
 

          The NVAX and NVAX+ High-performance VAX Microprocessors

By G. Michael Uhler, Debra Bernstein, Larry L. Biro, John F. Brown III,
John H. Edmondson, Jeffrey D. Pickholtz, and Rebecca L. Stamm

1  Abstract

The NVAX and NVAX+ CPU chips are high-performance VAX microprocessors that
use techniques traditionally associated with RISC microprocessor designs
to dramatically improve VAX performance. The two chips provide an upgrade
path for existing VAX systems and a migration path from VAX systems to the
new Alpha AXP systems. The design evolved throughout the project as time-
to-market, performance, and complexity trade-offs were made. Special design
features address the issues of debug, maintenance, and analysis.

2  Introduction

The NVAX and NVAX+ CPUs are high-performance, single-chip microprocessors
that implement Digital's VAX architecture.[1] The NVAX chip provides an
upgrade path for existing systems that use the previous generation of
VAX microprocessors. The NVAX+ chip is used in new systems that support
Digital's DECchip 21064 microprocessor, which implements the Alpha AXP
architecture.[2,3] These two NVAX chips share a basic design.

The high-performance, complementary metal-oxide semiconductor (CMOS)
process used to implement both chips allows the application of pipelining
techniques traditionally associated with reduced instruction set
computer (RISC) CPUs.[4] Using these techniques dramatically improves
the performance of the NVAX and NVAX+ chips as compared to previous VAX
microprocessors and results in performance that approaches and may even
exceed the performance of popular industry RISC microprocessors.

The chip design evolved throughout the project as the goals influenced
the schedule, performance, and complexity trade-offs that were made. The
two primary design goals were time-to-market, without sacrificing quality,
and improved VAX CPU performance. Our internal goal was for the NVAX CPU
performance to be more than 25 times the performance of a VAX-11/780 system
in a datacenter system. Achieving these goals required meeting aggressive
schedules and thus concentrating on the high-leverage design points and on
an unprecedented verification effort.[5]

Support for multiple system environments, compatibility with previous
VAX products and systems, and a means to migrate from traditional VAX
systems to the new Alpha AXP platforms were also important design goals.
These goals had a profound impact on the design of the cache protocols
and the external bus interfaces. NVAX and NVAX+ engineers worked closely
with engineers in Digital's systems groups during the definition of these
operations.
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The paper begins by comparing the basic features of the NVAX and NVAX+
chips and then describes in detail the chip interfaces and design elements.
This description serves as the foundation for the ensuing discussion of
design evolution and trade-offs. The paper concludes with information about
the special design features that address the issues of debug, maintenance,
and analysis.

3  Comparison of the NVAX and NVAX+ Chips

The NVAX and NVAX+ chips are identical in many respects, differing
primarily in external cache and bus support. NVAX is intended for systems
that use previously designed VAX microprocessors. The following systems
currently use the NVAX chip: the VAXstation 4000 Model 90; the MicroVAX
3100 Model 90; the VAX 4000 Models 100, 400, 500, and 600; and the
VAX 6000 Model 600.[6,7,8,9] NVAX supports an external write-back cache
that implements a directory-based broadcast coherence protocol that is
compatible with earlier VAX systems.[10]

NVAX+ is designed for systems that use the DECchip 21064 microprocessor
implementation of the Alpha AXP architecture and is currently used in the
VAX 7000 Model 600 and the VAX 10000 Model 600 systems. NVAX+ supports an
external cache and bus protocol that is compatible with that of the DECchip
21064 microprocessor. In existing systems, NVAX+ is configured to support
an external write-back cache that implements a conditional write-update
snoopy coherence protocol.[11]

The two CPU chips provide both the means to upgrade installed VAX systems,
thus protecting previous investments, and a migration path from a VAX
microprocessor to a DECchip 21064 microprocessor in the new Alpha AXP
systems.

4  Chip Interfaces

The NVAX chip interfaces to an external write-back cache (B-cache) through
a private port with tag and data static random-access memories (RAMs)
on the module, as shown in Figure 1. The size and speed of the cache are
programmable, allowing the chip to accommodate a range of possible system
configurations.

The NVAX data and address lines (NDAL) constitute a 64-bit bidirectional
external bus with associated control signals that operates at one-third
the frequency of the CPU from clocks provided by the CPU. Addresses and
data are time-multiplexed and, to provide high performance, are overlapped
with arbitration for future transactions and acknowledgment of previous
transactions. The NDAL bus protocol allows up to two disconnected reads and
multiple write-backs to be outstanding at the same time, using identifiers
to distinguish the different transactions. External interrupt requests are



received through dedicated lines and arbitrated by logic in the CPU.
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The NVAX+ chip interfaces to an external write-back B-cache implemented
with tag and data static RAMs on the module through a port shared with
system control logic, as shown in Figure 2. Responsibility for controlling
the cache port is shared between NVAX+ and the system environment; the
NVAX+ chip handles the common cases of read hit and exclusive write, and
the system environment provides cache policy control for other events. The
size and speed of the cache can be configured to allow a range of possible
system configurations.

The DECchip 21064 data and address lines (EDAL) constitute a demultiplexed,
bidirectional bus with 29 bits of address, 128 bits of data, and the
associated control signals. This bus operates at one-half, one-third, or
one-fourth the frequency of the CPU from clocks provided by the CPU. The
speed of the system clocks can be programmed to accommodate various RAM
and system speeds. At power-up time, initialization information, including
RAM timing, and diagnostics are loaded from a serial read-only memory (ROM)
into the on-chip cache. The external interrupt handling is similar to that
of the NVAX chip.

5  Electrical and Physical Design

Process technology, clocking scheme, clock frequency, and die
specifications are elements of the electrical and physical design of the
NVAX and NVAX+ chips. Both chips are implemented in Digital's fourth-
generation complementary metal-oxide semiconductor (CMOS-4) technology.
CMOS-4 is a 0.75-micrometer, 3.3-volt process with support for 5-volt input
signals at the pins. The CMOS-4 process is optimized for high-performance
microprocessors and provides short (0.5-micrometer) channel lengths and
three layers of metal interconnect. This robust and reliable process has
been used to produce NVAX chips in volume for more than a year and is the
same CMOS process used in the DECchip 21064 microprocessor.

NVAX and NVAX+ use a four-phase clocking scheme, driven by an oscillator
that operates at four times the internal clock frequency. The oscillator
frequency is divided by an on-chip, finite-state-machine clock generator; a
low-skew clock distribution network is used for both internal and external
clocks.

To meet the needs of the system designer, the two chips are designed
for use at various frequencies. At present, NVAX is used in systems at
internal clock frequencies of 83.3 megahertz (MHz) (12-nanosecond [ns]
clock cycles), 74.4 MHz (14-ns clock cycles), and 62.5 MHz (16-ns clock
cycles). NVAX+ is used in systems at a frequency of 90.9 MHz (11-ns clock
cycles).

Each chip contains 1.3 million transistors on a die that is 16.2-by-14.6
millimeters in size. NVAX is packaged in a 339-pin, through-hole pin grid



array. NVAX+ is packaged in a 431-pin, through-hole pin grid array.
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6  Architecture Design

The NVAX/NVAX+ design is partitioned into five relatively autonomous
functional units: the instruction fetch and decode unit (I-box), the
integer and logical instruction execution unit (E-box), the floating-point
execution unit (F-box), the address translation and primary cache interface
(M-box), and the external cache and system bus interface (C-box). Queues
placed at critical interface boundaries normalize the rate at which the
units process instructions. A block diagram of the NVAX and NVAX+ core is
shown in Figure 3.
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The I-box

The I-box fetches and decodes VAX instructions, evaluates operand
specifiers, and queues operands in canonical form for further processing.
Included in the I-box is a 2-kilobyte (KB), direct-mapped virtual
instruction cache (VIC) with 32-byte cache blocks. For reliability, the
VIC includes parity protection on both tags and data.

During each cycle, the I-box attempts to fetch 8 bytes of instruction data
from the VIC and place this data in an empty slot in the prefetch queue
(PFQ). A VIC miss incurs a three-cycle penalty if the requested data
is found in the primary cache. PFQ data is then decoded into the next
VAX instruction component, which may be one of the following: operation
code (opcode) and first specifier or branch displacement, subsequent
specifier, or implicit specifier (an imaginary specifier included to
improve the performance of some instructions). The I-box enters the opcode-
related information into the instruction queue, the pointers to source and
destination operands into their respective source and destination queues,
and the branch-related information into the branch queue.

For operand specifiers other than short literal or register mode, the I-
box decode logic invokes the pipelined complex specifier unit (CSU) to
compute the effective address and initiate the appropriate memory request
to the M-box. The CSU is similar in function to the load/store unit on many
traditional RISC machines.

The I-box automatically redirects the program counter (PC) to the
target address when it decodes one of the following instruction types:
unconditional branch, jump, and subroutine call and return. The branch-
taken penalty is two cycles for any conditional or unconditional branch.
To keep the pipeline full across conditional branches, the I-box includes
a 512-bit by 4-bit branch prediction array. The prediction is entered in
the branch queue by the I-box and compared with the actual branch direction
by the E-box. If the I-box predicts incorrectly, the E-box invokes a trap
mechanism to drain the pipeline and restart the I-box at the alternate
PC. A branch mispredict incurs a four-cycle penalty for a branch that is
actually taken and a six-cycle penalty for a branch that is not taken.

The E-box

The E-box is responsible for the execution of all non-floating-point
instructions, for interrupt and exception handling, and for various
overhead functions. All functions are microcode-controlled, i.e., driven
by a microsequencer with a 1,600-word control store and a 20-word patch
capability. Since the control store does not limit the cycle time, we
chose to implement a single microcode control scheme, rather than hardwire
control for the simple instructions and provide microcode control for the



remaining instructions.
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The E-box begins instruction execution based on information taken from the
instruction queue. References to specifier operands and results are made
indirectly through pointers in the source and destination queues. In this
way, most E-box instruction flows do not need to know whether operands or
results are in register, memory, or instruction stream.

To improve the performance of certain critical instructions, the E-box
contains special-purpose hardware. A mask processing unit finds the next
bit set in a mask register and is used in the following instructions: FFC,
FFS, CALLS, CALLG, RET, PUSHR, and POPR. A population counter provides
the number of bits set in a mask and is used in the CALLS, CALLG, PUSHR,
and POPR instructions. In addition, microcode can operate the arithmetic
logic unit (ALU) and shifter independently to produce two computations
per cycle, which can significantly improve the parallel operation of the
complex instructions.

In addition to normal instruction processing, the E-box performs all power-
up functions and interrupt and exception processing, directs operands
to the F-box, and accepts results from the F-box. To guarantee that
instructions complete in instruction stream order, the E-box orchestrates
result stores and instruction completion between the E-box and F-box.

The F-box

The F-box performs longword (32-bit) integer multiply and floating-point
instruction execution. The E-box supplies operands, and the F-box transmits
results and status back to the E-box.

The F-box contains a four-stage, floating-point and integer-multiply
pipeline, and a nonpipelined, floating-point divider. Subject to operand
availability, the F-box can start a single-precision, floating-point
operation during every cycle, and a double-precision, floating-point or
integer-multiply operation during every other cycle.

Stage 1 of the pipeline calculates operand exponent difference, adds
the fraction fields, performs recoding of the multiplier, and computes
three times the multiplicand. Stage 2 performs alignment, fraction
multiplication, and zero and leading-one detection of the intermediate
results. Stage 3 performs normalization, fraction addition, and a miniround
operation for floating-point add, subtract, and multiply instructions.
Stage 4 performs rounding, exception detection, and condition code
evaluation.

Stage 3 performs a miniround operation on the result calculated to that
point to determine if a full-round operation is required in Stage 4.
To do this, a round operation is performed on only the low-order three
(for single-precision) or six (for double-precision) fraction bits of



the result. If no carry-out occurs for this operation, the remaining
fraction bits are not affected and the full stage 4 round operation is
not required. If the full round is not required, stage 4 is dynamically
bypassed, resulting in an effective three-stage pipeline.
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The M-box

The M-box is responsible for address translation, access checking, and
access to the primary instruction and data cache (P-cache). The M-box
accepts requests from multiple sources and processes these requests in
an order that reflects both the priority of the request and the need to
maintain instruction stream ordering of memory reads and writes. Address
translation and cache access are fully pipelined; the M-box can start a new
request at the beginning of every cycle.

The M-box performs address translation and access checking by means
of a 96-entry, fully associative translation buffer (TB) with parity
protection. If a TB miss occurs, the M-box automatically invokes a hardware
miss sequence that calculates the address of the page table entry (PTE)
that maps the page, fetches the PTE from memory, refills the TB, and
restarts the reference. TB allocation is performed using a not-last-used
scheme, which is similar to a round-robin but guarantees that the most
recently referenced entry will not be overwritten. The M-box reports access
violations and page faults to the E-box, and E-box microcode processes
these misses with hardware support from the M-box.

The M-box also translates memory destination operand addresses provided
by the I-box and saves the corresponding physical address in the physical
address (PA) queue. When the E-box stores a result, the M-box matches the
data with the next address in the PA queue and converts this data to a
normal write request. The PA queue is also used to check for conflicts in
read requests to a location in which nothing has been written.

The P-cache is an 8KB, two-way set-associative cache with 32-byte blocks
and parity protection on tags and data. The P-cache can be configured
to cache instructions, data, or both, and usually has the latter
configuration. For compatibility with the DECchip 21064 microprocessor,
the NVAX+ P-cache can also be configured into a direct-mapped organization.

The NVAX C-box

The NVAX C-box maintains the interface to the external B-cache and to the
NDAL bus. The C-box receives read and write requests from the M-box and
monitors the NDAL for activity that would require an invalidate operation
in either cache. Consecutive writes to the same quadword (64 bits) are
merged into a single quadword datum by packing logic placed at the input of
an eight-entry quadword write queue.

The C-box can accept one instruction read request and one data read request
from the M-box. Conflict logic in the write queue allows nonconflicting
read requests to be processed before queued write requests are performed.
Conflicts are resolved by processing write queue entries until the



conflicting write is completed.
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The C-box supports four B-cache sizes: 128KB, 256KB, 512KB, and 2 megabytes
(MB). The system designer can independently select tag and data RAM speeds
to meet system requirements, regardless of the frequency at which the CPU
is running. The B-cache block size is 32 bytes, and both tag and data RAMs
are protected with error correction code (ECC) that corrects single-bit
errors and detects both double-bit errors and full 4-bit RAM failures.

The B-cache implements a directory-based broadcast coherence protocol in
conjunction with a memory directory containing one bit per 32-byte block.
Each memory directory bit indicates if the associated block is valid in
memory or has been written and exists in a cache. Unwritten blocks may
exist in multiple caches in the system. Written blocks may exist in exactly
one cache.

An attempt to write to a block that is not both valid and already written
in the B-cache causes the C-box to request write permission from memory
by means of a special NDAL bus read command. The memory controller will
not respond to any NDAL bus transactions to a block that is written in a
cache. Instead, it waits for the CPU, which contains an updated copy of the
block, to write the block back to memory and then completes the original
transaction. All CPUs in the system monitor the NDAL bus for read and write
transactions and compare the address against their B-cache tags. If a match
is found, the cache block is either written back to memory, invalidated, or
both, depending on the transaction type and the state of the block in the
cache.

The NDAL protocol fully supports multiprocessing implementations and does
not require any special chip variants to construct a multiprocessor system.
The C-box invokes invalidate or write-back requests as required to keep the
B-cache and P-cache coherent with NDAL activity.

The NVAX+ C-box

The NVAX+ C-box provides the interface between the internal functional
units and the EDAL pin bus implemented by the DECchip 21064 microprocessor.
This C-box interface includes the basic interface control for the external
B-cache and for the memory and I/O system. The NVAX+ C-box receives read
and write requests from the M-box. These requests are queued and arbitrated
within the C-box and result in cache or system access across the EDAL. The
NVAX+ C-box also maintains cache coherency by sending invalidate requests
to the M-box when requested by external logic.

The NVAX+ C-box implementation provides many of the same features and
performance enhancements available in the NVAX C-box. Included is support
for software-programmable B-cache speeds (one-half, one-third, or one-
fourth times the CPU frequency) and sizes (128KB to 8MB), write packing,
write queuing, and read-write reordering. In addition, the NVAX+ C-box



supports the newer platforms and increases the degree to which NVAX+ is
compatible with the DECchip 21064 microprocessor. NVAX+ C-box features
include programmable system clock speeds, I/O space-mapping, and a direct-
mapped option on the P-cache.
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A major difference between the NVAX and NVAX+ implementations is in the
B-cache coherence protocol. Rather than mandate a fixed B-cache coherence
protocol, the NVAX+ implementation allows systems to tailor the protocol
to their particular needs. NVAX+ cache coherency is implemented jointly
by off-chip system support logic and by the CPU chip, with relevant
information passed between the two over the EDAL bus. To allow duplicate
cache tag stores (if they exist) to be properly updated, the NVAX+ C-box
provides information to off-chip logic, indicating when the internal caches
are updated. External logic notifies the NVAX+ C-box when an internal cache
entry needs to be invalidated because of external bus activity.

Existing systems configure the B-cache to implement a conditional write-
update snoopy protocol carried out using shared and written signals on
the system bus. Writes to shared blocks are broadcast to other caches for
conditional update in those caches. A CPU that receives a write update
checks the NVAX+ P-cache to determine if the block is also present in
that cache. If the block is present, the B-cache update is accepted and
written into the B-cache, and the P-cache is invalidated. If the data is
not present in the P-cache, the B-cache is invalidated. This results in a
write-update protocol for data that was recently referenced by a CPU (and
hence is valid in the P-cache) and reduces to a write-invalidate protocol
for data that was not recently referenced.

To accommodate the programmable nature of both the system and cache clock
frequencies, the NVAX+ C-box supports nine different combinations of cache
and system clock frequencies. This support allows efficient use of the chip
in a wide range of different performance class systems.

Pipeline Operation

The NVAX and NVAX+ chips implement a macropipeline. Multiple VAX
macroinstructions are processed in parallel by relatively autonomous
functional units with queued interfaces at critical boundaries. Each
functional unit also has an internal pipeline (micropipeline) to allow
a new operation to start at the beginning of every cycle. The pipeline
operation can be logically depicted, as shown in Figure 4.

In pipeline segment S0, instruction stream data is read from the VIC. The
next VAX instruction component is parsed, and queue entries are made in
segment S1. For short literal and register specifiers, no other processing
is required. Requests for further processing for all other specifiers are
queued to the CSU pipeline, which reads operand base addresses in segment
S2, calculates an effective address, and makes any required M-box request
contained in segment S3. If an M-box request is made, address translation
and P-cache lookup occur in segments S4 and S5.

Instruction execution starts with an E-box control store lookup in segment



S2, followed by a register file read of any required operands in segment
S3, an ALU and/or shifter operation in segment S4, and a potential
result store or register file write in segment S5. If an M-box request
is required, e.g., for a memory store, the request is made in segment S4;
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address translation or PA queue access occurs in segment S5; and a P-cache
access occurs in segment S6.

Floating-point and integer-multiply instruction execution starts in the
E-box, which transfers operands to the F-box. The four-stage F-box pipeline
is skewed by half a cycle with respect to the E-box pipeline, beginning
halfway through segment S4. The fourth segment of the F-box pipeline is
conditionally bypassed if a full-round operation is not required. The
result is transmitted back to the E-box, logically in segment S5 of the
pipeline.

Pipeline bypasses exist for all important cases in the I-box and E-box
pipelines, so that there are no stalls for results feeding directly into
subsequent operands. The M-box processing of memory references initiated as
a result of operand specifier processing by the I-box is usually overlapped
with the execution of the previous instruction in the E-box, with few or no
stalls occurring on P-cache hit.

7  Design Evolution and Trade-offs

The NVAX and NVAX+ chips are the latest in a line of CMOS VAX
microprocessors designed by Digital's engineers and represent a continuing
evolution of architectural concepts from one implementation to the
next. The preceding chip design was the CPU for the VAX 6000 Model 400
system.[12] To meet the time-to-market and performance goals, we had to
modify the NVAX/NVAX+ design throughout the project.

One of the early vehicles for making design trade-offs was the NVAX
performance model, which predicts CPU and system performance and aids
in quantifying the performance impact of various design options. The
performance model is a detailed, trace-driven model which can be easily
configured by changing any of a variety of input parameters. The model
stimuli used were 15 generic timesharing and 22 benchmark instruction
trace files that were captured by running actual programs on existing VAX
systems.

The following sections describe the evolution of the chip design, including
the number of chips, the pipelining technique used, and various cache
issues.

Number of CPU Chips

The VAX 6000 Model 400 core CPU implementation is a three-chip design: a
processor chip, with a small on-chip primary cache; a floating-point chip;
and a secondary cache controller, with internal cache tags. The initial
attempt at NVAX CPU definition was a two-chip design. One chip contained
the I-box (with a 4KB VIC), the E-box, the F-box, and the M-box (with a



16KB, direct-mapped P-cache). The second chip held the C-box and the B-
cache tag array. The project design goals, especially time-to-market, led
to a single-chip solution, rather than a two-chip design.
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To condense the design from two chips to one, we halved the sizes of the
VIC and the P-cache and moved the B-cache tags to external static RAMs,
leaving the B-cache controller on-chip. Later, we were able to reduce
the penalty of halving the size of the P-cache by making it two-way set
associative rather than direct mapped. With these changes, the performance
model showed a performance loss of less than 1.4 percent across all the
traces, relative to the two-chip design, with a worst-case penalty of 3.9
percent.

There are strong advantages to the single-chip solution.

1. Designing a single chip takes less time.

2. This design requires the production and maintenance of only one design
   database and one mask set.

3. Latency to the B-cache is shorter.

4. An off-chip tag store provides more flexibility in B-cache
   configurations.

Macropipelining

Run-time performance is the product of the cycle time, the average time
to execute an instruction (cycles per instruction [CPI]) and the number
of instructions executed. CMOS process improvements made it possible to
decrease the NVAX/NVAX+ cycle time with respect to the previous generation
of VAX microprocessors, thus improving the first factor in run-time
performance.

The VAX 6000 Model 400 CPU design uses traditional microinstruction
pipelining, i.e., micropipelining, to achieve some amount of overlap and
to decrease the CPI. However, using micropipelining techniques would not
reduce the NVAX/NVAX+ CPI to the level required to meet the performance
goals of the NVAX/NVAX+ projects. We achieved this reduction by using RISC
design and implementation techniques referred to as macropipelining. In a
macropipelined architecture, the I-box acts much like a load/store engine,
dynamically prefetching operands prior to instruction execution. Using the
macropipeline technique in the NVAX and NVAX+ CPUs makes it possible to
retire one basic complex instruction set computer (CISC) macroinstruction
per cycle, as in a simple RISC design. Although macropipelining introduced
considerable complexity into the NVAX/NVAX+ design, this complexity
resulted in a significant performance improvement over a traditional
micropipelined design.

Number of Specifiers per Cycle



The NVAX/NVAX+ I-box can parse at most one opcode and one VAX specifier
per cycle. The I-box design initially considered was capable of parsing two
specifiers per cycle. Although this parsing scheme represented significant
complexity and circuit risk, intuitively, it seemed important to quickly
retire specifiers in the I-box in order to keep the macropipeline full.
However, the performance model predicted a maximum performance improvement
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of less than two percent on our traces, and we decided to limit complexity
and schedule risk by parsing only one specifier per cycle.

F-box Design

The NVAX F-box design is highly leveraged from the VAX 6000 Model 400 F-
chip design. Rather than start from scratch, we integrated the existing
design onto the NVAX and NVAX+ CPU chips and added a final-stage bypass
mechanism. In addition, unlike the original F-chip implementation, the
NVAX/NVAX+ control of the F-box allows a fully pipelined operation,
which significantly improves floating-point performance over the F-chip
design. Although a totally new design would have had shorter floating-point
latencies, the combination of a fully pipelined operation and a final-
stage bypass allowed us to achieve our performance goal, while meeting our
time-to-market goal.

Cache Coherence

Performance studies with the previous generation of VAX microprocessors
clearly indicate that system bus write bandwidth limits performance
unless an external write-back cache is implemented. In addition, the VAX
architecture required that we implement the cache coherence protocol in
hardware.

The NVAX implementation uses a directory-based coherence protocol for
compatibility with existing and planned target system platforms. The NDAL
bus supports multiple outstanding read and write requests, which allows
the microprocessor to utilize the capability of the system bus to process
these operations in a pipelined fashion. We investigated the possibility
of implementing both directory-based and snoopy coherence protocols, but
time-to-market considerations and the opportunity to optimize the design
for performance in existing system platforms outweighed the desirability of
supporting snoopy protocols.

For the NVAX+ implementation, the coherence policy is determined by
hardware external to the NVAX+ chip, in the given system. The NVAX+ cache
and system interface allows the system environment to implement a variety
of coherence protocols. Compatibility with the DECchip 21064 interface
definition required limiting NVAX+ to one outstanding external cache miss.
However, this limitation is more than offset by the significantly better
main memory access times achieved in target systems.

One significant advantage of the NVAX+ scheme is that most policies
associated with the external cache are determined by hardware outside the
NVAX+ chip (such as the coherence policy), allowing the chip to be used
in a wide variety of systems. Implementing the DECchip 21064 interface
on NVAX+ greatly reduces the hardware engineering investment required to



deliver a VAX CPU and an Alpha AXP CPU in the same system environment.
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For both the NVAX and the NVAX+ chips, cache coherence is maintained for
the P-cache by keeping it a subset of the external cache. Externally
originated invalidate requests are forwarded to the P-cache only when
the block is in the external cache. This minimizes the number of P-cache
cycles spent processing invalidate requests. The two-way set-associative
P-cache might have been slightly more effective if it were not a subset of
the larger direct-mapped external cache. However, this effect is far less
significant than the effect of expending a P-cache cycle for every external
invalidate event.

Virtual caches almost always have lower latency than physical caches and
usually do not require a dedicated translation buffer. The VAX architecture
supports the use of a VIC by allowing the cache to be incoherent with
respect to the data stream, i.e., not updated with recent writes by the
CPU containing the VIC, or by any other CPU. However, some mechanism
must be defined to make the VIC coherent with the data stream. In the VAX
architecture, the execution of the VAX return from interrupt or exception
(REI) instruction performs this function.

We chose to perform a complete flush of the VIC as part of the execution of
every REI instruction. Because an REI always follows a process context
switch, a flush during an REI removes the process-specific virtual
addresses of the previous process and prevents conflict with (potentially
identical) virtual addresses for the new process. We could have also
chosen to keep the VIC coherent with the data stream and implement per-
process qualifiers that would have made per-process virtual addresses
unique. However, coherence would have required both an invalidate address
and a control path to the VIC, and some form of backmap to resolve
virtual address aliases. Per-process qualifiers would have required a VAX
architecture change and significant operating system software changes. To
reduce project risk, we chose to flush the VIC on every REI instruction.

Cache Hierarchy

The NVAX and NVAX+ chips have three levels of cache hierarchy: the VIC, the
P-cache, and the B-cache. The VIC and P-cache are fully pipelined and have
minimum latency, which allows instructions to be fetched and processed in
parallel at very high rates.

The default P-cache configuration causes VIC misses to be looked up in
the P-cache. This lookup process is advantageous since the VIC typically
experiences a smaller miss penalty because latency for P-cache hits is
roughly one-third that for external cache hits. The disadvantage is that
instruction fills can result in a higher P-cache data stream miss rate,
because they replace data that is likely to be referenced again. We used
the performance model with available traces to determine that looking up
VIC misses in the P-cache generally resulted in higher performance. In



specific applications, higher performance can be achieved by not looking
up instruction references in the P-cache. As a result, we implemented P-
cache configuration bits that allow system designers to implement either
scheme. By default, NVAX and NVAX+ systems are configured to enable both
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instruction and data caching in the P-cache, but this may be changed by
the console software in certain systems to support prepackaged application
systems.

External Cache Size

Both NVAX and NVAX+ support multiple external cache sizes to allow system
designers full flexibility in selecting external cache configurations. With
existing static RAM technology, smaller external cache configurations are
usually faster than larger configurations. Performance modeling indicated
that many applications, especially some popular benchmarks, fit entirely
in in a cache whose size is 512KB or less, resulting in slightly better
performance. However, many common applications utilize more memory than
will fit in such caches and benefit more from an external cache whose
size is 1MB to 4MB, even with the additional latency involved. As a
result, our system designs use larger but slightly slower external cache
configurations.

Block Size

During the analysis of the previous generation of VAX microprocessors in
existing systems, we observed that the 16-byte block size was too small
to achieve optimal performance on many applications. As a result, we chose
a 32-byte block size for the NVAX and NVAX+ internal caches. This size
provides a good balance between fill size and the number of cycles required
to do the fill, given 8-byte fill data paths.

For compatibility with installed systems, the size of the NVAX external
cache block and the cache fill size is 32 bytes. On NVAX+, the external
cache block size may be larger and is 64 bytes in the VAX 7000 Model 600
and VAX 10000 Model 600 systems. Because both systems implement low-latency
memory and high-bandwidth buses, the increase in external cache block size
results in better performance.

8  Special Features

The NVAX/NVAX+ design includes several features that supplement core chip
functions by providing added value in areas of debug, system maintenance,
and systems analysis. Among the features are the patchable control store
(PCS) and the performance monitoring hardware.

Patchable Control Store

The base machine microcode is stored in a ROM control store in the E-
box. The 1,600-microword capacity of the E-box controls macroinstruction
execution and exception handling. The PCS consists of 20 entries that can
be configured to replace or supplement the microcode residing in ROM. Each



PCS entry contains a content-addressable memory (CAM)/RAM pair that stores
the patch microword address and patch microword, respectively. The ROM
control store and the PCS are accessed in parallel. Typically, words are
fetched from the ROM control store, but if a microword address matches the
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CAM in one of the PCS entries, then the PCS RAM for that entry supplies the
microword, and the ROM output is disabled.

Privileged software controls the loading of the PCS by means of internal
processor registers. In system operation, a patch file is normally
loaded into the PCS early in the boot procedure, so that any minimal
system capable of starting system boot can install patches to the base
microcode. This feature presents a way to modify the base NVAX/NVAX+ chip
through software; the majority of engineering change orders (ECOs) can be
accomplished by releasing new patch files, thus alleviating the need to
change the hardware design and retool for the very large-scale integration
(VLSI) fabrication.

We booted the VMS operating system within 16 days of receiving first-pass
wafers from fabrication, a tribute to a very thorough design verification.
However, the continuing rigorous testing on prototype systems revealed
several problems with the base microcode and hardware. The PCS mechanism
helped to identify, isolate, and work around many of the problems during
system debug and thus allowed extensive system testing to continue on
first-pass chips.

For example, we used a sequence of PCS patches during system debug to
isolate an obscure failure whose symptom was a transfer to virtual address
0. By patching the main microcode exception handling routine to check
for this event, we identified the instruction stream sequence that was
causing the failure. We refined the patch to place additional checking
into various instructions in the sequence. This refinement allowed us to
isolate the exact instruction that was causing the transfer to PC 0. With
this information, we were then able to reproduce the problem in simulation
and correct the second-pass design. Without this diagnostic capability,
we probably would have needed weeks or months of additional debug time to
isolate the failure.

In addition to using the powerful diagnostic capability of the PCS, we used
patches to correct or work around the few functional bugs that remained in
the first-pass design. For example, a microcode patch was used to correct a
condition code problem caused by a microcode bug during the execution of an
integer-multiply instruction. Because the E-box is central to the execution
of all instructions, we were also able to use patches to correct hardware
problems in other boxes. In one instance, a patch was used to inject a
synchronization primitive into the M-box in order to correct an M-box
design error. As a result of the simplicity and elegance of this solution,
the final second-pass correction was to move the patch into microcode ROM,
rather than modify the M-box hardware design.
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Performance Monitoring Environment

As computer designs increase in complexity, their dynamic behavior
becomes less intuitive. Computer designers rely more and more on empirical
performance data to aid in the analysis of system behavior and to provide
a basis for making hardware and software design decisions. In addition,
multiple levels of logic integration on VLSI chips restrict the collection
of this performance data, because many of the interesting events are no
longer visible to external instrumentation. The NVAX/NVAX+ chip design
includes hardware multiplexers and counters that can be configured to count
any of a set of predetermined, internal state changes.

Two 64-bit performance counters are maintained in memory for each CPU in
an NVAX/NVAX+ system. The lower 16 bits of each counter are implemented
in hardware in the CPU, and at specified points, the quadword counters in
memory are updated with the contents of the hardware counters. Privileged
software can be used to configure the hardware counters to count any
one of a basic set of internal events, such as cache access and hit, TB
access and hit, cycle and instruction retire, and cycle and stall. When
the 16-bit counters reach a half-full state, the performance monitor
requests an interrupt. The interrupt is serviced in a normal way, i.e.,
between instructions (or in the middle of interruptible instructions) and
at an architecturally specified interrupt priority level. Unlike other
interrupts, the performance monitor logic interrupt is serviced entirely in
microcode and then dismissed; no software interrupt handler is required.

The microcode component updates the counters in memory when it services
the performance monitor interrupt. During a counter update, the microcode
temporarily disables the counters, reads and clears the hardware counters,
updates the counters in memory, enables the counters, and resumes
instruction execution. The base address of the counters in memory is taken
from a system vector table and offset by the specific CPU number, creating
a data structure in memory that contains a pair of 64-bit counters for each
CPU.

Combining the use of hardware, software, and the PCS created a versatile
performance monitoring environment{-}one that goes beyond the scope of
the basic hardware capabilities. In this environment, we can correlate the
counts with higher-level system events and change the representation of
the collected data. For example, microcode can enable the counters every
time a process context is loaded and disable the counters when a process
context is saved. This feature allows us to set up workloads and gather
dynamic statistics on a per-process basis. We can also use PCS patches
to modify the memory counter address in order to provide an additional
offset based on one of the five VAX processor operating modes: interrupt,
kernel, executive, supervisor, or user. This technique provides a new
performance counter data structure that collects statistics on a per-mode,



per-process, per-CPU basis. Also, microcode patches can be used to add
context checks that filter and count various events. For example, we can
patch the VAX context switch instruction to count context switches or patch
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the interlocked instructions to count the number and types of accesses to
multiprocessor synchronization locks.

The performance monitoring environment is a powerful tool that we have used
to collect the data required to analyze hardware and software behavior and
interactions, and to develop an understanding of system performance. We
have applied this knowledge to tune the performance of operating systems
and application software, and continue to apply the knowledge to improve
the design and performance of future hardware and software.

9  Results and Conclusions

With a focus on time-to-market, we shortened the originally projected NVAX
design schedule, from the start of implementation to the completion of the
chip design, by 27 percent. We booted the operating system just 16 days
after prototype wafers became available. The use of the PCS allowed us to
quickly debug and work around the few functional bugs that remained in the
first-pass design. Because of the quality achieved in first-pass chips,
we were able to shorten the schedule from chip design completion to system
product delivery. As a result, systems were delivered to customers four
months earlier than the originally projected date.

At the same time, we were able to dramatically improve CPU performance
relative to previous VAX microprocessors by implementing a macropipelined
design, in which multiple autonomous functional units cooperate to execute
VAX instructions. Our internal goal was performance in excess of 25 times
the performance of the VAX-11/780 system. We significantly exceeded this
goal as demonstrated by the following Standard Performance Evaluation
Cooperative (SPEC) Release 1.2 performance ratings:[13]

SPECmark 40.5

SPECfp   48.8

SPECint  30.4

These ratings were measured on a VAX 6000 Model 600 system at the initial
announcement and are two to three times higher than those for the previous
VAX microprocessor running in the same system. Software and system tuning
has subsequently improved the initial numbers on all systems.

The NVAX/NVAX+ design provides an upgrade path and system investment
protection to customers with installed VAX systems, as well as a migration
path from an NVAX+ microprocessor to a DECchip 21064 microprocessor in the
new Alpha AXP systems.
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