
 

               VAX 6000 Error Handling: A Pragmatic Approach

By Brian Porter

1  Abstract

The VMS operating system's CPU-dependent support of the VAX 6000 family
of computers implements a complex and sophisticated set of error-handling
routines. At the start of a VMS session, these routines help construct
the necessary framework to support the I/O subsystem as the system begins
to emerge. For much of a VMS session, these routines then lay dormant
within the SYSLOA image. Periodically, when aroused, they peer into
hardware registers looking for signs of trouble. Often, all is well, and
the routines return to hibernation. On those occasions when the hardware
requires assistance, error handling takes complete control of the system.
It has but one mission: identify the error, recover if possible, but at all
costs ensure that the integrity of the system remains intact and that data
is preserved.

2  Introduction

Error handling is the set of routines that resides in the CPU-dependent
loadable image known as SYSLOA. Each processor model that supports the VAX
system architecture and VMS operating system has its own SYSLOA image.
Error handling is implemented with other common routines like console
support and secondary processor start-up. Error handling is unique for
each processor model. Individual processor models bring with them a
wealth of error detectors and consistency checkers. Each device has to
be independently interrogated and reset once triggered.

Error handling of one form or another resides throughout the VMS operating
system. In some contexts, trying to edit a file in a directory structure
that does not exist can be considered an error. This paper discusses only
errors that deal with the underlying CPU and memory hardware on which the
VMS system is running. It describes the development of error handling to
support the CPU modules and memory controllers that make up the system
kernel in the VAX 6000 series. This paper explains our error-handling
strategy to not only reduce the amount of unique coding, but also provide
an opportunity to enhance, mature, and improve existing VAX 6000 products.

3  Development of Error-handling Routines for the VAX 6000 Platform

The VAX 6000 platform provided a unique opportunity to develop error-
handling routines. As shown in Figure 1, the XMI backbone of the system
allows the creation of increasingly powerful systems that retain much of
their operating characteristics. Increases in processor capability are
gained by merely exchanging processor modules for more powerful models. We
decided that error handling should not be any different. On prior systems,



a complete set of error-handling routines for each CPU model had to be
implemented. We adopted an approach to error handling that could be carried
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forward from one processor to the next with little or no change to the
initial error-handling model. This approach handles identical errors in the
same way with the same code base.

The protocol of the XMI bus was modified to allow support of write-back
caching schemes of the VAX 6000 Model 500 and VAX 6000 Model 600. However,
this had no ill effect on the overall error-handling model we decided to
use in the support of the VAX 6000 family of processors.

VAX 6000 Family Error Delivery

Identical mechanisms were used to structure error delivery on each
processor in the VAX 6000 family. Each processor has two system control
block (SCB) interrupt vectors and a single SCB exception vector. The
interrupt vectors deliver hard and soft errors. The exception vector
delivers machine check exceptions.

Hard Error Interrupts. Hard errors can be categorized in the following way.
Hard errors occur as conditions that are not synchronous to the program
counter (PC). In almost all instances, systems cannot recover from hard
errors. They indicate that data or machine state has been lost. Hard
errors are normally fatal. Hard errors are delivered through SCB vector
60 (hexadecimal); interrupt priority level (IPL) is raised to 29 decimal.

Soft Error Interrupts. Soft errors, on the other hand, generally signal
an asynchronous condition, with respect to the PC, that has been corrected
by hardware, or that can be overcome with some software intervention. Soft
errors are normally always benign to system operation. Soft errors are
delivered through SCB vector 54 (hexadecimal); IPL is raised to 26 decimal.

Machine Check Exceptions. Machine check exceptions are internal processor
conditions that are synchronous to the PC. If the condition can be
corrected when the instruction that caused the exception is reexecuted,
the result is the same as if the condition had not occurred. Many of
the machine check exceptions that are reported by the VAX 6000 family of
processors allow recovery so that normal operation can continue. Machine
check exceptions are delivered through SCB vector 4; IPL is raised to 31
decimal.

4  Objectives

Error handling must identify the error and recover if possible. Above all,
it must guarantee the integrity of the system and the preservation of data.

An important project goal was to produce a robust and quality product
that would have predictable performance. We chose to have a single
error-handling model that could be implemented for all VAX 6000 CPU



models. We also adopted an implementation methodology that included the
capability to allow rigorous testing of the many code paths contained
in the various configurations. To accomplish this goal, we designed the
test and verification strategy in conjunction with the overall system
design of the kernel error-handling subsystem. In addition, we designed and
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implemented an object-oriented code base for errors that are common across
the platform. Errors are handled in this way when they are associated
with main memory, with XMI bus protocols, or with the support of vector
processors.

Most frequently occurring errors are associated with main memory. The error
handling for main memory is composed of three major functions. The first
handles the complexity of support for two different memory controller types
and their internal error conditions. The other two functions are logically
split between single-bit error correction code (ECC) failures and double-
bit ECC failures.

Common error-handling interfaces and routines were established for the
VAX 6000 family of processors. The use of common files and interfaces
ensures that errors are handled in exactly the same way for each CPU model.

5  Full Support of the Symmetric Multiprocessing Paradigm

The VAX 6000 family of CPUs are symmetric multiprocessing (SMP) systems.
The error-handling model assumes that more than one CPU is always active.
The synchronization of error handling throughout the system has numerous
benefits. If an error condition were detected throughout the system, it
would be a very complicated procedure to ensure that all CPUs reacted
consistently. Such errors would clutter the error log with reports from
every CPU and XMI device.

Error Logging Synchronization

In the VAX 6000 scheme, error logging is synchronized across the system.
If an error affects all nodes, this information is included with the first
CPU to respond to the error. Machine state is created that informs other
CPU nodes that the event has been logged on their behalf. As each CPU node
responds to the error condition, it can interrogate this state. In the
event that all error conditions have been logged on behalf of a CPU, the
error condition is cleared and the interrupt or exception is dismissed. The
one entry in the error log for these types of errors clearly indicates that
other nodes were active. Information about the nodes affected and state
indicating how the node was affected is recorded in the single error log
entry.

CPU Configuration Data in the Error Log

A CPU running with some of its hardware disabled may have operating
characteristics that cause other CPUs to incur error conditions of
some type. An error log entry from a VAX 6000 CPU always includes the
configuration of other active CPUs on the system. For example, if the
CPU at node 6 is running with its backup cache disabled, other CPUs



include this information with their error log data. Thus, potential error
conditions can be easily identified.
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6  Error Log Filtering

Some errors that occur at too high a rate are filtered from the error log.
Errors that are delivered by the soft error vector are invariably benign
to system operation. It is important that they be reported because they
can indicate an impending fatal error in some subsystem. However, if these
errors are occurring too often, only a subset is sent to the error log. The
algorithm is based on an error count over time. If an error is occurring
too rapidly, logging of the errors is inhibited. At a later time, logging
is reenabled. Errors that do not appear in the error log are still counted,
and the accumulated totals are displayed by other error conditions that are
sent to the error log.

7  Message Facility

Error handling on the VAX 6000 has the unique ability to output formatted
messages. Integral to the error-handling subsystem is a message processing
facility that is composed of specialized routines and modified versions of
several VMS system services. The modified system services include SYSFAO
and SYSCVRTIM. The message facility provides the error-handling subsystem
with the capability to output formatted messages that contain both text and
data. These messages are time-stamped and sent to the system console device
OPA0:.

Messages can be output in two different modes. Interrupt driven mode is
the most common and uses the standard terminal driver functions of the
running VMS session. Messages that use this mode describe the disabling
of some part of the CPU kernel at system start-up or during the current
session. The other mode of output is synchronous and is in line with
error processing. This mode is reserved for hardware errors that are
nonrecoverable and result in a system crash. The message is output just
prior to calling the BUGCHECK mechanism that would terminate the current
VMS session abnormally. Messages are always descriptive of the error or
exception condition and contain all the machine state available at the time
of the error.

Formatted messages allow for errors that occur as the system is being
initialized to be reported and described should the system fail to boot.
The output of messages is fully synchronized between the primary and
secondary CPUs of SMP systems. The primary CPU outputs messages about
errors occurring on secondary processors.

8  Error Rate Checking and Loop Detection

The VAX 6000 family of CPUs provides a great deal of error detection. The
error conditions signaled in many cases are benign to the system if the
appropriate action is taken. However, blind recovery from errors can be a



downfall in itself. It is not uncommon for so many benign failures to occur
that error handling is the only task being performed by the system. Error
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handling on the VAX 6000 family implements a system of rate checking and
loop detection to combat this problem.

Rate and Loop Detection Time Base

The timing standard used by the rate checking and loop detection subsystems
is the CPU TODR register. The TODR hardware register is independent of
software and increments every 10 milliseconds.

Rate Checking of Errors

Each error condition has an associated rate check database. The database
tracks TODR values for the three most recent errors. If these errors occur
too fast, special action is taken in addition to that required to service
the error. This may involve disabling the signaling of the error condition
itself. For example, some errors that are reported outside the CPU can
be turned off. When sufficient data about an error has been collected,
the error may be disabled for a period of time. Hardware features such
as internal cache errors can also be disabled. If cache errors occur that
are recoverable, but are occurring too fast, the cache is disabled. The
occurrence of multiple errors can indicate a broken structure, whereas a
single error can indicate a single transient event.

Loop Detection

Multiple errors of different types can also occur frequently. In this
situation, the system is operational, but it is continuously at high
IPL, servicing error interrupts or exceptions. This operating scenario
is detected by the frequency of transitions in and out of error handling.
When error-handling code threads are entered and exited, the TODR value
is saved. During execution of error handling, the enter TODR value is
compared to the last exit TODR value. If the result is too close, a count
is incremented. If the close relationship of exit to entry continues to
occur, a loop condition is declared and appropriate action is taken. Most
often this means the system is shut down.

9  Error-handling Model

The traditional approach to error handling in the VMS operating system has
been to interrogate registers and act on the data directly in real time.
Another approach has been to save only a subset of processor state that has
a linkage to the error delivery vector and then act on this data during a
later parse operation.

When designing the error-handling model for the VAX 6000 series, we decided
to save all CPU state that is visible to macro programmers in buffers
specific to each CPU. All interrogations are then made on the data in this



buffer. Information on the hardware state is saved as well as the current
system time. Any action taken by error handling is also recorded in the
buffer. This approach has several advantages. First, a distinct footprint
of the last error is contained in the system image in memory. Should the
system fail, the data is saved when a crash dump is taken. Second, the many
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execution thread possibilities are made easier to test and verify. Finally,
conditions are easier to diagnose if the original data that error handling
processed and the actions that were taken are recorded in an error log.

The error-handling process for the VAX 6000 series consists of six distinct
steps:

o  Setup and synchronization

o  Saving of state

o  Parsing of data

o  Processing and accounting of state

o  Error logging

o  Error reset and dismissal

This logical organization provides flexibility to the implementation being
addressed at the time. The parsing of data step was added at the same time
that support of the VAX 6000 Model 400 was implemented.

Setup and Synchronization

Synchronization is accomplished by acquiring the MCHECK spinlock. The use
of spinlocks is a VMS technique that provides atomic access to code threads
and data structures and ensures that only one CPU at a time is in error
handling. Thus it is possible to compress an error condition occurring
throughout the system into a single error log entry by the first CPU to
service the error.

Following synchronization, the SMP sanity and spinlock acquisition timers
are disabled. If an error occurs at the boundary of one of these timers,
a false termination of the session can occur due to the time consumed by
the execution of error handling. The SMP sanity and spinwait timers are
mechanisms used in VMS to ensure that CPUs active in a multiprocessor
system are interactive with each other and the synchronization primitives
that control access to various resources. The sanity timer is used as a
watchdog timer to ensure that CPUs respond to hardware clock interrupts on
a regular basis. Each CPU active on the system monitors another CPU for its
response to hardware clock interrupts. The spinwait timer guarantees that
one CPU does not retain ownership of a spinlock resource for more than an
allotted time period. Error handling is always executed at an IPL above
which hardware clock interrupts can be serviced. As a result, it defeats
the sanity timer mechanism. Some of the actions taken by error handling
can cause a spinwait timer to expire if the error being serviced occurs too



close to the timer boundary. By disabling these SMP timers, a time period
is started over when the error being serviced is dismissed and timers are
reenabled.

6  Digital Technical Journal Vol. 4 No. 3 Summer 1992



 

                              VAX 6000 Error Handling: A Pragmatic Approach

The buffer associated with the CPU experiencing the error is initialized
to zero and is ready to receive the latest error state. If the error is a
machine check, stack space is allocated and initialized to allow for error
dismissal and error-handling exit.

When machine checks or soft error interrupts are serviced, the cache
subsystem is unconditionally disabled. Error handling does this to preserve
any error state that may be in the cache. If the error happens to be cache-
related, the state can be extracted at the appropriate time. Cache-related
errors are not reported by hard error interrupts on some VAX 6000 models.
When hard error interrupts are serviced on these processor models, the
cache is not disabled by software.

The machine check flow has an additional check to determine if the error is
associated with a recovery block. Recovery blocks on the VMS system provide
kernel-mode macro programmers with the ability to protect an execution
thread from the effects of fatal machine check exceptions. Normally when
a machine check occurs in kernel mode, the code thread being executed
loses control. Unless the instruction can be restarted, the VMS session
is terminated. The placement of kernel-mode execution threads within
the context of a recovery block ensures that a machine check will cause
control to be passed to the end of the recovery block, along with status
to indicate that the machine check has happened. The macro programmer can
select what type of machine check to be protected from. In general, this
is limited to those machine checks caused by references to the physical
address space that do not respond or return data.

If it is determined that the current delivered machine check is protected
by a recovery block and that error handling established this condition,
the error is dismissed immediately without further action. More details are
given in the following section.

Saving of State

All available CPU error state is saved regardless of error type or delivery
mechanism. Machine checks also save the internal state passed by microcode
on the stack. Each register is read into its local storage buffer within
the context of a recovery block. A valid bit is associated with each local
copy register cell according to its status as it exits the recovery block
context. This is important because each cell has been initialized before
use. A register value of zero may be significant, and a failed register
read would allow the initialized value to be interpreted as not having any
error or state bits set. Failed register read indications can help in the
diagnosis of the original error condition.

The recovery blocks used when error state is collected have special flags
to indicate that they were established by error handling. If an error



does occur, control is returned to the appropriate point in the error-
handling execution thread. The original saved state of the first error is
not overwritten.
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Parsing of Data

The parsing of data step was added to support the VAX 6000 Model 400 and
later models. The data collected in the saving of state routines is parsed
as a separate step. When error data is parsed and processed in a single
step, as in the VAX 6000 Model 200 and VAX 6000 Model 300, it is difficult
to make the necessary errors invisible to the error log. When the error
data is parsed and an error mask is produced that represents the error
conditions present, it is much easier to detect if all current conditions
have been serviced. Since it is also easier to detect conditions with only
one error present, expected error conditions can be processed. The VAX 6000
Model 400 and later models have many benign error syndromes that have their
logging filtered.

Processing and Accounting

During the processing and accounting step of error handling, the data
in the CPU private local buffer is parsed and acted upon. These routines
detect if a specific error condition is global and sensed throughout the
system or local to the particular CPU. Global errors include the state
from other CPUs and devices in the error log if required. If the global
error is the only one present and it is expected, machine state is set
to indicate that error logging should not occur. Should this CPU be the
first to process the global error, it samples data in registers of the
other CPUs and devices and leaves state to indicate the error condition
has been serviced and is expected. Consequently, the context of global
errors is included into a single entry in the error log. XMI parity errors
are serviced in this way. Local errors record only the state from the CPU
experiencing the error in the error log.

Error handling supports the notion of expected errors, or errors that
sometimes occur as a result of operations performed by error handling.
These errors are not reported to the error log. For example, duplicate tag
parity errors can sometimes occur when the backup cache on the VAX 6000
Model 200 and VAX 6000 Model 300 is invalidated. To cause these errors to
be invisible to the error log, a mask of error bits to ignore is set up
when backup cache invalidate operations are executed. At the same time,
a fork process thread that ultimately clears the appropriate mask bit is
queued. If an error that would be invisible to the error log occurs, the
"ignore-this-error" bit is sampled in the recovery thread for the error
condition. If the bit is set, the error is ignored. If the error does not
occur, eventually IPL is lowered until the queued fork process runs and
clears the bit in the mask. This guarantees that later real errors that
have previously been expected and have not occurred are not excluded from
the error log.
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Error Logging

The data collected by the error-handling routines is sent to the VMS
system's error log after it is tallied for size. The amount of record space
is allocated by internal VMS routines. The raw data that describes the
context of the current error is copied to the VMS error log buffer along
with the current values of accounting data for the CPU. The accounting
data is a count of the individual error conditions that have occurred
on this CPU for the current session. Any CPU that has some part of its
functionality disabled includes that data in the error log as well. For
example, a CPU that is executing with a disabled cache may cause errors
to occur on other CPUs. It is useful to know that a CPU is running in a
degraded mode when investigating problems that are occurring on a system.
The error log records of all CPUs clearly indicate any CPUs operating at
reduced capacity. If all CPUs are running unimpeded, the error log contains
a flag to indicate this status.

The amount of data included in the error log for any given error can be
different. The data describing the CPU context is the same except in the
case of machine checks. These errors also include internal state passed by
the microcode through the stack. Depending on the error condition, context
from the XMI bus, the memory subsystem, or an external XMI adapter can
be included. The error data is organized into various subpackets that are
signaled to be present by a flags field contained in a header section of
the CPU context packet. For example, an error can occur that describes a
failure of a transaction between the CPU and memory. If the data collected
from the memory subsystem during the processing and accounting step
indicates an error is present, this is included in the error log record.
If there is no indication of a memory subsystem error, a flag to indicate
that no memory errors are present is set. This reduces the burden on the
error log buffers of the VMS system and reduces the clutter and confusion
of error registers from a device that does not have an error condition
present.

Any error that ultimately causes the system to crash is also logged to
the system console terminal through the SYSLOA message facility. Errors
can occur during start-up before VMS error logging is available. Errors
can also occur and terminate the session before the system completes
initialization. For these reasons, fatal errors are always output to the
console terminal before the session is terminated. Errors that occur at
start-up of secondary processors are monitored by the primary processor.
Any output required is done by the primary processor.

Error Reset and Dismissal

The last step of error handling resets error conditions that have been
serviced and dismisses the interrupt or exception. The image of the



data saved is used as a mask to reset error conditions. This technique
guarantees that double error conditions are not lost.
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Registers that require initialization are reset using the contents that
were read when the error was first serviced. Most error conditions are
write-one-clear. That is, to reset the error condition, a mask of the
error conditions set has to be written to the appropriate register to
clear the error. The use of the original contents of the register as a
mask guarantees that an error condition occurring during the processing
of an error cannot be lost. Reset of the VAX 6000 Model 200 and VAX 6000
Model 300 error registers includes a later probe of the register for the
absence of error indications. Should an error still be present, the error-
handling process is restarted and it treats the condition as a new error.
After errors are reset, the cache subsystem is invalidated and a check is
made to determine if it should be reenabled. Processing of the error could
determine that the cache or indeed the CPU should be taken off-line because
of an error rate or finite count that is too high. If all is well, the
cache subsystem is reenabled. The MCHECK spinlock is now released and the
interrupt or exception is dismissed by executing a return from exception or
interrupt (REI) instruction.

If the error being dismissed is a machine check, the additional storage
allocated by error handling and error state left by the microcode has to
be removed. As shown in Figure 2, the additional storage is an array of
quadwords. These quadwords represent program counter/processor status
longword (PC/PSL) pairs that direct control to routines that must be
executed prior to control being returned to the exception PC. The
additional postprocessing that takes place for noncorrectable memory errors
and errors that cause a process to be aborted are dispatched using this
mechanism.

Machine check processing takes place at IPL 31. Fatal memory error recovery
uses the VMS system's page fault code threads. These threads use spinlocks
that cannot be acquired from IPL 31. When dismissing machine checks, the PC
/PSL pairs are interrogated to determine if they are nonzero. If the probed
quadword is zero, the stack pointer is updated to unwind by the quadword
allocated. This continues until all three array elements have been probed.
If the array element is nonzero, the REI passes control to the PC and PSL
described by that array element. Synchronization is thus preserved, and
spinlock acquisition rules are obeyed. Eventually the array is traversed,
and each element is removed. State left by the microcode is removed,
control is passed back to the original exception PC, and instruction retry
is attempted. If error handling determines that the execution thread should
be aborted, the original exception PC is replaced by a PC/PSL pair that
returns control to VMS exception routines. From these routines, control is
normally passed to an appropriate mode condition handler. If a condition
handler has not been established, the VMS process is aborted. Kernel-
mode threads that experience fatal machine checks always result in the
termination of the VMS session.
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10  Support of the VAX 6000 Model 200 and VAX 6000 Model 300

The error-handling support for the VAX 6000 Model 200 and VAX 6000 Model
300 is identical. These two processor models are the same logical CPU. The
VAX 6000 Model 300 is a selected faster component set of the VAX 6000 Model
200.

The VAX 6000 Model 200 system presented a unique problem for error handling
because the primary cache is internal to the CPU chip. Errors from the
primary cache do not cause an interrupt or exception. These errors can
never cause a failure or wrong result should they occur. Because all cache
structures on the VAX 6000 Model 200 are write-through, data can be both
in cache and in memory, and it is always consistent. If a parity error
occurs on either the data or tag section of the primary cache, microcode
can always fetch another copy of the data from memory. If a primary cache
tag or data error occurs, microcode sets a status bit to indicate the
error in an internal processor register. The internal processor register is
private to the local CPU. Previous CPUs with this type of error signaling
used a polling technique to detect these failures. On SMP systems, only the
primary CPU is interrupted on a regular basis to allow polling routines to
run.

Since we had no precedent for reference, we designed a system whereby
the primary CPU uses the interprocessor interrupt mechanism to interrupt
secondary processors. When the secondary CPU receives the CPU-specific
interprocessor interrupt, it reads the appropriate internal processor
register, places the data in a known location, and sets an indicator
flag. On later poll cycles, the primary CPU sees the indication from the
secondary CPU and interrogates the known location for any error bits. If no
errors are detected, each secondary CPU is polled once every ten seconds.
Should an error be found, the secondary CPU with the error has its polling
frequency increased to once every second. If ten successive polls indicate
error conditions, the secondary CPU is signaled to disable its primary
cache. If this occurs, entries are made in the error log and to the system
console by the primary CPU on behalf of the secondary CPU.

During systems integration of the VAX 6000 Model 200, certain random-access
memory (RAM) devices used for the backup cache exhibited excessive parity
error failures. The problem was so severe that special error-handling
software and additional CPU hardware functionality were developed to
isolate and diagnose the failures. This work was so successful that the
hardware functionality was made a permanent feature of the processor, and
the error-handling routines were made a permanent part of the SYSLOA image.
The hardware functionality and software routines allowed for the failing
data bit in the backup cache to be identified at the time of the failure.
The VAX 6000 Model 200 experience had a lasting effect on error handling
across the VAX 6000 family. The ability to diagnose cache parity errors



to the bit level in the operating system remains a characteristic of error
handling on all VAX 6000 systems.
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11  Support of the VAX 6000 Model 400 and VAX 6000 Model 500

Although the CPU chips on the VAX 6000 Model 400 and VAX 6000 Model 500 are
the same, the SYSLOA images are not. The major difference between the two
systems is the write-back cache subsystem implemented by the VAX 6000 Model
500. To facilitate write-back cache strategies, the XMI bus was enhanced to
support a directory-based broadcast coherence protocol.[1]

The VAX 6000 Model 400 and VAX 6000 Model 500 systems represented a
dramatic increase in system complexity for error handling. The amount of
error detection incorporated within each increased and became more complex.
The overall model implemented on the VAX 6000 Model 200 was maintained,
but a step was added between the steps of saving of state and processing
and accounting. The new step, parsing of data, was previously a part of
processing and accounting. Error handling support of the on-board CPU
electrically erasable programmable read-only memory (EEPROM) was also
added. The EEPROM was until now used only by CPU console support.

The overall model now became

o  Setup and synchronization

o  Saving of state

o  Parsing of data

o  Processing and accounting

o  Error logging

o  Error reset and dismissal

Storage space for machine check and hard error is shared in the VAX 6000
Model 200 system. However, this support became too complicated to manage.
In the VAX 6000 Model 400 and later models, both sets of error state are
available in crash dumps.

EEPROM Support

The experience gained from systems integration of the VAX 6000 Model 200
showed that real-time diagnosis by the operating system has many benefits.
However, the scheme used by the VAX 6000 Model 200 was cumbersome and
recorded only the resulting diagnostic data to the error log. The challenge
was twofold: to make the mechanics of cache parity error diagnosis easier,
and to make the data more widely available. We achieved both goals by
using the EEPROM on the CPU module. The VAX 6000 Model 500 made additional
improvements by using both on-board and high-speed RAM and EEPROM.



EEPROM and RAM structures exist within the physical address space of the
VAX 6000 family. These structures are primarily used by the console for
cross-session storage of data. High-speed RAM is used for general heap
storage by the console. RAM and EEPROM structures have physical addresses
that are in the I/O region of the address space. Address references to I/O
address space do not cause cache lookups. The code threads that perform
data extraction were placed in the EEPROM and RAM structures to avoid
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special hardware operating modes. A few simple routines enabled easier
diagnosis of cache parity error failures and a method of disabling the
cache that does not disrupt error state. The error-handling SCB vectors
were pointed to the EEPROM so the routines that disable the cache could do
so without making cache references. (On the VAX 6000 Model 500, the cache
disabling routines are placed in the high-speed RAM.)

When an error occurs, control is first passed to individual routines that
reside in I/O space. These routines disable the cache subsystem and then
return control to the SYSLOA image in main memory.

The VAX 6000 Model 500 has an error transition mode (ETM), which allows the
backup cache to be partially disabled. New blocks are not allocated when
in ETM mode. Data requests are filled from the cache. Error interrupts or
exceptions on the VAX 6000 Model 500 dispatch to routines that execute from
I/O space and place the write-back backup cache into ETM and disable the
write-through primary cache.

The EEPROM on both the VAX 6000 Model 400 and VAX 6000 Model 500 is also
used to store failure information. When errors occur, a counter that is
associated with the specific error condition is incremented. The number
of error conditions is finite and fully described by the error mask
produced by the parsing of data routines. Writing to the CPU EEPROM is
time-consuming compared to writing to main memory. A byte write to EEPROM
takes on the order of 15 milliseconds. To avoid this overhead, the EEPROM
VMS data actually resides in main memory during a VMS session. As each CPU
is initialized by the VMS system, the contents of the VMS area are read
into individual CPU memory regions. Updates that are required are made to
these regions. When CPUs are stopped or when the system is shut down or has
crashed, the region of memory associated with a particular CPU is written
back to that CPU's EEPROM. In addition to error information, a count of
seconds run in a VMS environment is tallied.

Vector Processor Support

One set of routines supports the VAX 6000 Model 400 and VAX 6000 Model 500
vector processors. These routines are organized in an identical manner to
the CPU routines and follow the same steps related to CPU error conditions.
During the processing and accounting of CPU error conditions, a check
determines if any vector processor errors are present. If vector errors
are detected, the appropriate support routines-soft error, hard error, or
machine check-are invoked.

Error handling supports a maximum of four vector processors. If the number
of errors or the rate of errors becomes too great, vector processors
are removed from use. Error handling never removes the only or last
remaining vector processor. Support of vector processor errors has the



same characteristics as support for CPU-related error conditions. Portions
of the vector processor are disabled if the associated error rate becomes
too great. If other errors continue, the unit is removed from use. The
notions of expected errors and errors that are invisible to the error log
also exist.
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12  Support of the VAX 6000 Model 600

Error checking and detection on the VAX 6000 Model 600 are very complex
processes. There are well over 160 unique soft and hard error conditions as
categorized by the software. The actual count declared by the hardware
is much greater. The disparity results from the way software groups
error conditions. The VAX 6000 Model 600 error handling followed the
enhanced model implemented on the VAX 6000 Model 400. The state saved
for interrogation by VAX 6000 Model 600 error handling consists of 40
internal and XMI-addressable registers. Support of the VAX 6000 Model 600
also included support of the on-board CPU EEPROM for the long-term storage
of failure information. The support of the EEPROM was extended to include
the history of the cache subsystem performance in previous sessions.

Like the VAX 6000 Model 500 system, the VAX 6000 Model 600 implements a
write-back backup cache strategy. The VAX 6000 Model 600 backup cache
operates using a directory-based broadcast coherence protocol.[1] Each
32-byte cache block is in one of three states: invalid, valid/read-only,
or valid/written. Multiple caches may hold read-only data simultaneously;
written data may be held by only one cache in the system at a time. Write
privilege for a block must be obtained before modifying the data in that
block.

Certain backup cache error conditions are severe enough to disable the
cache. The backup cache may contain written data that is unavailable
elsewhere in the system. To access that data, the backup cache is put
into ETM, a state which allows written data to be accessed by the cache
controller, but disallows the use of read-only data.

A cache enters ETM as a function of either software or hardware. The
cache is put into ETM by hardware only when cache data may have been
corrupted, or when cache data may be inconsistent with data in memory.
Thus, correctable backup cache errors do not cause a transition into ETM,
but uncorrectable errors do. A parity error on the NVAX data and address
lines (NDAL) interface causes the cache to enter ETM because an invalidate
or write-back request may have been missed. A cache transition into ETM
occurs when a request for write privilege or a write back does not complete
successfully on the VAX 6000 Model 600. The state of the cache is likely to
be inconsistent with that of memory.

Three requirements govern cache operation during ETM: (1) The state of the
cache is preserved as much as possible to allow software to diagnose the
problem. (2) Memory references that hit written blocks in the cache are
processed, since this is the only source of data in the system. (3) Cache
coherency requests from the NDAL are processed normally so that cache state
remains consistent with memory.



Although complex, ETM allows the software to choose when and how to disable
the cache. To make the process of error handling less cumbersome, the
backup cache is unconditionally put into ETM by the software when any error
condition is being serviced.
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ECC protects both tag and data stores on the backup cache on the VAX 6000
Model 600. Correctable ECC errors in the backup cache have a record of
failed syndromes kept by error-handling routines. Should the same syndrome
fail on more than one occasion in a single VMS session, the backup cache is
disabled.

If uncorrectable backup cache errors occur, the error-handling routines
determine if the block is owned by the CPU and attempt to flush the block
back to memory. If successful or if the block is not owned, the backup
cache is disabled before returning the system to normal operation. If the
data cannot be recovered, the VMS session is terminated.

If the backup cache is disabled by error handling for any reason, that
fact is recorded in the CPU EEPROM. Records on disabled status are also
kept for the primary cache and virtual instruction cache (VIC). Subsequent
sessions of VMS interrogate the EEPROM and cause these structures to remain
disabled if they were disabled in a previous session. When this occurs, an
appropriate message is sent to the console terminal during system start-up.

Tag parity errors that occur in the VIC are diagnosed in an unusual manner.
Unlike other caches on the VAX 6000 Model 600, the tag store of the VIC
contains a virtual address. To determine which bit has failed when a
parity error occurs, the tag store is probed to retrieve the contents of
the failing tag location. The associated data store location is probed to
retrieve its contents; each bit in the bad tag address is then flipped in
turn. As each bit is flipped, the range of the resultant virtual address is
compared to page tables to determine its validity within current context.
The virtual address is translated, and the resulting physical address
is mapped to allow error handling to read the contents of the page. The
appropriate contents of the newly mapped page are compared to the contents
read from the VIC data store. If one and only one match is found, the
failing tag bit is identified. Masks of failing bits from all VAX 6000
Model 600 cache structures are stored in the CPU EEPROM along with other
failure information.

The instruction pipeline complicates VAX 6000 Model 600 error handling.
In many instances, errors experienced are in no way related to the current
instruction being executed or interrupted. When an error does occur, care
must be taken to fully understand in what context the error has an effect.

13  Correctable Memory Errors

Correctable memory errors are data errors that are corrected by the memory
controller before data is returned to the requester. They occur primarily
because of alpha particle radiation, affect only a single cell, and are
transient in nature. Correctable memory errors are completely benign. To
determine if a memory controller reporting correctable errors has real



defects, multiple errors must be viewed.
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VAX 6000 error handling implements a scheme whereby error data reported by
memory controllers for correctable errors is compressed into a structure
called a footprint. The footprint reduces the data reported into a form
that uniquely describes the error that just occurred. The intent of the
footprint is to uniquely index the source component of memory, the dynamic
RAM (DRAM). Hence, for a given memory subsystem, the number of valid
footprints would equal the number of DRAMs. Furthermore, the footprint
block maintained per footprint is used to track the context (repeat errors,
scrubbing, etc.) of this error as well as other errors that match this
footprint ID.

The assumption here is that most correctable memory errors are a result
of DRAM component faults, hence the granularity of the unique DRAM. As
shown in Figure 3, the footprint forms a 32-bit integer from the XMI
node ID, the ECC syndrome of the error, and the memory controller bank
in error. The integer is used to locate other correctable errors that have
occurred in an internal database. Along with the footprint, the address
of the correctable error is passed to a set of routines that performs all
processing of correctable memory errors. The database tracks the range of
addresses that have experienced correctable errors for the same footprint.
This aids in the diagnosis of row and column failures with the DRAMs that
make up memory controller storage. On the VAX 6000 Model 500 and VAX 6000
Model 600 systems, memory scrubbing status is also tracked.

Memory scrubbing is a technique for reducing the number of error interrupts
from locations that are reporting errors caused by alpha particle
disturbance. Scrubbing removes transient faults from the system, which
in turn reduces the number of interrupts that result from such errors.
In addition, it helps to differentiate transient errors from permanent
DRAM component faults, as captured in the error log. This information was
previously unavailable.

When the VAX 6000 memory controller detects a correctable memory error,
circuitry in the controller corrects the data returned for the request.
The data is not corrected in the storage DRAMs on the controller. If
the location is read over and over again, the same error and correction
cycle occurs each time. This continues until the location is updated with
write data. An interrupt can be generated for each error correction cycle.
Care must be taken when scrubbing memory locations. The data in any given
memory address can be shared by any number of CPUs or I/O devices. When
this is the case, a higher-level software protocol is normally used to
synchronize access. Error handling would not be privy to these protocols.
VAX 6000 Model 500 and VAX 6000 Model 600 memory scrubbing is possible
because of the XMI2 bus protocol. Before a CPU can modify any location in
memory, it must be the exclusive owner of the 32-byte block in which the
address resides. Ownership is effected at the primitive hardware level and
so exclusive access is guaranteed.
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When a correctable error interrupt occurs on a VAX 6000 Model 500 or
VAX 6000 Model 600 system, error handling rewrites the failing location
with its contents. The ability to cause an interrupt is disabled in memory
controllers that continue to report errors with the same footprint or that
have not responded to scrubbing. This action occurs after sufficient data
has indicated that something other than alpha particle disturbance has
occurred and the memory controller may require service.

The rate of correctable memory error interrupts is checked to reduce the
burden on the system. If the rate of errors occurring becomes too high, the
ability to interrupt is disabled at the problem controller for a period of
time. Correctable memory error data collected during a VMS session is sent
to the error log at the end of the VMS session.

14  Uncorrectable Memory Errors

Uncorrectable memory errors experienced by the CPU are reported as
machine checks. These machine checks are synchronous with the PC making
the reference. Uncorrectable memory errors occur when data is lost by
the memory controller and cannot be re-created by its ECC circuitry;
fortunately, these errors seldom occur. Uncorrectable memory errors
represent a serious problem to the execution thread that experiences them.
The hardware cannot assist in the recovery of this type of error; recovery
is totally a software function.

If the page that experiences an uncorrectable error is a process private
page that has not been modified, and the code thread currently executing is
at pageable priority, the error is not considered fatal. The error-handling
routines arrange for the page to be re-created in a different physical page
in memory by invalidating the necessary memory management structures. As a
result, a translation-not-valid exception occurs when the instruction that
experienced the exception is retried. The page fault mechanisms of the VMS
system do the actual re-creation. The original page with the error is put
on a list of bad pages internal to the VMS system. If the page does not
meet the criteria for replacement, either the process is deleted or the VMS
session is terminated. If the process is deleted, the page is marked "bad"
by error handling, and the process run-down routines in VMS retire the page
to the bad page list.

15  Testing

Early in the project, we decided the ability to test and verify had to be
built into error handling to produce a predictable, robust, and quality
product. Although the VAX 6000 family and CPUs in general have a number of
features that allow errors to be generated, they tend not to be general-
purpose. In most cases, they are designed for use by special diagnostic
software that does not operate in the context of an operating system, e.g.,



the VMS operating system. We chose to implement a scheme whereby errors
would be simulated in software on the target hardware. This approach gave
us several clear advantages. The most important was that the approach could
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be extended as the power and complexity of CPU models increased and that
complete control was with the designers. No special hardware equipment
or CPU feature would be required. The only precondition was that certain
software implementation guidelines had to be followed to make use of the
simulator.

Machine check test (MTEST) consists of two parts, a utility and an error-
handling implementation methodology. The methodology consists of using main
memory storage as the primary agent that is acted upon by error handling.
This method also fit into our model of retaining data in memory. The other
requirement was the strategic placement of the DEBUG_TRANSFER macro. DEBUG_
TRANSFER expands to produce a code segment that determines if the current
error being serviced is an error simulation or not. If it is, data that
resides in memory that is being interrogated is modified, in concert with
MTEST, to reflect the error condition being simulated. DEBUG_TRANSFER
code segments represent synchronization points between an error-handling
execution thread and the MTEST simulator.

The MTEST simulator is a privileged image and consists of a user interface,
a number of nonpageable internal buffers, and simulator routines. The user
interface allows the internal buffers to be selected and loaded with data
patterns of the user's choice. The user interface also allows the user to
pass control to the SCB vectors of the VMS system. In our case we used the
vectors that are the linkage to error-handling routines. Once in control,
error handling would execute its model until it reached a DEBUG_TRANSFER
code segment. The segment would determine that this was an error being
simulated and return control to MTEST. MTEST would then decide if the
synchronization point was one for which the user has data. The data would
be transferred from the buffer named in the DEBUG_TRANSFER code segment to
the address also declared in the segment. By judiciously placing the DEBUG_
TRANSFER synchronization points and carefully selecting an appropriate
data pattern, we were able to simulate any and all error conditions for the
appropriate CPU.

In this way, we were able to verify many complex algorithms and code paths
that would have been difficult to exercise. We were also able to verify
error handling and error logging from the point of error to the error log
file. MTEST can be either interactive or procedure-driven. This aspect
allowed us to maintain a library of procedures that could be used at any
time to verify that operational characteristics for individual errors had
not changed when code paths that affected many error types were modified.

MTEST was the primary tool we used for testing. During the test and
verification phase, prototype hardware that had real error conditions
became available, and we used these prototypes.
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16  Conclusions

The VAX 6000 family now has a robust and complete set of error-handling
routines that accomplished our project goals. In fact, many routines were
never before part of the VMS system. These routines include the ability
to report complete error context to the system console and the ability to
group failures occurring across the system to a single error log entry.
An important SMP feature is the ability to recognize and retire failing
processors from the active set of a VMS session and allow the session to
continue. These routines and others support the entire range of VAX 6000
CPU models. The object-oriented approach to error conditions not on the
CPU module has made support and introduction of newer routines easier.
The ability to test at will any or all error-handling routines has been a
tremendous advantage.
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