of a block to work
backward to predecessor blocks looking for instruc-
tions that write to that location. For each variable in
each input location, any such prior write instruction is
retroactively made to look like a definition of the vari-
able. Note that this propagation is not a flow algo-
rithm because no convergence criteria is involved; it is
simply a kind of spanning walk.

Forward Propagation Forward propagation iterates
over the flow graph and uses the locations with known
contents at the end of each block to work forward to
successor blocks to provide known contents at the
beginning of other blocks. This is a classic “reaching
definitions” flow algorithm, in which the input state of
a location for a block is the intersection of the known
contents from the predecessors.

In our case, the compiler also propagates definition
points, which are the addresses of the instructions that
begin the lifetime segments. For those variables that are
known to occupy a location, the set of definitions is the
union of all the definitions that flow into that location.

Information Promotion and Cleanup The final step of
compiler processing is to combine information for adja-
cent blocks where possible. This action saves space in the
debugging symbol table but does not affect the accuracy
of the description. Descriptions for by-reference bind
parameters are next merged with the descriptions for the
associated reference variables. Finally, lifetime segment
information not already associated with symbol table
entries is copied back.

Object File Representation
The object file debugging symbol table representation
for split lifetime variables is actually quite simple.
Instead of a single address for a variable, there is a
sequence of lifetime segment descriptions. Each life-
time segment consists of

■ The range of addresses over which the child loca-
tion applies

■ The location (in a register, at a certain offset in the
current stack frame, indirect through a register or
stack location, etc.)

■ The set of addresses that provide definitions for this
lifetime segment

By convention, the last segment in the sequence can
have the address range 0 to FFFFFFFF (hex). This
address range is used for a static variable, for example
in a FORTRAN COMMONblock, that has a default allo-
cation that applies whenever no active children exist.

Debugger Processing
Name resolution, that is, binding a textual name to the
appropriate entry in the debug symbol table, is in no
way affected by whether or not a variable has split life-
time segments. After the symbol table entry is found,
any sequence of lifetime segments is searched for one
that includes the current point of execution indicated
by the program counter (PC). If found, the location of
the value is taken from that segment. Otherwise, the
value of the variable is not available.

Usage Example
To illustrate how a user sees the results of this processing,
consider the small C program in Figure 4. Note that the
numbers in the left column are listing line numbers.

When DOCT8 is compiled, linked, and executed
under debugger control, the dialogue shown in Figure 5
appears. The figure also includes interpretive comments.

Known Limitations
The following limitations apply to the existing split
lifetime support.

Multiple Active Split Children While the compiler
analysis correctly determines multiple active split child
variables and the debug symbol table correctly describes
them, OpenVMS DEBUG does not currently support
multiple active child variables. When searching a sym-
bol’s lifetime segments for one that includes the current
PC, the first match is taken as the only match.

Two-part Variables Support for two-part variables
(those occupying two registers) assumes that a com-
plete definition will occur within a single basic block.

Figure 4
C Example Routine DOCT8 (Source with Listing Line
Numbers)

385 doct8 () {
386
387 int i, j, k;
388
389 i = 1;
390 j = 2;
391 k = 3;
392
393 if (foo(i)) {
394 j = 17;
395 }
396 else {
397 k = 18;
398 }
399
400 printf(“%d, %d, %d\n”, i, j, k);
401
402 }

Digital Technical Journal Vol. 10 No. 1 1998 89

That is, at the end of a basic block, if the second part of
a definition is missing then the initial part is discarded
and forgotten.

Consider the following FORTRAN fragment:
COMPLEX X, Y
. . .
X = . . .
Y = X + (1.0, 0.0)

Suppose that the last use of variable X occurs in the
assignment to variable Y so that X and Y can be and are
allocated in the same location, in particular, the same
register pair. In this case, the definition of Y requires
only one instruction, which adds 1.0 to the real part of
the location shared by X and Y. Because there is no sec-
ond instruction to indicate completion of the defini-
tion, the definition will be lost by our implementation.

$ run doct8
OpenVMS Alpha Debug64 Version T7.2-001

%I, language is C, module set to DOCT8
DBG> step/into
stepped to DOCT8\doct8\%LINE 391

391: k = 3;
DBG> examine i, j, k
%W, entity ‘i’ was not allocated in memory (was optimized away)
%W, entity ‘j’ does not have a value at the current PC
%W, entity ‘k’ does not have a value at the current PC

Note the difference in the message for variable i compared to the messages for variables j and k. We
see that variable i was not allocated in memory (registers or otherwise), so there is no point in ever
trying to examine its value again. Variables j and k, however, do not have a value “at the current PC.”
Somewhere later in the program they will have a value, but not here.

The dialogue continues as follows:
DBG> step 6
stepped to DOCT8\doct8\%LINE 391

391: k = 3;
DBG> step
stepped to DOCT8\doct8\%LINE 393

393: if (foo(i)) {
DBG> examine j, k
%W, entity ‘j’ does not have a value at the current PC
DOCT8\doct8\k: 3

value defined at DOCT8\doct8\%LINE 391

Here we see that j is still undefined but k now has a value, namely 3, which was assigned at line 391.
The source indicates that j was assigned a value at line 390, before the assignment to k, but j ’s assign-
ment has yet to occur.

Skipping ahead in the dialogue to the print statement at line 400, we see the following:
DBG> set break %line 400
DBG> go
break at DOCT8\doct8\%LINE 400

400: printf(“%d, %d, %d\n”, i, j, k);
DBG> examine j
DOCT8\doct8\j: 2

value defined at DOCT8\doct8\%LINE 390
value defined at DOCT8\doct8\%LINE 394

DBG> examine k
DOCT8\doct8\k: 18

value defined at DOCT8\doct8\%LINE 397+4
value defined at DOCT8\doct8\%LINE 391

This portion of the message shows that more than one definition location is given for both j and k.
Which of each pair applies depends on which path was taken in the if statement. If a variable has an
apparently inappropriate value, this mechanism provides a means to take a closer look at those places,
and only those places, from which that value might have come.

Figure 5
Dialogue Resulting from Running DOCT8

90 Digital Technical Journal Vol. 10 No. 1 1998

Semantic Stepping

A major problem with stepping by line though opti-
mized code is that the apparent source program loca-
tion “bounces” back and forth, with the same line
often appearing again and again. In large part this
bouncing is due to a compiler optimization called
code scheduling, in which instructions that arise from
the same source line are scheduled, that is, reordered
and intermixed with other instructions, for better exe-
cution performance.

OpenVMS DEBUG, like most debuggers, interprets
the STEP/LINE (step by line) command to mean that
the program should execute until the line number
changes. Line numbers change more frequently in
scheduled code than in unoptimized code.

For example, in sample programs from the SPEC95
Benchmark Suite, the average number of instructions
in sequence that share the same line number is typi-
cally between 2 and 3—and typically 50 to 70 percent
of those sequences consist of just 1 instruction! In
contrast, if only instruction-level scheduling is dis-
abled, then the average number of instructions is
between 4 and 6, with 20 to 30 percent consisting of
one instruction. In a compilation with no optimiza-
tion, there are 8 to 12 instructions in a sequence, with
roughly 5 percent consisting of a single instruction.

A second problem with stepping by line through an
optimized program is that, because of the behavior of
revisiting the same line again and again, the user is
never quite sure when the line has finished executing.
It is unclear when an assignment actually occurs or a
control flow decision is about to be made.

In unoptimized code, when a user requests a break-
point on a certain line, the user expects execution to
stop just before that line, hence before the line is car-
ried out. In optimized code, however, there is no well-
defined location that is “before the line is carried out,”
because the code for that line is typically scattered
about, intermixed, and even combined with the code
for various other lines. It is usually possible, however,
to identify the instruction that actually carries out the
effect of the line.

Semantic Event Concept
We introduce a new kind of stepping mode called
semantic stepping to address these problems. Semantic
stepping allows the program to execute up to, but not
including, an instruction that causes a semantic effect.
Instructions that cause semantic effects are instructions
that

■ Assign a value to a user variable
■ Make a control flow decision
■ Make a routine call

Not all such instructions are appropriate, however.
We start with an initial set of candidate instructions
and refine it. The following sections describe the
heuristics that are currently in use.

Assignment The candidates for assignment events
are the instructions that assign a value to a variable (or
to one of its split children). The second instruction in
an assignment to a two-part variable is excluded.
Stopping between the two assignments is inadvisable
because at that point the variable no longer has the
complete old state and does not yet have the complete
new state.

Branches There are two kinds of branch: uncondi-
tional and conditional. An unconditional branch may
have a known destination or an unknown destination.
Unconditional branches with known destinations
most often arise as part of some larger semantic con-
struct such as an if-then-else or a loop. For example,
code for an if-then-else construct generally has an
implicit join that occurs at the end of the statement.
The join takes the form of a jump from the end of one
alternative to the location just past the last instruction
of the other (which has no explicit jump and falls
through into the next statement). This jump turns the
inherently symmetric join at the source level into an
asymmetric construction at the code stream level.

Unconditional jumps almost never define interest-
ing semantic events—some related instruction usually
provides a more useful event point, such as the termi-
nation test in the case of a loop. One exception is a
simple goto statement, but these are very often opti-
mized away in any case. Consequently, unconditional
branches with known destinations are not treated as
semantic events.

Unconditional branches with unknown destina-
tions are really conditional branches: they arise from
constructs such as a C switch statement implemented
as a table dispatch or a FORTRAN assigned GO TOstate-
ment. These branches definitely are interesting points
at which to allow user interaction before the new
direction is taken. Thus, the compiler retains uncon-
ditional branches as semantic events.

Similarly, in general, conditional branches to known
destinations are important semantic event points. Often
more than one branch instruction is generated for a sin-
gle high-level source construct, for example, a decision
tree of tests and branches used to implement a small
C switch statement. In this case, only the first in the
execution sequence is used as the semantic event point.

Calls Most calls are visible to a user and constitute
semantically interesting events. However, calls to
some run-time library routines are usually not interest-

Digital Technical Journal Vol. 10 No. 1 1998 91

ing because these calls are perceived to be merely soft-
ware implementations of primitive operations, such as
integer division in the case of the Alpha architecture.
GEM internally marks calls to all its own run-time sup-
port routines as not semantically interesting. Compiler
front ends accomplish this where appropriate for their
own set of run-time support routines by setting a flag
on the associated entry symbol node.

Compiler Processing
In most cases, the compiler can identify semantic event
locations by simple predicates on each instruction.
The exceptions are

■ The second of the two instructions that assign val-
ues to a two-part variable is identified during split
lifetime analysis.

■ Conditional branches that are part of a larger con-
struct are identified during a simple pass over the
flow graph.

Object Module Representation
The object module debugging semantic event repre-
sentation contains a sequence of address and event
kind pairs, in ascending address order.

Debugger Processing
Semantic stepping in the debugger involves a new
algorithm for determining the range of instructions to
execute. This algorithm is built on a debugger primi-
tive mechanism that supports full-speed execution of
user instructions within a given range of addresses but
traps any transfer out of that range, whether by reach-
ing the end or by executing any kind of branch or call
instruction.

Semantic stepping works as follows. Starting with
the current program counter address, OpenVMS
DEBUG finds the next higher address that is a seman-
tic event point; this is the target event point.
OpenVMS DEBUG executes instructions in the
address range that starts at the address of the current
instruction and ends at the instruction that precedes
the target event point. The range execution terminates
in the following two cases:

1. If the next instruction to execute is the target event
point, then execution reached the end of target
range and the step operation is complete.

2. If the next instruction to execute is not the target
event point, then the next address becomes the cur-
rent address and the process repeats (silently).

Note that, unlike the algorithm that determines the
range for stepping by line, the new algorithm does not
require an explicit test for the kind of instruction, in
particular, to test if it is a kind of branch. The compiler

already marks branches with the semantic event
attribute, if appropriate. Also unlike the traditional
stepping-by-line algorithm, the new algorithm does
not consider the source line number.

Visible Effect
With semantic stepping, a user’s perception of forward
progress through the code is no longer dominated by
the side effects of code scheduling, that is, stopping
every few instructions regardless of what is happening.
Rather, this perception is much more closely related to
the actual semantic behavior, that is, stopping every
statement or so, independent of how many instruc-
tions from disparate statements may have executed.

Note that jumping forward and backward in the
source may still occur, for example, when code motions
have changed the order in which semantic actions are
performed. Nothing about semantic event handling
attempts to hide such reordering.

Inlining

Procedure call inlining can be confusing when using a
traditional debugger. For example, if routine INNER
is inlined into routine CALLER and the current point
of execution is within INNER, should the debugger
report the current source location as at a location in
the caller routine or in the called routine? Neither is
completely satisfactory by itself. If the current line is
reported as at the location within INNER, then that
information will appear to conflict with information
from a call stack traceback, which would not show
routine INNER. If the current line is reported as
though in CALLER, then relevant location informa-
tion from the callee will be obscured or suppressed.
Worse yet, in the case of nested inlining, potentially
crucial information about the intermediate call path
may not be available in any form.

The problem of dealing with inlining was solved
long ago by Zellweger1—at least the topic has not
been treated again since. Zellweger’s approach adds
additional information to an otherwise traditional table
that maps from instruction addresses to the corre-
sponding source line numbers. Our approach is differ-
ent: it includes additional information in the scope
description of the debugging symbol table.

A key underpinning for inline support is the ability
to accurately describe scopes that consist of multiple
discontiguous ranges of instruction addresses, rather
than the traditional single range. This capability is
quite independent of inlining as such. However,
because code from an inlined routine is freely sched-
uled with other code from the calling context, dealing
accurately with the resulting disjoint scopes is an
essential building block for effective support.

92 Digital Technical Journal Vol. 10 No. 1 1998

Goals for Debugger Support
Our overall goal is to support debugging of inlined
code with expected behavior, that is, as though the
inlining has not occurred. More specifically, we seek to
provide the ability to

■ Report the source location corresponding to the
current position in the code

■ Display parameters and local variables of an inlined
routine

■ Show a traceback that includes call frames corre-
sponding to inlined routines

■ Set a breakpoint at a given routine entry
■ Set a breakpoint at a given line number (from

within an inlined routine)
■ Call an inlined routine

We have achieved these goals to a substantial extent.

GEM Locators
Before describing the mechanisms for inlining, we
introduce the GEM notion of a locator. A locator
describes a place in the source text. The simplest kinds
of locator describe a point in the source, including the
name of the file, the line within that file, and the col-
umn within that line; they even describe the point at
which that file was included by another file (as for a C
or C++ #include directive), if applicable.

A crucial characteristic of locators is that they are all
of a uniform fixed size that is no larger than an integer
or pointer. (How this is achieved is beyond the scope
of this paper.) In particular, locators are small enough
that every tuple node in the intermediate language
(IL) and every code cell in the generated code stream
contains one. Moreover, GEM as a whole is quite
meticulous about maintaining and propagating high-
quality locator information throughout its optimiza-
tion and code generation.

An additional kind of locator was introduced for
inlining support. This inline locator encodes a pair
that consists of a locator (which may also be an inline
locator) and the address of an associated scope node in
the GEM symbol table.

Compiler Processing
Debugging optimized code support for inlining gen-
erally builds on and is a minor enhancement of the
GEM inlining mechanism. Inlining occurs during an
early part of the GEM optimizer phase.

Inlining is implemented in GEM as follows:

■ Within the scope that contains the call site, an inline
scope block is introduced. This scope represents the
result of the inlining operation. It is populated with
local variable declarations that correspond one-to-
one with the formal parameters of the inlined routine.

■ The actual arguments of the call are transformed
into assignments that initialize the values of the sur-
rogate parameter variables.

■ The inline scope is also made to contain a body
scope, which is a copy of the body of the inlined
routine, including a copy of its local variables.

■ The original call is replaced with a jump to a copy of
the IL for the body of the routine, in which refer-
ences to declarations or parameters of the routine
are replaced with references to their corresponding
copied declarations. In addition, returns from the
routine are replaced with jumps back to the tuple
following the original call.

■ Similar “boundary adjustments” are made to deal
with function results, output parameters, choice of
entry point (when there is more than one, as might
occur for FORTRAN alternate entry statements),
etc. (The bookkeeping is a bit intricate, but it is
conceptually straightforward.)

The calling routine, which now incorporates a copy
of the inlined routine, is then further processed as a
normal (though larger) routine.

Inlining Annotations for Debugging The main changes
introduced for debugging optimized code support are
as follows.

■ The newly created inline scope block is annotated
with additional information, namely,
– A pointer to the routine declaration being inlined.
– The locator from the call that is replaced. In a sim-

ple call with no arguments, there may be nothing
left in the IL from the original call after inlining is
completed; this locator captures the original call
location for possible later use, for example, as a
supplement to the information that maps instruc-
tion addresses to source line numbers.

■ As the code list of the original inlined routine is
copied, each locator from the original is replaced by
a new inline locator that records
– The original locator.
– The newly created inline scope into which it is

being copied.
As a result of these steps, every inlined instruction can
be related back to the scope into which it was inlined
and hence to the routine from which it was inlined,
regardless of how it may be modified or moved as a
result of subsequent optimization.

Note that these additional steps are an exception to
the general assertion that debugging optimized code
support occurs after code generation and just prior to
object code emission. These steps in no way influence
the generated code—only the debugging symbol table
that is output.

Digital Technical Journal Vol. 10 No. 1 1998 93

Prologue and Epilogue Sets The prologue of a rou-
tine generally consists of those instructions at the
beginning of the routine that establish the routine
stack frame (for example, allocate stack and save the
return address and other preserved registers) and that
must be executed before a debugger can usefully inter-
pret the state of the routine. For this reason, setting a
breakpoint at the beginning of a routine is usually
(transparently) implemented by setting a breakpoint
after the prologue of that routine is completed.

Conversely, the epilogue of a routine consists of
those instructions at the end of a routine that tear
down the stack frame, reestablish the caller’s context,
and make the return value, if any, available to the
caller. For this reason, stopping at the end of a routine
is usually (transparently) implemented by setting a
breakpoint before the epilogue of that routine begins.

One benefit of inlining is that most prologue and
epilogue code is avoided; however, there may still be
some scope management associated with scope entry
and exit. Also, some programming language–related
environment management associated with the scope
may exist and should be treated in a manner analogous
to traditional prologue and epilogue code. The prob-
lem is how to identify it, because most of the tradi-
tional compiler code generation hooks do not apply.

The model we chose takes advantage of the seman-
tic event information that we describe in the section
Semantic Stepping. In particular, we define the first
semantic event that can be executed within the inlined
routine to be the end of the prologue. For reasons dis-
cussed later, we define the last instruction (not the last
semantic event) of the inlined code as the beginning of
the epilogue. As a result of unrelated optimization
effects, each of these may turn out to be a set of
instructions. Determination of inline prologue and
epilogue sets occurs after split lifetime and semantic
event determination is completed so that the results of
those analyses can be used.

To determine the set of prologue instructions, for each
inline instance, GEM starts with every possible entry
block and scans forward through the flow graph looking
for the first semantic event instruction that can be reached
from that entry. The set of such instructions constitutes
the prologue set for that instance of the inlined routine.

This is a spanning walk forward from the routine
entry (or entries) that stops either when a block is
found to contain an instruction from the given inline
instance or when the block has already been encoun-
tered (each block is considered at most once). Note
that there may be execution paths that include one or
more instructions from an inlining, none of which is a
semantic event instruction.

The set of epilogue instructions is determined using
an inverse of the prologue algorithm. The process
starts with each possible exit block and scans backward

through the flow graph looking for the last instruction
(that is, the instruction closest to the routine exit) of
an inline instance that can reach an exit.

Note that prologue and epilogue sets are not strictly
symmetric: prologue sets consist of only instructions that
are also semantic events, whereas epilogue sets include
instructions that may or may not be semantic events.

Object Module Representation
To describe any inlining that may have occurred dur-
ing compilation, we include three new kinds of infor-
mation in the debugging symbol table.

If the instructions contained in a scope do not form a
single contiguous range, then the description of the
scope is augmented with a discontiguous range descrip-
tion. This description consists of a sequence of ranges.
(The scope itself indicates the traditional approximate
range description to provide backward compatibility
with older versions of OpenVMS DEBUG). This aug-
mented description applies to all scopes, whether or not
they are the result of inlining.

For a scope that results from inlining a call, the
description of the scope is augmented with a record
that refers to the routine that was inlined as well as the
line number of the call. Each scope also contains two
entries that consist of the sequence of prologue and
epilogue addresses, respectively.

Backward compatibility is fully maintained. An older
version of OpenVMS DEBUG that does not recognize
the new kinds of information will simply ignore it.

Debugger Processing
As the debugger reads the debugging symbol table of
a module, it constructs a list of the inlined instances for
each routine. This process makes it possible to find all
instances of a given routine. Note, however, that if every
call of the routine is expanded inline and the routine
cannot otherwise be called from outside that module,
then GEM does not create a noninlined (closed-form)
version of the routine.

Report Source Location It is a simple process to report
the source location that corresponds to the current code
address. When stopped inside the code resulting from
an inlined routine, the program counter maps directly
to a source line within the inlined routine.

Display Parameters and Local Variables As is the case
for a noninlined routine, the scope description for an
inlined routine contains copies of the parameters and
the local variables. No special processing is required to
perform name binding for such entities.

Include Inlined Calls in Traceback The debugger pre-
sents inlined routines as if they are real routine calls. A
stack frame whose current code address corresponds

94 Digital Technical Journal Vol. 10 No. 1 1998

to an inlined routine instance is described with two or
more virtual stack frames: one or more for the inlined
instance(s) and one for the ultimate caller. (An exam-
ple is shown later in Figure 7.)

Set Breakpoints at Inlined Routine Instances The
strategy for setting breakpoints at inlined routines is
based on a generalization of processing that previously
existed for C++ member functions. Compilation of
C++ modules can result in code for a given member
function being compiled every time the class or tem-
plate definition that contains the member function is
compiled. We refer to all these compilations as clones.
(It is not necessary to distinguish which of them is the
original.) In our generalization, an inlined routine call
instance is treated like a clone. To set a breakpoint at a
routine, the debugger sets breakpoints at all the end-
of-prologue addresses of every clone of the given rou-
tine in all the currently active modules.

Set Breakpoints at Inlined Line Number Instances The
strategy for setting breakpoints on line numbers shares
some features of setting breakpoints on routines, with
additional complications. Compiler-reported line num-
bers on OpenVMS systems are unique across all the
files included in a compilation. It follows that the same
file included in more than one compilation may have
different associated line numbers.

To set a breakpoint at a particular line number,
that line number needs to be first normalized relative
to the containing file. This normalized line number
value is then compared to normalized line numbers
for that same file that are included in other compila-
tions. (If different versions of the same named file
occur in different compilations, the versions are
treated as unrelated.) The original line number is
converted into the set of address ranges that corre-
spond to it in all modules, taking into account inlin-
ing and cloning.

Call a Routine That Is Inlined If the compiler creates a
closed-form version of a routine, then the debugger
can call that routine independent of whether there
may also be inlined instances of the routine. If no such
version of the routine exists, then the debugger cannot
call the routine.

Usage Example
Inlining support has many aspects, but we will illus-
trate only one—a call traceback that includes inlined
calls. Consider the sample program shown in Figure 6.
This program has four routines: three are combined in
a single file (enabling the GEM FORTRAN compiler
to perform inline optimizations), and the last is in a
separate file. To help correlate the lines of code in

these two files with those in Figure 7, we added line
numbers to the left of the code. Note that these num-
bers are not part of the program.

If we compile, link, and run this program using the
OpenVMS DEBUG option, we can step to a place in
routine B that is just before the call to routine C and
then request a traceback of the call stack. This dialogue
is shown in Figure 7.

Figure 7 shows that pseudo stack frames are reported
for routines A and B, even though the call of routine B
has been inlined into routine A and the call of routine A
has been inlined into the main program. The main dif-
ference from a real stack frame is the extra line that
reports that the “above routine is inlined.”

Limitations
In a real stack frame, it is possible to examine (and
even deposit into) the real machine registers, rather
than examine the variables that happen to be allocated
in machine registers. In an inlined stack frame, this
operation is not well defined and consequently not
supported. In a noninlined stack frame, these opera-
tions are still allowed.

An attractive feature that would round out the
expected behavior of inlined routine calls would be to
support stepping into or over the inlined call in the
same way that is possible for noninlined calls. This fea-
ture is not currently supported—execution always
steps into the call.

Line +++++ File DOCFJ-INLINE-2.FOR

1 C Main routine
2 C
3 INTEGER A, C
4 TYPE *, A(3, C(0))
5 END
6 C
7 FUNCTION A(I, L)
8 INTEGER A, B
9 A = B(5, I) + 2*L
10 RETURN
11 END
12 C
13 FUNCTION B(J, K)
14 INTEGER B, C
15 B = C(9) + J + K
16 END

+++++ File DOCFJ-INLINE-2A.FOR
1 C
2 FUNCTION C(I)
3 INTEGER C
4 C = 2*I
5 RETURN
6 END

Figure 6
Program to Illustrate Inlining Support

Digital Technical Journal Vol. 10 No. 1 1998 95

Performance and Resource Usage

We gathered a number of statistics to determine typi-
cal resource requirements for using the enhanced
debugging optimized code capability compared to the
traditional practice of debugging unoptimized code. A
short summary of the findings follows.

■ All metrics tend to show wide variance from pro-
gram to program, especially small ones.

■ Generating traditional debugging symbol information
increases the size of object modules typically by 50 to
100 percent on the OpenVMS system. Executable
image sizes show similar but smaller size increases.

■ Generating enhanced symbol table information
adds about 2 to 5 percent to the typical compilation
time, although higher percentages have been seen
for unusually large programs.

■ Generating enhanced symbol table information
uses significant memory during compilation but
does not affect the peak memory requirement of a
compilation.

■ Generating enhanced symbol table information
further increases the size of the symbol table infor-
mation compared to that for an unoptimized com-
pilation. On the OpenVMS system, this adds 100 to
200 percent to the debugging symbol table of
object modules and perhaps 50 to 100 percent for
executable images.

■ Compiling with full optimization reduces the
resulting image size. Total net image size increases
typically by 50 to 80 percent.

A more detailed presentation of findings follows.
Tables 1 through 3 present data collected using pro-
duction OpenVMS Alpha native compilers built in
December 1996. In developing these results, we used
five combinations of compilation options as follows:

S1: no optimization (noopt), no debugging infor-
mation (nodebug, nodbgopt)
S2: no optimization (noopt), normal debugging
information (debug, nodbgopt)
S4: full (default) optimization (opt), no debugging
information (nodebug, nodbgopt)
S5: full optimization (opt), normal debugging
information only (debug, nodbgopt)
S8: full optimization (opt), enhanced debugging
information (debug, dbgopt)

Note that the option combination numbering sys-
tem is historical; we retained the system to help keep
data logs consistent over time.

Compile-time Speed
The incremental compile-time cost of creating enhanced
symbol table information is presented in Table 1 for a
sampling of BLISS, C, and FORTRAN modules. The
data in this table can be summarized as follows:

■ Traditional debugging (column 1) increases the
total compilation time by about 1 percent.

■ Enhanced debugging (column 2) increases the
compilation time by about 4 percent. The largest
component of that time, approximately 3 percent,
is attributed to the flow analysis involved in han-
dling split lifetime variables (column 3).

■ Debugging tends to increase as a percentage of
time in larger modules, which suggests that pro-
cessing time is slightly nonlinear in program size;
however, this increase does not seem to be excessive
even in very large modules.

Compile-time Space
The compile-time memory usage during the creation of
enhanced symbol information is presented in Table 2.

GEMEVN$ run DOCFJ-INLINE-2
OpenVMS Alpha Debug64 Version T7.2-001

%I, Language: FORTRAN, Module: DOCFJ-INLINE-2$MAIN
...
DBG> step/semantic
stepped to DOCFJ-INLINE-2$MAIN\A\B\%LINE 15+8

15: B = C(9) + J + K
DBG> show calls

module name routine name line rel PC abs PC
*DOCFJ-INLINE-2$MAIN

B 15 000000000000001C 000000000002006C
----- above routine is inlined
*DOCFJ-INLINE-2$MAIN

A 9 0000000000000004 0000000000020054
----- above routine is inlined
*DOCFJ-INLINE-2$MAIN

DOCFJ-INLINE-2$MAIN
4 0000000000000038 0000000000020038

0000000000000000 FFFFFFFF8590716C

Figure 7
OpenVMS DEBUG Dialogue to Illustrate Inlining Support

96 Digital Technical Journal Vol. 10 No. 1 1998

Table 2
Key Dynamic Memory Zone Sizes during BLISS GEM Compilations

Peak SYMBOL EIL CODE OM % % %
File Total ZONE ZONE ZONE ZONE Peak Larg EIL

BLISS CODE
GEM_AN 2,507 130 85 184 15 6% 8% 18%
GEM_DF 11,305 836 1,672 2,056 1,180 10 57 71
GEM_FB 4,694 316 522 457 304 6 58 58
GEM_IL_PEEP 40,419 1,606 17,666 4,411 14,143 34 80 80

C CODE
C_METRIC 7,381 1,115 494 2,563 167 2 6 34
GRAM 3,031 82 815 211 267 9 33 33
INTERP 3,563 354 308 688 131 4 20 43

FORTRAN CODE
MATRIX300X 934 143 227 101 58 6 26 26
NAGL 6,267 1,520 1,791 1,742 68 11 38 38
SPICE_V07 6,234 1,051 3,256 885 459 7 14 14
WAVEX 12,812 4,676 3,119 3,482 68 5 14 22

– – – – – – – – –
Average 9% 32% 40%
Note: All numbers to the left of the vertical bar are thousands of bytes, not multiples of 1,024.

Column Key:
Column Description

Peak Total The peak dynamic memory allocated in all zones during the compilation
SYMBOL ZONE The zone that holds the GEM symbol table
EIL ZONE The zone that holds the largest EIL ZONE (used for the expanded intermediate representation)
CODE ZONE The zone that holds the GEM generated code list
OM ZONE The zone that holds split lifetime and other working data
%Peak The OM ZONE size as a percentage of the Peak Total size
%Larg The OM ZONE size as a percentage of the largest single zone in the compilation
%EIL The OM ZONE size as a percentage of the EIL ZONE size

Table 1
Percent of Compilation Time Used to Create/Output Debugging Information

S2 (noopt, debug, S8 (opt, debug, (Split Lifetime
Module nodbgopt) dbgopt) Analysis Only)

BLISS CODE
GEM_AN 0.3% 1.1% 0.7%
GEM_DB 0.9 1.8 1.3
GEM_DF 0.8 5.2 4.4
GEM_FB 0.7 3.5 2.7
GEM_IL_PEEP 0.6 14.4 13.9

C CODE
C_METRIC 1.5 5.2 4.1
GRAM 0.5 2.9 2.2
INTERP 1.2 4.5 3.2

FORTRAN CODE
MATRIX300X nm nm nm
NAGL 1.4 13.0 11.9
SPICE_V07 3.0 6.4 4.7
WAVEX 2.5 6.3 4.8

– – – – – – – – – – – –
Average 1.2% 4.3% 3.2%
Typical range (0.5%–1.5%) (3.0%–7.0%) (2.0%–5.0%)
Note: “nm” represents “not meaningful,” that is, too small to be accurately measured.

Digital Technical Journal Vol. 10 No. 1 1998 97

The following is a summary of the data, where OM
ZONE refers to the temporary working virtual mem-
ory zone used for split lifetime analysis:

■ The OM ZONE size averages about 10 percent of
the peak compilation size.

■ The OM ZONE size is one-quarter to one-half of the
EIL ZONE size. (The latter is well known for typi-
cally being the largest zone in a GEM compilation.)

■ Since the OM ZONE is created and destroyed after all
EIL ZONEs are destroyed, the OM ZONE does not
contribute to establishing the peak total size.

Object Module Size
The increased size of enhanced symbol table informa-
tion for both object files and executable image files is
shown in Table 3.

In Table 3, the application or group of modules is iden-
tified in the first column. The columns labeled S1, S2, etc.
give the resulting size for the combination of compilation
options described earlier. Object module and executable
image data is presented in successive rows.

Three ratios of particular interest are computed.

S2/S1: This ratio shows the object or image size
with traditional debugging information compared
to a base compilation without any debugging infor-
mation. This ratio indicates the additional cost, in
terms of increased object and image file size, associ-
ated with doing traditional symbolic debugging.
(S8-S5)/(S2-S1): This ratio shows the increase in
debugging symbol table size (exclusive of base object,

image text, etc.) due to the inclusion of enhanced infor-
mation compared to the traditional symbol table size.
S8/S2: This ratio shows the object or image size
with enhanced debugging information with opti-
mization compared to the traditional debugging
size without optimization.
The last ratio, S8/S2, is especially interesting because

it combines two effects: (1) the reduction in size as a
result of compiler optimization, and (2) the increase in
size because the larger debugging symbol table needed
to describe the result of the optimization. The result-
ing net increase is reasonably modest.

Summary and Conclusions

There exists a small but significant literature regarding
the debugging of optimized code, yet very few debug-
gers take advantage of what is known. In this paper we
describe the new capabilities for debugging optimized
code that are now supported in the GEM compiler sys-
tem and the OpenVMS DEBUG component of the
OpenVMS Alpha operating system. These capabilities
deal with split lifetime variables and currency determi-
nation, semantic stepping, and procedure inlining. For
each case, we describe the problem addressed and then
present an overview of GEM compiler and OpenVMS
DEBUG processing and the object module represen-
tation that mediates between them. All but the inlin-
ing support are included in OpenVMS DEBUG V7.0
and in GEM-based compilers for Alpha systems that
have been shipping since 1996. The inlining support is

Table 3
Object/Executable (.OBJ/.EXE) File Sizes (in Number of Blocks) for Various OpenVMS Components

S1 S2 S4 S5 S8
noopt noopt opt opt opt (S8-S5)/
nodebug debug S2/S1 nodebug debug debug (S2-S1) S8/S2

File nodbgopt nodbgopt Ratio nodbdopt nodbgopt dbgopt Ratio Ratio

BLISS CODE
GEM_*.OBJ 31,477 51,069 1.62 27,483 47,031 68,728 1.11 1.35
GEM_*.EXE 12,160 29,543 2.43 10,373 27,755 32,288 0.26 1.09

C CODE
C_METRIC.OBJ 436 653 1.50 478 733 1,680 4.36 2.57
C_METRIC.EXE 250 348 1.39 250 385 581 2.00 1.67
GRAM.OBJ 102 120 1.19 100 117 224 5.94 1.87
GRAM.EXE 60 70 1.17 58 69 91 2.20 1.30
INTERP.OBJ 140 207 1.48 134 205 450 3.66 2.17
INTERP.EXE 80 113 1.41 75 113 167 1.64 1.47

FORTRAN CODE
MATRIX300X.OBJ 20 34 1.70 16 29 71 3.00 2.08
MATRIX300X.EXE 19 29 1.53 15 25 34 0.90 1.17
NAGL.OBJ 42 63 1.51 288 509 1,178 3.11 1.84
NAGL.EXE 289 388 1.34 187 333 469 1.37 1.21
SPICE.OBJ 1,652 3,117 1.89 1,073 2,571 4,916 1.60 1.58
SPICE.EXE 1,031 1,660 1.61 549 1,318 1,803 0.77 1.09
WAVEX.OBJ 555 1,639 2.95 393 1,556 2,949 1.29 1.80
WAVEX.EXE 634 1,190 1.88 490 1,167 1,437 0.49 1.21

98 Digital Technical Journal Vol. 10 No. 1 1998

currently in field test. Work is under way to provide
similar capabilities in the ladebug debugger17,18 compo-
nent of the DIGITAL UNIX operating system.

There are and will always be more opportunities and
new challenges to improve the ability to debug opti-
mized code. Perhaps the biggest problem of all is to fig-
ure out where best to focus future attention. It is easy to
see how the capabilities described in this paper provide
major benefits. We find it much harder to see what capa-
bility could provide the next major increment in debug-
ging effectiveness when working with optimized code.

References

1. P. Zellweger, “Interactive Source-Level Debugging of
Optimized Programs,” Ph.D. Dissertation, University
of California, Xerox PARC CSL-84-5 (May 1984).

2. J. Hennessy, “Symbolic Debugging of Optimized Code,”
ACM Transactions on Programming Languages and
Systems, vol. 4, no. 3 (July 1982): 323–344.

3. M. Copperman, “Debugging Optimized Code With-
out Being Misled,” Ph.D. Dissertation, University of
California at Santa Cruz, UCSC Technical Report
UCSC-CRL-93-21 (June 11, 1993).

4. G. Brooks, G. Hansen, and S. Simmons, “A New
Approach to Debugging Optimized Code,” ACM SIG-
PLAN ’92 Conference on Programming Language
Design and Implementation, SIGPLAN Notices, vol. 27,
no. 7 (July 1992): 1–11.

5. Convex Computer Corporation, CONVEX CXdb Con-
cepts (Richardson, Tex.: Convex Press, Order No.
DSW–471, May 1991).

6. D. Coutant, S. Meloy, and M. Ruscetta, “DOC: A Prac-
tical Approach to Source-Level Debugging of Globally
Optimized Code,” Proceedings of the SIGPLAN ’88 Con-
ference on Programming Language Design and Imple-
mentation, Atlanta, Ga. (June 22–24, 1988): 125–134.

7. L. Zurawski, “Source-Level Debugging of Globally Opti-
mized Code with Expected Behavior,” Ph.D. Disserta-
tion, University of Illinois at Urbana-Champaign (1989).

8. U. Hölzle, C. Chambers, and D. Ungar, “Debugging
Optimized Code with Dynamic Deoptimization,”
ACM SIGPLAN ’92 Conference on Programming Lan-
guage Design and Implementation, San Francisco,
Calif. (June 17–19, 1992) and SIGPLAN Notices, vol.
27, no. 7 (July 1992): 32–43.

9. L. Pollock and M. Soffa, “High-level Debugging with
the Aid of an Incremental Optimizer,” Proceedings of
the 21st Hawaii International Conference on System
Sciences (January 1988): 524–532.

10. L. Pollock, M. Bivens, and M. Soffa, “Debugging
Optimized Code via Tailoring,” International Sympo-
sium on Software Testing and Analysis (August 1994).

11. P. Feiler, “A Language-Oriented Interactive Program-
ming Environment Based on Compilation Technol-
ogy,” Ph.D. Dissertation, Carnegie-Mellon University,
CMU-CS-82-117 (May 1982).

12. A. Adl-Tabatabi, “Source-Level Debugging of Glob-
ally Optimized Code,” Ph.D. Dissertation, Carnegie
Mellon University, CMU-CS-96-133 (June 1996).

13. D. Blickstein et al., “The GEM Optimizing Compiler
System,” Digital Technical Journal, vol. 4, no. 4 (Spe-
cial Issue 1992): 121–136.

14. B. Beander, “VAX DEBUG: An Interactive, Symbolic,
Multilingual Debugger,” ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on High-Level Debug-
ging, ACM SIGPLAN Notices, vol. 18, no. 8 (August
1983): 173–179.

15. OpenVMS Debugger Manual, Order No. AA-QSBJB-
TE (Maynard, Mass.: Digital Equipment Corporation,
November 1996).

16. R. Sites, ed., Alpha Architecture Reference Manual,
3d ed. (Woburn, Mass.: Digital Press, 1998).

17. T. Bingham, N. Hobbs, and D. Husson, “Experiences
Developing and Using an Object-Oriented Library for
Program Manipulation,” OOPSLA Conference Pro-
ceedings, ACM SIGPLAN Notices, vol. 12, no. 10
(October 1993): 83–89.

18. Digital UNIX Ladebug Debugger Manual, Order No.
AA-PZ7EE-T1TE (Maynard, Mass.: Digital Equipment
Corporation, March 1996).

Biographies

Ronald F. Brender
Ronald F. Brender is a senior consultant software engineer
in Compaq’s Core Technology Group, where he is working
on both the GEM compiler and the UNIX ladebug pro-
jects. During his career, Ron has worked in advanced
development and product development roles for BLISS,
FORTRAN, Ada, and multilanguage debugging on DIGITAL’s
DECsystem-10, PDP-11, VAX, and Alpha computer systems.
He served as a representative on the ANSI and ISO standards
committees for FORTRAN 77 and later for Ada 83, also serv-
ing as a U.S. Department of Defense invited Distinguished
Reviewer and a member of the Ada Board and the Ada
Language Maintenance Committee for more than eight
years. Ron joined Digital Equipment Corporation in 1970,
after earning the degrees of B.S.E. (engineering sciences),
M.S. (applied mathematics), and Ph.D. (computer and
communication sciences) in 1965, 1968, and 1969, respec-
tively, all from the University of Michigan. He is a member
of the Association for Computing Machinery and the IEEE
Computer Society. Ron holds seven patents and has published
several papers in the area of programming language design
and implementation.

Digital Technical Journal Vol. 10 No. 1 1998 99

Jeffrey E. Nelson
Jeffrey E. Nelson is a senior software developer at Candle
Corporation in Minneapolis, Minnesota. He currently
develops message broker software for Roma BSP, Candle’s
middleware framework for integrating business applications.
Previously at DIGITAL, Jeff was a principal software engineer
on the OpenVMS and ladebug debugger projects. He spe-
cialized in debug symbol table formats, run-time language
support, and computer architecture support. He contributed
to porting the OpenVMS debugger from the VAX to the
Alpha platform. He represented DIGITAL on the industry-
wide PLSIG committee that developed the DWARF debug-
ging symbol table format. Jeff holds an M.S. degree in
computer science and applications from Virginia Polytechnic
Institute and State University and a B.S. degree in computer
science from the University of Wisconsin–LaCrosse. Jeff is
an alumnus of the Graduate Engineering Education Program
(GEEP), has been awarded one patent, and has previously
published and presented work in the area of real-time, object-
oriented garbage collection.

Mark E. Arsenault
Mark E. Arsenault is a principal software engineer in
Compaq’s OpenVMS Engineering Group working on
the OpenVMS debugger. Mark has implemented support in
the debugger for 64-bit addressing, C++, and inlining. He
joined DIGITAL in 1981 and has worked on several soft-
ware development tools, including the BLISS compiler and
the Source Code Analyzer. Mark holds two patents, one each
for the Heap Analyzer and for the Correlation Facility. He
received a B.A. in physics from Boston University in 1981.

