eXcursion for Wndows: Integrating Two W ndow ng Systens

eXcursion for Wndows: Integrating Two W ndow ng Systens
By Dennis G G okas and Andrew T. Leskowitz
1 Abstract

Digital's eXcursion for Wndows display server is an application for

M crosoft W ndows. The eXcursion for Wndows product is based on the

X W ndow System and allows X client applications to display output,

receive i nput, and exchange data in the Mcrosoft Wndows environnent.

The eXcursion software visually integrates the X and M crosoft W ndows

envi ronnent s-applications from both environnents display on a single screen
and have the sanme appearance. A key conponent of Network Applications
Support (NAS) and Digital's PC integration program the eXcursion for

W ndows di splay server enables information exchange anong PC users and

non- PC users |inked throughout a network.

2 Introduction

The eXcursion for Wndows software is a display server based on the

X W ndow System version 11, release 4 protocol and inplenmented as an
application for Mcrosoft Wndows software. eXcursion allows X11 client
applications based on any X11 toolkit to display output and receive input
in the Mcrosoft Wndows environment. The two wi ndow environnents are
seam essly integrated. Mcrosoft Wndows software provides the w ndow
managenment for X W ndow System applications. The eXcursion display server
snmoot hly handl es the display and user input for the X applications al ong
wi th data exchange between the applications.

This paper first establishes the relationship of the eXcursion display
server to the X Wndow System and M crosoft W ndows environnments. It

then presents the personal conputing integration philosophy behind the
devel opnent of the eXcursion product. This paper then relates the design
phil osophy and inplenmentation architecture of the server. It concludes with
a di scussion of resource usage. <colum>

The DECw ndows architecture integrates the user and graphical interfaces of
the VM5, ULTRI X, and DOS operating system and desktop environnments. The X
W ndow System client-server architecture, on which the DECM ndows systemis
based, provides the nmeans to achieve this integration. The X architecture,
as inplenmented by Digital's DECwW ndows Mdtif program is shown in Figures

1 and 2. This architecture is hardware and software system i ndependent. It
allows X applications, or clients, to execute on any processor and display
on any device in a distributed network.

X applications are linked with toolkits and libraries that include
wi ndowi ng controls, user interface objects, and graphics capabilities.
The X toolkits also include interprocess conmuni cations capabilities that

provi de data interchange between the application clients. Figure 2 presents
some of the libraries in the DECw ndows environnent.

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 1

eXcursion for Wndows: Integrating Two W ndow ng Systens

These applications comunicate with an X W ndow System di spl ay server

over a network through the X protocol. The X protocol is independent of
operating system network transport, and network wiring technol ogy and

t opol ogy. The di splay server provides basic wi ndow ng, graphics rendering,
and user input services for X applications.

2 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

eXcursion for Wndows: Integrating Two W ndow ng Systens

eXcursion | nplenentation

The eXcursion application inplenents the X Wndow System di spl ay server
on Mcrosoft Wndows. The eXcursion software allows the w ndows of

the X applications, running on a renote host, to display on a persona
conputer. The two environnments are visually integrated-applications from
bot h environnments display on a single screen and have the sanme visua
appearance. The two environnments use the sane mechani snms to manage w ndows
and thus present a consistent user interface. In addition, eXcursion uses
nmet aphors and nmechanisns fanmliar to the user of Wndows. A control pane
is employed to handl e configuration and custom zati on of the eXcursion
application. The Wndows Program Manager is enployed to transparently

i nvoke applications on renpte hosts.

Figure 3 shows the eXcursion control panel, the Wndows cal endar, and

t he DECw ndows Motif cal endar as viewed on a desktop device. The W ndows
Program Manager is also displayed to show the eXcursion program group with
icons installed. Users can sinply double click the icons in the program
group to start applications on a renote host.

figure 3 (Wndows Display with eXcursion)-PHOTO, not avail abl e
onl i ne.

eXcursion-A Conponent of PC Integration

One of the goals of Digital's PCintegration programis to integrate PCs

t hroughout a network so they may share resources. In a |local area network
(LAN) or a wide area network (WAN), PCs share files and printers through

a file server. Traditionally, Digital has provided term nal emulation
software for interaction with a time-sharing systemon the network. The

X W ndow System di stri butes another resource | oad throughout the network,
nanmely application services. X applications can be run on a speci al - purpose
host, such as a Cray system or on a general-purpose host such as a VAX
system The applications share the CPU, nenory, disk, and print resources
of that host. Thus, the optinmal or appropriate device can provide the
application services. The eXcursion product is an X display server through
whi ch the PC user can access the X Wndow System cl ass of application.

Because it enables information exchange anong PC users and non- PC users

t hroughout a network, the eXcursion software is a key conponent of
Digital's Network Applications Support (NAS) and Digital's PC integration
programin the Personal Conputing Systems Group.

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 3

eXcursion for Wndows: Integrating Two W ndow ng Systens

3 Design Phil osophy

As in any software devel opment project, a nunber of very inportant design
goal s and deci si ons were established for the eXcursion for Wndows product
whi ch affected the inplenentation. The eXcursion application had to be
extrenely conpatible with the Mcrosoft Wndows environnment. There were

i mportant reasons for this decision.

First, it was critical that eXcursion run on any PC, with any conbination
of devices that the standard M crosoft Wndows environment supports.
Typically, the manufacturer that builds the hardware is responsible for
writing the Wndows-conpatible drivers. The devices that nopst affect
eXcursion are keyboard, pointing device, and displ ay.

Second, a trenmendous anount of devel opnent effort has been invested in
the functionality and performance of the W ndows product. W wanted

to apply that functionality and not duplicate it in the X server. For
exanpl e, Wndows software has a bit block transfer (BitBlt) routine that
can nore effectively handle that operation than eXcursion. It is one of
the operations that Mcrosoft has optim zed. In addition, it is one of
the operations that can be custoni zed and optim zed for the PC s graphics
adapter. If the graphics adapter can handle BitBlt operations with built-
in hardware, it is nore likely that the operation can be perforned faster
with that hardware than with the CPU. Therefore, eXcursion is conpletely
insulated fromthe hardware and benefits fromfunctions that have been
optim zed for specialized hardware

The third reason for devel opi ng eXcursion as a well-behaved W ndows
application is independence fromthe internals of the underlying w ndow ng
system We might have been able to do a slightly better job of integration
of the Mcrosoft Wndows and X W ndow System environnments if we had

obtai ned a source code license from M crosoft and truly bl ended the two
environnents into one. However, the cost, devel opnent resources, and tine
needed to i nplenent this type of integration were prohibitive.

Fourth, the eXcursion application had to share the PC system resources

of display, pointing device (nmouse), keyboard, sound subsystem nenory,
and network with another w ndowi ng systemand its applications. The first
five resources were all owned and managed by M crosoft W ndows. We had
to use its application programring interfaces (APIs) to correctly share
those resources. The network resource was shared anbong many networked
applications through its APIs as well

Use of W ndows Resources

A substantial portion of the design debate centered on the way eXcursion
woul d use the Mcrosoft Wndows resources. We needed to determ ne how

to map the wi ndows, graphics contexts, fonts, and color maps of the X

environnent to the w ndows, device contexts, fonts, and color maps of the
M crosoft W ndows environnent.

4 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

eXcursion for Wndows: Integrating Two W ndow ng Systens

The maj or dil enma was: Should each X wi ndow be created as a M crosoft

W ndows wi ndow and thus be known to both environnents? O should only the
top-1evel X wi ndows-those which were parented by the W ndows desktop or
root wi ndow-be created as wi ndows in the Mcrosoft Wndows environment,
with all other wi ndows created strictly as X wi ndows and known only to
eXcur si on?

The first proposal was certainly easy to inplenment and | ed to consistency
t hroughout the X server. The W ndows environment had an APl rich enough
to make this plan feasible. In addition, Wndows would handle all the

wi ndow st acking and clipping for eXcursion fairly transparently. Despite
these reasons, the alternative plan was proven nore workabl e during our
prototypi ng phase.

The X W ndow System was desi gned to enploy many wi ndows since they are
considered to be inexpensive resources.[1l] Servers use little nmenory for
each wi ndow. X wi ndows are fast to create, map, unmap, and destroy; and
they can navigate quickly through the w ndow tree. Thus, X-based toolKkits,
such as Motif, enploy many wi ndows. When we tested our initial proposal,
we di scovered that both w ndowi ng systens naintai ned wi ndow trees, which
resulted in a performance problem For exanple, when certain operations
such as graphics were performed, sone of the clipping was done tw ce, once
by eXcursion and once by Mcrosoft Wndows. In addition, Mcrosoft W ndows
l[imted the nunmber of wi ndows that could be created, by the 64 kil obyte
(KB) nenory it reserved for these and other system resources.

Functional ly, the X Wndow System graphics contexts (GCs) mapped fairly
well to the Mcrosoft Wndows device contexts (DCs). However, the way X
applications enploy GCs is significantly different fromthe way M crosoft
W ndows enpl oys DCs. X applications store many GCs; each is set up uniquely
with different values for the drawing state variables. Sonetines many CGCs
are used for one wi ndow and often a different GC is used for each w ndow.
The use of many GCs can significantly reduce the comuni cati on between

the X server and application, since graphics state is conmunicated only
once. M crosoft Wndows applications use one DC for all w ndow painting,
nmodi fying it as needed. Some innovative caching algorithnms in the eXcursion
product were used to address this msmatch in usage style. <colum>

Font resources were also efficiently mapped between the two w ndow ng
environnents. A substantial portion of the graphics done by an application
in a wi ndowi ng environment is text. Mcrosoft recognizes this and optim zed
the text output routines in Wndows. Thus, the optinmal way of draw ng

text was through W ndows. Therefore, the X server's font resources were
conpiled into Wndows-conpatible font file resources so Wndows coul d

do all the text drawi ng. For each X font resource, we included a second
file for the font and glyph nmetrics that did not map to the W ndows font
file resource. Sone of the eXcursion font file resources were nodified to

resol ve i nconsi stenci es between the two environments and nake eXcursion
conpatible with Wndows. For exanple, unlike X, Wndows does not allow text
drawi ng outside the characters' boundi ng box.

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 5

eXcursion for Wndows: Integrating Two W ndow ng Systens

Col or maps are another resource W ndows shares with eXcursion. Mcrosoft

W ndows version 3.0 with standard video graphics array (VGA) hardware (a
640 by 480 resolution device with 16 colors supported) pre-allocates all 16
colors in the color table for the Wndows environnent. For eXcursion, this
is effectively the X Wndow System static color visual, where the color map
is read-only. Wth enhanced VGA cards that support 256 sinultaneous colors,
W ndows pre-allocates 20 entries in the color table. For eXcursion, the X
W ndow System s pseudocol or visual can be supported with only 236 entries
for allocation in the color table. Again, it was inportant that eXcursion
was wel | behaved with respect to color-map allocation and use within the

W ndows envi ronnent .

Per f or mance Consi der ati ons

Per f ormance of the eXcursion product is a continuing area of concern,

i nvestigation, and devel opnment. Many performance concerns were renedi ed by
ef ficient code paths and i nnovative algorithnms; others need to be addressed
by the user in the formof trade-offs. In this section we discuss sone
maj or architectural differences between M crosoft Wndows and the X W ndow
Systemthat | eave X performance at a di sadvantage when it is |ayered on
anot her wi ndowi ng system

First and forenost, eXcursion has to translate X requests into Wndows APIs
as well as translate Wndows events, APl return values, and APl errors into
X events, X request replies, and X request error events, respectively. The
di sadvant age, of course, is the increased processing tine eXcursion needs
to conmplete these translation tasks. Since our design goal was to |ayer a
forei gn wi ndow system on the desktop device's native w ndowi ng system we
had to accept this performance penalty.

Second, X enploys a client-server nodel. All X protocol requests of the X
client, (X application) to the X display server have to be encoded into
the X protocol and transnmitted to the server through an interprocess
comuni cation nmechani sm For the eXcursion product, this nechanismis a
network because the client and server are always on different systens.
Operations in X, e.g., nmenu sweeping and resizing of objects, always

i nvol ve both the client and the server. These operations in particular
have to be fast because they affect the user's perception of the w ndow ng
system s performance. Thus these code paths had to be efficient.

Third, X has strict pixelization rules. These rul es determ ne which pixels
nmust be included in the rendering of a graphics object. In general, al

the interior points of an object are rendered, but only certain points on
the outer boundary of the object are rendered. If the area of the pixe

bel ow and to the right of the center point is touched, then the pixe

is included; otherwise it is not.[2] Thus, a rectangle has its top and

| eft edges included, but not its right and bottom edges. The pixelization

rules for the X protocol were strictly specified to satisfy the technica
mar ket's graphics requirements, such as CAD)CAM |f one were to tessellate
polygons in the X environnment, one would be guaranteed that each pixel is
i ncl uded once and only once.

6 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

eXcursion for Wndows: Integrating Two W ndow ng Systens

The M crosoft W ndows environnent was designed with a busi ness graphics
presentation nodel. The pixelization rules are not wi dely known and may
change.

Based on these facts, we chose to adhere to the X protocol and its

pi xelization rules. W believed nost users would run office productivity
applications. For these applications, pixelization rules do not affect

the operation or functionality of the application. In a majority of cases,
the user is never able to see the subtle differences in the rendering of a
graphics object. As part of eXcursion's custom zation, we allow the user to
sel ect the way graphics are rendered-optinized for performance or optimn zed
for correctness. This choice is analogous to printing draft (fast) node for
proof copies or letter-quality, high-resolution node (high quality but sl ow
speed) for final copy. The user can change this paranmeter at any tinme in
eXcursion and force a redraw by the X application, e.g., through an iconify
/deiconify procedure, to render the graphics in the other npde.

Seam ess I ntegration

One of our design goals was the seam ess integration of eXcursion into
the Mcrosoft Wndows environnent to the greatest extent possible. Two
i mpportant areas to integrate were wi ndow managenent and data exchange.

W ndow Managenment. We believed that M crosoft Wndows shoul d provide wi ndow
managenent. Top-level wi ndows in the two environnments are peers and shoul d
be visually and functionally identical. Wth this capability the user does
not have to run a renote w ndow nmanager or |earn and renenber a second user
i nterface.

We wanted the outer frame of the windows in X to look like the windows in
M crosoft W ndows. Furthernmore, we wanted Wndows to provide all of the
end-user w ndow managenent functionality- nove, resize, iconify, deiconify,
stacki ng, and focus. The wi ndows for these operations had to contain the
same user interface objects found in the Mcrosoft Wndows environnent.

We did violate this design principle in one case. In place of the standard
M crosoft W ndows system nenu icon in the upper left corner of the w ndow
frame, we placed an "X" (see Figure 3). This object visually cued the user
that the w ndow represented an X W ndow System application running remotely
but displaying within the Mcrosoft Wndows environment.

On the other hand, X servers are not aware if the graphics object being
rendered is a conponent of a scroll bar, comand button, radi o button,
check box, text entry field, etc. For this reason, eXcursion cannot nmake
graphics objects look |ike and function as the equival ent objects in the
M crosoft W ndows environnment. Unfortunately, the user has to deal with
t hese inconsistencies between the two wi ndowi ng environnents.

The eXcursion product had to conformto the X Consortiums Inter-Client
Communi cat i ons Conventions Manual (I CCCM specification for w ndow
managenment within the Wndows environnment. Wndow properties such as nane,
i con nane, size, and position on a top-level w ndow nust be recogni zed by
eXcursion and nmust be set using the appropriate Mcrosoft Wndows APIs. [3]

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 7

eXcursion for Wndows: Integrating Two W ndow ng Systens

Dat a Exchange. W believed users should be able to seam essly exchange
text and bit-map data between the M crosoft Wndows and X W ndow System
envi ronnents. For exanple, the user should be able to use the standard
application mechanisns to select data and cut or copy it from one

envi ronnent, nove to an application in the other environnent, and use
the standard application nechanisns to paste the data. No special user

i ntervention between these two operations would be acceptabl e.

To enhance the data integration capabilities of eXcursion, we did inplenent
a special feature to capture any part of an X wi ndow as bit-map data and
save it in the Mcrosoft Wndows clipboard. Mcrosoft Wndows applications
could then paste that data.

Cross-cultural Conpatibility

eXcursion functions as any other M crosoft Wndows application and conforns
toits style guide in three areas-installation, configuration, and help

The installation design principles are quite sinple. Installation has to
be perforned through a Mcrosoft Wndows application and has to all ow
the user to run the initial application without further configuration
Only two configuration paranmeters, fonts and keyboard, nust be specified
by the user. In addition, a user in the VM5, ULTRI X, or Sun OpenW ndows
envi ronnent has easy access to the standard applications of the operating
system The installation procedure installs icons that represent all of
the standard DECw ndows applications for the VM5 and ULTRI X systenms and
standard Sun OpenW ndows applications in the Mcrosoft Wndows Program
Manager. A user can invoke the application on the rempte host using the
standard Program Manager nechani sns, such as a double click of the program
icon with the pointing device.

We devoted significant engineering resources to the configuration for
eXcursion. Since the configuration was for a wi ndowi ng environment, we

deci ded to use the control panel nmetaphor that is commopn to other w ndow ng
envi ronnents, such as the Macintosh and M crosoft W ndows. The eXcursion
control panel (partially shown in Figure 3), provides access to all the
user preference features and configuration paraneters. Another inportant
design principle was the i nmedi ate activation of configuration paraneters
or user preference features whenever it was technically feasible. W did
not want the user to exit all the X applications or restart the X server to
activate configuration paraneters.

The eXcursion control panel also allows users to custonize their X
application environments. The eXcursion control panel provides a nmechani sm
to build an applications menu within the control panel and instal
application start-up commands in the Mcrosoft Wndows Program Manager

as icons for easy invocation of renpte applications.

On-line help also conforns to the Wndows style guide. Qur design goa

was to supply a concise Quick Start card with all the informtion a user
needed to deternmine the prerequisites for install, install the product, and
i nvoke the first application. Al of the remaining end-user docunentation

8 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

eXcursion for Wndows: Integrating Two W ndow ng Systens

is available on line. The only other printed docunmentation is the reference
manual

For install, configuration, and hel p, human factors engi neers provided
usability evaluations, and a graphics designer assisted in the final design
of the user interface.

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 9

eXcursion for Wndows: Integrating Two W ndow ng Systens

X Server Internal Architecture

The X11 release 4 MT sanpl e server inplenentation provided the baseline
for our devel opnment effort. This architecture is depicted in Figure 4. The
sanpl e server architecture has three distinct |ayers: device-independent

X (DI X), operating system (0OS), and devi ce-dependent X (DDX). The DI X
layer is primarily concerned with high-1evel decision making. The OS | ayer
connects the X server to its underlying network transport. The DDX | ayer
translates a client's request into a pixel display. To conformto the

W ndows application nodel, our inplenentation adds a fourth |ayer, the

W ndows nessage processing | ayer.

Devi ce-i ndependent X

The DI X | ayer consists of nodul es that provide high-level server data
structure mani pul ation, X request vectoring, and server task scheduling.
Every attenpt was made during the devel opnment process to change as little
as possible in this layer, and to maintain the firewall between the DI X

| ayer and the underlying DDX | ayer. The DI X | ayer's nost inportant task
is the dispatch |oop, the schedul er for eXcursion processing of al
asynchronous client requests. Requests fall into three categories:

1. Edits to internal data structures such as the current procedure vector
for drawi ng wi de, dashed |i nes

2. Queries on internal resources such as available fonts and their netrics
3. Drawi ng requests such as rendering of text and lines

The DI X | ayer maintains the current state of the window tree and all its
conponents, as well as the graphics contexts and all of their associated
data. DI X code dynamically alters the processing paths chosen for x request
conpl eti on based on the current states of these data structures. For
exanpl e, suppose that a GC is being used to draw a series of single-wdth,
solid lines in a window. nowthe X client wishes to begin drawing with 10-
pi xel -wide, tile-filled lines. Dix then reads the client requests dealing
with the GC state changes, and updates its data to reflect the new draw ng
conditions for lines. DI X changes the drawi ng vector and updates the gc
data structure. (Device-specific drawing operations are performed in the
DDX | ayer.)

W ndows Message Processing
The W ndows nessage processing layer is the interface to the user's input

devi ces, the nmouse and keyboard. Actions taken by a user result in Wndows
nmessages containing informati on on the nessage type, conditions, and

paranmeters being sent to the application's Wndows nessage procedure. Here
the data must be nodified and translated into sonmething that an X client
can understand, an X event. Event processing is done by the DI X | ayer, and
the event data is then shipped to the client by the OS | ayer.

10 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

eXcursion for Wndows: Integrating Two W ndow ng Systens

Operating System

Data transferred on the X wire is arbitrated in the OS | ayer. When an X
client application makes a server request, the underlying network code
receives it, packages it, and nakes it available to the OS | ayer. The
eXcursion product runs |ayered above one of two entirely distinct network
transports (either the DECnet or the TCP/IP protocol) and nust provide
some mechani sm for passing data back and forth between the real node of
the network interface and the protected node of a Wndows application

For this reason, we chose to interface the server to the network by neans
of a generic OS nodule. Since all server-generated calls are now networ k-
i ndependent, the server is freed fromany network-specific decisions.

Dat a conversions fromreal node to protected node are provi ded by a group
of W ndows dynamic link |ibraries (DLLs). Functions in DLLs are called
directly froma Wndows application (in this case, eXcursion). The DLLs

in turn use Wndows' extended nenory manager to nmake DOS protected node
interface (DPM) calls to pass the data to the network stack which runs in
real node. For exanple, assume eXcursion is running the TCP/IP protocol
and the user presses a nouse button in an eXcursion wi ndow. The data
conprising the X event is assenbl ed, packaged, and presented to the OS

| ayer for shipnment to the renmote X client. The server mekes its "send
data" call into the generic OS nmodule. This nodule nakes a call into a
comon, shared DLL, and passes the data unchanged. The generic DLL acts

as the network arbitrator. It knows about the underlying network transport
and vendor since it perforned a network installation check at start-up
Therefore, the generic DLL calls into the vendor-specific eXcursion DLL to
nodi fy the data, pack it into the format required by the network stack, and
ship it to the real node stack

This inplenentation strategy requires several DLLs, but it conpletely
shields the server, and nore inmportantly the user, fromthe underlying
network. The DLLs are sinply copied once into the eXcursion execution path
and forgotten. There is no need to reconfigure eXcursion if the underlying
net wor k changes.

Devi ce- dependent X

Al the visually recogni zabl e work takes place in the DDX | ayer. DDX
translates a client's X request into pixel manipulation on the screen.

The sanpl e server inplenmentation that provided our starting point canme with
a DDX | ayer designed for nmonochronme frame buffer (MB) devices. W replaced
the MFB device-specific code in the DDX |layer with inplenentation-specific
code for W ndows.

Qur baseline sanpl e server inplenentation also provided a machi ne-
i ndependent DDX nmechanism (M). The M nodul es mani pul ate the video

termnal as a virtual device: video nenory is enulated and all draw ng
operations take place into this virtual space until the final output
renders the bits onto the screen. The M nmanipul ates bits and perfornms

| ogi cal operations until it achieves a final representation of the
requested operation. This final drawing requires two distinct functions:

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 11

eXcursion for Wndows: Integrating Two W ndow ng Systens

fill spans and push pixels. The fill spans function renders draw ng out put
in single scan |ines, making repeated calls to Wndows BitBlt. The push

pi xel s function does nuch the sane thing, but at a nore conplex level-it
pushes bits through a mask or filter before they appear on the screen
These nechanisns are required for proper text rendition when tile or
stippled filled text characters are requested with unaltered character
outlines and backgrounds. These nechani snms are, by definition, clunsy and
i nefficient, but they provide pixel perfect renditions. eXcursion uses
these M functions when any of the follow ng conditions nust be net.

1. Drawings are conplex filled areas.

2. Tile and stipples used are not 8 by 8 pixels in size. (Wndows is
optim zed to handl e this one case, and breaks down easily for all other
si zes.)

3. Al operations require pixel perfection, such as display of a CAD
application.

4 Using Wndows APIs

We designed a set of W ndows-specific nmodules that filled the hardware-
dependent space provided by MFB. These functions are called by the DI X

| ayer's request dispatcher through the request vectors set up in the
server's main data structures (screen, wi ndow, GC, see Figure 5 for
exanples). Al X relative drawing requests are translated here into W ndows
operations, and Wndows APIs are called to satisfy them

12 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

eXcursion for Wndows: Integrating Two W ndow ng Systens

As described previously, we decided to match wi ndow trees by creating

a Wndows wi ndow for each top-level X wi ndow only. X child w ndows are
handl ed as if they are rectangul ar areas of their parents, thereby saving
roomin the finite (64KB total size) pool of Wndows resources avail able
for other objects. This decision led to a difficult problemthat needed a
sol ution: how do we handl e wi ndow cl i ppi ng?

W ndow Cl i ppi ng

Clipping is acconplished in X by maintaining a |list, for each wi ndow in
the system of the rectangles into which drawing is allowed. Cipping
in Wndows is acconplished essentially the same way, but it requires

al l ocation of another resource, a region. W inplenmented clipping by
adhering to the X nodel, letting the server code do as nuch of the work
as possi bl e.

The DI X code mani pul ates and maintains a "clip list" for each X wi ndow.
When a W ndows wi ndow is created and used, W ndows expects this clipping
information to reside in the windows DC if sonething is to be drawn in the
wi ndow. To get the X clip list into the Wndows DC, we allocated a smal

pool of cached W ndows regions. A DC (and X parallel GC) used for a draw ng
operation nmust be validated to ensure that all conponents are up-to-date.

If the DC does not have a copy of the clip list, a Wndows region is built
fromthe rectangles in the X clip list and installed as the clipping region
of the DC. When the drawi ng takes place, the clip list is installed. As
long as the window is not noved, resized, or obscured, the region renuins
unchanged and further region validation is unnecessary. Wen the nunber

of visible windows exceeds the cache limts, the |east recently used DC

is "thrown out" of the cache, and nust be revalidated if it is used again.
Thi s mechani sm all ows snmooth, efficient output to rmultiple w ndows without
extensive use of Wndows precious region resources.

W ndows places a further restriction on resource usage. In addition to
bei ng created, a resource nust be selected into a DC before it can be used.
Desel ected, old resources are deleted to save space. |f a request asks for
one of the deleted resources, it nust be re-created and sel ected again. The
cachi ng and updating of DCs in Wndows is handled by the sanme function that
val idates and refreshes GCs in X. When an X request results in a GC change,
it my also result in a DC change. For exanple, if the line drawi ng node
changes from singl e-pi xel -wide, solid fill to multiple-pixel-wde, tile
fill, the GCis updated with new procedure vectors and data fields. At the
same time, the DC nust be updated so the next |line drawi ng request results
in awde, tile-filled line. A Wndows bit map is created for the X tile,
and it is selected into the DC as the pattern. Any |ine then drawn using
the DC results in a wide, tile fill. This method is used to update the DC
whenever any GC object with a parallel Wndows object is changed. The cache

ensures that W ndows objects can be all ocated.

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 13

eXcursion for Wndows: Integrating Two W ndow ng Systens

Drawi ng APl s

The W ndows environment contains a rich collection of APIs designed to
acconplish many types of drawi ng. The eXcursion application takes ful
advant age of these drawi ng APls. Werever X and W ndows share draw ng

rul es and conditions, the appropriate Wndows APl is called quickly to
maxi m ze performance. This mechanismis utilized when the user selects

the "optim zed for performance" drawi ng node. \Wen the rul es between X

and W ndows differ, eXcursion calls the nost appropriate APl for the nore
comon variants, again, to maxim ze performance. For exanple, since a w de,
solid, horizontal line is rectangular, eXcursion calls the Wndows Fill Rect
APl to drawit. Only rarely is the M code path required.

Pi xmap Mani pul ation

The X pixmap presented us with a major challenge. Since it is a bitw se
representation of a visual object, its bit values nust be maintai ned
regardl ess of its use. Pixmaps can be used in a variety of ways by conpl ex
X client applications. Pixmaps can hold off-screen copies of w ndow
contents, or they can hold a pattern for a wi ndow background. They can
provi de a mask t hrough which a color or pattern can be squeezed to give a

stencil-like filling effect. They can also contain text characters prior to
out put .
The real challenge, however, lies in how pixmaps are mani pul ated. There are

nonochr ome pi xmaps, col or pi xmaps, pixmaps presented as an array of bits
one color plane at a tinme, or packed to present each col or plane for one
pi xel in succession. For these myriad forns and presentations we created a
set of pixmap mani pul ation routines that translate back and forth between X
and W ndows. Since Wndows provides a set of APIs for manipul ati ng device-
i ndependent bit maps (DIBs), we stored the bit map internally in one,
generic formregardless of its X representation. eXcursion extracts the
bits, nmodifies them and sends themto the client when it requests them
in another format. One of the biggest performance bottl enecks in eXcursion
lies in the pixmap format conversions which are constantly taking place
under the surface. Since we have stored all pixmaps in device-independent
format, the perfornmance penalty is | ow

Font Conpil er

The X and W ndows environnents include a section dedicated to information
about the font nmetrics and a section for the character bit maps. However,
their font storage nmethods are different. Furthernore, since eXcursion is a
conpati ble Wndows application, it uses Wndows fonts to draw text.

We designed a font conpiler to create Wndows-usable fonts froman X font
file input. The font conpiler takes a bit-map distribution format (.BDF)

(X Wndow System font files are supplied in this ASCI| readabl e fornmat)

and produces two output files. One, called the X font file (.XFN), contains
the X netrics readable by the server without having to | oad the character
bit maps thensel ves. The other, a Wndows font file (.FON), contains the
character glyphs used by the Wndows APlIs. eXcursion's X-specific code

14 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

eXcursion for Wndows: Integrating Two W ndow ng Systens

uses the . XFN file to match available fonts with those requested, and to
calculate string sizes, positions, character offsets, ascents, descents,

and anything else related to the location and position of the characters.
The .FON file is | oaded as a Wndows resource, selected into a DC as

descri bed above, and used for any drawi ng operations since it contains

the actual character representations. The font conpiler can generate custom
fonts; any font conpiled with it produces a Wndows font file suitable

for use in any other, non-X, Wndows application. For exanple, any of the
suppl i ed eXcursion fonts could be used with Word for Wndows.

5 Handling | nput Devices

In the section Seam ess Integration, we described our design strategy for
eXcursion to handl e drawi ng requests from X clients. In this section we
di scuss requests fromthe user

When a user clicks a nouse button, or nobves the nobuse, or types on the
keyboard, W ndows generates nessages which are shipped to eXcursion's
W ndow nessage processing function. Interrupt processing is not needed
since Wndows shields eXcursion fromthe underlying hardware. In

fact, eXcursion has generic input handlers that work with any hardware
configuration supported by W ndows.

The nessage processor translates the data into a format understood by X,
then packages and transmits it over the X wire as an X event. Since these
user-initiated actions are asynchronous events, eXcursion calls the Wndows
PeekMessage() function when it has finished processing an X request, or
when it is in the idle |oop.

W ndows and X share the sanme coordi nate mappi ng conventions. \Wen eXcursion
recei ves a nouse nove nessage, it does not performtranslations on the x
and y coordinates; it nerely reports in which w ndow the pointer resides.
Furthernmore, when eXcursion creates a window in Wndows, it stores the
corresponding X window s handle in the extra data area of the Wndows

wi ndow structure. It can retrieve the handle of a nmatching X wi ndow at

any time with the Wndows APl Get WndowLong(). Since eXcursion always

mat ches a W ndows wi ndow to a top-level X wi ndow, the conbination of the
top-1evel wi ndow handle and the x and y coordi nates of the pointer allows
eXcursion to scan the X wi ndow tree and determi ne which child w ndow hol ds
t he pointer.

When a user presses a nouse button, the sane kind of activity is used to
deternmi ne which wi ndow contains the pointer. The X event data structure is
filled in and shipped to the client for further action

When a user presses a key on the keyboard, much the sanme processing takes
pl ace. W ndows sends eXcursion all the infornmation needed to build an event

data structure containing the key state, the scan code of the key, and the
key nodi fier state (whether Alt, Crl, or Shift are depressed). eXcursion
t hen packages and ships the data structure to the client application

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 15

eXcursion for Wndows: Integrating Two W ndow ng Systens

eXcursion |loads a keysymfile at start-up. The file contains the keyboard
mappi ng of hardware scan codes to keysymdefinitions for the user's
keyboard. It permits custom configuration for a user's keyboard. The keysym
conpiler in eXcursion takes an ASCI| text, keyboard mapping file as its

i nput, and produces a binary keysymfile as its output. As |long as the user
follows the |ayout of the input ASCII file, any key can be remapped in any
way desired.

Mani pul ati ng Application W ndows

As stated previously, eXcursion uses the Mcrosoft Wndows wi ndow manager
to manage and nmani pul ate wi ndows. Whenever the user nobves, resizes,

i conifies, maxim zes, or closes a wi ndow, either by the Wndows system
menu or the nmouse, W ndows sends the eXcursion wi ndow procedure a nessage
with specific parameters. For exanple, a nmessage sent when a wi ndow is
resized contains the old and new sizes and origins of the wi ndow. eXcursion
transl ates every W ndows input nessage into an X event and sends it to the
X client.

I ndi vi dual nmessages from W ndows generally correspond to X event types
that provide data to clients. However, conplications arise when W ndows
generates multiple nmessages for a single action. For exanple, when a user
presses a button to select an itemfroma nenu, a new wi ndow i s created,
mapped, sized, placed on the screen, activated, and given the input focus-
all as a result of the single user action. Wndows nessages are generated
for each of these operations, yet the user has provided no further action.

To handl e this extrenely conpl ex web, we benefited fromour initial design
decision to create only top-level Wndows. We elimnated literally hundreds
of W ndows nessages for each child wi ndow, sinply by not creating them
Messages are sent only to the top-level wi ndow, and eXcursion can quickly
deternmine which child (if any) needs attention. On the other hand, we

had to observe and study w ndow stacking, configuration, reparenting,
activation, and wi ndow focus before we arrived at the final inplenmentation.
Only through extensive prototyping and enpirical testing were we able to

el i m nate poor design choices and arrive at the best ones. As a result,
every possi bl e wi ndow mani pul ation action, whether initiated by the user

or directed by a client, requires a translation fromWndows to X and a
careful selection of Wndows function calls to keep the delicate bal ance
bet ween X and W ndows.

Cutting and Pasting Data

To cut and paste data between X and W ndows applications, we nmerged the
W ndows cl i pboard mechanismwith the X sel ection mechani sm by incorporating
the cut/paste "pseudo-client" into eXcursion. This nmodul e watches for data
cut-and-paste requests from X clients, as well as those fromany W ndows

applications running on the PC. When it notices an X client gaining contro
of a selection, it asks the controlling client for the selected data, which
it then puts into the Wndows clipboard. The data thus becones avail abl e

to any Wndows application with access to the clipboard. Wien a W ndows

16 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

eXcursion for Wndows: Integrating Two W ndow ng Systens

application cuts or copies data into the Wndows clipboard, the pseudo-
client is notified, at which point it inforns all X clients that it now
owns the clipboard selection. X clients can then request the data fromthe
pseudo-client by selecting paste fromtheir edit nenus.

Accessi ng Renote Applications

The user initiates remote X client applications through an application
| aunchi ng mechani sm that provides several starting options.

1. Selection of an application fromthe eXcursion control panel's
application pull-down nenu

2. Selection froma dialog box of defined applications
3. Selection of the "Start X Application" dialog box

4. Double clicking on an icon installed for the application in the Wndows
Program Manager

The nost interesting option, double clicking on an installed icon in the
W ndows Program Manager, allows the user to start up an X application

wi t hout any knowl edge of the current state of eXcursion. The double click
activates XREMOTE. EXE, the renote application |auncher. XREMOTE sends

out a Wndows nessage, with an identification known only to eXcursion

I f eXcursion responds, XREMOTE passes it the command |ine for application
start-up. If eXcursion does not respond within a short tinmeout period,
XREMOTE i ssues a WnExec call, requesting start-up of eXcursion itself.

W ndows starts up eXcursion, passing it the command |ine string for the
sel ected application start-up sequence. XREMOTE then termi nates until the
next start-up request.

Qbviously, security is a major concern for any systemthat requires

and handl es account passwords; eXcursion application activation is no
exception. Users log into their accounts by activating an X application
such as DECterm Two distinct passwords are required: (1) the eXcursion

gl obal, session password and (2) individual, application account password.

The eXcursion session password is optionally selected and set by the user
froma control panel dialog box. It is stored as an encrypted string in the
initialization file, and is used as the decryption key for the individua
application account passwords, also stored in the initialization file. This
desi gn prevents an unauthorized person fromusing soneone's .IN file to
obtain access to an account. The user is pronpted for the session password
when eXcursion starts up. If an incorrect value is entered, the server

term nates and application activation is inpossible. A further |evel of
security is provided by the "Pronpt for Password" option, which the user

can select for any application start-up.

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 17

eXcursion for Wndows: Integrating Two W ndow ng Systens

6 Sunmmary

The eXcursion for Wndows di splay server seam essly integrates the

M crosoft W ndows and X W ndow System environnments. It provides a desktop
integration tool that allows the user to display and interact with
applications designed for both wi ndowi ng systens at the sanme tine. Data
can be exchanged between them and desktop resources shared. A user is no
I onger required to work with two i nconpatible desktop devices in order to
conpl ete work assi gnnents.

7 Acknow edgenents

The authors would like to thank everyone who worked on the product during
its devel opnent. In particular we would Iike to thank the other full-

or part-tinme nmenbers of the software devel opment team Ray Shapiro,

John Freitas, Mke Pfeffer, Lee Karge, Alice Chen, Mary VanLeeuwen, and
Andy Nourse. Two ot her nenbers of the PC DECwi ndows Group who work on the
DOS- based X server, John Wasser and Ji m Peterson, provided sone val uable
assistance. W are also indebted to the followi ng for their support and
contributions: Emlie Schm dt, Carnel Hoover, Kathy Maxham Andre Fontai ne,
Alice Chen, and Tracey Wenett. This great group of people made this project
a joy to work on and a success.

8 References

1. R Scheifler, J. Cettys, and R Newman, X Wndow System C Li brary and
Prot ocol Reference (Bedford, MA: Digital Press, 1988): xvii.

2. R Scheifler, X Wndow System Protocol (Canbridge: MT Laboratory for
Conmput er Sci ence, 1989): 37.

3. D. Rosenthal, Inter-Client Conmunication Conventions Manual (Canbridge:
M T Laboratory for Conputer Science, 1989): 18-36.

9 General References

Digital Technical Journal, vol. 2, no. 3 (DECwW ndows Program Sunmer
1990).

R. Scheifler, J. Gettys, and R Newran, X W ndow System C Li brary and
Protocol Reference (Bedford, MA: Digital Press, 1988).

M crosoft W ndows Software Devel opnent Kit Reference, vols. 1 and 2
(Rednmond, WA: M crosoft Corporation, 1990).

M crosoft W ndows Software Devel opnent Kit Guide to Programm ng (Rednond,
WA: M crosoft Corporation, 1990).

18 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

eXcursion for Wndows: Integrating Two W ndow ng Systens

10 Trademarks

The foll owi ng are trandemarks of Digital Equi pment Corporation:
ALL-IN-1, DEC, DECnet, DECw ndows, Digital, the Digital | ogo, eXcursion,
LAT, PATHWORKS, ULTRI X, VAX, VAXcl uster.

Digital Technical Journal Vol. 4 No. 1, Wnter 1992 19

eXcursion for Wndows: Integrating Two W ndow ng Systens

11 Aut hor Biographies

Dennis G G okas Dennis G okas is the group technical |ead for PCSG s
Network Client Engineering and the engineering manager for its New User
Interface Group. His primary responsibility is technical lead for the next
generation of the PATHWORKS for DOS and OS/2 products. Prior to this work,
Denni s contri buted to PC DECwW ndows devel oprment. Before joining Digital

in 1984, he was enployed by Arco G| & Gas and The Foxboro Conpany. Dennis
holds a B.M (1974) fromthe University of Massachusetts at Lowell, a MM
(1976) fromthe New Engl and Conservatory, and a MS.C.S. (1989) from Boston
Uni versity. He has two patents pending.

Andrew T. Leskowitz A principal software engineer in the PCSG X Server
Devel opnent Group, Andy Leskowitz is the project |eader for the eXcursion
di splay server. Since conming to Digital in 1987, he has contributed

to various X devel opnent projects and desi gned the PATHWORKS LANSESS
conmponent. Andy's prior experience includes engineering positions at

Dat atrol, The Foxboro Conpany, and Rayt heon Conpany. He has a B.S. (1976)
in biology from Swart hnmore Col |l ege. Andy has applied for a patent rel ated
to his X server devel opnment worKk.

20 Digital Technical Journal Vol. 4 No. 1, Wnter 1992

Copyright 1992 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

