The DECconcentrator 500 Product

By William J. Tiffany, G. Paul Koning, and James E. Kuenzel

Abstract	Interconnect (CI) bus. All
Digital's decision	stations were to be dual
to implement the fiber	attachment stations (DASs)
distributed data interface	and the interconnections
(FDDI) physical topology	between the stations were
with a dual ring of	to be wired directly,
trees, as opposed to a	without patch panels or
dual ring only, resulted	similar structured wiring
in development of	schemes.
the DECconcentrator	
500 product. The dual	Using this dual ring
ring of trees topology	topology is feasible for
provides high availability,	a small number of stations
manageability, and support	in a single, tightly
for building wiring	controlled room. However,
standards. The function	soon the emphasis of FDDI
of the concentrator	shifted primarily to local
demanded that the product	area networks (LANs). A
be reliable, provide for	LAN consists of many nodes,
remote management and	spread over a large area
control, and allow a low	and with potentially many
cost per connection. The	individuals able to connect
use of common FDDI hardware	and disconnect stations.
and software components	To accomodate LAN topology
developed by Digital helped	requirements, ANSI chose
the product team to meet	to add the concept of
these goals.	concentrators midway
in the development of	

```
for the fiber distributed stations can be connected
data interface (FDDI)
technology was intended
for a computer room system
interconnect, similar
to Digital's Computer
by means of radially wired
cables. These additional
stations can be single
attachment stations (SASs)
with a single port (S port)
rather than the pair of
Digital Technical Journal Vol. 3 No. 2 Spring 1991
```

ports required by a DAS.
This simple topology was
soon generalized, allowing
concentrators to be nested
to any depth in a dual ring
of trees. Concentrators
may be singly attached
(by using an S port plus
M ports rather than A and
B ports plus M ports), and
DASs may be connected to
concentrators. Figure 1
illustrates the basic FDDI
topologies.

FDDI concentrators

are more than wiring hubs, unlike certain other LAN technologies. They also perform two functions that are key to network integrity. When a station's connection to a concentrator is activated, a multistep initialization procedure called physical connection management (PCM) takes place, using physical layer (PHY) signaling. In this procedure, the station and the concentrator exchange some topology information, and a link confidence test is performed to verify that the data integrity on the link is acceptable. Once the PCM initialization is complete, the connection becomes part of the ring.

The ANSI standard specifies some topology rules to reduce this problem.
Also, concentrators
continuously perform
link error monitoring
(LEM). Each active link is
monitored for data errors,
and a link found to have
excessive data errors
is disabled. In this way
concentrators ensure that
the ring error rate, and
therefore the packet loss
rate, remains acceptably
low.
Given the many choices
for concentrator
interconnection allowed
by the ANSI standard,
it is possible to
construct highly complex
topologies, including
many that have "bad"
properties. When a station
is physically plugged in
and that connection is
operating properly, the
station should be able
to communicate with all
other stations in its own
network. This property is
often stated as "Physical
connectivity equals
logical connectivity,"
or, in other words, "Being
plugged in implies being
able to communicate."
In bad topologies, this
property does not hold.
Such topologies are very
confusing to network
managers and are therefore
undesirable.
extent on the competence
of the network manager to

Also, concentrators continuously perform link error monitoring (LEM). Each active link is monitored for data errors, and a link found to have excessive data errors is disabled. In this way concentrators ensure that the ring error rate, and therefore the packet loss rate, remains acceptably low.
Given the many choices for concentrator
interconnection allowed
by the ANSI standard, it is possible to construct highly complex pologies, including that have "bad properties. When a station and that connection is operating properly, the station should be able to communicate with all other stations in its own network. This property is often stated as "Physical connectivity equals logical connectivity," or, in other words, "Being plugged in implies being able to communicate." In bad topologies, this property does not hold. Such topologies are very confusing to network managers and are therefore undesirable.
therefore depends to some extent on the competence of the network manager to

```
    However, the decision to
    accept or reject offered
    connections is based
    only on local knowledge
    (i.e., information held
    locally in each station or
    concentrator), and it is
    not possible to detect all
    the bad topologies. FDDI
2 Digital Technical Journal Vol. 3 No. 2 Spring 1991
```

are connected to M ports, usually of two different concentrators. In this case, the B to M connection becomes active, and the A to M connection remains in a "standby" state. The standby connection is not part of the ring, but it can quickly change to the active state if the B to M connection breaks. In this way, connectivity is maintained when failures occur.

We next present the reasons Digital chose the dual
ring of trees topology over the dual ring topology and examine the resultant need for a concentrator. A detailed discussion of the development of the DECconcentrator 500 product follows.

Digital's Choice of the Dual Ring of Trees Topology

A dual ring topology consisting of dual attachment stations may be appropriate in very small networks that do not use structured and permanent cable plants. But a dual
ring of trees topology, using single attachment stations as the end-user devices and concentrators as hubs, provides the optimal solution for a

FDDI networks has been recognized by many of our key customers. Digital chose the tree /dual ring of trees architecture implemented with concentrators over a purely dual ring approach because this architecture offers:

- Support for industrystandard radial wiring practices
- Manageability
- Configuration
flexibility
- A definable demarcation point between the end user and the backbone
- Scalability

Although the specific behavior of an FDDI concentrator is relatively new, the concept is not. Most system vendors and users of large systems have adopted the use of manageable hubs (multiport repeaters) for Ethernet networks and media access units (a type of passive concentrator composed of bypass relays) in token ring networks.

Initially, cost was a major concern in the decision to implement a tree-type architecture. Some users saw the addition of the concentrator as an added

```
highly flexible, reliable, cost burden. However,
available, maintainable,
and robust FDDI LAN. As
described in the preceding
section, the concentrator
is the cornerstone of
an FDDI network. Its
significance in building
large, robust, and most
importantly manageable
    the cost increase, which
    can be amortized over
    the entire network, is
    greatly outweighed by the
    added advantages. With a
    concentrator, stations
    can be separated into
    two categories, end-user
    devices and backbone
    Digital Technical Journal Vol. 3 No. 2 Spring 1991
```

$$
\begin{aligned}
& \text { devices. This is especially } \\
& \text { important in large networks } \\
& \text { where the functions of } \\
& \text { network administration } \\
& \text { and users of the LAN are } \\
& \text { totally disparate. The } \\
& \text { concentrator becomes a tool } \\
& \text { that simplifies the role } \\
& \text { of network managers. As a } \\
& \text { demarcation point between } \\
& \text { end-user devices and the } \\
& \text { backbone, the concentrator } \\
& \text { protects the backbone from } \\
& \text { In both topologies we have } \\
& \text { eight physical connections. } \\
& \text { A physical connection, } \\
& \text { whether in the tree or in } \\
& \text { the dual ring, is a point- } \\
& \text { to-point, full-duplex path } \\
& \text { between adjacent physical } \\
& \text { layers. The initial } \\
& \text { reasoning for a dual, } \\
& \text { counter rotating ring was } \\
& \text { to create a bidirectional } \\
& \text { data path between adjacent } \\
& \text { stations in which the } \\
& \text { secondary path's main } \\
& \text { purpose is to assist in } \\
& \text { startup, initialization, } \\
& \text { and reconfiguration of the } \\
& \text { primary ring. } \\
& \text { path switch, to create the } \\
& \text { concentrator. This approach } \\
& \text { does incur the additional } \\
& \text { a PHY entity from each DAS, } \\
& \text { are rearranged so that } \\
& \text { }
\end{aligned}
$$

inadvertent disruption
caused by the end user.
As shown in Figure
3, the actual number
of components that are
required to connect eight
FDDI stations, whether into
the dual ring or in the
tree, is approximately the
same; only the distribution
of these components is
different.
network, made possible by
the concentrator.
A large network of
many stations has a
high probability of
disruptions. Although a
DAS and a concentrator are
fundamentally different,
they have in common the
role of controlling the
network topology through
PHY-level signaling. In
the case of a disruption,
whether an operator-
initiated function (i.e.,
a station powered down,
installed, or removed) or
a failure of the station
or cable, the token path
is modified according to
the station management
/connection management (SMT
/CMT) algorithm to maintain
a continuous logical ring.
The main difference between
the two approaches to
solving the disruption
problem is in the way a
station is bypassed. With
the dual ring approach
shown in Figure 4, when

```
    cost of the power and
    packaging. However, from
    the perspective of the
    network administrator,
    this small incremental
    cost is offset by the
    increased ability to
    manage and control the
    a disruption occurs, the
    stations adjacent to the
    disruption bypass the
    offending station(s) and
    reconfigure the ring by
    wrapping the secondary and
    primary rings to form a
    new single continuous ring.
4 Digital Technical Journal Vol. 3 No. 2 Spring 1991
```

```
This provides a degree
of fault tolerance but is
limited to only a single
disruption.
    In the case of multiple
failures or disruptions,
all dual attachment
stations adjacent to the
faults reconfigure, thereby
creating multiple disjoint
rings. Even though the
majority of the stations
in the network might be
operational, they would
operate over several
disjoint networks. The
potential loss of the
service access point would
effectively leave the
network nonoperational
from the client/server
perspective. Management of
such a situation would also
be an ordeal, since access
to fault information would
```

be limited to the stations remaining on the portion of the ring to which the management station was directly attached.

An FDDI concentrator provides fault tolerance in a different way, as illustrated in Figure 5. When a station connected to a concentrator is removed or powered off, the failure is bypassed through the concentrator data path switch at the PHY level. Any one or all of the stations can be effectively bypassed through the concentrator without affecting the connectivity of the other stations or the global topology of the FDDI network.

Digital Technical Journal Vol. 3 No. 2 Spring 1991

	demarcation between enduser devices and backbone is required to maintain the
Structured Wiring	integrity of the backbone
To fully appreciate the benefits of the concentrator, let us	and to minimize disruption to, or manipulation of, the backbone cabling.
consider an FDDI network	The Telecommunication
implemented in an office building environment in	Industries Association (TIA), together with the
conjunction with structured	Electronics Industries
A typical building	defining a commercial
environment includes	building wiring standard;
wiring between offices	draft EIA/TIA 568 has the
and equipment rooms on the	framework as designated
same floor and in between	in Figure 6.[2] According
floors. The wiring is permanent and involves a	to this standard, enduser devices in offices
relatively large number	should be wired from a
of end-user devices as well as backbone devices	telecommunications closet (TC). All closets in each
over moderate distances.	building then connect to
Moreover, frequent adds	the intermediate cross
/moves/changes occur in	connect (IC) or to the
this environment, and	building hub for that
the ability to move from	building. In turn, all
one location to another	building hubs connect to
without manual intervention	single main cross connect
or network disruption	(MC) or to the campus hub
is desirable. A clear	in the campus.
Single Attachment Stations The tree topology, as	so that a disruption in an end-user device, such as
illustrated in Figure 7,	disconnecting a station,
facilitates structured	does not affect the
(or radial) wiring as	operation of the network.
prescribed by the draft	The concentrators in the
EIA/TIA 568 standard.	various closets connect
The end-user devices,	to root concentrators
implemented as SASs or	in the building hubs. If
DASs, connect to the	other backbone devices are

```
    concentrators located in present in the building
    telecommunications closets,
    which are maintained
    and controlled by the
    network administrator. When
    concentrators are used,
    the most cost-effective
    user stations are SASs.
    Connection to concentrators
    keeps the end-user devices
    separate from the backbone
6 Digital Technical Journal Vol. 3 No. 2 Spring 1991
```

a structured wiring system. Also, it allows for adds /moves/changes without disrupting or manipulating the backbone cabling. Dual Attachment Stations

End-user devices directly attached to the dual ring, however, are not easy to isolate from the backbone LAN. Both the end-user devices and the backbone devices are part of the same physical loop, as shown in Figure 8. To a network administrator, management and control of the backbone becomes an ever-increasing ordeal because each end-user station is now considered part of the backbone. Even though rules for the end-user behavior can be established, they cannot easily be enforced. The availability of the backbone is increased by the use of concentrators, since these are the only devices that form the dual ring backbone. This benefit is very important for a large network. For example, in a network supporting 200
end-user stations on a dual ring of trees topology, if 8 -port concentrators are used to connect them to the dual ring backbone, only 25 concentrators reside on the dual ring backbone. The reconfiguration of
reconfiguration of the backbone is dependent on 200 devices. The probability of having two or more disjoint rings is much higher in the latter case. Also, with DAS stations, the network administrator is faced with the impractical task of directly controlling 200 devices.

Fault-tolerant Configuration Options

```
Two fault-tolerant
configuration options
are available: bypass
relays and dual homing.
Bypass relays may be
used with DASs directly
attached to the dual
ring to provide fault
tolerance in addition to
the single fault protection
provided by wrapping to
the secondary ring. Dual
homing is an alternative
mechanism which allows dual
attachment devices to have
a redundant connection to a
concentrator when installed
in a tree topology. These
two alternatives are
examined in this section.
Bypass Relays
    To avoid the aforementioned
reconfiguration problems
with DAS implementations,
the FDDI standard offers
an option of using an
optical bypass relay.
While such relays are
```

```
the backbone is dependent envisioned to alleviate
on only 25 devices. Also, some of the reconfiguration
the network administrator
needs to control only }2
devices. In contrast, if
the same 200 stations are
DASs directly attached
to the dual ring, the
    problems, they may induce
    more problems than they
    solve. The inclusion of
    relays in the network means
    added cost of components,
    cables, and connectors,
Digital Technical Journal Vol. 3 No. 2 Spring 1991
```

```
loss of optical power,
reduction in interstation
distance, and an additional
failure mechanism. These
factors limit the use of
such relays to possibly
very small, physically
collocated work group
LANs and make the relay an
unattractive solution for a
large network environment.
```

Let us assume that the fiber-optic cable has a loss of 1.5 dB per kilometer (according to the EIA/TIA-492), and the distance between the communication closet and each station is 50 meters.[3] Since the cable length between stations A and C is 200 m , the power loss is 0.3 dB . A connector has a loss of 0.7 dB (according to the EIA). Since there are eight connectors (labeled 1 through 8 in Figure 9) between A and C, the power loss is 5.6 dB . A bypass relay has a loss of 2.5 $d B$. Since there are three relays between A and C, the power loss is 7.5 $d B$. The total link loss between stations A and C, therefore, is 13.4 dB , which is in excess of the maximum allowed by the FDDI standard. Note that with the use of optical bypass

As shown in Figure 9, the end-user stations A, B, and C are dual attachment with bypass relays, and station B has failed. With B bypassed, stations A and C become adjacent. The total link loss between these two stations, using a fiber-optic cable of 62.5-micron core diameter and 125-micron cladding diameter, must not exceed 11 decibels (dB) to comply with the FDDI standard.

For some applications a tree or dual ring of trees may not meet the customer's requirements. The dual homing topology, shown in Figure 2 and described earlier in the paper, has none of the limitations or problems that can be imposed by the dual ring.
This topology is beneficial in a large campus to connect remote buildings into the FDDI backbone. It allows standard radial wiring practices, with up to 2 km between the campus hub and any given building through multimode fiber (MMF) links. The dual homing topology is especially useful with long distance links utilizing single mode fiber (SMF), which span distances of up to 40 km . With the dual ring topology each span has to be counted four times towards the fiberoptic path length maximum

```
relays, the effective
distance is limited to
less than 200 m, which is
far below the maximum of 2
km allowed by the standard.
Dual Homing
leaving only 40 km for the
8 \text { Digital Technical Journal Vol. 3 No. 2 Spring 1991}
```

rest of the network. Using a tree topology, the span is counted twice as it has only one active fiber pair.

Product Development

The following sections examine the DECconcentrator 500 product development process from beginning to end, elaborating on details of the product functionality as they were refined along the way. Several key factors provided a smooth product development process. First, the architecture for the DECconcentrator 500 product was chosen as a subset of the generality allowed by the ANSI FDDI standard.

Several features which would have significantly complicated the product without greatly enhancing functionality were not included. Examples of these are "roving MAC" and the ability to allow stations to select the ring (primary or secondary) to which to attach. Second, product management established a clear list of priorities, requirements, and goals that allowed the development team members to focus their efforts. The absence of significant changes in architecture or product requirements during the development
simplicity and reliability enabled us to keep product transfer cost to a minimum and to nearly meet the time-to-market goal. And finally, the relatively small and tightly knit development team stayed together from conception through field test and first product shipment. Hardware Partitioning

As the hardware block diagrams were developed, several concepts for partitioning the hardware into modules were evaluated. The electrical, mechanical, and power supply designers worked closely together to choose a suitable partitioning.

The initial high cost of the FDDI fiber-optic transceivers led the designers to select modular hardware partitioning. A modular design allows ports to be added according to the customer's needs, thereby minimizing both the initial cost and the number of unused ports. Since Digital's networking products have traditionally used side-toside airflow for cooling, a card cage that supported horizontal modules was chosen. Four ports per module was considered to be a reasonable number by which a customer could

```
helped the team stay on increment a system. This
schedule. The priorities
selected were to design
for low cost and high
reliability, provide for
ease of firmware upgrades,
and strive for quick time
to market. The emphasis on
module, referred to as the
port module, contains four
sets of the FDDI physical
layer chip sets, one status
light-emitting diode (LED)
per port, one module field-
replaceable unit (FRU)
Digital Technical Journal Vol. 3 No. 2 Spring 1991
```

```
fault LED, and a small
amount of support logic.
    One function of the
DECconcentrator }500\mathrm{ product
is to provide support for
network management; this
requires data link layer
hardware. In addition,
the DECconcentrator 500
device must connect to
the FDDI dual ring; this
requires the A and B port
types. The DECconcentrator
5 0 0 \text { management module was}
designed to meet these
needs. By combining the
data link and A and B PHY
port hardware, we ensured
that any DECconcentrator
500 device installed in a
dual ring of trees would be
manageable.
    The DECconcentrator 500
product also includes a
microprocessor to execute
diagnostic and operational
firmware. To minimize
the number of modules,
we specified that the
microprocessor and its
support logic fit on
the backplane. The use
of an active backplane
eliminates the need for
a separate control module
in the card cage, thereby
reducing both cost and
the vertical height of
the box. The backplane
also provides the token
ring data path function
which interconnects any
allowable configuration
of port and management
modules. The number of
```

end-user configurations. Two basic configurations are supported in the DECconcentrator 500 product. A concentrator configured with one to three port modules (4 to 12 ports) can support a standalone work group but cannot connect in the dual ring of trees topology. A concentrator configured with a management module and one or two port modules supports the dual ring of trees topology and is remotely manageable.

Another goal of the hardware team was to eliminate the use of cables within the box. This goal was consistent with minimizing cost and maximizing reliability. The use of modular port and management cards led the team to believe that the power supply could also be modular and plug into the backplane in a similar manner. To avoid potential safety hazards, the power supply module is not accessible without opening up the box; however, the interconnection of the supply with the backplane is achieved with the same type of connector used on the logic option modules. The only cable used in the

```
modules supported by the
backplane is based on our
evaluation of customer
need. We decided that }8\mathrm{ to
12 ports per concentrator
```

is sufficient for most 500 hardware.

Power and Packaging Tradeoffs

Once we decided that three modules could support 8 to 12 end users, we focused on the selection of packaging. Two basic proposals were examined. The first was to modify the Digital's NAC common box which has been used in many of Digital's products. The second proposal was for a new box design, which allowed improved serviceability via quick access to all FRUs (fieldreplaceable units). The existing common box design was chosen to minimize risk to the product development schedule. The necessary modifications were the addition of a card cage for the port and management modules, provision for mounting the power supply and fans, and improvement of the airflow characteristics.

Cooling was also seen as a potential problem in product development. The bipolar logic used in the FDDI physical medium dependent layer (PMD) dissipates a considerable amount of power in a small area. Evaluation of the NAC common box showed that the grill area in each side had approximately 35 percent open area. Analysis
open area in each side of the box. When prototypes were tested, we found the improvements in cooling followed predictions. The modification also yielded considerable reduction in acoustic noise levels, which allowed the use of off-the-shelf ball bearing fans with good reliability. Mechanical and electrical requirements could not be met by any of Digital's existing power supplies. The power supply height was limited; a unique connector was required to interface to the backplane; and the available area was determined by the size of the card cage on top of which the supply was mounted. Electrically, the supply had to provide a relatively large amount of minus5.2-volt power to support the emittercoupled logic (ECL) in the FDDI PMD. Fortunately the total power requirement
was similar to that of Digital's Ethernet-toEthernet bridge product, the LAN Bridge 200. The power supply group agreed to modify this existing high-volume supply to meet the requirements of the DECconcentrator 500 product. The use of an existing design was expected to result in fewer bugs, and this proved to

```
showed that significant be the case. Only one bug
improvements in airflow was found in system stress
could be achieved by
increasing this percentage.
Mechanical rigidity was
traded off against airflow
improvement to reach a
compromise of }50\mathrm{ percent
testing, and it was easily
corrected with a minor
design change.
Card Handles
```

Digital Technical Journal Vol. 3 No. 2 Spring 1991

The module handle design was probably the single most complex part of the mechanical design, and it had the potential to impact the cost of the product. The mechanical design team recommended modifying a handle design from an existing Digital product. This essentially meant stretching the handle and making openings as required for I / O connectors and LED displays. Handles for both DECbridge 500 and DECconcentrator 500 products are processed from the same mold since only I/O connector and switch/indicator openings are different for the two products.
Traditionally, these handles have been made
from a plated cast alloy. Plastic offered the potential of significant cost savings and weight reduction. However, there was concern about the quality of plating with plastic, as well as about the structural strength. The decision was made to start the development effort for plastic handles while using machined metal parts for the interim. When the final plastic product was available, it met all requirements.

Another critical

factor in handle design
radiation. A "waveguide-beyond-cutoff" structure was evaluated. This structure is a rectangular extension to the handle with an opening the size of the FDDI connector. The design attenuates all emissions below the cutoff frequency and was predicted to provide excellent attenuation performance for all harmonics of the FDDI signals. Testing of prototypes verified the emissions problem created by the connector opening and proved the effectiveness of the waveguide structure in eliminating the emissions. This structure was then included in the design of the handles for each FDDI port.

```
Logic Design
    The logic design team
developed prototype
hardware as quickly as
possible so that the
diagnostic, operational
firmware, and common node
software (CNS) firmware
teams could proceed with
hardware-based debugging.
First-pass prototypes of
the controller/backplane
module and the four-
port module were in the
laboratory within six
months of the start of the
project. The GenRad HILO
simulation software was
used in the module design
```

```
was electromagnetic
interference (EMI). Each
FDDI duplex connector
required a large, 1.4
cm by 3.8 cm, opening in
the handle which posed
the risk of emitting
```

process.
One type of bug was
discovered in the firstpass prototypes that was not caught in simulation. A through-hole component body was used in schematic
capture instead of a surface mount body. As a result, the layout was wired according to the through-hole pinout. This error was not caught by any of the software that checks design rules. Thus, the controller /backplane modules required engineering change order (ECO) wires to mount a component onto the back of the module in a "dead bug" fashion.
On the four-port module, the differential ECL signal detect lines from the fiber-optic receiver to the clock and data conversion receiver (CDCR) component were crossed. This logic was not included in the simulation due to its analog nature. The problem in this case was an inconsistency in nomenclature between the CDCR and fiber-optic receiver chip bodies used in schematic capture.

The strategy of building first-pass hardware prototypes as quickly as possible to support early firmware debugging was successful. Simulation played a key role in guaranteeing functionally correct designs. When second-pass prototypes were tested, only a single ECO wire was required in the product, and the

Concentrator Port. An FDDI concentrator consists of a group of serially connected ports, each of which implements the FDDI PHY functionality. Key to our product was Digital's PHY chip, which implements the physical layer functionality and supports the physical connection management requirements for station management. In addition to the PHY chip, the CDC chips (one each for transmit and receive) provide the serial /parallel conversion, clock recovery on the receive side, and nonreturn to zero inverted (NRZI) encoding /decoding. The fiber-optic transceiver, however, had to be purchased from an outside vendor. Since many mechanically incompatible devices are on the market, we tested the products of many vendors. Fortunately for the product development teams, our optics group was able to identify pincompatible transceivers from two vendors. Dual sourcing of the tranceivers used in our concentrator ports reduced the risk of shipping products based on this relatively new fiber-optic technology.
Internal Token Ring Data Path. The FDDI PCM process provides fault coverage and topology rule checking between any

product shipped with the	two connected FDDI ports.
second-pass designs on	This is essential to ring
all modules. The following	stability since a token
sections examine several	ring is made up of a series
areas of the logic design	of physical connections,
that are unique to the	any one of which can bring
concentrator function.	down the entire ring.

Because connections between
ports within a concentrator
are not specified by the
FDDI standard, they are a
critical design area for
ring availability. The
DECconcentrator 500 design
addressed this aspect of
the product as described
below.
Data path (port-to-
port) integrity.
Adjacent ports in the
concentrator interface
with a dual-symbol wide
data path of 10 bits
plus parity for a total
of ll bits. This PHY-to-
PHY interconnection is
the same interface used
to connect PHY to media
access control (MAC)
in a station. Parity
checking was added to
Digital's PHY chip to
ensure that intermittent
or hard faults could
easily be detected. If
a parity error in this
data path occurs, the
DECconcentrator 500
device is taken off
line to ensure that the
entire token ring is
not corrupted. Without
parity protection, a
hard failure on this
internal path stops ring
traffic altogether, in
which case the SMT trace
function might isolate
the fault. However,
an intermittent fault
in a concentrator's
internal data path that
Because connections between
ports within a concentrator
are not specified by the
FDDI standard, they are a
critical design area for
ring availability. The
DECconcentrator 500 design
addressed this aspect of
the product as described
below.

- Data path (port-to-
port) integrity.
Adjacent ports in the
concentrator interface
with a dual-symbol wide
data path of 10 bits
plus parity for a total
PHY interconnection is
the same interface used
to connect PHY to media
access control (MAC)
in a station. Parity
checking was added to
Digital's PHY chip to
ensure that intermittent
or hard faults could
easily be detected. If
a parity error in this
data path occurs, the
Deconcentrator 500
line to ensure that the
entire token ring is
not corrupted. Without
parity protection, a
hard failure on this
internal path stops ring
traffic altogether, in
which case the SMT trace
function might isolate
the fault. However,
an intermittent fault
concentrator's
internal data path that
the mechanisms built into SMT.
- Fault detection /isolation. The controller/backplane and the PHY chip
design allow the DECconcentrator 500 device to offer continuous service in
the presence of hardware faults by isolating the faulty hardware from the data path. The diagnostics that are invoked at power up or on command from firmware (as in the SMT trace function) have the ability to isolate faults very close to the component level. The fault report is then passed to initialization firmware which configures the DECconcentrator 500 product so that the faulty hardware is not included in the data path. Two levels of bypassing are provided, one at the port level and one at the option module level. Bypassing is always performed one level of hardware away from the detected fault. Thus if a fault is detected at the CDC component level (using a CDC loopback test), then tha single port is bypassed in the PHY chip. If a fault

```
is not protected with
parity could arbitrarily
reduce ring performance
and increase the risk
of undetected data
errors and would not
be isolated by any of
```

is detected at the
PHY level or between
PHY chips within a
module, the entire
module is bypassed on
the backplane. Note that
power-up diagnostics
do not provide a PMD external loopback test except in a special manufacturing mode. Fault coverage of this hardware is provided by the SMT PCM process, which prevents a faulty connection from being included into the ring. Fiber loopback connectors are included with each product for isolating media faults between the fiber-optic transceivers and the fiber-optic cables.

- Internal MAC attachment. A MAC is not required for an FDDI concentrator to function; however, it is included as an option to provide remote management. The internal MAC can be thought of as a "management station" attached to one of the concentrator ports whose job is to provide control /status of the local concentrator function. This attachment is internal to the concentrator, but must provide the same basic service as a physical connection to an external station. This service is provided by logic in the data path referred to as the "null PHY." The null PHY provides a means of

It also provides ring scrubbing in case the MAC should have to leave or enter the ring while the ring is operational. Upgradeable Nonvolatile Program Memory. To support firmware upgrades over the network, the FDDI products require electrically erasable programmable readonly memory (EEPROM). All code in the DECconcentrator 500 product is executed directly out of EEPROM since the microprocessor's clock rate is relatively
slow. In the first-pass design we used conventional 32 K by 8 dual in-line package (DIP) devices as they were qualified within Digital. In order for the controller/backplane module to accomodate sufficient program memory, we needed a denser technology. At the time, component engineering was evaluating flash
EEPROM technology. Flash devices became available in surface mount packages with a density of 128 KB that met our needs. The flash memory proved to be a robust technology; however, development of a flash programming algorithm was challenging and required extensive testing. The older EEPROM technology had built-in logic to handle the details of the erasing and programming steps,

```
bypassing the internal but with the flash memory
MAC if diagnostics these details were directly
should find a fault
in any of the hardware
[MAC, CAM, ring memory
controller (RMC), and
packet memory] related
to the data link layer.
controlled by software.
    In order to upgrade
firmware over the network,
a well-controlled procedure
was developed. A firmware
image plus the flash
Digital Technical Journal Vol. 3 No. 2 Spring 1991
```

programming code is transferred over the network through multiple packets and stored in packet memory. This downline upgrade is provided	to identify ways to shorten the software development cycle. Code that could potentially be shared among the products, and code that could be ported
by a network device upgrade (NDU) utility that was	from previous projects was identified. These early
developed for the FDDI products. Once the entire	efforts resulted in the common use of the real
image is received in packet memory, it is	time operating system (RTOS), common FDDI chip
checked against a cyclic redundancy check (CRC)	diagnostics, diagnostic error logger, diagnostic
included in the image.	dispatcher, and common
If the CRC is correct and the firmware image is of	node software (CNS). In addition to the code that
the correct type (destined for this product), the	is common among the FDDI product set, much time was
DECconcentrator 500 product takes itself off line.	saved by porting portions of the remote bridge
The 68000 microprocessor then executes the flash programming firmware	management software (RBMS) responder and maintenance operation protocol (MOP)
irectly from packet memory	from the LAN Bridge 200
to load the new image. Once the load is complete, the	product. The management model for the data link
firmware forces a reset, and a power-up self-test	and physical layer entities for both the DECbridge 500
is run that includes a CRC check of the contents of	and DECconcentrator 500 products was developed to
flash memory.	ensure commonality between
Software Design Issues	the two products.
Essential to the completion	Field Test. The field
of the development	test provided valuable
ocess was the us	information regarding the
mmon software	quality of the products.
隹 field testing of	Several of the sites chosen
the DECconcentrator 500	to field test the FDDI
product.	backbone products were
mmon Software. Early in	about networking. They
he development process	were able to perform
it was clear that the	specific testing while
ggressive time-to-	monitoring their networks

```
market goals for the
FDDI product set would
require the development
team to be resourceful.
In the beginning of
the development cycle a
significant effort was made
```

```
As a result, detailed
test information was
provided to engineering.
One engineer was assigned
to each field test site
as a "site parent." The
site parents monitored
```

16 Digital Technical Journal Vol. 3 No. 2 Spring 1991

```
their sites and channeled
the information back to
engineering. This structure
for supporting the field
test enabled engineering
to react quickly to the
needs of the sites as
well as act on problems
found. This testing and
feedback, coupled with
the capability to load new
firmware revisions over
the network, was crucial to
achieving quality prior to
first customer shipment.
```

Conclusions

The dual ring of trees topology is well suited for all FDDI environments that require fault tolerance, scalability, and flexibility of configuration. This topology is the right choice for managing the ever-growing local area networks through the 1990s. Several factors proved to be crucial to meeting both functional and time-tomarket requirements with a quality DECconcentrator 500
product.

- Establishing
architecture and product feature requirements early and maintaining these with minimal changes.
- Providing a thorough testing process for both hardware and software which tested the product in realistic environments with a process in place to correct problems and verify fixes quickly. We had quite robust products at the time of first customer shipment as a result of our test /fix/verify process.

Acknowledgments
People from many
organizations worked together to achieve the development of the product on time. The key members of the engineering design team were Dave Benson, Gerry Capone, Stan Chmielecki, Paul Ciarfella, Alison Coolidge, Janis Roth Cooper, Joe Dagdigian, Tom Ertel, Cheryl Galvin, Dave Hyre, John Iannarone, Bill McCarthy, Charlie McDonald, Dick Muse, Luc Pariseau, Dave Sawyer, and Karen Shay.

References

- FDDI Station Management (SMT) Preliminary Draft Proposed American National Standard,ANSI X3T9/90-078, Rev. 6.2
- Establishing and maintaining a close-knit product development team with good communication channels.
- Leveraging wherever possible from proven and available designs, making incremental improvements as needed.
(May 1990).
- Building Wiring Standard for Industrial and Commercial Use, EIA /TIA 568, PN1907-

B (Washington, DC:
Electronics Industries
Association, Engineering
Department, forthcoming 1990).

Digital Technical Journal Vol. 3 No. 2 Spring 1991

```
The DECconcentrator 500 Product
```

- Detailed Specification for 62.5-m Core Diameter /125-m Cladding Diameter Class Ia Multimode, Graded Index Optical Waveguide Fibers, ANSI/EIA/TIA-492AAAA1989 (Washington, DC: Electronics Industries Association, Engineering Department, 1989).

Copyright 1991 Digital Equipment Corporation. Forwarding and copying of this article is permitted for personal and educational purposes without fee provided that Digital Equipment Corporation's copyright is retained with the article and that the content is not modified. This article is not to be distributed for commercial advantage. Abstracting with credit of Digital Equipment Corporation's authorship is permitted. All rights reserved.

