Logi cal Verification of the NVAX CPU Chip Design
By Wal ker Anderson
1 Abstract

Digital's NVAX high-performance m croprocessor has a conpl ex | ogica

design. A rigorous simulation-based verification effort was undertaken

to ensure that there were no logical errors. At the core of the effort

were inplenentation-oriented, directed, pseudorandom exercisers. These
exerci sers were supplenented with inplenmentation-specific focused tests and
exi sting VAX architectural tests. Only 15 | ogical bugs, all unobtrusive,
were detected in the first-pass design, and the operating system booted
with first-pass chips in a prototype system

2 Introduction

The NVAX CPU chip is a highly conpl ex VAX m croprocessor whose design
required a rigorous verification effort to ensure that there were no

| ogical errors. The conplexity of the design is a result of the advanced
m croarchitectural features that make up the NVAX architecture, such

as branch prediction, mcropipelining and macropi pelining techniques, a
three-1evel hierarchy of instruction caching, and a two-1|evel hierarchy of
write-through and wite-back data caching.[1l] Also, the chip was initially
intended for two different target system configurations and had to be
verified for operation in both. Product tine-to-narket goals nmandated a
short devel opment schedule relative to previous projects, and there was a
limted nunmber of verification engineers available to performthe tasks.

The verification team set two key goals. The first was to have no "show
stopper" logical bugs in the first-pass chips and, consequently, to be able
to boot the operating systemon prototype systens. Meeting this goal would
enabl e the prototype system hardware and software devel opnent teans to neet
their schedul es and would all ow nore intensive |ogical verification of the
chip design to continue in prototype systens. The second key team goal was
to design second-pass chips with no |ogical bugs, so that these chips could
then be shipped to custonmers in revenue-producing systens. Meeting this
goal was critical to achieving the time-to-market goals for the two planned
NVAX- based systens.

3 Team Organi zati on and Approach

Logi cal verification was performed by a team of engineers fromDigital's
Sem conduct or Engi neering G oup (SEG whose primary responsibility was to
detect and elimnate the logical errors in the NVAX design. The detection
and elinmnation of timing, electrical, and physical design errors were |eft
to separate efforts.[2]

Digital Technical Journal Vol. 4 No. 3 Sumer 1992 1

Logical Verification of the NVAX CPU Chip Design

G ven the design conmplexity, the critical need for highly functional first-
pass chips, and the fact that the designers had other responsibilities
related to the circuit and physical inplenmentation of the full-custom chip
special attention to logical verification was considered a requirenent.
Every verification engi neer approached the verification problemwith a

di fferent focus. Each nenber of one group of engineers focused on the
verification of a single box, while other engineers focused on functions

t hat spanned several boxes. Certain verification engineers were avail abl e

t hroughout the project to test the functions of the chip that required
extra attention. This variety of perspectives was an inportant aspect of
the verification strategy. Mdst verification engineers followed the process
descri bed bel ow.

1. Plan tests for a function.

2. Review those plans with the design and architecture teans.

3. Inplenment the tests.

4. Review the actual testing with the design and architecture teans.
5. Inplenment any additional testing that was deemed necessary.

4 Simulation and Mdeling Methodol ogy

The verification effort enployed several nodels of the full NVAX CPU chip
and of the individual design elenents. Each nodel had its strengths and
weaknesses, but all nodels were necessary to ensure a thorough | ogica
verification of the design.

Behavi oral Model s

The behavi oral nodels of the chip were witten by design team nenbers using
t he DECSI M behavi oral nodeling | anguage; to achieve optimal sinulation
performance, they were written in a procedural style. These nodels are two-
state nodels that are logically accurate at the CPU phase cl ock boundari es.
These fairly detail ed behavioral nodels represent logic at the register
transfer level (RTL), with every latch in the design represented and

the conbinational |ogic described in a way sinmilar to the ultimte |ogic
desi gn.

Behavi oral sinulations were perforned first on box-Ilevel npdels, where npst
of the straightforward design and nodeling errors were elimnated. A box is
a functional unit such as the instruction prefetch/decode and instruction
cache control unit, the execution unit, the floating-point unit, the nmenory
managenment and primary cache control unit, or the bus interface and backup
cache control unit.[1]

The box-1|evel nodels were then integrated into a full-chip behaviora
nodel , which also included a backup cache nodel, a main nmenory nodel,
and nodels to enmul ate the effects of several system configurations.

The pseudosystem nodel s did not nodel any one specific target system
configuration but could be set up to operate effectively |ike any target

2 Digital Technical Journal Vol. 4 No. 3 Summer 1992

Logi cal Verification of the NVAX CPU Chip Design

system configuration or in a way that exercised the chip nore intensely
than any target system woul d. Available early in the project, this node
was the primary vehicle for logical verification until the schematics-
derived, full-chip, in-house CHANGO nodel was created. The full-chip
behavi oral nodel could sinmulate approximtely 13 cycles per VAX VMS CPU
second and was used to sinulate about one billion CPU cycles.

The procedural, full-chip behavioral nodel also ran on a hardware

simul ati on accel erator where it achieved sinulation performnce of about
twi ce that of the unaccelerated sinulation. The sinmulation accel erator was
used primarily for sinulating |ong, autonated, noninteractive tests.

In addition, the nodel was encapsulated in an event-driven shell and

i ncorporated into nmodule (i.e., board) and then system nodels. The chip
verification teamperfornmed only a linmted anpunt of sinulation using

t hese nodul e and system nodel s. These sinulations were used primarily to
verify that the chip nodel functioned correctly in a nore accurate node
of a target system configuration and to better test the nultiprocessor
support functions in the design. The system devel opnent groups perfornmed
nore extensive sinulations with such nodels.

Schemati cs-deri ved Model s

Schemati cs-derived nodel s were created and sinulated at both the box and
full-chip level. The CHANGO simulator is a two-state, conpilation-driven
simul ator and, like the behavioral nodel, is accurate only at the CPU
phase cl ock boundaries.[2] The full-chip CHANGO nodel |inked together the
foll owing: the code that was automatically generated fromthe schematics;
C-code nodels for chip-internal features such as control store and random
access nenories (RAMs); C-code nodels to perform sinulation contro
functions; and the same DECSI M behavi oral nodels for the backup cache, main
menory, and system functions that were used in the full-chip behaviora
nodel . The sinulation performnce of the full-chip CHANGO nodel was only
about one-half that of the unaccelerated, full-chip behavioral nodel.

Al t hough these npdel s were not useful for electrical or timng verification
because they did not nodel timng or electrical characteristics of the
design, their sinmulation performance made them extrenely useful for |ogica
verification.

Anot her full-chip nodel was created to run on an event-driven, nultiple-
state sinulator. However, only a |limted amount of simulation was perforned
using this nodel, because its performnce was very sl ow when conpared to

t he CHANGO and behavi oral nodels. Since it was the only nodel that could
run on a nultiple-state simulator, this third nodel was used primarily to
verify chip power-up and initialization.

Digital Technical Journal Vol. 4 No. 3 Sumer 1992 3

Logical Verification of the NVAX CPU Chip Design

5 Pseudor andom Exerci sers

Early in the project, it became apparent that, given the |inited nunber of
engi neers, the short schedule, and the conplexity of the NVAX chip design

a strategy of devel oping and sinmulating all conceivable inplenmentation-
specific test cases would be ineffective. This strategy woul d have required
the engi neers to inplenent tedi ous, handcrafted tests. Instead, the
verification team adopted a strategy that depended heavily on the use

of directed, pseudorandomtests referred to as exercisers. This strategy
generated and ran nmany nore interesting test cases than would ever have
been conceived by the verification and design engi neers thensel ves.

The basic structure of an exerciser consisted of the followi ng five steps,
which were repeated until a failure was encountered:

1. Set up the test case.

2. Simulate the test case on either the behavioral or the CHANGO nodel .
3. Execute the test programon a VAX reference nachi ne.

4. Analyze the sinulation and accumul ate dat a.

5. Check the results for failure

Figure 1 depicts the interoperation of the tools used to construct an
exerciser and its basic flow

Set up

Setting up the test case involved generating a short assenbly | anguage
test program activating sone denons to enul ate various systemeffects, and
sel ecting a chip/system configuration for sinulation.

The assenbly | anguage test prograns were generated using SEGUE, a text
gener ati on/ expansi on tool developed for this project. This tool processes
script files that contain hierarchical text generation tenplates and

i mpl enments the basic functions of a progranm ng | anguage.

SEGUE provides a notation that allows the user to specify sets of
possi bl e text expansions. Elements of these sets can be selected either
pseudorandom y or exhaustively, and the user can specify the weighting
desired for the selection process. For exanple, a hierarchy of SEGUE
tenpl ates typically conprised three levels. At the |owest |evel, a
SEGUE tenplate was created to sel ect pseudorandomy a VAX opcode, and
anot her tenplate was created to select a specifier, i.e., operand. At
an internmediate level, the verification engineers created tenpl ates

that called the | owest-level tenplates to generate short sequences of
instructions to cause various events to occur, e.g., a cache miss, an
invalidate fromthe system nodel, or a copy of register file contents
to menmory. At the highest level, these internedi ate-level tenplates were

sel ected pseudorandonmly with varied weighting to generate a conplete test
program

4 Digital Technical Journal Vol. 4 No. 3 Summer 1992

Logi cal Verification of the NVAX CPU Chip Design

Because the SEGUE tool was devel oped with verification test generation

as its primary application, the syntax allows for the easy description of
test cases and the ability to combine themin interesting fashions. Using
SEGUE, the verification engineers were able to create top-level scripts

qui ckly and easily that could generate a diverse array of test cases. These
engi neers considered SEGUE to be a significant productivity-enhancing too
and preferred using SEGUE to hand-codi ng many focused tests.

Before sinul ati ons were perforned, nodel denons were set up. Denobns

wer e enabl ed or disabled, and their operating nodes were sel ected

pseudor andom y. Denons nay be features of the nodel environnent that

cause sonme external events such as interrupts, single-bit errors, or

cache invalidates to occur at pseudorandom varying intervals. Denons may
al so be nodes of operation for the system nodel that cause pseudorandom
variation in operations such as the chip bus protocol, nenory |atency,

or the order in which data is returned. Some denbns were inplenmented

to force chip-internal events, e.g., a primary cache parity error or a

pi peline stall. These chip-internal denons had to be carefully inplenmented,
because sonetines they forced an internal state fromwhich the chip was

not necessarily designed to operate. In a pseudorandomy generated test, it
is frequently difficult or inpossible to check for the correct handling of
an event caused by a denmon, e.g., check that an interrupt is serviced by
the proper handler with correct priority. However, sinply triggering those
events and ensuring that the design did not enter sone catastrophic state
proved to be a powerful verification technique.

Chi p/ system configuration options such as cache enables, the floating-point
unit enable, and the backup cache size and speed were al so presel ected
pseudorandom y. Aside fromtesting the chip in all possible configurations,
e.g., with a specific cache disabled, varying the configuration in a
pseudor andom manner caused instruction sequences to execute in very

di fferent ways and evoked nmany different types of bugs unrelated to the
speci fic configuration. Also, specific configurations and denpn setups
woul d significantly slow down the sinulated execution of the test program
sonmetinmes to the point where intended testing was not being acconplished.
To work around this problem the verification engineer could force the
configuration and denon selection to avoid problemtic setups.

Si mul ati on and VAX Reference Execution

After assenbling and |inking the test program it was | oaded into nodel ed
menory, and its execution was sinulated on either the behavioral or the
CHANGO nodel . As the test program simnul ation took place, a simnulation

log file and a binary-format file, which contained a trace of the state
of the pins and various internal signals, were created. As the exerciser
test prograns executed, various VAX architectural state information was
written periodically to a region of nodeled nenory referred to as the

dunp area. When the sinul ated execution of the test program conpl et ed,
the contents of the dunp area were stored in a file. Also, the test program
was executed under the VMS operating systemrunning on a VAX conputer used

Digital Technical Journal Vol. 4 No. 3 Sumer 1992 5

Logical Verification of the NVAX CPU Chip Design

as a reference machine. At the end of execution, the contents of the nmenory
dunp area were stored in another file.

Anal ysi s

A tool called SAVES allows users to create C prograns in order to analyze
the contents of binary trace files. SAVES was used to provide coverage

anal ysis of tests, and to check for correct behavior of chip-internal |ogic
and give a pass/fail indication.

For coverage anal ysis purposes, information such as the number of tines
that a certain event occurred during sinulation or the interval between
occurrences was accunul ated across several sinulations. This data gave the
verification engi neer a sense of the overall effectiveness of an exerciser
For exanple, a verification engi neer who wanted to check an exerciser that
was intended to test the branch prediction |ogic was able to use the SAVES
tool to neasure the nunber of branch nispredictions.

Frequently, verification engineers used the SAVES tool to perform cross-
product anal ysis and data accunul ati on. For cross-product analysis, the
engi neer specified two sets of design events to be analyzed. The anal ysis
determ ned the nunber of times that events fromthe first set occurred
simul taneously with (or skewed by sonme nunber of cycles from events in the
second set. For exanple, one verification engineer analyzed the occurrence
of different types of primary cache parity errors relative to different
types of menory accesses. Analyzing the cross-product of state machine
st at es agai nst one another, skewed by one cycle, allowed state machine
transition coverage to be quickly understood.

The verification teamused this SAVES i nfornmati on about the exerciser
coverage in the foll owi ng ways:

o To enhance productivity by hel ping the engineers identify planned tests
that no | onger needed to be devel oped and run because the exerciser
al ready covered the test case

o To indicate significant areas of the design where coverage may have been
defi ci ent

0 To deternm ne how the exercisers mght be adjusted to becone nore
effective or thorough, or to focus on a particular |owlevel function of
the chip design

Pass/ Fai | Checking

Several checki ng mechani sns were enpl oyed to determ ne whether tests passed
or failed. The SAVES tool was used to check for correct behavior of the

desi gn, especially where correct behavior was difficult to observe at a

VAX architectural |evel. For exanple, the verification engineers used SAVES
to check the proper functioning of performance-enhanci ng features such as
branch prediction |logic, pipelines, and caches.

6 Digital Technical Journal Vol. 4 No. 3 Summer 1992

Logi cal Verification of the NVAX CPU Chip Design

A VMS conmand procedure automatically scanned sinulation log files for
error output fromany of several design assertion checkers built into the
nodel . These assertion checkers varied widely in conplexity. For exanple,
si nmpl e assertion checkers ensured that unused encodi ngs of multiplexers
sel ect lines never occurred. As another exanple, a nore sophisticated

and conpl ex assertion checker verified that the CPU had mai ntai ned cache
coherence and proper subsets anong the three caches and the main nmenory.

The sane VMs command procedure checked the sinulation log file to verify
that the simulation of the execution of the test programreached the proper
conpl eti on program counter. Finally, a sinple program conpared the nmenory
dunp area files generated by the sinmulation and the reference nmachine
execution to verify that the nmenory dunp areas were identical. Although
the sinmul ated test program may have followed a different execution path
fromthe VAX reference execution because it was sinulated in the presence
of denons, the conpletion points of both executions were the sane, and the
VAX architectural state information that was conpared was identical

If these checks found no errors, the exerciser |ooped back to generate
anot her test case. Because this whole process was automated, the
verification engineer could run this test continuously, on all avail able
conmputi ng resources.

O her Aspects of the Exercisers

The exercisers were the core of the NVAX CPU chip verification effort.

They were run nearly continuously throughout the project on behavioral and
/[or CHANGO nmodel s, and proved to be very effective at detecting subtle,
conpl ex bugs in the design. Each exerciser concentrated on testing a

si ngl e box, a subsection of a box (e.g., branch prediction logic), or

a particular global chip function. By adjusting the SEGUE tenpl ate

wei ghtings, preventing or forcing the use of a particular denmon, or forcing
a particular configuration parameter, the exercisers could be controlled at
a high level to focus on lowlevel functions. Verification engineers traded
i nteresting SEGUE tenpl ates anong thensel ves to provi de each exerciser with
a rich and diverse set of possibilities for code generation, while stil

mai ntai ni ng the intended focus of the exerciser

6 Focused Tests

Several focused tests were generated to suppl ement the exercisers. These
were necessary to test inplenentation-specific aspects of the design that
coul d not be checked by conparing results against a VAX reference nmachi ne.
In some cases, an exerciser could have been used to test a particular
function, but the verification engineer judged it easier to hand-code a
focused test programthan to control an exerciser in order to acconplish
the testing. Focused tests were necessary and particularly challenging to

create and nmmintain when very precise tinmng of events was required to test
a certain scenario of chip operation. This timng could be achieved only
by handcrafting an assenbly | anguage test and running it under carefully
control | ed simnulation conditions.

Digital Technical Journal Vol. 4 No. 3 Sumer 1992 7

Logical Verification of the NVAX CPU Chip Design

Each of the focused tests was run at |east once on the full-chip behaviora
nodel and then again on the full-chip CHANGO nodel .

7 Oher Tests

Several tests that had been used for the verification of previous VAX

i mpl enmentations were also used for verification of the NVAX CPU chip. The
use of these tests allowed the NVAX | ogical verification teamto focus

on the inplenmentation-specific conplexities of the NVAX design and not
expend as rmuch effort on inplenentation-independent, VAX architectura
verification.

The HCORE suite of tests can be used to verify several pernutations of al
VAX instructions, as well as sone VAX architectural concepts, e.g., nenory
managenent . [3] HCORE was valuable in that it was the first test used to
debug both the full-chip behavioral nodel and the CHANGO nodel .

Smal | portions of the HCORE suite were used as a nightly nodel regression
test. In general, very little regression testing of the NVAX nodel s took

pl ace; the team believed that using conputing resources to run pseudorandom
exercisers and other new tests was of nore value to the verification effort
t han consum ng resources with extensive, frequent regression testing.
Consequently, the entire HCORE suite was run at only a few key checkpoints
during the project.

AXE is a VAX architectural exerciser that pseudorandomy generates single-
instruction test cases.[4] MAX is an extension of AXE that generates

mul tiple-instruction test cases with conpl ex data dependenci es between the
instructions. Both tools set up enough VAX architectural state to prepare
for a test case, sinulate the test case on a nodel, execute the test case
on a VAX reference machi ne, conpare VAX architectural state information
fromthe simulation and VAX reference execution, and finally, report any

di screpanci es. Each test case nay force some nunber of exceptions; the AXE
and MAX tools ensure that all exceptions are detected and properly handl ed.

The AXE and MAX tools generate tests with no know edge of the particul ar
VAX i nmpl ementation being tested and thus differ fromthe inplenentation-
speci fic exercisers. Consequently, AXE and MAX are | ess effective than the
i mpl ement ati on-specific exercisers for intensive exercising of perfornmance-
enhancing features that are transparent froma VAX architectura
perspective. However, MAX was an effective test for the micropipelining
and macropi pelining aspects of the NVAX design. Altogether, about 706, 000
AXE test cases and 137,000 MAX test cases were run on the behavioral nopdel

8 Digital Technical Journal Vol. 4 No. 3 Summer 1992

Logi cal Verification of the NVAX CPU Chip Design

8 Schematic Verification

An initial goal of the NVAX CPU chip verification teamwas to perform

a nore extensive verification of the schematic design than had been
acconplished in the past. Because of the devel opnent of the CHANGO
simulator, with its significant performance advantage over previously used
logic simulators, the teamnmet this goal. Approximately 75 mllion NVAX CPU
cycles were simulated on the schematics-derived, full-chip CHANGO nodel .

Box-1 evel CHANGO Si nul ati on

First, box-level CHANGO nodel s were constructed and tested using a

techni que called patterns-on-the-fly (POTF). This technique involved
simul taneously starting a full-chip behavioral nodel sinmulation process
and a box-1level CHANGO simul ati on process under the VMS operating system
and then conmuni cati ng between the processes. Stinulus and response data
fromthe behavioral sinmulation is used to drive the inputs to and check
the outputs fromthe box-1evel CHANGO nodel. In addition to conparing
primary outputs fromthe box, this technique was used to conpare nany

chi p-internal points. The POTF technique elimnated the need to extract
and maintain |arge pattern files from behavioral sinulations and proved
to be a straightforward way of conparing the two nodel s. Exercisers and
focused tests were run using the POTF nethod, and several bugs were quickly
and easily isolated. Because a close correlation between the behaviora
nodel s and the inplenmentation as represented by the schematics had been
mai nt ai ned, few conceptual, |ogical design errors were found by the box-

| evel , POTF simulations. These simulations were, however, extrenely usefu
for finding sinple schematic entry errors.

Ful | -chi p CHANGO Si nul ati on

Next, the team constructed the full-chip CHANGO nodel. The sinulation
envi ronnent of this nodel included many features available in the

behavi oral nodel environment. After sinulating the HCORE suite of tests,
all the focused tests were run on the full-chip CHANGO nodel, and the
exercisers were run on this nodel for several weeks. In addition, 44,000
AXE cases and 33,000 MAX cases were run on the full-chip CHANGO nodel . Al
these sinmul ati ons uncovered only one additional schematic entry error

Si mul ati on of the VMS Boot Process

To ensure the success of operating systembooting, i.e., initial processor
| oadi ng, on first-pass chips and as a final functional test of the design
menbers of the architecture team sinulated the VMS operating system boot
process on the full-chip CHANGO nodel. The operating system source code
was nodified to add support for the NVAX-specific features and for the
nodel ed system environment. A VMS system di sk that contai ned the changes

was created on an existing VAX system Each block of the disk was copied to
a VMs file, which was then used as the system di sk i mage during sinulation.

Digital Technical Journal Vol. 4 No. 3 Sumer 1992 9

Logical Verification of the NVAX CPU Chip Design

A disk nmodel with a sinple programming interface and a direct menory access
(DMA) capability was added to the sinulation environment of the full-chip
CHANGO nodel . The di sk nodel read bl ocks fromthe system di sk i mage file,
and wote data to a small cache of internally maintained di sk bl ocks. To
accel erate disk transfers, the disk nodel would exam ne cache state and use
the system bus for the disk transfers only when the data was present in the
cache and required a cache invalidate or wite back. In other cases, the
data was transferred directly into the nmenory subsystemin zero sinul ated
time.

Wil e tracking the progress of the simulation, the teamidentified
operating system code that executed a time-consum ng search al gorithm

To limt the anpunt of tinme spent in this |loop, the code was rewitten to
i mpl enment a nmuch faster algorithm However, because the booting sinmulation
effort could not be restarted fromthe begi nning, several utilities were
devel oped that all owed the code to be replaced in the system di sk i mage
file and in sinulated nenory during a pause in the simnulation.

To provide the ability to restart the sinmulation effort and nove it to any
avail abl e conmputing resource, sinulation state was saved after every 50, 000
to 100,000 cycles of simulation. In total, approximtely 25 nmillion cycles
were sinmulated. The sinmulation was stopped at the point where multiple
processes were created and the nmain start-up process began executing.

Even though this effort identified no bugs in the design, it did provide

a high degree of confidence that the design was ready to be rel eased for
fabrication of first-pass chips.

9 Prototype Chip Verification

The prototype NVAX chips were verified in several VAX 6000 Mdel 600

nmul ti processor systems. The CPU nodul e was the only new hardware conponent
in the system the backplane, nmenory, and I/O subsystem were known to be
robust, because they were used in the VAX 6000 Mbdel 500 system One logic
anal yzer was connected to the system bus, and anot her was connected to the
pi ns of the NVAX chip

The strategy for the early prototype verification was to boot the | ow

| evel consol e user interface, run the HCORE suite of tests, boot the VM5
operating system and then run the User Environnent Test Package (UETP)
system exerciser. Wthin 10 days of receiving the first prototype chips,
all these tasks had been acconplished. Later, the AXE and MAX exercisers
were run on the prototype systens.

The rigorous testing that continued on prototype systens revealed a few

| ogi cal bugs which had gone undetected during sinulated verification
Typically, information about a bug was collected on the prototype system
and then the failing scenario was reproduced on the behavioral nodel, where

the scenario could be analyzed and better understood. The chip-interna
signals were extrenely difficult to observe, but a 12-bit, parallel port
al l omwed access to one of eight sets of signals fromvarious sections of the

10 Digital Technical Journal Vol. 4 No. 3 Summer 1992

Logi cal Verification of the NVAX CPU Chip Design

chip. The ability to nmonitor the control store address bus by nmeans of this
parall el port proved to be an essential debugging feature.

The control store patching nechanismthat was part of the chip design

hel ped identify some bugs in prototype chips. The debuggi ng engi neers
successfully used nicrocode patches to work around several of the hardware
and m crocode bugs. In cases where a m crocode bug was patched, extensive
systemtesting verified that the planned change was correct.

10 Bug Tracki ng and Desi gn Rel ease

Bug detection was a key status indicator throughout the NVAX | ogica
verification effort and thus hel ped to steer the teanmis work. Bugs were
tracked carefully with an on-line system and anal yzed each week to consider
trends, successful and unsuccessful bug-finding techni ques, and bug hot
spots, which required additional attention. The bug detection rate was
fairly constant throughout the project at about 22 per nonth, with the
exception of the last nonth in which the rate dropped to nearly zero.

An anal ysis of the bug-detecting effectiveness of each testing technique
shows that all test techniques were effective and seenmed to conpl enent each
other. Table 1 shows the percentage of bugs detected by each technique.
This table includes data on the ever-valuable, nonsinmnulation verification
techni que of sinply review ng, inspecting, and discussing the design and
its many representations.

The decision to rel ease the design for fabrication of first-pass chips was
a consensus deci sion nmade by the verification, architecture, and design
teanms. From a verification perspective, the design was ready for rel ease
when the bug detection rate remained at zero for several weeks and the
majority of the planned tests had been inplenented. The verification of
sonme areas of the design was deferred until after the release of the first-
pass design. The devel opment team deci ded that any bugs that m ght be found
in these areas would not have a significant negative inpact on the system
devel opnent schedul e, whereas additional delay in releasing the design

woul d.

11 Results and Concl usi ons

Only 15 logical bugs were found in the first-pass NVAX CPU chi p design,

all of which were either easily worked around or did not inpact normal
system operation. The nature of the bugs found in the first-pass design
ranged from strai ghtforward bugs that escaped detection for clear-cut
reasons to extrenely conpl ex bugs that required hours or weeks of rigorous
prototype systemtesting to uncover. Sonme of the bugs escaped detection
during sinulated verification for classic reasons such as:

o Little or no testing of the function had been perforned.

o0 Testing of the function was perforned just before release, in a hurried
manner .

Digital Technical Journal Vol. 4 No. 3 Summer 1992 11

Logical Verification of the NVAX CPU Chip Design

o Sinulation performance prohibited running a certain type of test case.

o0 Atest was not run in a certain nmode due to the difficulty of running it
in all possible nodes.

o It took an exerciser running on a sinmulator a long time to encounter the
conditions that woul d evoke the bug.

o A test was inadvertently dropped fromthe set of exercisers that were
run continuously.

Details about five of the nore interesting bugs found in the first-pass
design follow. Included is information about how t he bug was detected, a
hypot hesi s on why the bug el uded detection before first-pass chips were
fabricated, and | essons |earned fromthe detection and elimnation of the
bug.

1. One sinple bug was detected by running the HCORE test suite on the
prototype systemwith the floating-point unit (F-box) disabled. This bug
coul d have been found in the same way through sinmulation, but the test
suite was not run as a final regression test with the F-box disabled. In
general, focused tests |ike HCORE were not run with varied chip/system
configurations. The verification team concluded that all focused tests
should be run with different chip/systemconfigurations. At the mninmm
a configuration that disables all possible functions should be tested.

2. Another bug was di scovered because the CPU chip generated spurious
writes to nmenory in the prototype system The exercisers probably
did generate the conditions necessary to evoke this bug; however, the
spurious wites went unnoticed. It is extrenely difficult to verify
that a machi ne does everything it is supposed to do and not hi ng nore.
Addi tional assertion checkers or nmonitors in the nodels m ght detect
such bugs in the future.

3. Athird bug was evoked when a prototype system exerci ser executed a
transl ation buffer invalidate all (TBIA) instruction under certain
conditions. On a real system the TBIA instruction is used only by the
operating system In our verification effort, the TBIA instruction was
little used by the exercisers that were sinulated. Operations that are
performed only by the operating system should not be underenphasized in
exerci sers.

4. One first-pass bug was related to the halt interrupt, which is used
only during debuggi ng operations. The halt interrupt received m ni nal
testing and was not tested at all in any type of exerciser. Discovering
this bug was especially annoying because a sinilar bug had escaped
detection by the initial logical verification effort for a previous

VAX inmpl ementation. This turn of events reinforces the belief that
there is value in reviewing the escaped bug lists from other projects.
Al 'so, during the verification effort, there seemed to be a natural, but
erroneous, tendency to undertest functions used infrequently or not at
all during normal system operation. Such functions sonetines require

12 Digital Technical Journal Vol. 4 No. 3 Summer 1992

Logi cal Verification of the NVAX CPU Chip Design

extra attention, because they nay be quite conplex and nay have been
given less careful thought during the design process.

5. A state bit that needed to be initialized on power-up was not. This
probl em was noticed during initialization sinulation but erroneously
rationali zed as being acceptable. Design assunptions and assertions
about initialization should be verified through sinmulation or other
nmeans.

Overall, the NVAX CPU chip logical verification effort was a success. The
pseudor andom testing strategy detected several conplex and subtle |ogica
bugs that otherw se probably would not have been detected by sinulation
The extensive sinulation perforned on the schematics-derived nodel of the
chip provided a high degree of confidence in the design.

The goal s of producing highly functional first-pass chips and bug-free,
second- pass chips were both nmet. Neither the bugs in first-pass chips nor
t heir work-arounds inpeded prototype system debugging in any significant
way, and first-pass chips with work-arounds were used in preproduction,
field-test systens. The verification teamcorrected the 15 first-pass
desi gn bugs for second-pass chips, which were shipped to custoners in
revenue- produci ng systens.

12 Acknow edgenents

The NVAX | ogical verification effort was perfornmed by a team of engineers
fromthe SEG m croprocessor verification group. Menbers of this team

i ncl uded Wal ker Anderson, Rick Cal cagni, Sanjay Chopra, and John St.
Laurent. NVAX architects M ke Unhler and Debra Bernstein provided extensive
technical direction and assistance to the verification team The SEG

CAD group hel ped by its continual devel opnent and support of tools. The
CHANGO si nul at or woul d not have been possible wi thout the significant
contributions of Kevin Ladd. WII Sherwood provided high-quality, top-

| evel guidance through all phases of the project. The system devel opnent
groups performed system | evel sinulations and rigorous prototype testing.
The VAX Architecture Group AXE/ MAX team once again, provided and supported
an effective verification tool. Lastly, the success of the project and the
final quality of the NVAX chip logical design are as much a tribute to the
wor k of the NVAX architecture and design teans as they are to the work of
the verification team

13 References
1. G Unler et al., "The NVAX and NVAX+ Hi gh-performnce VAX

M croprocessors,"” Digital Technical Journal, vol. 4, no. 3 (Summer 1992,
this issue): 11-23.

2. D. Donchin et al., "The NVAX CPU Chip: Design Chall enges, Methods, and
CAD Tool s," Digital Technical Journal, vol. 4, no. 3 (Sumer 1992, this
i ssue): 24-37.

Digital Technical Journal Vol. 4 No. 3 Summer 1992 13

Logical Verification of the NVAX CPU Chip Design

3. R Calcagni and W Sherwood, "VAX 6000 Model 400 CPU Chip Set Functiona
Design Verification," Digital Technical Journal, vol. 2, no. 2 (Spring
1990): 64-72.

4. D. Bhandarkar, "Architecture Managenent for Ensuring Software
Conpatibility in the VAX Fam |y of Conputers,” |EEE Conputer (February
1982): 87-93.

14 Bi ogr aphy

Wal ker Anderson Princi pal engi neer Wal ker Anderson is a nenber of the
Model s, Tools, and Verification Group in the Sem conductor Engi neering
Group. Currently a co-leader of the logical verification teamfor a future
chip design, he led the NVAX |l ogical verification effort. Before joining
Digital in 1988, Wl ker was a di agnhostic and testability engineer in a CPU
devel opnent group at Data General Corporation for eight years. He holds a
B.S.E.E. (1980) from Cornell University and an MB. A (1985) from Boston
Uni versity.

15 Trademar ks

The following are trademarks of Digital Equi pnment Corporation
Digital, VAX, VAX 6000, and VMS.

14 Digital Technical Journal Vol. 4 No. 3 Summer 1992

Copyright 1992 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

