

 Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

By Andrew W. Nourse

1 Abstract

Digital's PATHWORKS for DOS version 4.1 personal computer integration
software includes two network virtual device drivers for the Microsoft
Windows environment. These drivers allow Windows applications operating
in a protected processor mode and standard DOS applications in a virtual
machine to concurrently access services designed to run in real mode under
the DOS operating system. The network virtual device drivers, available
only in Microsoft Windows enhanced mode, manage DECnet and NetBIOS
operations and permit the full use of these interfaces.

2 Introduction

Microsoft Windows virtual device drivers are loadable software modules that
extend the Windows operating system and enable it to support peripheral
devices, memory resources, and software applications. Some of these
modules allow applications that operate in different processor modes
with corresponding differences in memory access to communicate with one
another in a network system. Digital's PATHWORKS products make it possible
to integrate personal computers into local or wide area network systems.
The PATHWORKS for DOS software includes two network virtual device drivers,
which manage DECnet and network basic I/O system (NetBIOS) operations in
the Microsoft Windows environment for PCs.

This paper begins with a discussion of the Microsoft Windows environment
for which the PATHWORKS for DOS product provides network virtual device
drivers. The basic processor operating modes and Microsoft Windows
operating modes are described, preparatory to an explanation of Microsoft
Windows enhanced mode. This explanation is essential because virtual device
drivers operate only in enhanced mode.

Next, the paper details the capabilities of virtual device drivers, such
as providing the means for Windows and DOS applications to communicate.
The focus then turns to the environment for developing Microsoft Windows
virtual device drivers and concludes with a description of the structure
and functionality of the two network device drivers included in the
PATHWORKS for DOS software.

3 Microsoft Windors Environment

The Microsoft Windows environment is a graphical, multiapplication system
for personal computers that use the Intel 80286 or higher microprocessor.
For 80286-based systems, the Windows system operates in its standard
mode, using the real and protected processor modes. On the 80386 or higher

microprocessor, the Windows system can also operate in its enhanced mode,
using both protected and virtual processor modes. Enhanced mode allows the

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 1

 Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

Windows system to fully utilize processor features such as virtual memory
and multiple virtual machines. Virtual device drivers are available only in
this enhanced mode.

Basic Processor Operating Modes

All members of the 80x86 family, including the 80386 microprocessor,
calculate addresses in memory by using a segment register and an offset.
However, the method for calculating the physical address varies, depending
on the processor mode. The basic processor operating modes are real mode,
protected mode, and virtual mode.

Real Mode. This mode is used by the DOS operating system exclusively and
by most DOS applications. The processor calculates physical addresses by
shifting the contents of a 16-bit segment register left by 4 bits and
adding a 16-bit offset. Therefore, only the first 1 megabyte (MB) plus
65,519 bytes of a PC's physical memory are directly accessible in this
mode.

The basic layout of PC memory is shown in Figure 1. The first megabyte of
physical memory is known as conventional memory. This area may include
the PATHWORKS implementation of the DECnet transport protocol, namely
the DECnet Network Process component, as well as other memory-resident
software. In addition, conventional memory may contain the DOS operating
system and DOS applications. The next 65,519 bytes are called the high
memory area. Bank-switched memory, known as expanded memory, may also
be available. In real mode, memory protection and virtual memory are not
available, illegal instructions are generally ignored, and I/O instructions
are always allowed.

Protected Mode. In this mode, a segment register contains a selector.
Part of the selector is an index into a descriptor table maintained by
the hardware. A flag in the selector indicates which of two descriptor
tables to use, the local descriptor table or the global descriptor table.
The processor adds the offset to the linear address obtained from the
appropriate descriptor table. The 80386 implementation differs from that of
the 80286 because the 80386 processor offers both 16- and 32-bit general
registers and offsets, whereas the 80286 processor has 16-bit general
registers and offsets.

In protected mode, if paging is disabled, the linear address is the
physical address. If paging is enabled, the linear address is decoded
into a page directory entry, a page table entry, and an offset. The page
directory entry identifies a page table, and the page table entry provides
a physical address.

Protected mode is used by applications that use DOS extenders to access

memory beyond that which is accessible from real mode. 80386 processors
operating in protected mode may use virtual memory. In this mode, an
illegal instruction causes a processor trap, and I/O instructions may be
selectively allowed or trapped.

2 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

Virtual Mode. This mode implements a virtual machine that emulates the
behavior of an 8086 microprocessor. Address calculation in this mode is
similar to that in real mode, except that in virtual mode the result of the
shift-and-add operation is a linear address. The processor converts this
address to a physical address, as in protected mode. Processors operating
in virtual mode may use virtual memory. Also, each virtual machine can have
a separate page directory, an illegal instruction causes a processor trap,
and I/O instructions may be allowed or trapped.

Microsoft Windows Operating Modes

The Microsoft Windows environment supports several operating modes.

Windows Real Mode. Similar to previous versions of the Windows system,
Windows 3.0 can operate in real mode, i.e., use conventional memory,
expanded memory, and the high memory area. This mode is not supported in
Windows 3.1.

Windows Standard Mode. Windows 3.0 and 3.1 can operate in standard mode on
the 80286 or higher microprocessor. This mode uses the protected processor
mode, but does not take advantage of the 32-bit features of the 80386
processor. The Windows system and Windows applications are located outside
conventional memory, except for code necessary to provide the communication
links with DOS and other resident software. Standard DOS applications run
in real mode and occupy the full screen, as if the Windows system were
not present. Switching between Windows and non-Windows applications is
accomplished by performing a sequence of keystrokes in exactly the same
manner as under the MS-DOS version 5.0 task switcher. Virtual device
drivers are not used in standard mode.

Windows Enhanced Mode. In enhanced mode, the Microsoft Windows system
provides each non-Windows application a virtual machine in which to
operate. These machines are preemptively multitasked, so even compute-
bound, non-Windows applications can run in the background. The Windows
system and all Windows applications share a single virtual machine so they
can communicate with each other.

The Microsoft Windows system uses the protected and virtual modes of the
80386 processor. Paging is always enabled. The first 1MB plus 65,519 bytes
of the linear address space is mapped to the first 1MB plus 65,519 bytes of
memory belonging to the virtual machine currently executing. This mapping
allows each DOS application its own block of memory in which to run.

Some data must be shared among the virtual machines. Whenever all or most
of the data in a page is shared, a global page is used. Most resident
software that was loaded before the Windows system start-up is stored in
global pages. Selected data within these global pages may be maintained

separately for each virtual machine. This practice is called instancing and
may be requested by the resident software.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 3

 Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

To support operations requested by virtual machines, virtual device drivers
extend the Microsoft Windows kernel. The drivers are loaded at Windows
initialization and effectively become part of the kernel.

The Microsoft Windows enhanced mode kernel uses 32-bit registers and
offsets. The segment registers are loaded with selectors that allow access
to all of memory when the kernel is operating and eliminate the need to
break code and data into 64-kilobyte (KB) segments of memory. This memory
model is known as the flat model.

Although the Windows enhanced mode kernel is written to use 32-bit
registers and offsets, most of the remaining libraries supplied with
the Windows system and nearly all applications are written to use 16-bit
registers and offsets. The Windows applications run in protected mode,
whereas virtual mode provides support for the DOS applications, which need
not even be aware that the Windows environment exists.

4 Virtual Device Driver Capabilities

Virtual device drivers provide the means for Windows and DOS applications
to communicate, support asynchronous operations, virtualize hardware ports
and interrupts, and directly handle hardware and software interrupts. These
capabilities are described in the following section.

Communication between Protected-mode and Real-mode Software Applications

A virtual device driver provides a bridge between Windows applications
running in protected mode and DOS terminate and stay resident (TSR)
applications written to run in real mode with no knowledge of protected
mode. A Windows application that calls an application programming interface
(API) passes it a valid protected-mode address. Without virtual device
drivers, the real-mode software would interpret this address as a real-mode
address, usually pointing to a location within the DOS operating system.
A virtual device driver can map the memory into conventional memory and
change the addresses so that the real-mode software correctly accesses
the caller's data. The virtual device driver should enter a critical
section to avoid task switching while calling real-mode software that is
not reentrant.

Communication between Transient DOS Application Software and Global
Resident DOS Software

Most DOS application software and DOS TSR software is not designed to run
in the Microsoft Windows environment. While executing, a DOS application
is mapped into conventional memory. If the application calls resident
software, and a task switch occurs while an operation is in progress, data
would be delivered to the wrong application.

There are two ways to handle this situation. The virtual device driver can
enter a critical section to disable task switching until the operation is
complete. This approach works well for synchronous operations that never
take a perceptibly long time to complete.

4 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

However, the system does not respond to most user input while the virtual
device driver is in a critical section. Consequently, for long synchronous
operations, the end user of the application may believe that the system
is hung. If the real-mode software supports asynchronous operations, the
virtual device driver can convert the operation to an asynchronous call.
Handling the situation in this manner requires that a critical section be
entered only for the time it takes to queue the call, and then only if the
real-mode software is not reentrant.

Support for Asynchronous Operations

Asynchronous operations, whether in real or protected mode, require that
the virtual device driver be able to buffer data in a memory pool that is
mapped into every virtual machine. In addition, the driver must set up a
completion callback routine to wake up the virtual machine that made the
request, deliver the data to that virtual machine, and transfer control to
a caller-specified callback routine, if necessary.

Virtualization of Hardware Ports and Interrupts

Another function of virtual device drivers is to virtualize hardware
ports and interrupts so that the Windows system can successfully emulate
several 8086-based machines at once. Each virtual machine runs a DOS
application that assumes it has sole use of a machine. DOS is a minimal
operating system and does not provide much of the functionality required
by applications. Therefore, most DOS applications bypass the operating
system except to access the file system. It is common for an application
to set up its own interrupt handlers and to read and write hardware ports.
If several applications in separate virtual machines were to attempt these
operations at the same time, the applications would interfere with one
other. A virtual device driver can trap access to hardware I/O ports and
regulate access to the actual hardware.

Direct Handling of Hardware or Software Interrupts

The virtual device driver can provide the functionality of real-mode
software. If the user has no need to run this software outside the Windows
environment, the software can be removed from memory. Removing the real-
mode software reduces the need for context and mode switching, mapping,
and copying, and thus offers a considerable performance advantage. If
the resident software is removed, more memory is then available to DOS
applications running in the Windows environment.

5 Development Environment

The Microsoft Windows system includes virtual device drivers. Microsoft
also has a device driver development kit specifically for developing

virtual device drivers.[1] This section describes the environment for
developing and debugging this driver software.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 5

 Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

Development Tools

Currently, virtual device drivers are written in assembly language because
higher-level language compilers generally lack the ability to generate code
with 32-bit offsets and registers. A special 32-bit assembler and linker
are provided with the Microsoft Windows device driver development kit.

Debugging Tools

Virtual device drivers are debugged using the WDEB386 software module.
This debug tool requires that a terminal or equivalent be connected to
one of the communication ports on the PC; the debugger performs its I/O
to that communications port. Symbols are available in the debugger, but
source-level debugging is not provided.

To take full advantage of the WDEB386 capabilities, the debug version
of the Microsoft Windows WIN386.EXE module should be used. This version
contains many features essential for investigating the behavior of the
Windows system and, in particular, for debugging virtual device drivers.
The features include commands to display the registers, the stack, and
the control blocks for each virtual machine. Many of the virtual device
drivers included with the Windows system, and the two included in the
PATHWORKS for DOS product, have a debug entry point that may be invoked
by entering the period keyboard character, followed by the name of the
virtual device driver. Two particularly useful debug entry points are .VMM
and .V86MMGR, which provide detailed information about memory usage for
each virtual machine, including the use of expanded memory and the high
memory area. WDEB386 can be used successfully in the Windows environment to
debug virtual device drivers and to diagnose bugs in the read-only memory
basic I/O system (ROM BIOS) and other resident real-mode software.

The CodeView for Windows debug tool is intended for debugging applications
and dynamic link libraries, not for debugging virtual device drivers.
However, the CodeView and WDEB386 tools can be used simultaneously to
diagnose problems that occur when applications cause the Windows system
to fail.

6 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

6 The Network Virtual Device Drives

The PATHWORKS for DOS software provides two APIs for task-to-task network
communications. One is a DECnet socket-based interface, which uses an
argument block called an I/O control block (IOCB). The other is the
industry-standard PC networking interface, NetBIOS, with some extensions
provided by Digital to support wide area networks. The NetBIOS interface
uses an argument block called the NetBIOS control block (NCB). Both
interfaces are fully supported in Windows enhanced mode.

Digital's PATHWORKS for DOS version 4.1 includes two virtual device drivers
to support networking: VDNET.386, which handles DECnet socket calls, and
VNETBIOS.386, which handles NetBIOS calls. Although they support different
APIs, these two virtual device drivers are similar in structure. The
discussion in this section applies to both drivers unless otherwise noted.
These drivers are included with the current PATHWORKS version 4.1 product
and with Windows version 3.1. To identify Digital Equipment Corporation
as the developer of the drivers, Microsoft requested that the module
names VDNET.386 and VNETBIOS.386 be changed to DECNET.386 and DECNB.386,
respectively, in Windows version 3.1. In this paper, the nomenclature VDNET
and VNETBIOS is used to refer to these two modules.

The drivers invoke the real-mode network software in the virtual machine
that requested the operation. Creating a "network virtual machine" to which
the driver would route all network activity would have allowed most of the
network software to be loaded into a single virtual machine and thus freed
up conventional memory for non-Windows applications. However, using this
design would have incurred the overhead of switching on virtual machines
for every network access, timer tick, and network hardware interrupt. In
addition, creating a network virtual machine would have required that
the data link layer and the DECnet scheduler be capable of performing
the virtual machine switch. Finally, this design would be practical only
for those users who access the network exclusively while operating in a
Microsoft Windows environment.

Initialization

Virtual device drivers are called several times during Windows
initialization. While the Windows system is still operating in real
mode, the VDNET and VNETBIOS modules check to see if the resident network
software is loaded. If it is not, there is no reason to load these drivers.
A value is returned that aborts the loading of the drivers but directs the
Windows system to continue loading.

After the Windows system enters protected mode, the drivers are called
again during each successive phase of initialization. Each virtual device
driver takes control of the software interrupts used for its respective

API, reserves space in the control block of each virtual machine, obtains
parameters from the SYSTEM.INI file, and allocates a pool of global memory
for communication with the real-mode resident networking software. Figure
2 illustrates a system virtual machine and a virtual machine running a

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 7

 Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

DOS application. The figure shows the pool of conventional memory that the
virtual device driver allocates as global memory.

The drivers perform a "sanity check" to verify that the virtual device
driver can distinguish global memory from memory that is local to a single
virtual machine. However, the Windows function to perform this check can
fail when running on some common unsupported software configurations. At
this point, if the sanity check fails, the driver displays a message to
advise the user to exit the Windows system.

8 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

Virtualization of the Network APIs

When an application issues a software interrupt for a DECnet or NetBIOS
call, the appropriate virtual device driver gains control. If the
application making the call is in protected mode, the virtual device driver
always maps the call in memory. Otherwise, the driver software checks the
control block (i.e., the IOCB or the NCB) and the buffer addresses to
determine if they are stored in global memory, i.e., mapped identically
in every virtual machine. If so, the virtual device driver does not map the
call, because it will execute properly without mapping.

API Mapping. If the control block and buffer addresses are not stored in
global memory, mapping is necessary. The virtual device driver allocates a
hook control block to the operation. This control block resides in global
memory and includes an IOCB or NCB, which the virtual device driver passes
to the resident networking software. The driver globally maps the caller's
buffers in the mapping-space pool allocated at initialization. The IOCB or
NCB embedded in the hook control block contains addresses changed to point
to the remapped address in the mapping-space pool. The callback (post)
address is set to the callback routine in the virtual device driver, so the
driver is called when the operation is complete.

Optionally, if the operation is a blocking call that takes a long time
to complete, the virtual device driver may convert the operation to an
asynchronous call. In this case, the driver sets an internal flag, HF_
Suspend_Until_POST, and does not return control to the calling application
until the operation is complete. All other virtual machines continue to run
while the network I/O is in progress. This design prevents the operation
from monopolizing the entire system.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 9

 Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

Asynchronous Calls. If the call is asynchronous or has been converted to an
asynchronous call, the virtual device driver must establish a callback in
order to be notified when the call completes. Because the virtual device
driver runs in protected mode and the resident network runs in virtual
mode, a special type of callback is required. The virtual device driver
uses the Windows Allocate_V86_Callback service to obtain a real-mode
pointer to an instruction in global memory that causes a trap when executed
in virtual mode. The Windows system handles this trap and transfers control
to the virtual device driver in protected mode.

Invoking the Network Process. The virtual device driver is now prepared
to pass the call to the real-mode networking software. The driver enters a
critical section to avoid reentrance problems and calls the Simulate_Real-
Mode_Interrupt service to invoke the network process as if it were being
invoked in real mode. The virtual device driver leaves the critical section
when the simulated interrupt returns. If the operation is not asynchronous,
the caller's IOCB or NCB is updated, buffers are unmapped, and the hook
control block is freed. Figure 3 shows a Microsoft Windows call to the
network, intercepted by the virtual device driver and passed to the network
process.

10 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

Callback Routine. The driver checks the
HF_Suspend_Until_POST flag to determine if the call was a blocking call
that the virtual device driver converted to an asynchronous call. If so,
control must not return to the calling application until the operation is
complete. Normally, the callback routine in the driver is called at this
time. However, certain NetBIOS error conditions cause the operation to
return immediately without calling the callback routine. Therefore, the
NetBIOS virtual device driver checks the status of the call.

If the call is still in progress, the requesting virtual machine
relinquishes its allocated time and retries when the process wakes up.
This design protects the process from being awakened prematurely by another
virtual device driver. Also, some NetBIOS request errors cause the NetBIOS
software interrupt to return immediately and do not transfer control to the
callback routine. Ordinarily, the process is only awakened by the callback
routine in the virtual device driver on completion of the call.

The Suspend_VM service can be used to block a virtual machine during such a
call. However, suspending a virtual machine requires that the system call
every Windows virtual device driver to notify it of the suspension. The
notification process constitutes a high-overhead operation and is therefore
unsuitable for this use.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 11

 Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

Table_1:_Flags_Included_in_the_Debugging_Display___________________________

Flag______________ Indication___

HF_Wait_For_IRET Cleared when the DECnet Network Process component
 returns to the virtual device driver.

HF_Wait_For_POST Set if the virtual device driver callback is
 required; cleared when the virtual device driver
 callback is called.

HF_Wait_For_Sim_ Set if the caller requested callback; cleared when
POST the caller's callback returns.

HF_POST_Crit Set while in a critical section.

HF_From_PM Set if the caller was in protected mode.

HF_Canceled Set if the operation was canceled.

HF_Canceling Set if the operation is being canceled.

HF_Suspend_Until_ Set if the operation is a blocking call that is being
POST simulated using an asynchronous call.
 Do not return to caller until the operation is
______________________complete.__

If the operation is asynchronous, the system transfers control to the
virtual device driver callback routine when the operation is complete, as
shown in Figure 4. This routine calls the Windows scheduler to wake up the
virtual machine that requested the operation. The Windows event services
are also called to invoke the event-handler routine in the virtual device
driver when the requesting virtual machine is scheduled. In this way, the
virtual device driver regains control. This process restores the caller's
context before updating the caller's data.

As shown in Figure 4, the event routine updates the user's argument block
and calls the user's callback routine. Finally, the virtual device driver
unmaps the buffers, frees up the hook control block, and returns control to
the calling application.

Virtual Machine Termination

When a virtual machine terminates, all virtual device drivers are called to
perform cleanup. The network virtual device drivers check for outstanding

network operations to the virtual machine that is being terminated. All
such operations are canceled, and a warning message is displayed to the
user. Windows applications execute in the system virtual machine, so their
outstanding network operations, if any, are canceled when the user exits
from the Windows system. Network operations by resident software are not
canceled when a virtual machine terminates.

12 Digital Technical Journal Vol. 4 No. 1, Winter 1992

 Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

Debugging Entry Points

The VDNET and VNETBIOS network virtual device drivers provide debugging
entry points for use by the Windows kernel debugger. These entry points
give a formatted display of the hook control block for each hooked
network call in progress. The display includes the requested function,
buffer address, the handle of the virtual machine from which the call was
requested, the virtual-machine-specific address of the caller's argument
block, and flags. The flags included in the debugging display indicate the
state of the operation, as shown in Table 1.

Special API Entry Point

The VDNET network virtual device driver provides an API entry point that
allows application software to determine what version of the VDNET driver
is loaded. This function is available to both protected-mode and real-mode
applications.

 Digital Technical Journal Vol. 4 No. 1, Winter 1992 13

 Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

7 Summary

PATHWORKS network virtual device drivers extend the Microsoft Windows
enhanced mode environment to support most hardware that can be installed
in a personal computer. These drivers also support all software that can
run under the DOS operating system, including software that bypasses the
operating system to access the hardware directly. Network virtual device
drivers make network services available to the Windows kernel, to Windows
and non-Windows applications, and to other virtual device drivers. The
virtual device drivers included in the PATHWORKS for DOS software product
permit full use of the DECnet and NetBIOS APIs, including Digital-specific
extensions to the NetBIOS interface, in the Microsoft Windows enhanced mode
environment.

8 Reference

1. Microsoft Windows Device Development Kit-Virtual Device Adaptation Guide
 (Redmond, WA: Microsoft Corporation, 1990).

9 General References

Intel 80386 Hardware Reference Manual (Santa Clara, CA: Intel Corporation,
1987).

Intel 80386 Programmer's Reference Manual (Santa Clara, CA: Intel
Corporation, 1987).

Intel 80386 System Writer's Guide (Santa Clara, CA: Intel Corporation,
1987).

10 Trademarks

The following are trandemarks of Digital Equipment Corporation:
ALL-IN-1, DEC, DECnet, DECwindows, Digital, the Digital logo,eXcursion,
LAT, PATHWORKS, ULTRIX, VAX, VAXcluster.

Microsoft, MS, and MS-DOS are registered trademarks of Microsoft
Corporation.

11 Author Biography

Andrew W. Nourse Principal software engineer Andrew Nourse has worked on
network software for the PATHWORKS and DECnet-DOS products for the past
six years. He developed Microsoft Windows and non-Windows networking
applications, libraries, and drivers. Prior to this, he wrote network
utilities for DECsystem-20, DECsystem-10, and RSTS/E products. Andy

received a B.S. in electrical engineering and computer science from the
Massachusetts Institute of Technology in 1974 and joined Digital in 1976.

14 Digital Technical Journal Vol. 4 No. 1, Winter 1992
===
Copyright 1992 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

