Dat abase Availability for Transaction Processing

By Ananth Raghavan and T.K. Rengaraj an

Abstract

A transaction processing
systemrelies on its

dat abase nanagenent
systemto supply high
availability. Digita

of fers a network-based
product, the VAX DBMS
system and a relationa
dat a- based product, the
VAX Rdb/ VMs dat abase
system for its transaction
processi ng systens. These
dat abase systens have
several strategies to
survive failures, disk
head crashes, revectored
bad bl ocks, database
corruptions, nmenory
corruptions, and menory
overwites by faulty
application prograns.

They use base hardware

t echnol ogi es and al so
enpl oy novel software

t echni ques, such as
paral l el transaction
recovery, recovery on
survi ving nodes of a
VAXcl ust er system
restore and roll-forward
operations on areas of the
dat abase, on-1ine backup,
verification and repair
utilities, and executive

Moder n busi nesses store
critical data in database
managenent systens. Mich
of the daily activity
of busi ness incl udes
mani pul ati on of data
in the database. As
busi nesses extend their
operations worl dwi de,

t heir databases are shared
anong office | ocations

in different parts of

the worl d. Consequently,

t hese busi nesses require
transacti on processing
systens to be avail able
for use at all tinmes. This
requi renent transl ates
directly to a goal of
perfect availability

for database managenent
syst ens.

VAX DBMsS and VAX Rdb/ VMS
dat abase systens are based
on network and rel ationa
data nodel s, respectively.
Both systenms use a kerne
of code that is largely
responsi bl e for providing
hi gh availability. This
| ayer of code is numintained
by the KODA group. KODA
is the physical subsystem
for VAX DBMS and VAX Rdb
/ VMS dat abase systens.

node protection of trusted It is responsible for al

dat abase nmamnagenent system I/ O buffer managenent,
code. concurrency control
I nt roduction transacti on consi stency,

| ocki ng, journaling, and
access nethods.

Digital Technical Journal Vol. 3 No. 1 Wnter 1991

In this paper, we define
dat abase availability,
and descri be downtinme
situations and how such
situations can be resol ved.
We t hen discuss the
nmechani sms t hat have
been i nplenmented to
provi de minimal |oss of
availability.

Dat abase Availability

The unit of work in
transacti on processing
systenms is a transaction.
We therefore define
dat abase availability as
the ability to execute
transacti ons. One way the
dat abase nmanagement system
provi des high availability
i s by guaranteeing the
properties of transactions:
atomicity, serializability,
and durability.[1] For
exanple, if a transaction
that has nmade updates to
t he database is aborted,
ot her transactions nust
not be allowed to see these
updat es; the updates nade
by the aborted transaction
nmust be renoved fromthe
dat abase before other
transacti ons may use that
data. Yet, data that has
not been accessed by the
aborted transacti on nust
continue to be available to
ot her transactions.

Downtinme is the
termused to refer
to periods when the
dat abase i s unavail abl e.

Dat abase Availability for Transaction Processing

of downtime are useful.
Unexpected downtine is
caused by factors that

are beyond the control of
the transaction processing
system For exanple, a disk
failure is quite possible
at any tinme during nornal
processi ng of transactions.
However, schedul ed downti me
is entirely within the
control of the database

adm ni strator. High

avail ability demands that
we elininate schedul ed
downti me and ensure fast
system recovery from
unexpected failures.

The | ayers of the software
and hardware services which
conpose a transaction
processing system are
dependent on one anot her
for high availability.

The dependency anong these
services is illustrated

in Figure 1. Each service
depends on the availability
of the service in the

| ower | ayers. Errors and
failures can occur in

any layer, but may not

be detected i mediately.
For exanple, in the case
of a database managenent
system the effects of a
dat abase corrupti on may
not be apparent unti

Il ong after the corruption
(error) has occurred.
Hence it is difficult to

deal with such errors. On
the other hand, failures
are noticed i nmedi ately.
Fai l ures usually nake the

Downtime is caused by system unavai l abl e and are
ei ther an unexpected t he cause of unexpected
failure (unexpected downt i ne.

downti nme) or schedul ed

mai nt enance on the dat abase

(schedul ed downtine).

Such cl assifications

2 Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Processi ng

Dat abase Availability for Transaction

Each | ayer can provide
only as nmuch availability

as the i medi ate | ower

| ayer. Hence we can al so
express the perfect-
availability goal of a

dat abase managenment system
as the goal of matching
the availability of the

i medi ately | ower |ayer,
which in our case is the
operating system

At the outset, it is clear
that a dat abase nanagenent
system | ayered on top of

an operating system and
hence only as avail able as
t he underlyi ng operating
system However, a database
managenment systemis in
general not as avail able

as the underlying |ayer
because of the need to
guarantee the properties of
transactions.

Unexpect ed Downti ne

In this section we discuss
t he causes of unexpected
downti me and the techni ques
that mnimze downti ne.

A dat abase nonitor nust be
started on a node before
a user's process running
on that node can access
a dat abase. The nonitor
oversees all database
activity on the node.

It allows processes to

attach to and detach from
dat abases and detects

Application Program
Excepti ons

Al t hough transaction
processing systens are
based on the client
/server architecture,
Digital's database systens
are process based. The
privil eged dat abase
managenent system code
i s packaged in a shareable
library and linked with
the application prograns.
Therefore, bugs in the
applications have a
good chance of affecting
t he consistency of the
dat abase. Such bugs in
applications are one type
of failure that can nake
t he dat abase unavail abl e.

The VAX DBMS and VAX Rdb
/ VMS systens guard agai nst
this class of failure by
executing the database
managenent system code
in VAX'S executive node.

Si nce application prograns
execute in user node, they
do not have access to data
structures used by the

dat abase nmnagenent system
When a faulty application
program attenpts such an
access, the VMS operating
system detects it and
generates an exception.
Thi s exception then forces
an i mage rundown of the
application program

In general, when an inmage
rundown is initiated,

failures. On detecting

a failure, the nonitor
starts a process to recover
the transactions that did
not conpl ete because of

the failure. Note that

t hi s dat abase nonitor

is different fromthe TP
monitor. [2]

Digital Technica

Digital's database
managenent products use

t he condition-handling
facility of VM5 to abort
the transaction. Condition
handl i ng of inmage rundown
is perforned at two |evels.
Two condition handl ers

are established, one in

Journal Vol. 3 No. 1 Wnter 1991

user node and the other in
kernel node. The user node
exit handler is usually

i nvoked, which rolls back
the current transaction

and unbinds it fromthe

dat abase. In this case, the
rest of the users on the
system are not affected at
all. The dat abase remains
avai l abl e. The execution of
the user node exit handl er
is, however, not guaranteed
by the VMS operating
system Under sone abnornal
ci rcunst ances, the user
node exit handl ers may

not be executed at all

In such circumstances, the
kernel node exit handler is
i nvoked by the VMS system
This handl er resides in

t he dat abase nonitor. The
nmonitor starts a database
recovery (DBR) process.

It is the responsibility

of the DBR process to rol
back the effects of the
aborted transaction. To do
this, the DBR process first
est abl i shes a dat abase
freeze. This freeze
prevents ot her processes
fromacquiring |ocks that
were held by the aborted
transacti on and hence see
and update unconm tted
data. (The VMS | ock nmanager
rel eases all |ocks held by
a process when that process
dies.) The DBR process then
proceeds to roll back the
aborted transaction.

Code Corruptions

It is inmportant to prevent

Dat abase Availability for Transaction Processing

is exanmined at different
points in the code. |f any
i nconsi stency is found, a
bug-check utility is called
that dunmps the interna

dat abase format to a file.
The utility then raises an
exception that is handl ed
by the nonitor, and the
DBR process is started as
descri bed above.

To deal with corruptions
to the database that are
undetected with this
mechani sm an explicit
utility is provided that
verifies the structura
consi stency of the
dat abase. This verify
utility may be executed
on-line, while users
are still accessing the
dat abase. Such verification
may al so be executed by
a dat abase admi ni strator
(DBA) in response to a bug-
check dunmp. Once such a
corruption is detected, an
on-line utility provides
the ability to repair the
dat abase.

In general, corruption in
dat abases causes unexpected
downtinme. Digital provides
the nmeans of detecting
such corruption on-1ine
and repairing themon-1line
t hrough recovery utilities.
Process Failure

In the VMS system a
process failure is always
preceded by i nmage rundown
of the current inmage
runni ng as part of the

4 Digita

codi ng nmistakes within the
DBMS fromirretrievably
corrupting the database.
To protect the database
managenent system from
codi ng ni stakes, interna
data structure consi stency

Techni cal Journa

Vol .

3

No.

process. Therefore, a
process failure is detected
by the database nonitor
which then starts a DBR
process to handl e recovery.
Node Fail ure

1 Wnter 1991

Processi ng

Dat abase Availability for Transaction

Anmong t he many nechani sns
Digital provides for
availability is node
failover within a cluster
When a node fails, another
node on the cluster detects
the failure and rolls back
the | ost transactions from
the failed node. Thus the
failure of one node does
not cause transactions
on ot her active nodes
of the cluster to cone
to a halt (except for
the tinme the DBR process
enforces a freeze). It is
t he dat abase nonitor that
detects node failure and
starts a recovery process
for every lost transaction
on the failed node. The
dat abase becones avail abl e
as soon as recovery is
conplete for all the users
on the fail ed node.

Power Failure

Power failure is a hardware
failure. As soon as power

is restored, the VM5 system
boots. \Wen a process
attaches to the database,
a nunber of nmessages are
passed between the process
that is attaching and the
nonitor. |f the database is
corrupt (because of power
failure), the nonitor is so
i nformed by the attaching
process, and again the
nonitor starts recovery
processes to return the
dat abase to a consi stent
state. The database becones
avai |l abl e as soon as

the recovery. The only
differences in the case of
process, node, or cluster
failure is the nmechani sm
by which the nonitor is
informed of the failure.
Di sk Head Crash

Some failures can result
in the loss or corruption
of the data on the stable
st orage device (disk).
Digital has a nmechani smfor
bri ngi ng the database back
to a consistent state in
such cases.

A di sk head crash is a
failure of hardware that
is usually characterized by
the inability to read from
or wite to the disk. Hence
dat abase storage areas
residing on that disk are
unavai |l abl e and possibly
irretrievable. A disk

head crash autonmatically
aborts transactions that
need to read from or

wite to that disk. In
addition, recovery of these
aborted transactions is
not possible since the
recovery processes need
access to the sane disk.
In this case, the database
is shut down and access is
denied until the storage
areas on the failed disk
are brought on-line. Areas
are restored from backups
and then rolled forward
until consistent with the
rest of the database. The
after inmage journal (AlIJ)

recovery is conplete for files are used to rol

all such failed users. the areas forward. As

soon as all the areas on
As described above, the failed di sk have been
recovery i s always restored onto a good di sk
acconpl i shed by the and rolled forward, the
noni t or process starting dat abase becones avail abl e
DBR processes to do Bad Di sk Bl ocks

Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Bad bl ocks are hardware
errors that often are

not detected when they
happen. The bad bl ocks are
revectored, and the next
time the disk block is
read, an error is reported.
Bad bl ocks sinply nean
that the contents of a disk
bl ock are | ost forever.
The dat abase adm ni strator
detects the problemonly
when a dat abase application
fails to fetch data on the
revectored bl ock. Such an
error nmy cause a certain
transaction or a set of
transactions to fail, no
matter how many attenpts
are nmade to execute
the transactions. This
failure constitutes reduced
availability; parts of the
dat abase are unavail abl e
to transactions. Exactly
how nmuch of the database
remai ns avail abl e depends
on whi ch bl ocks were
revectored.

The nmechani sm provi ded

to reduce the possible
downtine is early
detection. Digital's

dat abase systenms provide

a verification utility that
can be executed while users
are running transactions.
The verification utility
checks the structural

consi stency of the

dat abase. Once a bad bl ock
is detected by such a
utility, that area of the
dat abase nay be restored
and rolled forward. These

Dat abase Availability for Transaction Processing

of f agai nst the downti ne
needed to restore and rol
forward.

Site Failure

A site failure occurs when
nei ther the conputers nor
the disks are available. A
site failure is usually
caused by a natura
di saster such as an
eart hquake. The best
recourse for recovery is
archival storage. Digita
provi des nechanisns to
back up the database and
AlJ files to tape. These
tapes nust then be stored
at a site away fromthe
site at which the database
resi des. Should a disaster
happen, these backup tapes
can be used to restore
t he dat abase. However,
the recovery nmay not be
conplete. It cannot restore
the effects of those
committed transactions that
were not backed up to tape.

After a disaster, the

dat abase can be restored
and rolled forward to the
state of the conpletion

of the last AlJ that

was backed up to tape.

Any transactions that
committed after the | ast
Al'J was backed up cannot be
recovered at the alternate
site. Such transaction

| osses can be mnimzed by
frequently backing up the
AlJd files.

Menory Errors

two operations nmeke the
whol e dat abase tenporarily
unavai |l abl e; however, the
bad bl ock is corrected, and
future downtinme is avoided.
The downti ne caused by the
bad bl ock may be traded

6 Digital Technical Journal Vol.

3

No.

Menory errors are quite

i nfrequent, and when they
happen, they usually are
not detected. If the error
happens to a data record,
it may never be detected
by any utility, but may

1 Wnter 1991

Processi ng

Dat abase Availability for Transaction

be seen as incorrect

data by the user. If the
verification utility is
run on-line, it may al so
detect the errors. Again,
t he database may only be
partially available, as

in the case of bad bl ocks.
However, it is possible to
repair the database while
users are still accessing
the database. Digital's
dat abase nanagenent
products provide explicit
repair facilities for

this purpose. The | oss of
availability during repair
is not worse than the |oss
due to the nenory error
itself.

As expl ai ned previously,

t he dat abase nonitor

pl ays an i nportant

part in ensuring

dat abase consi st ency

and availability. Mbst
unexpected failure
scenarios are detected

by the nonitor, which then
starts recovery processes.
In addition, sonme failures
m ght require the use of
backup files to restore the
dat abase.

Schedul ed Downti nme

Most dat abase systens

have schedul ed nmai nt enance
operations that require a
dat abase shutdown. Database
backup for nedia recovery
and verification to check

structural consistency

Digital's database
systens allow two types
of transactions: update
and "snapshot." The ability
to back up data on-1line
depends on the snapshot
transaction capability of
t he dat abase.

Dat abase backup is a
standard way of recovering
frommedia failures
Digital's database systens
provide the ability to
do transaction consistent
backups of data on-Iline
whi |l e users continue to
change the dat abase.

The general schene for
snapshot transactions is

as follows. The update
transactions of the

dat abase preserve the

previ ous versions of the
dat abase records in the
snapshot file. Al versions
of a database record are
chained. Only the current
version of the record is

in the database area. The
ol der versions are kept

in the snapshot area. The
versions of the records are
tagged with the transaction
nunbers (TSNs). When a
snapshot transaction (for
exanpl e, a dat abase backup)
needs to read a database
record, it traverses the
chain for that database
record and then uses the
appropriate version of the
record.

There are two npdes

are exanpl es of operations of dat abase operation

that may require schedul ed with respect to snapshot
downtinme. In this section activity. In one node,

we describe ways to perform all update transactions
many of these operations write snapshot copies of
whil e the database is any records they update.
executing transactions. In the deferred snapshot
Backup node, the updates cause

Digital Technical Journal Vol. 3 No. 1 Wnter 1991

snapshot copies to be
written only if a snapshot
transaction is active and
requires old versions of

a record. In this node, a
snapshot transacti on cannot
start until all currently
active update transactions
(which are not writing
snapshot records) have
conpleted; that is, the
snapshot transaction nust
wait for a quiet point in
time. If there are either
active or pendi ng snapshot
transacti ons when an update
transaction starts, the
updat e transacti on nust
write snapshot copi es.

Here we see a trade-off
bet ween update transactions
and snapshot transacti ons.
The database is conpletely
avail abl e to snapshot
transactions if all update
transactions always wite
snapshot copies. On the
ot her hand, if the deferred
snapshot node is enabl ed,
updat e transactions
need not write snapshot
copies if a snapshot
transaction in not active.
Thi s approach obvi ously
results in sone | oss of
availability to snapshot
transactions.

Verification

Dat abase corruption
can also result in
downti me. Although dat abase
corruption is not probable,
it is possible. Any
dat abase systemt hat

Dat abase Availability for Transaction Processing

dat abase to check the
structural consistency
of the database. These
utilities may al so be
executed on-1line through
the use of snapshot
transactions.

Al J Backup

The backup and the AlJ

|l og are the two nmechani snms
that provi de nedia recovery
for Digital's database
managenent products. The
AlJ file is continuously
written to by all user
processes updating the

dat abase. W need to
provi de some ability

to back up the AIJ file
since it nonotonically

i ncreases in size and
eventually fills up the
disk. Digital's database
systenms offer the ability
to back up the AIJ file

to tape (or another
device) on-line. The only
restriction is that a quiet
poi nt must be established
for a short period during
whi ch the backup operation
t akes place. A quiet point
is defined as a point when
t he database is quiescent,
i.e., there are no active
transactions.

On-1ine Schema Changes

Digital's database
managenment systens all ow
users to change netadata
on-line, while users
are still accessing the
dat abase. Although this may

8 Digita

supports critical data

nmust provide facilities

to ensure the consistency
of the database. Digital's
dat abase nmnagenent systens
provi de verification
utilities that scan the

Techni cal Journa

Vol .

3

No.

be standard for relationa
dat abase nanagenent

systems, it is not standard
for network databases. The
VAX DBMS system provi des a
utility called the database
restructuring utility (DRU)

1 Wnter 1991

Dat abase Availability for Transaction
Processi ng

to allow for on-line schem Ref erences

nmodi fi cati ons.

Acknow edgnent s

Many engi neers have
contributed to the
devel opnent of the
al gorithms described in
this paper. W have chosen
not to enunerate all such
contri butions. However,
we would like to recognize
the contributions of Peter
Spiro, Ashok Joshi, Jeff
Arnol d, and Rick Anderson
who, together with the

aut hors, are nenbers of the
KODA t eam

1. P. Bernstein, W

Emberton, and V.
Trehan, "DECdta -
Digital's Distributed
Transaction Processing
Architecture,” Digita
Techni cal Journal, vol
3, no. 1 (Wnter 1991,
this issue): 10-17.

T. Speer and M Storm
"Digital's Transaction
Processing Mnitors,"
Digital Technica
Journal, vol. 3, no.

1 (Wnter 1991, this

i ssue): 18-32.

Digital Technical Journal Vol. 3 No. 1 Wnter 1991

Copyright 1991 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permtted. All rights reserved.

