VAX 6000 Error Handling: A Pragmatic Approach
By Brian Porter
1 Abstract

The VMS operating system s CPU-dependent support of the VAX 6000 famly

of conputers inplenents a conplex and sophisticated set of error-handling
routines. At the start of a VMS session, these routines help construct
the necessary framework to support the I/O subsystem as the system begins
to energe. For nmuch of a VMS session, these routines then |ay dormant
within the SYSLOA i mage. Periodically, when aroused, they peer into

har dware regi sters | ooking for signs of trouble. Often, all is well, and
the routines return to hibernation. On those occasi ons when the hardware
requi res assistance, error handling takes conplete control of the system
It has but one mssion: identify the error, recover if possible, but at al
costs ensure that the integrity of the systemrenains intact and that data
is preserved.

2 Introduction

Error handling is the set of routines that resides in the CPU dependent

| oadabl e i mage known as SYSLOA. Each processor nodel that supports the VAX
system architecture and VMS operating systemhas its own SYSLOA i mage.
Error handling is inplemented with other common routines |ike console
support and secondary processor start-up. Error handling is unique for
each processor nodel. Individual processor nodels bring with thema

wealth of error detectors and consi stency checkers. Each device has to

be i ndependently interrogated and reset once triggered.

Error handling of one formor another resides throughout the VMS operating
system In sonme contexts, trying to edit a file in a directory structure
that does not exist can be considered an error. This paper discusses only
errors that deal with the underlying CPU and nenory hardware on which the
VMS systemis running. It describes the devel opnment of error handling to
support the CPU nodul es and nmenory controllers that nake up the system
kernel in the VAX 6000 series. This paper explains our error-handling
strategy to not only reduce the anpunt of unique coding, but also provide
an opportunity to enhance, mature, and inprove existing VAX 6000 products.

3 Devel oprent of Error-handling Routines for the VAX 6000 Pl atform

The VAX 6000 pl atform provi ded a uni que opportunity to devel op error-
handling routines. As shown in Figure 1, the XM backbone of the system
allows the creation of increasingly powerful systens that retain nmuch of
their operating characteristics. Increases in processor capability are

gai ned by nerely exchangi ng processor nodul es for nore powerful nodels. W
deci ded that error handling should not be any different. On prior systens,

a conplete set of error-handling routines for each CPU nodel had to be
i mpl emented. W& adopted an approach to error handling that could be carried

Digital Technical Journal Vol. 4 No. 3 Sumer 1992 1

VAX 6000 Error Handling: A Pragmatic Approach

forward from one processor to the next with little or no change to the
initial error-handling nodel. This approach handles identical errors in the
same way with the sane code base.

The protocol of the XM bus was nodified to allow support of wite-back
cachi ng schenmes of the VAX 6000 Model 500 and VAX 6000 Model 600. However,
this had no ill effect on the overall error-handling nodel we decided to
use in the support of the VAX 6000 family of processors.

VAX 6000 Family Error Delivery

I dentical nmechanisms were used to structure error delivery on each
processor in the VAX 6000 fam |ly. Each processor has two system contro
bl ock (SCB) interrupt vectors and a single SCB exception vector. The

i nterrupt vectors deliver hard and soft errors. The exception vector
del i vers machi ne check exceptions.

Hard Error Interrupts. Hard errors can be categorized in the follow ng way.
Hard errors occur as conditions that are not synchronous to the program
counter (PC). In alnmost all instances, systens cannot recover from hard
errors. They indicate that data or machine state has been lost. Hard
errors are normally fatal. Hard errors are delivered through SCB vector

60 (hexadecimal); interrupt priority level (IPL) is raised to 29 decinmal.

Soft Error Interrupts. Soft errors, on the other hand, generally signa
an asynchronous condition, with respect to the PC, that has been corrected
by hardware, or that can be overcone with sone software intervention. Soft
errors are normally always benign to system operation. Soft errors are
del i vered through SCB vector 54 (hexadecimal); IPL is raised to 26 decimal.

Machi ne Check Exceptions. Machi ne check exceptions are internal processor
conditions that are synchronous to the PC. If the condition can be
corrected when the instruction that caused the exception is reexecuted,
the result is the sane as if the condition had not occurred. Many of

the machi ne check exceptions that are reported by the VAX 6000 fam |y of
processors allow recovery so that nornmael operation can continue. Mchine
check exceptions are delivered through SCB vector 4; IPL is raised to 31
deci mal .

4 (bjectives

Error handling nust identify the error and recover if possible. Above all
it must guarantee the integrity of the systemand the preservation of data.

An inportant project goal was to produce a robust and quality product
that woul d have predictable performance. W chose to have a single
error-handling nodel that could be inplenmented for all VAX 6000 CPU

nodel s. We al so adopted an inpl enentati on nethodol ogy that included the
capability to allow rigorous testing of the nmany code paths contai ned

in the various configurations. To acconplish this goal, we designed the
test and verification strategy in conjunction with the overall system
design of the kernel error-handling subsystem In addition, we designed and

2 Digital Technical Journal Vol. 4 No. 3 Summer 1992

VAX 6000 Error Handling: A Pragmatic Approach

i mpl emented an obj ect-oriented code base for errors that are conmon across
the platform Errors are handled in this way when they are associ ated

with main menory, with XM bus protocols, or with the support of vector
processors.

Most frequently occurring errors are associated with main nmenory. The error
handling for main nmenory is conposed of three major functions. The first
handl es the conplexity of support for two different nmenory controller types
and their internal error conditions. The other two functions are logically
split between single-bit error correction code (ECC) failures and doubl e-
bit ECC failures.

Common error-handling interfaces and routines were established for the
VAX 6000 family of processors. The use of comon files and interfaces
ensures that errors are handled in exactly the sane way for each CPU nodel .

5 Full Support of the Symmetric Miltiprocessing Paradi gm

The VAX 6000 family of CPUs are symmetric nultiprocessing (SMP) systens.
The error-handling nodel assunes that nore than one CPU is always active.
The synchroni zation of error handling throughout the system has nunerous
benefits. If an error condition were detected throughout the system it
woul d be a very conplicated procedure to ensure that all CPUs reacted
consistently. Such errors would clutter the error log with reports from
every CPU and XM devi ce.

Error Loggi ng Synchronization

In the VAX 6000 scheme, error logging is synchronized across the system

If an error affects all nodes, this information is included with the first
CPU to respond to the error. Machine state is created that inforns other
CPU nodes that the event has been | ogged on their behalf. As each CPU node
responds to the error condition, it can interrogate this state. In the
event that all error conditions have been | ogged on behal f of a CPU, the
error condition is cleared and the interrupt or exception is dismssed. The
one entry in the error log for these types of errors clearly indicates that
ot her nodes were active. Information about the nodes affected and state

i ndi cating how t he node was affected is recorded in the single error |og
entry.

CPU Configuration Data in the Error Log

A CPU running with sone of its hardware disabled may have operating
characteristics that cause other CPUs to incur error conditions of
sonme type. An error log entry froma VAX 6000 CPU al ways i ncl udes the
configuration of other active CPUs on the system For exanmple, if the
CPU at node 6 is running with its backup cache di sabl ed, other CPUs

include this information with their error | og data. Thus, potential error
conditions can be easily identified.

Digital Technical Journal Vol. 4 No. 3 Sumer 1992 3

VAX 6000 Error Handling: A Pragmatic Approach

6 Error Log Filtering

Some errors that occur at too high a rate are filtered fromthe error |og.
Errors that are delivered by the soft error vector are invariably benign

to systemoperation. It is inmportant that they be reported because they

can indicate an inpending fatal error in sone subsystem However, if these
errors are occurring too often, only a subset is sent to the error |1og. The
algorithmis based on an error count over time. If an error is occurring
too rapidly, logging of the errors is inhibited. At a later tine, |ogging
is reenabled. Errors that do not appear in the error log are still counted,
and the accurul ated totals are displayed by other error conditions that are
sent to the error |og.

7 Message Facility

Error handling on the VAX 6000 has the unique ability to output fornatted
nmessages. Integral to the error-handling subsystemis a nmessage processing
facility that is conposed of specialized routines and nodified versions of
several VMS system services. The nodified system services include SYSFAO
and SYSCVRTIM The message facility provides the error-handling subsystem
with the capability to output formatted nessages that contain both text and
data. These nessages are tinme-stanped and sent to the system consol e device
OPAO: .

Messages can be output in two different nodes. Interrupt driven node is
t he nbst common and uses the standard terminal driver functions of the
runni ng VMS session. Messages that use this node describe the disabling
of sone part of the CPU kernel at systemstart-up or during the current
session. The other node of output is synchronous and is in line with
error processing. This node is reserved for hardware errors that are
nonrecoverable and result in a systemcrash. The nessage is output just
prior to calling the BUGCHECK nechani smthat would termnate the current
VMS session abnormally. Messages are al ways descriptive of the error or
exception condition and contain all the machine state available at the tine
of the error.

Formatted nmessages allow for errors that occur as the systemis being
initialized to be reported and described should the systemfail to boot.
The output of nessages is fully synchronized between the prinmary and
secondary CPUs of SMP systens. The primary CPU out puts nessages about
errors occurring on secondary processors.

8 Error Rate Checking and Loop Detection
The VAX 6000 family of CPUs provides a great deal of error detection. The

error conditions signaled in many cases are benign to the systemif the
appropriate action is taken. However, blind recovery fromerrors can be a

downfall initself. It is not uncommon for so many benign failures to occur
that error handling is the only task being perfornmed by the system Error

4 Digital Technical Journal Vol. 4 No. 3 Summer 1992

VAX 6000 Error Handling: A Pragmatic Approach

handling on the VAX 6000 fami |y inplenents a system of rate checking and
| oop detection to conmbat this problem

Rat e and Loop Detection Tinme Base

The tim ng standard used by the rate checking and | oop detection subsystens
is the CPU TODR register. The TODR hardware regi ster is independent of
software and i ncrenents every 10 m |l iseconds.

Rat e Checking of Errors

Each error condition has an associ ated rate check database. The dat abase
tracks TODR val ues for the three nost recent errors. If these errors occur
too fast, special action is taken in addition to that required to service
the error. This may involve disabling the signaling of the error condition
itself. For exanple, sonme errors that are reported outside the CPU can

be turned off. When sufficient data about an error has been coll ected,

the error may be disabled for a period of tinme. Hardware features such

as internal cache errors can also be disabled. If cache errors occur that
are recoverable, but are occurring too fast, the cache is disabled. The
occurrence of multiple errors can indicate a broken structure, whereas a
single error can indicate a single transient event.

Loop Detection

Mul tiple errors of different types can also occur frequently. In this
situation, the systemis operational, but it is continuously at high

| PL, servicing error interrupts or exceptions. This operating scenario
is detected by the frequency of transitions in and out of error handling.
When error-handling code threads are entered and exited, the TODR val ue
is saved. During execution of error handling, the enter TODR value is
conpared to the last exit TODR value. If the result is too close, a count
is incremented. If the close relationship of exit to entry continues to
occur, a loop condition is declared and appropriate action is taken. Most
often this nmeans the systemis shut down.

9 Error-handling Mde

The traditional approach to error handling in the VMS operating system has
been to interrogate registers and act on the data directly in real tine.
Anot her approach has been to save only a subset of processor state that has
a linkage to the error delivery vector and then act on this data during a

| at er parse operation.

When designing the error-handling nodel for the VAX 6000 series, we decided
to save all CPU state that is visible to nacro programmers in buffers
specific to each CPU. All interrogations are then nade on the data in this

buffer. Information on the hardware state is saved as well as the current
systemtinme. Any action taken by error handling is also recorded in the
buffer. This approach has several advantages. First, a distinct footprint
of the last error is contained in the systeminmage in nmenory. Should the
systemfail, the data is saved when a crash dunp is taken. Second, the many

Digital Technical Journal Vol. 4 No. 3 Sumer 1992 5

VAX 6000 Error Handling: A Pragmatic Approach

execution thread possibilities are made easier to test and verify. Finally,
conditions are easier to diagnose if the original data that error handling
processed and the actions that were taken are recorded in an error | og.

The error-handling process for the VAX 6000 series consists of six distinct
st eps:

o Setup and synchroni zation

o Saving of state

o Parsing of data

0 Processing and accounting of state
o Error Iogging

o Error reset and dismssa

This | ogical organization provides flexibility to the inplenmentation being
addressed at the tinme. The parsing of data step was added at the same tine
t hat support of the VAX 6000 Mbdel 400 was i npl enment ed.

Setup and Synchroni zation

Synchroni zation is acconplished by acquiring the MCHECK spi nl ock. The use
of spinlocks is a VM5 technique that provides atom c access to code threads
and data structures and ensures that only one CPU at a tine is in error
handling. Thus it is possible to conpress an error condition occurring

t hroughout the systeminto a single error log entry by the first CPU to
service the error.

Fol | owi ng synchroni zation, the SMP sanity and spinlock acquisition tiners
are disabled. If an error occurs at the boundary of one of these tinmers,

a false term nation of the session can occur due to the tinme consunmed by
the execution of error handling. The SMP sanity and spinwait tinmers are
mechani snms used in VM5 to ensure that CPUs active in a nultiprocessor
systemare interactive with each other and the synchronization prinitives
that control access to various resources. The sanity tinmer is used as a

wat chdog tinmer to ensure that CPUs respond to hardware clock interrupts on
a regul ar basis. Each CPU active on the system nonitors another CPU for its
response to hardware clock interrupts. The spinwait tinmer guarantees that
one CPU does not retain ownership of a spinlock resource for nore than an
allotted tinme period. Error handling is always executed at an | PL above

whi ch hardware clock interrupts can be serviced. As a result, it defeats
the sanity tinmer mechanism Sonme of the actions taken by error handling

can cause a spinwait tinmer to expire if the error being serviced occurs too

close to the tinmer boundary. By disabling these SMP tiners, a tine period
is started over when the error being serviced is dismssed and tiners are
reenabl ed.

6 Digital Technical Journal Vol. 4 No. 3 Summer 1992

VAX 6000 Error Handling: A Pragmatic Approach

The buffer associated with the CPU experiencing the error is initialized
to zero and is ready to receive the latest error state. If the error is a
machi ne check, stack space is allocated and initialized to allow for error
di smi ssal and error-handling exit.

When machi ne checks or soft error interrupts are serviced, the cache
subsystemis unconditionally disabled. Error handling does this to preserve
any error state that nmay be in the cache. If the error happens to be cache-
related, the state can be extracted at the appropriate tine. Cache-rel ated
errors are not reported by hard error interrupts on some VAX 6000 nodels.
When hard error interrupts are serviced on these processor nodels, the
cache is not disabled by software.

The machi ne check flow has an additional check to determine if the error is
associated with a recovery bl ock. Recovery bl ocks on the VMS system provide
kernel -node macro programrers with the ability to protect an execution
thread fromthe effects of fatal machine check exceptions. Nornmally when

a machi ne check occurs in kernel nmode, the code thread being executed

| oses control. Unless the instruction can be restarted, the VMS session

is term nated. The placenment of kernel-npde execution threads within

the context of a recovery block ensures that a nmachine check will cause
control to be passed to the end of the recovery block, along with status

to indicate that the machi ne check has happened. The nmmcro programer can
sel ect what type of nachine check to be protected from In general, this

is limted to those machi ne checks caused by references to the physica
address space that do not respond or return data.

If it is determned that the current delivered machi ne check is protected
by a recovery block and that error handling established this condition

the error is disnissed imediately without further action. Mre details are
given in the follow ng section.

Saving of State

All available CPU error state is saved regardless of error type or delivery
mechani sm Machi ne checks al so save the internal state passed by ncrocode
on the stack. Each register is read into its |local storage buffer within
the context of a recovery block. A valid bit is associated with each |oca
copy register cell according to its status as it exits the recovery bl ock
context. This is inportant because each cell has been initialized before
use. A register value of zero may be significant, and a failed register
read would allow the initialized value to be interpreted as not having any
error or state bits set. Failed register read indications can help in the
di agnosi s of the original error condition.

The recovery bl ocks used when error state is collected have special flags
to indicate that they were established by error handling. If an error

does occur, control is returned to the appropriate point in the error-
handl i ng execution thread. The origi nal saved state of the first error is
not overwritten.

Digital Technical Journal Vol. 4 No. 3 Sumer 1992 7

VAX 6000 Error Handling: A Pragmatic Approach

Par si ng of Data

The parsing of data step was added to support the VAX 6000 Model 400 and

| ater nmodels. The data collected in the saving of state routines is parsed
as a separate step. Wen error data is parsed and processed in a single
step, as in the VAX 6000 Mbdel 200 and VAX 6000 Mbdel 300, it is difficult
to make the necessary errors invisible to the error 1og. When the error
data is parsed and an error nask is produced that represents the error
conditions present, it is nuch easier to detect if all current conditions
have been serviced. Since it is also easier to detect conditions with only
one error present, expected error conditions can be processed. The VAX 6000
Model 400 and | ater nodel s have many benign error syndronmes that have their
| ogging filtered.

Processi ng and Accounting

During the processing and accounting step of error handling, the data

in the CPU private local buffer is parsed and acted upon. These routines
detect if a specific error condition is global and sensed throughout the
systemor local to the particular CPU. dobal errors include the state
fromother CPUs and devices in the error log if required. If the gl oba
error is the only one present and it is expected, machine state is set

to indicate that error |ogging should not occur. Should this CPU be the
first to process the global error, it sanples data in registers of the

ot her CPUs and devices and | eaves state to indicate the error condition
has been serviced and is expected. Consequently, the context of gl oba
errors is included into a single entry in the error log. XM parity errors
are serviced in this way. Local errors record only the state fromthe CPU
experiencing the error in the error |og.

Error handling supports the notion of expected errors, or errors that
sonmetines occur as a result of operations perfornmed by error handling.
These errors are not reported to the error log. For exanple, duplicate tag
parity errors can sonetinmes occur when the backup cache on the VAX 6000
Model 200 and VAX 6000 Mbdel 300 is invalidated. To cause these errors to
be invisible to the error log, a mask of error bits to ignhore is set up
when backup cache invalidate operations are executed. At the sane tine,

a fork process thread that ultimately clears the appropriate mask bit is
queued. |If an error that would be invisible to the error | og occurs, the
"ignore-this-error"” bit is sanpled in the recovery thread for the error
condition. If the bit is set, the error is ignhored. |If the error does not
occur, eventually IPL is lowered until the queued fork process runs and
clears the bit in the mask. This guarantees that |ater real errors that
have previously been expected and have not occurred are not excluded from
the error |og.

8 Digital Technical Journal Vol. 4 No. 3 Summer 1992

VAX 6000 Error Handling: A Pragmatic Approach

Error Loggi ng

The data collected by the error-handling routines is sent to the VMS
system s error log after it is tallied for size. The anpbunt of record space
is allocated by internal VMS routines. The raw data that describes the
context of the current error is copied to the VMS error |og buffer along
with the current values of accounting data for the CPU The accounting

data is a count of the individual error conditions that have occurred

on this CPU for the current session. Any CPU that has sone part of its
functionality disabled includes that data in the error log as well. For
exanple, a CPU that is executing with a disabled cache nay cause errors

to occur on other CPUs. It is useful to knowthat a CPUis running in a
degraded node when investigating problenms that are occurring on a system
The error log records of all CPUs clearly indicate any CPUs operating at
reduced capacity. If all CPUs are running uninpeded, the error |og contains
a flag to indicate this status.

The amount of data included in the error log for any given error can be
different. The data describing the CPU context is the same except in the
case of machi ne checks. These errors also include internal state passed by
the m crocode through the stack. Depending on the error condition, context
fromthe XM bus, the nenory subsystem or an external XM adapter can

be included. The error data is organized into various subpackets that are
signaled to be present by a flags field contained in a header section of
the CPU context packet. For exanple, an error can occur that describes a
failure of a transaction between the CPU and nenory. If the data collected
fromthe menory subsystem during the processing and accounting step
indicates an error is present, this is included in the error |og record.

If there is no indication of a nenory subsystemerror, a flag to indicate
that no nenory errors are present is set. This reduces the burden on the
error log buffers of the VMS system and reduces the clutter and confusion
of error registers froma device that does not have an error condition
present.

Any error that ultimtely causes the systemto crash is also |logged to
the system console term nal through the SYSLOA nessage facility. Errors
can occur during start-up before VMS error logging is available. Errors
can al so occur and term nate the session before the system conpl etes
initialization. For these reasons, fatal errors are always output to the
consol e terminal before the session is termnated. Errors that occur at
start-up of secondary processors are nonitored by the primary processor
Any output required is done by the primary processor

Error Reset and Di sm ssa

The |l ast step of error handling resets error conditions that have been
serviced and disnisses the interrupt or exception. The i mage of the

data saved is used as a mask to reset error conditions. This techni que
guarantees that double error conditions are not |ost.

Digital Technical Journal Vol. 4 No. 3 Sumer 1992 9

VAX 6000 Error Handling: A Pragmatic Approach

Regi sters that require initialization are reset using the contents that
were read when the error was first serviced. Mdst error conditions are
wite-one-clear. That is, to reset the error condition, a mask of the

error conditions set has to be witten to the appropriate register to

clear the error. The use of the original contents of the register as a
mask guarantees that an error condition occurring during the processing

of an error cannot be |ost. Reset of the VAX 6000 Model 200 and VAX 6000
Model 300 error registers includes a |ater probe of the register for the
absence of error indications. Should an error still be present, the error-
handling process is restarted and it treats the condition as a new error
After errors are reset, the cache subsystemis invalidated and a check is
made to determine if it should be reenabl ed. Processing of the error could
determ ne that the cache or indeed the CPU should be taken off-1line because
of an error rate or finite count that is too high. If all is well, the
cache subsystemis reenabled. The MCHECK spinlock is now rel eased and the
interrupt or exception is dismssed by executing a return from exception or
interrupt (RElI) instruction.

If the error being dismissed is a machi ne check, the additional storage

all ocated by error handling and error state |left by the mcrocode has to

be renmobved. As shown in Figure 2, the additional storage is an array of
guadwords. These quadwords represent program counter/processor status

| ongword (PC/ PSL) pairs that direct control to routines that nust be
executed prior to control being returned to the exception PC. The
addi ti onal postprocessing that takes place for noncorrectable nmenmory errors
and errors that cause a process to be aborted are dispatched using this
mechani sm

Machi ne check processing takes place at IPL 31. Fatal nmenory error recovery
uses the VMS system s page fault code threads. These threads use spinl ocks
that cannot be acquired from I PL 31. When disnissing machi ne checks, the PC
/PSL pairs are interrogated to determne if they are nonzero. |If the probed
gquadword is zero, the stack pointer is updated to unwi nd by the quadword
all ocated. This continues until all three array el enents have been probed.
If the array elenment is nonzero, the RElI passes control to the PC and PSL
described by that array elenment. Synchronization is thus preserved, and
spinl ock acquisition rules are obeyed. Eventually the array is traversed,
and each elenment is renoved. State left by the microcode is renoved,

control is passed back to the original exception PC, and instruction retry
is attenpted. If error handling determines that the execution thread should
be aborted, the original exception PCis replaced by a PC/PSL pair that
returns control to VMS exception routines. Fromthese routines, control is
normal |y passed to an appropriate node condition handler. If a condition
handl er has not been established, the VM5 process is aborted. Kernel-

node threads that experience fatal machi ne checks always result in the
term nation of the VMS session

10 Digital Technical Journal Vol. 4 No. 3 Summer 1992

VAX 6000 Error Handling: A Pragmatic Approach

10 Support of the VAX 6000 Mbdel 200 and VAX 6000 Mbdel 300

The error-handling support for the VAX 6000 Mddel 200 and VAX 6000 Mode
300 is identical. These two processor nodels are the sane |ogical CPU The
VAX 6000 Model 300 is a selected faster conponent set of the VAX 6000 Mode
200.

The VAX 6000 Model 200 system presented a uni que problem for error handling
because the primary cache is internal to the CPU chip. Errors fromthe
primary cache do not cause an interrupt or exception. These errors can
never cause a failure or wong result should they occur. Because all cache
structures on the VAX 6000 Mbdel 200 are write-through, data can be both

in cache and in nmenory, and it is always consistent. If a parity error
occurs on either the data or tag section of the primary cache, m crocode
can always fetch another copy of the data fromnenory. If a primary cache
tag or data error occurs, mcrocode sets a status bit to indicate the

error in an internal processor register. The internal processor register is
private to the local CPU. Previous CPUs with this type of error signaling
used a polling technique to detect these failures. On SMP systens, only the
primary CPU is interrupted on a regular basis to allow polling routines to
run.

Since we had no precedent for reference, we designed a system whereby

the primary CPU uses the interprocessor interrupt mechanismto interrupt
secondary processors. Wen the secondary CPU receives the CPU specific

i nterprocessor interrupt, it reads the appropriate internal processor

regi ster, places the data in a known | ocation, and sets an indicator

flag. On later poll cycles, the primary CPU sees the indication fromthe
secondary CPU and interrogates the known | ocation for any error bits. If no
errors are detected, each secondary CPU is polled once every ten seconds.
Shoul d an error be found, the secondary CPU with the error has its polling
frequency increased to once every second. |If ten successive polls indicate
error conditions, the secondary CPU is signaled to disable its primry
cache. If this occurs, entries are made in the error log and to the system
console by the primry CPU on behalf of the secondary CPU

During systens integration of the VAX 6000 Mbdel 200, certain random access
menory (RAM) devices used for the backup cache exhibited excessive parity
error failures. The problem was so severe that special error-handling
software and additional CPU hardware functionality were devel oped to

i sol ate and di agnose the failures. This work was so successful that the

har dware functionality was nmade a pernmanent feature of the processor, and
the error-handling routines were nade a permanent part of the SYSLOA i mage.
The hardware functionality and software routines allowed for the failing
data bit in the backup cache to be identified at the tinme of the failure.
The VAX 6000 Model 200 experience had a lasting effect on error handling
across the VAX 6000 fam |ly. The ability to di agnhose cache parity errors

to the bit level in the operating systemrenains a characteristic of error
handling on all VAX 6000 systens.

Digital Technical Journal Vol. 4 No. 3 Summer 1992 11

VAX 6000 Error Handling: A Pragmatic Approach

11 Support of the VAX 6000 Mbdel 400 and VAX 6000 Mbdel 500

Al t hough the CPU chi ps on the VAX 6000 Model 400 and VAX 6000 Model 500 are
the sane, the SYSLOA i mages are not. The mgjor difference between the two
systenms is the wite-back cache subsystem inpl enented by the VAX 6000 Mode
500. To facilitate wite-back cache strategies, the XM bus was enhanced to
support a directory-based broadcast coherence protocol.[1]

The VAX 6000 Model 400 and VAX 6000 Model 500 systenms represented a
dramatic increase in systemconplexity for error handling. The amunt of
error detection incorporated within each increased and becanme nore conpl ex.
The overall nodel inplenmented on the VAX 6000 Mbdel 200 was nmi nt ai ned,

but a step was added between the steps of saving of state and processing
and accounting. The new step, parsing of data, was previously a part of
processi ng and accounting. Error handling support of the on-board CPU

el ectrically erasabl e progranmabl e read-only nenory (EEPROM was al so
added. The EEPROM was until now used only by CPU consol e support.

The overall nodel now became

o Setup and synchroni zation

o Saving of state

o Parsing of data

o Processing and accounting

o Error Iogging

o Error reset and dismssa

St orage space for machine check and hard error is shared in the VAX 6000
Model 200 system However, this support becane too conplicated to manage.
In the VAX 6000 Mbdel 400 and | ater nodels, both sets of error state are
avail abl e in crash dunps.

EEPROM Support

The experience gained fromsystens integration of the VAX 6000 Mdel 200
showed that real-tinme diagnosis by the operating system has nmany benefits.
However, the schene used by the VAX 6000 Mdel 200 was cunbersone and
recorded only the resulting diagnostic data to the error log. The chall enge
was twofold: to make the nechanics of cache parity error diagnosis easier,
and to nake the data nore widely avail able. We achi eved both goal s by

usi ng the EEPROM on the CPU nodul e. The VAX 6000 Mbdel 500 nade additiona
i mprovenents by using both on-board and hi gh-speed RAM and EEPROM

EEPROM and RAM structures exist within the physical address space of the
VAX 6000 family. These structures are primarily used by the console for
cross-session storage of data. Hi gh-speed RAMis used for general heap
storage by the console. RAM and EEPROM structures have physical addresses
that are in the 1/O region of the address space. Address references to I/O
address space do not cause cache | ookups. The code threads that perform
data extraction were placed in the EEPROM and RAM structures to avoid

12 Digital Technical Journal Vol. 4 No. 3 Summer 1992

VAX 6000 Error Handling: A Pragmatic Approach

speci al hardware operating nodes. A few sinple routines enabl ed easier

di agnosi s of cache parity error failures and a nethod of disabling the
cache that does not disrupt error state. The error-handling SCB vectors
were pointed to the EEPROM so the routines that disable the cache could do
so w thout meking cache references. (On the VAX 6000 Model 500, the cache
di sabling routines are placed in the high-speed RAM)

When an error occurs, control is first passed to individual routines that
reside in |I/O space. These routines disable the cache subsystem and then
return control to the SYSLOA inage in nain menory.

The VAX 6000 Model 500 has an error transition node (ETM), which allows the
backup cache to be partially disabled. New bl ocks are not allocated when

in ETM node. Data requests are filled fromthe cache. Error interrupts or
exceptions on the VAX 6000 Model 500 dispatch to routines that execute from
I/ O space and place the wite-back backup cache into ETM and di sabl e the
write-through primry cache.

The EEPROM on both the VAX 6000 Mbdel 400 and VAX 6000 Mbdel 500 is al so
used to store failure information. When errors occur, a counter that is
associated with the specific error condition is increnmented. The nunber

of error conditions is finite and fully described by the error mask
produced by the parsing of data routines. Witing to the CPU EEPROM i s

ti me-consum ng conpared to witing to main nenory. A byte wite to EEPROM
takes on the order of 15 nilliseconds. To avoid this overhead, the EEPROM
VMS data actually resides in main nmenory during a VMS session. As each CPU
is initialized by the VM5 system the contents of the VMS area are read
into individual CPU nenory regions. Updates that are required are made to
these regi ons. When CPUs are stopped or when the systemis shut down or has
crashed, the region of nmenory associated with a particular CPUis witten
back to that CPU' s EEPROM |n addition to error information, a count of
seconds run in a VMS environment is tallied.

Vect or Processor Support

One set of routines supports the VAX 6000 Model 400 and VAX 6000 Model 500
vector processors. These routines are organized in an identical manner to
the CPU routines and foll ow the sane steps related to CPU error conditions.
During the processing and accounting of CPU error conditions, a check
deternmines if any vector processor errors are present. If vector errors
are detected, the appropriate support routines-soft error, hard error, or
machi ne check-are invoked.

Error handling supports a maxi mum of four vector processors. If the nunber
of errors or the rate of errors becones too great, vector processors

are renmoved fromuse. Error handling never renoves the only or |ast
remai ni ng vector processor. Support of vector processor errors has the

same characteristics as support for CPU-related error conditions. Portions
of the vector processor are disabled if the associated error rate becones
too great. If other errors continue, the unit is removed fromuse. The
noti ons of expected errors and errors that are invisible to the error |og
al so exi st.

Digital Technical Journal Vol. 4 No. 3 Summer 1992 13

VAX 6000 Error Handling: A Pragmatic Approach

12 Support of the VAX 6000 Mbdel 600

Error checking and detection on the VAX 6000 Moddel 600 are very conpl ex
processes. There are well over 160 unique soft and hard error conditions as
categorized by the software. The actual count declared by the hardware

is much greater. The disparity results fromthe way software groups

error conditions. The VAX 6000 Mbdel 600 error handling foll owed the
enhanced nodel inplenented on the VAX 6000 Mbdel 400. The state saved

for interrogation by VAX 6000 Model 600 error handling consists of 40

i nternal and XM - addressabl e regi sters. Support of the VAX 6000 Mdel 600
al so included support of the on-board CPU EEPROM for the | ong-term storage
of failure informati on. The support of the EEPROM was extended to include
the history of the cache subsystem performance in previous sessions.

Li ke the VAX 6000 Model 500 system the VAX 6000 Model 600 inplenments a
write-back backup cache strategy. The VAX 6000 Model 600 backup cache
operates using a directory-based broadcast coherence protocol.[1l] Each
32-byte cache block is in one of three states: invalid, valid/read-only,
or valid/witten. Miltiple caches may hold read-only data sinultaneously;
written data may be held by only one cache in the systemat atinme. Wite
privilege for a block rmust be obtained before nodifying the data in that
bl ock.

Certain backup cache error conditions are severe enough to disable the
cache. The backup cache may contain witten data that is unavail abl e

el sewhere in the system To access that data, the backup cache is put
into ETM a state which allows witten data to be accessed by the cache
controller, but disallows the use of read-only data.

A cache enters ETM as a function of either software or hardware. The

cache is put into ETM by hardware only when cache data nay have been
corrupted, or when cache data nay be inconsistent with data in nmenory.

Thus, correctable backup cache errors do not cause a transition into ETM
but uncorrectable errors do. A parity error on the NVAX data and address
lines (NDAL) interface causes the cache to enter ETM because an invalidate
or write-back request may have been mi ssed. A cache transition into ETM
occurs when a request for wite privilege or a wite back does not conplete
successfully on the VAX 6000 Mbdel 600. The state of the cache is likely to
be inconsistent with that of menory.

Three requirements govern cache operation during ETM (1) The state of the
cache is preserved as nuch as possible to all ow software to di agnose the
problem (2) Menory references that hit witten blocks in the cache are
processed, since this is the only source of data in the system (3) Cache
coherency requests fromthe NDAL are processed nornmally so that cache state
remai ns consi stent with nmenory.

Al t hough conpl ex, ETM allows the software to choose when and how to disabl e
the cache. To nake the process of error handling | ess cunbersone, the

backup cache is unconditionally put into ETM by the software when any error
condition is being serviced.

14 Digital Technical Journal Vol. 4 No. 3 Summer 1992

VAX 6000 Error Handling: A Pragmatic Approach

ECC protects both tag and data stores on the backup cache on the VAX 6000
Model 600. Correctable ECC errors in the backup cache have a record of
failed syndronmes kept by error-handling routines. Should the sanme syndrone
fail on nore than one occasion in a single VMS session, the backup cache is
di sabl ed.

I f uncorrectabl e backup cache errors occur, the error-handling routines
deternmine if the block is owned by the CPU and attenpt to flush the bl ock
back to menmory. |f successful or if the block is not owned, the backup
cache is disabled before returning the systemto norrmal operation. |If the
data cannot be recovered, the VMS session is term nated.

If the backup cache is disabled by error handling for any reason, that

fact is recorded in the CPU EEPROM Records on disabled status are al so
kept for the primary cache and virtual instruction cache (VIC). Subsequent
sessions of VMS interrogate the EEPROM and cause these structures to remin
disabled if they were disabled in a previous session. Wen this occurs, an
appropriate nmessage is sent to the console termnal during systemstart-up

Tag parity errors that occur in the VIC are diagnosed in an unusual manner
Unli ke other caches on the VAX 6000 Mbdel 600, the tag store of the VIC
contains a virtual address. To deternine which bit has failed when a
parity error occurs, the tag store is probed to retrieve the contents of
the failing tag | ocation. The associated data store location is probed to
retrieve its contents; each bit in the bad tag address is then flipped in
turn. As each bit is flipped, the range of the resultant virtual address is
conpared to page tables to deternmine its validity within current context.
The virtual address is translated, and the resulting physical address

is mapped to allow error handling to read the contents of the page. The
appropriate contents of the newly mapped page are conpared to the contents
read fromthe VIC data store. If one and only one match is found, the
failing tag bit is identified. Masks of failing bits fromall VAX 6000
Model 600 cache structures are stored in the CPU EEPROM al ong with ot her
failure information.

The instruction pipeline conplicates VAX 6000 Mbdel 600 error handling.

In many instances, errors experienced are in no way related to the current
i nstruction being executed or interrupted. When an error does occur, care
nmust be taken to fully understand in what context the error has an effect.

13 Correctable Menory Errors

Correctable nmenory errors are data errors that are corrected by the nenory
controller before data is returned to the requester. They occur primarily
because of al pha particle radiation, affect only a single cell, and are
transient in nature. Correctable nenory errors are conpletely benign. To
deternmine if a menory controller reporting correctable errors has rea

defects, nultiple errors nmust be viewed.

Digital Technical Journal Vol. 4 No. 3 Summer 1992 15

VAX 6000 Error Handling: A Pragmatic Approach

VAX 6000 error handling inplenments a schene whereby error data reported by
menory controllers for correctable errors is conpressed into a structure
called a footprint. The footprint reduces the data reported into a form
that uni quely describes the error that just occurred. The intent of the
footprint is to uniquely index the source conponent of nmenory, the dynam c
RAM (DRAM . Hence, for a given nmenmory subsystem the nunber of valid
footprints would equal the nunber of DRAMs. Furthernore, the footprint

bl ock mai ntai ned per footprint is used to track the context (repeat errors,
scrubbing, etc.) of this error as well as other errors that match this
footprint ID.

The assunption here is that nost correctable menory errors are a result

of DRAM conponent faults, hence the granularity of the unique DRAM As
shown in Figure 3, the footprint fornms a 32-bit integer fromthe XM

node I D, the ECC syndronme of the error, and the menmory controller bank

in error. The integer is used to |locate other correctable errors that have
occurred in an internal database. Along with the footprint, the address

of the correctable error is passed to a set of routines that perforns al
processing of correctable nmenory errors. The database tracks the range of
addresses that have experienced correctable errors for the sanme footprint.
This aids in the diagnosis of row and colum failures with the DRAMs that
make up menory controller storage. On the VAX 6000 Mbdel 500 and VAX 6000
Model 600 systens, nenory scrubbing status is also tracked.

Menory scrubbing is a technique for reducing the nunber of error interrupts
fromlocations that are reporting errors caused by al pha particle

di sturbance. Scrubbing renmoves transient faults fromthe system which

in turn reduces the nunmber of interrupts that result from such errors.

In addition, it helps to differentiate transient errors from permanent

DRAM conponent faults, as captured in the error log. This information was
previ ously unavail abl e.

When the VAX 6000 menmory controller detects a correctable nenory error
circuitry in the controller corrects the data returned for the request.
The data is not corrected in the storage DRAMs on the controller. If

the location is read over and over again, the sane error and correction
cycle occurs each tine. This continues until the location is updated with
write data. An interrupt can be generated for each error correction cycle.
Care nust be taken when scrubbing nenory | ocations. The data in any given
menory address can be shared by any nunber of CPUs or 1/0O devices. Wen
this is the case, a higher-level software protocol is nornmally used to
synchroni ze access. Error handling would not be privy to these protocols.
VAX 6000 Model 500 and VAX 6000 Model 600 nmenory scrubbing is possible
because of the XM 2 bus protocol. Before a CPU can nmodify any location in
menory, it nust be the exclusive owner of the 32-byte block in which the
address resides. Owership is effected at the prinitive hardware | evel and
so excl usive access is guaranteed.

16 Digital Technical Journal Vol. 4 No. 3 Summer 1992

VAX 6000 Error Handling: A Pragmatic Approach

When a correctable error interrupt occurs on a VAX 6000 Model 500 or

VAX 6000 Model 600 system error handling rewites the failing |location
with its contents. The ability to cause an interrupt is disabled in nmenory
controllers that continue to report errors with the same footprint or that
have not responded to scrubbing. This action occurs after sufficient data
has indicated that sonething other than al pha particle disturbance has
occurred and the nmenory controller may require service.

The rate of correctable menory error interrupts is checked to reduce the
burden on the system |If the rate of errors occurring beconmes too high, the
ability to interrupt is disabled at the problemcontroller for a period of
time. Correctable nenory error data collected during a VMS session is sent
to the error log at the end of the VMS session.

14 Uncorrectable Menory Errors

Uncorrectabl e nmenory errors experienced by the CPU are reported as

machi ne checks. These machi ne checks are synchronous with the PC naking
the reference. Uncorrectable nenory errors occur when data is | ost by

the nmenory controller and cannot be re-created by its ECC circuitry;
fortunately, these errors seldom occur. Uncorrectable nenory errors
represent a serious problemto the execution thread that experiences them
The hardware cannot assist in the recovery of this type of error; recovery
is totally a software function.

If the page that experiences an uncorrectable error is a process private
page that has not been nodified, and the code thread currently executing is
at pageable priority, the error is not considered fatal. The error-handling
routines arrange for the page to be re-created in a different physical page
in menory by invalidating the necessary nenory managenent structures. As a
result, a translation-not-valid exception occurs when the instruction that
experienced the exception is retried. The page fault nmechani snms of the VMS
system do the actual re-creation. The original page with the error is put
on a list of bad pages internal to the VM5 system If the page does not

nmeet the criteria for replacenent, either the process is deleted or the VMS
session is ternminated. |f the process is deleted, the page is narked "bad"
by error handling, and the process run-down routines in VMS retire the page
to the bad page |ist.

15 Testing

Early in the project, we decided the ability to test and verify had to be
built into error handling to produce a predictable, robust, and quality
product. Although the VAX 6000 family and CPUs in general have a nunber of
features that allow errors to be generated, they tend not to be general -
purpose. In nost cases, they are designed for use by special diagnostic
software that does not operate in the context of an operating system e.qg.

the VMS operating system W chose to inplenent a schene whereby errors
woul d be sinmulated in software on the target hardware. This approach gave
us several clear advantages. The npbst inportant was that the approach could

Digital Technical Journal Vol. 4 No. 3 Summer 1992 17

VAX 6000 Error Handling: A Pragmatic Approach

be extended as the power and conplexity of CPU nodels increased and that
conplete control was with the designers. No special hardware equi pnment
or CPU feature would be required. The only precondition was that certain
software i npl enentati on guidelines had to be followed to nmake use of the
si mul at or .

Machi ne check test (MIEST) consists of two parts, a utility and an error-
handl i ng i npl ement ati on et hodol ogy. The met hodol ogy consi sts of using nain
menory storage as the primary agent that is acted upon by error handling.
This method also fit into our nodel of retaining data in nmenory. The ot her
requi renent was the strategic placenent of the DEBUG TRANSFER macro. DEBUG
TRANSFER expands to produce a code segnment that determines if the current
error being serviced is an error simulation or not. If it is, data that
resides in nenory that is being interrogated is nodified, in concert with
MIEST, to reflect the error condition being sinulated. DEBUG TRANSFER

code segnments represent synchronization points between an error-handling
execution thread and the MIEST sinul ator.

The MTEST sinulator is a privileged i nage and consists of a user interface,
a nunber of nonpageable internal buffers, and sinmulator routines. The user
interface allows the internal buffers to be selected and | oaded with data
patterns of the user's choice. The user interface also allows the user to
pass control to the SCB vectors of the VMS system In our case we used the
vectors that are the |inkage to error-handling routines. Once in control
error handling would execute its nmodel until it reached a DEBUG _TRANSFER
code segnment. The segment would determine that this was an error being
simul ated and return control to MIEST. MIEST woul d then decide if the
synchroni zati on point was one for which the user has data. The data woul d
be transferred fromthe buffer named in the DEBUG TRANSFER code segnent to
the address also declared in the segnment. By judiciously placing the DEBUG_
TRANSFER synchroni zation points and carefully selecting an appropriate

data pattern, we were able to sinulate any and all error conditions for the
appropriate CPU

In this way, we were able to verify many conpl ex al gorithnms and code paths
that woul d have been difficult to exercise. W were also able to verify
error handling and error logging fromthe point of error to the error |og
file. MIEST can be either interactive or procedure-driven. This aspect
allowed us to maintain a library of procedures that could be used at any
time to verify that operational characteristics for individual errors had
not changed when code paths that affected nmany error types were nodified.

MIEST was the prinmary tool we used for testing. During the test and
verification phase, prototype hardware that had real error conditions
becanme avail able, and we used these prototypes.

18 Digital Technical Journal Vol. 4 No. 3 Summer 1992

VAX 6000 Error Handling: A Pragmatic Approach

16 Concl usi ons

The VAX 6000 family now has a robust and conplete set of error-handling
routi nes that acconplished our project goals. In fact, many routines were
never before part of the VMS system These routines include the ability
to report conplete error context to the systemconsole and the ability to
group failures occurring across the systemto a single error |log entry.
An inportant SMP feature is the ability to recognize and retire failing
processors fromthe active set of a VMS session and allow the session to
continue. These routines and others support the entire range of VAX 6000
CPU nodel s. The object-oriented approach to error conditions not on the
CPU nodul e has made support and introduction of newer routines easier

The ability to test at will any or all error-handling routines has been a
t remendous advant age.

17 Acknow edgenents

Qur success resulted froma nunber of factors, including the advantages of
designing the ability to test into the product. There is no substitution
for actually executing a code thread to deternine the effectiveness of

its design goal. The various engineering groups involved in designing

the many 6000 CPUs showed great discipline in producing engi neering

speci fications that net the needs of both hardware and software engi neering
groups. The many hours spent painstakingly describing intricate details of
error conditions and the production of parse trees allowed the structured
approach we set out to achieve. Special thanks to Mke Unhler for his parse
trees and to Nick Carr, who suggested this paper be witten.

18 Reference

1. G Unler et al., "The NVAX and NVAX+ Hi gh-performnce VAX
M croprocessors,"” Digital Technical Journal, vol. 4, no. 3 (Sumer 1992,
this issue): 11-23.

19 Bi ography

Brian Porter As a consulting software engineer in the Systens G oup of VMS
Devel opnent, Brian Porter was responsible for CPU error handling in the
VAX 6000 family. Prior to this work, he was responsible for support of VAX
systenms and was an author and mai ntai ner of the VMS error log utility SYE.
Brian is the author of the original VMS striping driver, which was | ater
devel oped by others into the VMS striping driver product. He currently
works in the Executive Goup of VMS Devel opment and is responsible for
symretric nultiprocessing. He has two patents pending on nmenory error
handling. Brian joined Digital in 1973.

Digital Technical Journal Vol. 4 No. 3 Summer 1992 19

VAX 6000 Error Handling: A Pragmatic Approach

20 Trademarks

The following are trademarks of Digital Equi prment Corporation: VMS, VAX,
and VAX 6000.

20 Digital Technical Journal Vol. 4 No. 3 Summer 1992

Copyright 1992 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

