By Jonathan C. Crowell and David W. Maruska

1 Abstract

The MicroVAX 3100 Model 90 and VAX 4000 Model 100 systems were designed to meet the growing demand for low-cost, high-performance desktop servers and timesharing systems. Both systems are based on the NVAX CPU chip and a set of VLSI support chips, which provide outstanding CPU and I/O performance. Housed in like desktop enclosures, the two systems provide 24 times the CPU performance of the original VAX-11/780 computer. With over 2.5 gigabytes of disk storage and 128 megabytes of main memory, the complete base system fits in less than one cubic foot of space. The system design was highly leveraged from existing designs to help meet an aggressive schedule.

2 Introduction

The demand for low-cost, high-performance desktop servers and timesharing systems is increasing rapidly. The MicroVAX 3100 Model 90 and VAX 4000 Model 100 systems were designed to meet this demand. Both systems are based on the NVAX CPU chip and a set of very large-scale integration (VLSI) support chips, which provide outstanding CPU and I/O performance.[1]

Each member of the MicroVAX 3100 family of systems constitutes a lowcost, general-purpose, multiuser VAX system in an enclosure that fits on the desktop. This enclosure supports all the required components of a typical system, including the main memory, synchronous and asynchronous communication lines, thick-wire and ThinWire Ethernet, and up to five small computer system interface (SCSI)-based storage devices.

The MicroVAX 3100 Model 90 system replaces the Model 80 as the top performer in the line; the new model has considerably more than twice the CPU power of the previous model.[2] The Model 90 system also includes performance enhancements to the Ethernet and SCSI adapters, as well as an increased maximum system memory of 128 megabytes (MB). The CPU mother board for the MicroVAX 3100 Model 90 system is called the KA50.

The VAX 4000 Model 100 system is housed in the same desktop packaging as the MicroVAX 3100 Model 90 and provides the same base functionality. The VAX 4000 Model 100 adds two key features found in all previous VAX 4000 systems, i.e., Digital Storage Systems Interconnect (DSSI) storage and Q-bus expansion. The CPU mother board for the VAX 4000 Model 100 system is called the KA52.

The KA50 and KA52 CPUs are built from a common CPU mother board design; the base CPU mother board is configured to create either the KA50 or the KA52

product module. The DSSI and Q-bus optional hardware is added to the CPU mother board to convert a KA50 to a KA52. Also, to provide the additional

superset functionality found on the KA52 CPU, the different system readonly memories (ROMs) are added during the manufacturing process. In this paper, the KA50 and KA52 CPUs are referred to as the CPU mother board or module, except where differences exist.

The system design was highly leveraged from existing designs to help meet an aggressive schedule. This paper describes the design and implementation of these systems.

3 Design Goals

The design team's primary goal was to develop a CPU mother board that would provide at least twice the CPU performance of the MicroVAX 3100 Model 80, while supporting all of the same I/O functionality of the previous systems. This new system would leverage the core CPU design from the VAX 4000 Model 500 system, thus delivering the high performance of the NVAX CPU chip to the desktop.[3]

The team set additional goals to increase system capability and performance. These goals were to

- 1. Increase the maximum system memory from 72MB to 128MB
- 2. Provide error correction code (ECC) protection to memory using memory arrays that previously supported only parity
- 3. Increase the performance of the Ethernet adapter
- 4. Increase the performance of the SCSI adapter

Early in the project, the team proposed creating a second CPU design that would have the features of the larger VAX 4000 systems. This proposal resulted in the design of a DSSI adapter option for the CPU mother board, as well as a Q-bus adapter to provide a means to upgrade the CPU power of older Q-bus{-}based MicroVAX systems.

The project to design, implement, and field-test these systems was accomplished under an aggressive schedule. Both designs were ready to ship to customers in just over nine months from the official start of the project.

4 System Overview

The MicroVAX 3100 Model 90 system supports the same I/O functionality as the previous generation of systems, the MicroVAX 3100 Models 40 and 80. The features include a SCSI storage adapter, 20 asynchronous communication ports, two synchronous communication ports, and an Ethernet adapter.

The VAX 4000 Model 100 includes the same I/O functionality as the MicroVAX 3100 Model 90. In addition, the system provides the I/O functionality of the larger VAX 4000 systems, that is, a high-performance DSSI storage adapter and a Q-bus adapter port that connects to an external Q-bus enclosure.

Both systems provide 24 times the CPU performance of a VAX-11/780 system. The memory subsystem uses Digital's MS44 single in-line memory modules

(SIMMs) and thus provides 16MB, 32MB, 64MB, 80MB, or 128MB of main memory.

As shown in Figure 1, the system enclosure used to house both systems, namely the BA42B, provides mounting for the CPU mother board, up to five locations for disk and tape devices, a 166-watt power supply, and fans for cooling the system elements. In addition, the enclosure shields the system from radiated emissions. All I/O connections are filtered and exit

the enclosure through cutouts in the rear panel. The system enclosure is compact and measures 14.99 centimeters (5.9 inches) high by 46.38 centimeters (18.26 inches) wide by 40.00 centimeters (15.75 inches) deep.

The system enclosure contains two shelves that support the mass storage devices. In the MicroVAX 3100 Model 90, these storage locations are cabled to support SCSI disks and tapes. The upper shelf supports three SCSI disks, whereas the lower shelf supports two SCSI devices (any combination of removable or 3 1/2-inch disks) with access through a door in the front of the enclosure. In the VAX 4000 Model 100, the top shelf is configured to support three 3 1/2-inch DSSI disks; the bottom shelf supports two SCSI devices, as in the MicroVAX 3100 Model 90.

The VAX 4000 Model 100 DSSI support is provided by a high-performance DSSI adapter card based on the shared-host adapter chip (SHAC), i.e., a custom VLSI design with an integrated reduced instruction set computer (RISC) processor.[3] The system is configured with DSSI as the primary disk storage. The DSSI bus exits the enclosure by means of a connector on the back panel. This expansion port can be used to connect the system to additional DSSI devices, or to form a DSSI-based VAXcluster with a second VAX 4000 Model 100 or any other DSSI-based system.

The Q-bus support on the VAX 4000 Model 100 is provided by the VLSI adapter chip, i.e., the CVAX Q22-bus interface chip (CQBIC).[4] There are no Q-bus option slots in the system enclosure. The Q-bus connects to an expansion enclosure through a pair of connectors at the rear of the system enclosure. Two shielded cables and the H9405 expansion module are used to connect the Q-bus to the expansion enclosure. The near end of the Q-bus is terminated in the system enclosure.

5 CPU Mother Board Design

The design goals presented engineering with constraints that forced design trade-offs. Some key constraints were (1) fitting the required functionality on a single 10-by-14-inch module; (2) designing the system to adhere to the system power and cooling budget; and (3) minimizing changes to the functional view of the module over previous designs, to decrease the number of software modifications required for operating system support.

The primary way the design team minimized system development was to leverage as much as practical from existing designs. The CPU mother board design used components from the VAX 4000 Model 500, MicroVAX 3100 Model 80, and VAXstation 4000 Model 90 systems. Using proven design components allowed for a shorter development cycle, smaller design teams, and consequently, a higher-quality design, while meeting an aggressive schedule. The design is structured so that both CPU mother boards can be built using the same printed wiring board (PWB). The added functionality for the KA52 is provided by a daughter card, additional hardware and cabling,

and different system ROMs. The shared design helped reduce the complexity in testing and qualifying the system design.

The CPU module contains three major sections: the CPU core, the memory subsystem, and the I/O subsystem. Figure 2 is a block diagram of the basic CPU module for the VAX 4000 Model 100 and MicroVAX 3100 Model 90 systems. Figure 3 is a photograph of the module, including the DSSI daughter card option.

The CPU mother board includes a linear regulator that generates local 3.3-volt (V) current for the CPU core chip set. The voltage is stepped down from the 5-V supply. The regulator is necessary because the 3.3-V direct current (DC) of the system is not sufficient to meet the ±3 percent tolerance regulation or to supply the required maximum current.

NOTE

Figure 3 (CPU Mother Board) is a photograph and is unavailable.

CPU Core

The CPU core consists of three chips: the NVAX CPU chip, the NVAX data and address lines (NDAL) memory controller (NMC) chip, and the NDAL-to-CVAX pin (CP) bus adapter (NCA) chip. The NVAX chip directly controls the 128-kilobyte (KB) backup cache. The core chip set is interconnected by means of the NDAL pin bus, as shown in Figure 2. The NDAL bus is 64 bits wide, has a 42-nanosecond (ns) cycle time, and supports pended transactions.[1] The peak bandwidth of the NDAL bus performing 32-byte operations is 152 megabytes per second (MB/s).

NVAX CPU Chip. The NVAX CPU chip is an advanced implementation of the VAX architecture in Digital's fourth-generation complementary metal-oxide semiconductor (CMOS-4) technology. The NVAX device consists of 1.3 million transistors on a die approximately 0.6 inch on a side.

The NVAX CPU chip contains the VAX CPU, a floating-point unit, and backup cache controller logic. Some NVAX features that enable it to increase performance are the use of a pipelined architecture, a 2KB virtual instruction cache (VIC), a 96-entry translation buffer, an on-chip 8KB primary cache, and an on-chip backup cache controller. The CPU cycle clock and NDAL bus clocks are generated with an on-chip clock generator supplied by a 286-megahertz (MHz) oscillator.

The NVAX CPU is based on a high-performance macropipelined architecture similar to that of the VAX 9000 CPU.[1,5] The VIC allows the caching of instructions that have already been translated to virtual addresses. Having the backup cache controller on the chip decreases backup cache access time

because no external logic, with the resulting delays, is required.

NVAX Memory Controller Chip. The NMC is the NVAX memory controller implemented in Digital's third-generation complementary metal-oxide semiconductor (CMOS-3) technology.[6] The NMC consists of 148,000 transistors and is the high-speed interface to the system main memory. The

NMC is the arbiter for the three chips on the NDAL bus, namely, the NVAX, the NCA, and the NMC. The NMC chip manages the array of ownership bits that correspond to each 32-byte segment of memory. Each of these segments corresponds to a cache line. The ownership bit indicates whether the valid copy of the data is in memory, in the CPU write-back cache, or in an I/O devices buffer.

The NMC has four command queues that accept read, write, and remove write privilege transactions from the NDAL bus. Buffers hold the read data to be returned to the node that requested the data. The NMC and the memory subsystem provide the 95MB/s of bandwidth shared by the NVAX and the I/O devices.

NDAL-to-CP Bus Adapter Chip. The NCA chip, also implemented in Digital's CMOS-3 technology, is the interface from the NDAL to the CP bus.[6] The NCA consists of 155,000 transistors and supports two CP buses. The CP bus used on the CVAX microprocessor family is also used on many of Digital's custom I/O adapter chips, such as the CQBIC, the SHAC, the second-generation Ethernet controller (SGEC), and the system support chip (SSC).[3,4,7,8] Thus, the hardware and software designs for these I/O functions could be leveraged from previous efforts. The NCA performs direct memory access (DMA) from the I/O devices and supports the cache consistency protocol required for the NDAL bus.

The NCA was designed to optimize DMA traffic from CP bus devices. In the KA50 CPU, the CP bus devices include the SGEC Ethernet adapter, the SSC, the field erasable programmable read-only memory (FEPROM) subsystem, the CP-to-EDAL adapter chip (CEAC), and the SCSI quadword first in, first out (SQWF) chip. In addition, the asynchronous communication option is attached to the CP bus. The KA52 CPU also attaches the CQBIC Q-bus adapter chip and the SHAC DSSI host adapter chip.

Memory Subsystem

The memory subsystem is controlled by the NMC chip. The main memory is implemented using MS44 SIMMs and low-cost gate array (LCGA) chips to provide an interface between the NMC and the SIMMs.[9] The SIMMs are used in groups of four to provide two interleaved banks, each with a 64-bit data path and eight bits of ECC. This interleaving scheme increases the bandwidth of main memory by alternating data between both banks of memory. The ECC provides single-bit error correction and double-bit error detection.

The individual SIMMs are available in either 4MB or 16MB variants. Since four SIMMs form a complete functional set, sets can be 16MB or 64MB in size. Therefore, because the system supports up to two sets of SIMMs, the total system memory size can be either 16MB, 32MB, 64MB, 80MB, or 128MB, depending on the combination of SIMM size and the number of sets.

To coincide with the cache coherency scheme used in the NVAX CPU chip, the NMC keeps track of the cache lines that have write privilege reserved by the CPU or I/O devices. This state is stored in separate dynamic randomaccess memories (DRAMs). These DRAMs interface directly to the NMC by means of a private bus. The ownership bits are protected by ECC.

I/O Subsystem

Because the MicroVAX 3100 Model 90 was intended as an upgrade for the Model 40 and 80 systems, the I/O subsystem of the earlier systems dictated the design of the new Model 90. In addition, the I/O subsystem of the KA52 CPU module for the VAX 4000 Model 100 supports two functions found in the other VAX 4000 systems, the DSSI adapter and the Q-bus adapter.[9] The I/O subsystem includes a ThinWire and thick-wire Ethernet adapter, four built-in asynchronous terminal lines, a connector for the asynchronous option, and the CEAC and SQWF chips.

A bus interface was incorporated in the I/O subsystem to support the DSW42 synchronous communication option, the SCSI adapter chip, and the QUART four-port asynchronous controller chip. The CEAC and SQWF chips, which are gate arrays designed for the VAXstation 4000 Model 90, are used to create the EDAL bus.

Support for the SCSI bus is provided by the 53C94 SCSI adapter chip.[10] The 53C94 chip is interfaced to the system on the EDAL bus and uses the SQWF chip to increase its DMA performance. The SQWF chip makes it possible to buffer data moving to the CP bus. The SCSI bus operates in synchronous mode for high-performance storage access of 5MB/s.

The QUART gate array supplies the logic for four built-in serial ports. The QUART, originally used on the DZQ11 Q-bus device, provides the same software interface as that device. The third port provides modem control functions by means of additional logic; the first, second, and fourth ports are data leads only.

The SGEC Ethernet adapter chip was chosen because it provides higher performance than the Ethernet adapter used on the MicroVAX 3100 Model 80. The SGEC is the adapter chip used on all VAX 4000 systems. In addition, this chip directly interfaces with the CP bus.

The limited size of the CPU mother board required the DSSI adapter to be added by means of a daughter card. The Q-bus adapter chip and bus termination are provided directly on the mother board.

6 Console and Diagnostics

The MicroVAX 3100 Models 80 and 90 differ in their console designs and

diagnostics. Because the basic CPU core of the MicroVAX 3100 Model 90 and the VAX 4000 Model 100 systems is very similar to that of the VAX 4000 Model 500 system, the design team decided to adopt the console of the Model 500 and add the required commands and functionality. Borrowing proven

designs, such as the console of another NVAX-based system, significantly shortened the product development schedule.

One enhancement to the CPU mother board was the addition of a FEPROM subsystem. If an update is required, the console and diagnostic code on the CPU can be reprogrammed in the field. In contrast, previous systems required the memories to be in sockets and the parts to be replaced in the field. With FEPROMs, a program is loaded from any bootable device. This program erases the FEPROMs and reprograms them with the new ROM image. This enhancement serves as an easy mechanism for updating the ROMs in the field to provide new features or to fix bugs that may be discovered.

On power-up, the CPU starts executing from the FEPROM memory and runs the power-up self-test to help verify that the system is fully operational. Upon completion of the execution of this test, the system transfers control to the console program. Depending on the values configured in nonvolatile memory, the console program either boots the system with the correct parameters or stops for console input.

In earlier systems, the speed of executing from ROM could be more than an order of magnitude slower than running from cached main memory. The NVAX CPU chip added the virtual instruction cache, which allows the caching of instruction stream references from I/O space. This feature greatly increases the performance of the ROM code.

Console

The console program gains control of the CPU whenever the processor halts or performs a restart operation such as power-up. The console provides the following services:

- 1. Interface to the diagnostics that test components of the CPU and system
- 2. Automatic/manual bootstrap of an operating system following processor halts
- 3. An interactive command language that allows the user to examine and alter the state of the processor

There are minor differences between the KA50 and KA52 consoles. Largely, these differences relate to the KA52 CPU mother board support for the DSSI bus and the Q-bus. Although the console is similar to that found on the VAX 4000 Model 500, some new commands were implemented to provide functionality that exists on previous MicroVAX 3100 systems. These commands include LOGIN and SET PSWD (set password), which give support for a secure console; SET /SHOW SCSI_ID; SHOW CONFIGURATION; SHOW ERROR; and various commands to

support a system exerciser.

On the KA52 CPU, the console supports the DSSI bus and the Q-bus with a set of commands. These commands allow polling of the DSSI bus to determine what devices are present and to configure the internal parameters of each device. The system can be booted from devices on the SCSI, DSSI, or Q-bus chips, as well as over the Ethernet port.

Diagnostics

Diagnostics help isolate faults in the system down to the level of the field-replaceable units. Significant effort was expended on the development of onboard diagnostics. However, as for the console, the philosophy used in developing these diagnostics was to leverage as much of the software design as possible from existing designs.

With the advent of larger boot and diagnostic ROMs, the diagnostic coverage of the power-up self-tests greatly increased, including extensive testing of the cache, the memory, and the CPU core. These tests help assure the customer that a failed component will be detected and reported upon power-up. In many cases, the new tests can help isolate failures in the individual SIMM or cache chip. This feature is used extensively in manufacturing, as well as by field service.

During the power-up sequence, an instruction exerciser (HCORE) is run to test the floating-point hardware. This test provides very good coverage of the floating-point unit. In the past, HCORE has been run as a standalone diagnostic in manufacturing before a system is shipped. The design team for the two new desktop systems believed that this test should run on every system power-up self-test.

The CPU core is designed to function over a wide range of environmental conditions. Some variables of the environment are temperature, voltage, and minimum/maximum component parameters at a given clock frequency. Exceeding the worst-case design envelope can cause unpredictable results. For example, to avoid problems caused by a defective main clock oscillator that may be running too fast, the diagnostics measure the speed of the CPU cycle clock to determine if it is within the accepted tolerance. If the cycle is faster than the design margin dictates, an error is reported.

7 Design Tools

The design of the CPU mother board uniquely merged components from several designs. The success of this approach relied on the use of design tools to perform the merge and to verify the correctness of the merge.

The normal design process is to create a set of design schematics and to verify these through simulation. Once the design is logically verified, the layout process begins. The layout process includes the use of the SPICE simulator to give direction to the physical layout structure and to check the integrity of the layout.[11] After the layout is complete, the database is fed back into logic simulation, which again verifies the correctness of the design database.

The CPU mother board designers took a different approach. Since the

physical placement of the connector portion of the module was the same as for the MicroVAX 3100 Model 80 module, this design element was used as the starting point for the overall design. The database was edited using the VAX layout system (VLS), and the only components saved were those that

were to be used in the new CPU module. This procedure provided the correct placement for all I/O connectors that exited the system enclosure.

In addition, the VAX 4000 Model 500 CPU core was used as the basis for the CPU mother board etch layout. The Model 500 design has proven to have very good signal integrity due to its well-thought-out circuit board layout. To leverage Model 500 work in the layout of the CPU mother board, the designers extracted the printed circuit board signal routing from the Model 500. This signal routing included the CPU core and cache treeing, the most critical areas. This approach eliminated the need to model critical signal interconnect in the design and guaranteed that the signal integrity and connector layout would be identical to that of the proven Model 500.

Database comparison tools were used to guarantee that the schematics matched the physical layout database. As a final step, the physical layout database netlist was used to create a simulation model. DECSIM, Digital's simulation tool, was used to verify the final correctness of the design database.

8 Performance

The CPU I/O subsystems on both the MicroVAX 3100 Model 90 and the VAX 4000 Model 100 provide exceptional performance. The DSSI bus on the KA52 CPU was tested under the VMS operating system performing single-block (512-byte) read operations from RF35 disk drives. The read rate was measured at more than 1,200 I/Os per second. The SCSI adapter on both CPUs was measured at more than 500 I/Os per second for single-block reads.

The Ethernet subsystem used on both the KA50 and KA52 modules is very efficient and has been measured transmitting 64-byte packets at a rate of 14,789 packets per second. The measured receive rate for 64-byte packets was 14,785 packets per second.

The performance of the CPU subsystem has traditionally been measured using a suite of 99 benchmarks.[12] The results are scaled against the performance of the VAX-11/780 processor, and the geometric mean is taken. This calculation yields the VAX unit of performance (VUP) rating. The processor VUP rating for both the KA50 and KA52 CPUs is 24 VUPs-more than twice the performance of the MicroVAX 3100 Model 80. Table 1 presents a summary of the performance results for the VAX 4000 Model 100 and the MicroVAX 3100 Model 90 systems.

The performance of the system in multistream and transaction-oriented environments was measured with TPC Benchmark A.[14] This benchmark, which simulates a banking system, generally indicates performance in environments characterized by concurrent CPU and I/O activity and in which more than one program is active at any given time. The performance metric is transactions per second (TPS). The measured performance of the VAX 4000 Model 100 is 50 TPS tpsA-local; that of the MicroVAX 3100 Model 90 is 34 TPS tpsAlocal. The difference in performance between the VAX 4000 Model 100 and

the MicroVAX 3100 Model 90 is a result of their different disk subsystems, i.e., the DSSI and SCSI adapter support.

9 Acknowledgements

The authors would like to thank all the designers of other products whose logic components were used in the VAX 4000 Model 100 and MicroVAX 3100 Model 90 designs, namely, the VAXstation 4000 Model 90, VAX 4000 Model 500, and MicroVAX 3100 Model 80 teams. The authors would also like to acknowledge the many engineers who helped design and qualify the VAX 4000 Model 100 and MicroVAX 3100 Model 90 systems on a very aggressive schedule. Special thanks to Harold Cullison and Judy Gold (diagnostics and console), Matt Benson and Joe Ervin (module design and debug), Cheryl Preston (signal integrity), Dave Rouille (design verification), Colin Brench (EMC consultant), Larry Mazzone (mechanical design), Billy Cassidy and Walt Supinski (PWB layout), and Rita Bureau (schematics).

10 References and Note

- G. Uhler et al., "The NVAX and NVAX+ High-performance VAX Microprocessors," Digital Technical Journal, vol. 4, no. 3 (Summer 1992, this issue): 11-23.
- MicroVAX 3100 Models 40 and 80 Technical Information Manual, rev. 1 (Maynard, MA: Digital Equipment Corporation, Order No. EK-A0525-TD, 1991).
- 3. KA680 CPU Module Technical Manual, (Maynard, MA: Digital Equipment Corporation, Order No. EK-KA680-TM-001, 1992).
- 4. B. Maskas, "Development of the CVAX Q22-bus Interface Chip," Digital Technical Journal, vol. 1, no. 7 (August 1988): 129-138.
- 5. J. Murray, R. Hetherington, and R. Salett, "VAX Instructions That Illustrate the Architectural Features of the VAX 9000 CPU," Digital Technical Journal, vol. 2, no. 4 (Fall 1990): 25-42.
- 6. Jon Crowell et al., "Design of the VAX 4000 Model 400, 500, and 600 Systems," Digital Technical Journal, vol. 4, no. 3 (Summer 1992, this issue): 60-72.
- 7. P. Rubinfeld et al., "The CVAX CPU, a CMOS VAX Microprocessor Chip," ICCD Proceedings, (October 1987): 148-152.
- G. Lidington, "Overview of the MicroVAX 3500/3600 Processor Module," Digital Technical Journal, vol. 1, no. 7 (August 1988): 79-86.

- 9. M. Callander, Sr., L. Carlson, A. Ladd, and M. Norcross, "The VAXstation 4000 Model 90," Digital Technical Journal, vol. 4, no. 3 (Summer 1992, this issue): 82-91.
- 10.NCR Microelectronics Products Division, NCR 53C94, 53C95, 53C96 Advanced Controller Data Sheet (Santa Clara, CA: NCR Corporation, 1990).

- 11.SPICE is a general-purpose circuit simulator program developed by Lawrence Nagel and Ellis Cohen of the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley.
- 12.VAX Systems Performance Summary (Maynard, MA: Digital Equipment Corporation, Order No. EE-C0376-46, 1991).
- 13.SPEC: A New Perspective on Comparing System Performance, rev. 10 (Maynard, MA: Digital Equipment Corporation, Order No. EE-EA379-46, 1990).
- 14. Transaction Processing Performance Council, TPC Benchmark A Standard Specification (Menlo Park, CA: Waterside Associates, November 1989).

11 Biographies

Jonathan C. Crowell An engineering manager in the Entry Systems Business Group, Jon Crowell was the project leader and system engineer on the VAX 4000 Models 100, 400, 500, and 600 and the MicroVAX 3800, 3900, and 3100 Model 90 systems. He is now working on the design of the next generation of VAX 4000 systems. Previously, Jon worked in the Systems Integration Group qualifying Q-bus devices and DSSI adapters and storage devices. He joined Digital in 1986. Jon received a B.S.E.E. (1981) and an M.S.E.E. (1986) from Northeastern University. He hold six patents and is an active member of IEEE.

David W. Maruska Principal engineer David Maruska is a member of the Entry Systems Business Group and is presently involved in the design of the next generation of VAX 4000 CPUs. He was the lead designer for the KA50 and KA52 CPUs and project leader for the VAX 4000 Model 200 system, the KZQSA Q-busto-SCSI adapter, and the Futurebus+ exerciser. Dave joined Digital in 1982, after receiving a B.S. in computer engineering from Boston University. He worked on graphics workstations for Mosaic Technologies and Raster Technologies from 1983 to 1985 and then returned to Digital in 1986.

12 Trademarks

The following are trademarks of Digital Equipment Corporation: Digital, KA50, KA52, MicroVAX, MS44, Q-bus, Q22-bus, ThinWire, VAX, VAX 4000, VAX 9000, VAX-11/780, VAXcluster, VAXstation, and VMS.

SPEC, SPECfp, SPECint, and SPECmark are registered trademarks of the Standard Performance Evaluation Cooperative.

SPICE is a trademark of the University of California at Berkeley.

TPC Benchmark and tpsA-local are trademarks of the Transaction Processing Performance Council.

provided that Digital Equipment Corporation's copyright is retained with the article and that the content is not modified. This article is not to be distributed for commercial advantage. Abstracting with credit of Digital Equipment Corporation's authorship is permitted. All rights reserved.