Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

1 Abstract

The cornerstone software conponent of high-end production systens is a
dat abase managenment system Digital has successfully ported the DEC Rdb
for OpenVMS rel ational database managenent system and the DEC DBMS for
OpenVMS networ k dat abase managenent systemto the Al pha AXP platform Rdb
and DBMS were perhaps the npst conplex |ayered products to be ported. The
ti ght coupling of these two products to the OpenVMS VAX system nade t he
port a challenging task. To avoid the future problemof integrating two
source code bases, the porting team decided to use a commopn code base and
to overlap current VAX devel opment with the Al pha AXP port. The goal was
to provide an easy migration path for software products to the Al pha AXP
pl at f orm

Digital is one of a small nunber of vendors conpeting in the high-end,
conpl ex production systens market. Applications for this market support

i ndustries such as banki ng, stock exchanges, telecomrunications, and

i nformati on services. The Al pha AXP platformis ideally suited to neet
the response tinme, throughput, and availability requirements of these
applications, since it offers increased performance while maintaining the
superb availability characteristics of VMScluster systens.

Al t hough hi gh-end production systenms involve a collection of software
packages, the cornerstone software conponent is a database nanagenent
system Digital offers two database managenent systems for high-end
commerci al systens: DEC Rdb for OpenVMS, a rel ational database managenent
system and DEC DBMS for OpenVMS, a network (CODASYL) database managenent
system Digital had to port the DEC Rdb for OpenVMS VAX and DEC DBMS for
OpenVMS VAX dat abase systens to the Al pha AXP platformas early as possible
to continue to conpete in this comercial arena. The resulting products are
the DEC Rdb for OpenVMs AXP and DEC DBMS for OpenVMs AXP systens. (Since
these two products for the Al pha AXP system are the sane as those for the
VAX system hereafter, we will refer to the products as Rdb and DBMS.)
Additionally, both software products drive many sales of Digital's OpenVMS
operating system and transaction processing and i nformati on managenent
products such as CDD, ACMS, and DEC RALLY, which integrate with the Rdb and
DBMS systens.

Dat abase nmanagenent systens are anmong the nost conplex of all software
products. Applications expect these systens to have 7 by 24 availability,
sophi sticated concurrency capabilities, fast data access, high-speed
backup and restore nechani snms, and |l arge buffer pools. To provide such
functionality, the Rdb and DBMS products nake extensive use of the OpenVMS
VAX system the VAX run-time libraries, and the BLISS and VAX MACRO 32

programm ng | anguages. The current release of the product set uses nore
than 100 system services or run-time |library calls. The two products
utilize al most every BLISS BULTIN function, i.e., a machine-specific

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 1

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

function call that generates in-line code. Conbined, Rdb and DBMS conprise
nore than 30 different imges. The products run in el evated processing
nodes, both executive and kernel, and include user-witten system services.

Further conmpoundi ng the conplexity of porting the Rdb and DBMS software

to the Al pha AXP platformis the fact that they are mature products; DBMS
was released in 1981, Rdb in 1984. Because various systemcapabilities did
not exist in the early 1980s, the two database managenent systens include
code that is no longer required. For exanple, both products have code to
nove bytes from one data type to another. Also, during inmage rundown, the
products rely on undocunented, operating system behavioral patterns such as
t he asynchronous systemtrap (AST) delivery protocols. In addition, the Rdb
software contains a nodified version of the OpenVMS SORT routine.

Rdb and DBMS were initially designed to run only on the OpenVMS VAX
operating system Consequently, both products heavily utilize VAX-specific
features for performance gains.[1l] For exanple, Rdb generates VAX machi ne
code routines as part of query execution plans; the machine code is
carefully generated for maxi num execution efficiency. This tight coupling
of Rdb and DBMS to the OpenVMS VAX system nmade the port a chall engi ng task.

Since the OpenVMS and BLI SS groups were busy with their own porting
projects, we in the Database Systens Group had to acconplish our port

with little outside help. The task was noteworthy because, by necessity,
the team had to port its product set to the Al pha AXP platformearlier
than nost of the other porting groups. At the same tinme, Rdb and DBMS were
perhaps the nost conplex |ayered products that would be ported. Qur goa
was to port these two products in a tinely fashion, so that Digital would
truly succeed in providing an easy mgration path for software products to
the Al pha AXP platform

In this paper, we first present a brief description of the architecture of
the two dat abase managenment system products. We next describe the guiding
policies we fornulated to allow the port to proceed as efficiently as
possi bl e. Then, we docunent porting issues that we resolved for the two
products. Finally, we sumrarize our experiences related to this effort.

2 Product Architecture

Digital is unique in the database industry in that we provide two different
types of database nanagenent systens that |ayer on top of the sane database
kernel, which is called KODA. The KODA kernel provides journaling and
recovery, |ocking, access nethods (e.g., B-tree, hashing), record and page
managenment, and buffer pool nmanagenent.

The Rdb software provides | anguage preprocessors, an interactive query
front end, a callable interface, catal ogue managenment, query optim zation

and rel ational operations such as join, select, and project. Rdb supplies a
rel ational interface to the database.

2 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

The DBMS product al so provi des | anguage preprocessors, an interactive query
front end, and other software necessary to define, create, and manage data
in sinple or conplex databases. In contrast to Rdb, DBMS provi des a CODASYL
interface to the database.

Figure 1 shows the relationship of the Rdb and DBMS software products to
t he KODA dat abase ker nel

3 Porting Policies

Initially, we devel oped policies to guide our port to the Al pha AXP
platform These policies, which applied to the KODA, Rdb, and DBMS teans,
were designed to sinplify the port and to ease |ong-term nai nt enance
requi renents.

Common Sour ce Base

Qur nost inportant decision was to have a common source code base. That

is, we wanted to have one set of source code that could be conpiled and

run on either a VAX or an Al pha AXP system At the tinme we began our port,
the OpenVMS group was the only other software group that had started their
port, and they had chosen to have two distinct code bases. (The OpenVMS
AXP porting schedule dictated the choice.) So with respect to code base,
the path we chose was untested. We al so decided to maintain comon comuand
procedures to conpile, build, and |link, and conmon regression tests between
t he VAX and Al pha AXP systens.

A primary reason for our code base decision was that we did not have the
resources to nanage two different code bases. Also, although two divergent
code sources would have allowed for a stable code base with which to begin
the Al pha AXP port, the group strongly wanted to avoid having to nmerge

the two code bases at a future date. Consequently, since our prelimnmnary

i nvestigation indicated that a single code base was feasible and that

we coul d hide nmost of the platform dependenci es through the superb nacro
capability of the BLISS | anguage, we proceeded with the comopn source code
i mpl ementation. The single code base allowed us to build and rel ease Al pha
AXP and VAX versions of our products at the sane tine.

Concurrent Rel eases

Qur release schedul e conplicated the process of adhering to the single code
base policy. To neet the schedule, we had to overlap sone of the Al pha AXP
port with our current VAX releases. That is, the scenario we foll owed was
NOT: work on a VAX rel ease; conplete all necessary code changes; stabilize
the rel ease; and then create a newer set of sources for the Al pha AXP port.
Rat her, for the beginning portion of the Al pha AXP port, we also had to
change source code destined for a VAX rel ease. Thus, if a nodule had to be

changed for the earlier VAX rel ease and the same nodul e had al ready been
ported for the Al pha AXP rel ease, the engi neer had to propagate the code
change to the Al pha AXP source code.

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 3

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

To minimze the effect of double code changes, we first worked on those
nodul es for the Al pha AXP rel ease that were reasonably stable in the
current VAX code stream For exanple, the BLISS REQU RE files that we use
for data definitions were reasonably stable for the VAX rel ease by the
time the Al pha AXP port began. The nodul es that did not change for the VAX
rel ease were al so good candi dates for hel ping us to avoid nmeki ng doubl e
code changes. Wen we finally began to port the bulk of the nodul es, they
were nostly stable and, as a result, only bug fixes for the VAX rel ease
required that we nanually nmodify the same nodul e for the Al pha AXP rel ease.

Furthernore, once we began work on the Al pha AXP rel ease, we needed the
capability of being able to conpile, link, and test on both the Al pha AXP
and VAX platfornms. So we had to nodify our devel opnment environment to all ow
us to identify the code change session as either an Al pha AXP or a VAX
sessi on.

No New Functionality

The Al pha AXP rel ease of the database managenent system product set
contains no new functionality. On the first pass, we decided to port

t he VAX code without designing any new algorithns. We did clean up sone
code for style, convention, and performance, but basically, the Al pha AXP
rel ease remai ns functionally equivalent to the | atest VAX rel ease.

Correct and Fast Code Execution

We did not prioritize our effort to first, be correct, and second, be
fast. We decided that we nust be correct and fast on certain key issues.
For exanple, on VAX systens, our argunent-passing nechanismutilized

the argunent pointer (AP). To minim ze code changes, we could have used
the ARGPTR construct in the BLISS cross conpiler. However, ARGPTR is

i nefficient and, therefore, not appropriate for our needs. Consequently,
we ensured that our new argunent-passing design was efficient, even though
doi ng so was tine-consumni ng

M nim zing Platformspecific Mdules

Code conditionalization, i.e., producing separate code for the VAX and

the Al pha AXP platforms, requires various |levels of code duplication

For exanple, the process may require the duplication of an entire nodul e,
routines within a nodule, or certain lines of code within a routine. To

m nimze the amount of code duplicated, we conditionalized on the snall est
code segnment possible, using a sensible approach. For exanple, when forced
into using conditional code, we avoided duplicating nodul es by choosing

to keep within a single nodule. ldeally, we conditionalized just a few
lines. Wierever possible, BLISS macros were nodified to hide the code
condi tionalization.

4 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

Rdb 1s Rdb

We want ed our dat abase nanagenent products to "look and feel" the same on
an Al pha AXP system as they did on a VAX system So, to paraphrase from
the OpenVMS operating systemmxim we wanted Rdb to be Rdb! That is, the
ported Rdb should have the same utilities, the same data structures, the
same data definition capabilities, the sane data mani pul ati on constructs,
etc., as the DEC Rdb for OpenVMS VAX product. Incorporated in this desire
for saneness was the fundanmental point that we were not going to change the
on-di sk structures. DBMS was ported with the sane goal in mnd.

No Changes to On-di sk Structures

The KODA kernel stores records on database pages. Unfortunately, the

dat abase page is not naturally aligned; page header fields and fields
within the records are not aligned. Although aligning these fields would
boost performance, to realign all the structures on the database page woul d
require the database to be unl oaded and then rel oaded. Current custoners
cannot afford the downtine needed to performthe conversion, so we decided
to maintain the sane page/record structure. Furthernore, by nmintaining

the sane on-disk structure for the VAX and Al pha AXP dat abases, we do not
preclude future concurrent access to the database in a m xed-architecture
VMScl uster. Thus, our present design does not require an unl oad/rel oad
operation, since performng that action would be too nuch of an inpedi nent
to migrating to the Al pha AXP platform However, we do plan to investigate
the potential performance boost from aligned pages/records and, if the gain
is substantial, to offer some alignment solution. Note that this section
refers only to data structures tied to on-disk structures. W did align al
in-menory structures, and we el aborate on this topic in the next section

4 Porting Details

In this section we describe a general set of issues and solutions that
applied to all the groups involved in porting the database managenent
system software to the Al pha AXP platform W then explain sone of the
nore interesting i ssues and sol utions pertaining to each group

Common | ssues

A collection of general porting issues applied to the Rdb, DBMS, and KODA
groups. For example, all groups needed the capability to conditionalize
code in a nmodule, so that the conpiler on an Al pha AXP system woul d produce
one set of object code, and the conpiler on a VAX system woul d produce

anot her set. Conmon issues were:

o Varianted code

Data alignnment and field resizing

Ar gunent - passi ng mechani sm
BUI LTI N functions
VAX testing

Digital Technica

Jour nal Vol

4

No.

4 Speci al

| ssue 1992 5

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

0 The CALLG nechani sm and AP references
0o VAX MACRO- 32 nodul es
0 Message file support

Vari anted Code. To sinplify conditional code, we added a set of literals,
for exanpl e KOD$K_VAX or KOD$K_ALPHA, that can be used in all our BLISS
nodul es. We could then use these literals to conditionalize code. The code
exanple shown in Figure 2 illustrates the conditionalizing of the PROBE

i nstruction. The PROBE instruction checks the read/wite access of a nenory
| ocation. On Al pha AXP systenms, the instruction is quite different from
the corresponding instruction on VAX systens. However, BLISS easily handl es
this difference in a macro, which allows us to change the nane and the
order of the arguments, pass argunments by val ue instead of reference, and
use an offset instead of a |l ength. By devel oping such a nmacro, the actua
source code did not have to change.

Data Alignment and Field Resizing. On the first pass, we imediately

nodi fied all in-nmenory data structures so that they were naturally aligned.
This step avoided incurring a significant performnce penalty on the Al pha
AXP platform 1In addition, since no single Al pha AXP instructions exist
that could be used to easily mani pul ate bytes or words, many of our in-
menory byte (8-bit) and word (16-bit) fields were changed to | ongwords (32
bits) to reduce the object code size and inprove perfornmance.

Once we aligned the in-nmenory data structures, two groups of data
structures renmi ned unaligned: those tied to the database root file, which
records database paraneters such as associated files and database settings,
and the database pages that actually contain the data records. Since the
dat abase root file is relatively small (i.e., less than 100 bl ocks in
size), it was aligned also. Thus, the root file is automatically re-created
in a conversion that occurs when upgradi ng a database product to support
both the Al pha AXP and VAX architectures. Since this conversion invariably
t akes pl ace when converting to a newer version of either the Rdb or the
DBMS product, the additional realignnent of the root is a mnor additiona
expense.

Thus far, we have not pursued any potential nodifications of the page data
structures, such as aligning themonce they are fetched into nmenory. Note
that these structures do not generate unaligned faults. Instead, they force
the conpiler to generate a few additional instructions to handle the odd

al i gnnent .

Argunent - passi ng Mechani sm The VAX and Al pha AXP argunent - passi ng
mechani snms are entirely different. Rather than using the standard BLISS
mechani sm the existing code depended strongly on the VAX argument - passi ng

mechani sms by using BLISS macros to reference argunents fromthe AP.

Thi s approach was not possible on Al pha AXP systenms due to |ack of an

AP register. (You could force the AP to be generated, but that process
woul d be sl ow and woul d waste nenory.) Therefore, we changed our procedure
headi ngs to declare a generic formal paranmeter list (e.g., Pl through PN)

6 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

for both the Al pha AXP and the VAX systens and then devel oped anot her

set of BLISS nmacros that allowed us to bind to the argunments based on

the generated formal paranmeter list. Since this process involved changing
every routine declaration, we devel oped a text-processing tool that would
automatically change the routine headi ngs and thereby avoid the expensive
and error-prone task of manually changi ng each routine.

BUI LTI N Functions. Together, the KODA, Rdb, and DBMS code uses npost of

the BLISS BU LTIN functions. This fact presented a problemfor the team
porting the software to the Al pha AXP platform Sonme VAX BU LTINs were

not supported, sone behaved differently, and sonme were elimnated as

BUI LTI Ns but ermul ated by Starlet, an OpenVMS support |ibrary. Again, we
used BLISS macros to solve the problem Essentially, our macros categorized
the BU LTINs and then perfornmed the appropriate expansi on, based on the
category. For exanple, the PROBE BUILTIN differed markedly between the VAX
and Al pha AXP i npl ementations, as indicated by Figure 2.

VAX Testing. Another general problemthat we had to guard agai nst was the
possibility that the Al pha AXP code changes would introduce bugs into the
VAX versions of the products. Consequently, we adopted a policy whereby

all Al pha AXP changes had to be tested on a VAX system This policy ensured
that we nmaintained a steady pattern of correct VAX behavior. Also, since
the VAX environnment was nore stable than the Al pha AXP environnent, testing
on a VAX system hel ped trenendously in identifying and fixing bugs rel ated
to the port.

The CALLG Mechani sm and AP References. The Al pha AXP pl atform does not
directly support CALLG a VAX procedure calling nmechanism and references
to the AP. The CALLG nmechani sm and AP references are slow since they are
simul ated and autonmatically allocate stack space to accommodate the | argest
possi bl e argunent list (i.e., 255). In situations where performance was
not critical, for exanple, in an error handler, we replaced CALLG by a
standard routine call on both the VAX and the Al pha AXP software versions.
When performance was an i ssue, we used conditional code to retain the
CALLG nmechani sm for the VAX code and to use a standard routine call in

the Al pha AXP code. In instances where the CALLG mechanismis used to pass
the argunent list to the next routine, we constructed an argunment vector
and replaced CALLG by a special call linkage. The new nechani sm passed the
pointer to the argunent vector by neans of a single paranmeter or a gl oba
regi ster. This solution guaranteed good performance on both VAX and Al pha
AXP systenms yet avoi ded any conditionalizing of the code.

VAX MACRO 32 Modul es. For a variety of reasons, we used VAX MACRO 32

to code sone routines in the Rdb, DBMS, and KODA software. For exanple,
basi ¢ operations such as record conpression, record expansion, and buffer
initialization are performed through calls to VAX MACRO 32 routines that
are heavily optimzed for efficient operation. Sone routines are coded in

VAX MACRO- 32 for ease of character nmanipul ation. Al so, we used VAX MACRO
32 to code machine instructions that were not available through a BLISS
BUI LTI N functi on.

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 7

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

We adopted various solutions for these VAX MACRO 32 routines. For those
routi nes where performance was not an issue and BLISS generated acceptabl e
code, we converted to BLISS code. For routines where perfornmance was
absolutely critical, we rewrote the routine in Al pha AXP MACRO 64 to
utilize the additional registers. Finally, in sone cases where we could
not rewite the routine in BLISS code and did not have the resources to
convert to MACRO 64 code, we enployed the Al pha MACRO cross conpil er

Message File Support. Due to the structure of the database products, as
shown in Figure 1, each conponent has separate nessage files. Both Rdb
and DBMS have a nessage file that is separate fromthe KODA nessage file.
Furthernore, the Rdb and DBMS software share the KODA nessage file.

The nessage files are nerged during the build cycle, so that custoners are
not required to be aware of the nodul ar | ayout of the code. As a result,
KODA nessages, when appended to Rdb's nessage file, print as Rdb nessages
(e.g., RDMS-F-nmsgcode, nessage text). However, the Rdb source code stil
references the KODA nmessage codes with the KOD$_ nessage prefix.

Prior to the introduction of the Al pha AXP architecture, the KODA nessages
were defined with .LI TERAL declarations in the nessage files. Since we
occasionally link images with nultiple nmessage files, we wote a program
that would read an .OBJ file and wite a new .0OBJ file without witing

the KODA literal declarations. This process would no | onger work since

Al pha AXP object files have a different format than VAX object files. As a
result, we changed the nechanismto define the KOD$_ synbolic values to be
conpatible with both the VAX and Al pha AXP architectures.

First, we renmoved all .LITERAL declarations fromthe KODA nessage file. As
a result, all KODA nmessages were defined strictly as RDVMS or DBMS nessages.
Then, after passing the nmessage source file through the nessage conpiler to
get the nessage object file, we invoked the ANALYZE/ OBJECT facility to get
a listing of the message synbol codes and val ues for each nessage. Finally,
we wote a small utility to read the ANALYZE/ OBJECT out put and generate a
BLISS .B32 file, which is shown in Figure 3.

This BLISS program when conpiled and included in an executabl e imge,
defines the appropriate KOD$_ nessage codes and their associated val ues.
This procedure is used on both the OpenVMs VAX and the OpenVMS AXP
operating systenms to generate the nmessage files. Furthernore, since this
group no longer wites prograns that read object code, the resulting nmethod
is easier to maintain.

The foll owing three sections discuss sone problens encountered by each of
the porting teans.

8 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

Porting the KODA Dat abase Kerne

Anmong the issues that the KODA group dealt with were those related to
cal ling mechani sns, kernel -nmode rundown handl ers, and a bugcheck dunp
mechani sm

Stack-switching/Stall Mechanism The KODA dat abase kernel perforns its
own rmultithreading activities. A single process can be actively attached
to multiple databases in the context of a single instantiation of the
software. For exanple, in the DBMS interactive query (DBQ facility, the
user can performthe followi ng operation

Thi s exanpl e has the user attached to two different databases, DBl and
DB2. To i ssue queries against either database, the user enters the SET
STREAM conmand. I n response, KODA establishes the correct data structures
and stream context for this database session. This process involves
switching data structures and stack context. Consequently, KODA nanages
its own stack for its executive node code and data structures. This stack-
switching nechanismis conplex, and this code is intimately tied to the
VAX procedure calling nechanism For exanple, whenever a query nust stal
(e.g., while waiting for a |lock request), KODA saves the current executive
node context and then switches back through the stream code out to user
node. This action allows the process to receive user-node ASTs. This
mechani sm essentially saves a call frane so that after the user-node stal
has conpl eted, KODA can set up the appropriate stack and return to the
calling routine by means of the saved call frane.

The calling/return mechanismis entirely different for the VAX and Al pha
AXP architectures. On Al pha AXP systens, for each routine, the conpiler
generates prol ogue code and epil ogue code to nmanage the routine calling
mechani sm Accordingly, the KODA stack mechanismhad to rely on this new
mechani sm In addition, for this | evel of support, the routine that was
coded in BLISS for the VAX platformhad to be coded in MACRO 64 on the
Al pha AXP platform

Ker nel - nbnde Rundown Handl ers. Anot her exanple of KODA' s close tie to
OpenVMS behavi or involved the use of KODA' s kernel -node rundown handl er
On VAX systenms, in the event of an abnormal failure, we nust clean up
certain data structures and rel ease resources such as | ocks or channels.
Furthernore, database recovery must start before the image rundown is
conpl eted, so that surviving processes cannot acquire |ocks on resources
bef ore the dat abases are recovered.

We acconplish this image cleanup through the use of a user-defined system
service (i.e., a system service not defined by the OpenVMs systen), which
acts as a kernel -nmode rundown handler. In addition to rel easing database
resources, the handler also cleaned up OpenVMS data structures such as

t he pendi ng AST queue. These OpenVMS data structures changed significantly
for the Al pha AXP architecture. For exanple, an Al pha AXP system has five

pendi ng AST queues instead of one. In addition, this handler routine would
acquire the OpenVMS schedul er spinlock and perform "poor man's | ockdown, "

which effectively pages the entire routine into nenory (since the code

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 9

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

cannot incur a page fault at elevated interrupt priority level, [IPL).

For Al pha AXP, code and data cannot be located in the same PSECT, so this
trick was not possible. Instead, we used the $LKWSET nmacro to | ock pages in
menory and then to clean up the OpenVMS data structures.

After we conpleted and tested the code, the database and OpenVMS

engi neering teans decided that such intricacy was needl essly conpl ex, and
that the OpenVMs AXP software could clean up the data structures based

on its image control block and related structures. This exanple shows how
the OpenVMS AXP system offers different functionality than the OpenVMS
VAX system i.e., the port offered the opportunity to clean up existing
mechani sns.

Bugcheck Dunp Mechani sm Conpl ex, sophisticated software products are by
nature difficult to debug. Most of these products utilize a data structure
dunpi ng mechani sm whenever an internal software or hardware error is
encountered. KODA has a nechanismcalled a bugcheck dunp that perforns

this service. When an unexpected exception is generated, the bugcheck dunp
code prints all relevant data structures into a file. In addition, the dunp
i ncludes a stack dunp. On VAX systens, the bugcheck dunmp traces back down
the stack using the saved call frames and prints out all the fields in each
call frame, the routine nane, and the argunents passed.

In particular, the nethod for printing the synmbolic nane of the routines
is especially clever. After linking an inage, we utilize a programthat
scans the synbol table (.STB file) produced by the linker. Then the program
creates its own object file, which includes a relative offset of all the
routines and their synbolic nanes. Finally, the imge is relinked, and
this new object file is included into the image in a particul ar PSECT.
When traci ng back down the call franes, the bugcheck dunp al so checks the
special PSECT to locate and print the correct routine nane. This dunp is
an invaluable tool in determ ning the causes of unexpected errors. Figure
4 includes two routine calls froma stack trace, indicated by the |ines of
code that begin with "Saved PC."

Al pha AXP systens have no equivalent to the VAX call frames, so it is
i mpossible to use the call franme mechanismto trace down through the
stack. As nentioned previously, Al pha AXP routines utilize prol ogue and
epi | ogue code for returning fromroutine calls. Procedure descriptors
contain informati on such as entry address and register save information.

On Al pha AXP systens, another Digital group supplied a set of routines that
allows tracing the call sequence. This set provided the basic capability to
print the routine calling sequence that led to an abnormal exception. In
addition, the Al pha AXP |inker produced a synmbol table file. However, we
decided to sinplify our bugcheck mechani sm Although we still search the
synmbol table file for all routine addresses, rather than create an Al pha

AXP object file, we create a VAX MACRO 32 file that includes the routine
nanme and address/offset. Then, we sinply use the Al pha MACRO cross conpiler
to generate the Al pha AXP object, which gets linked into the inage on the
second pass. In fact, we changed our VAX bugcheck routine to produce a

10 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

MACRO- 32 file with routine name and offsets. This process is sinpler than
directly creating an object file, as we did previously.

Even though the routines provided this call trace-back capability, we were
m ssing the argunents passed to the routines, perhaps the nost inportant
part of the stack trace. The VAX mechani sm captured this data, because very
often a bugcheck results fromone routine passing an inproper argunent to
anot her routine. The Al pha AXP system does not provide a way to capture
this information, because the routine calling sequence reuses registers R16
through R21 for passing argunents.

Porting Rdb

Some i ssues handl ed by the Rdb porting group were associated with the
di spat ch code, Al pha AXP code generation, Rdb preconpilers, and Rdb system
rel ati ons.

Di spatch Code. The dispatch code is the topnost |ayer of the Rdb software
and is called directly by the user application by neans of relational cal
interface (RCl) calls.[2] The main function of dispatch code is to direct
the user request to the correct target Rdb executive (local or renmote) for
processi ng. On VAX systens, the dispatch code passes the user argunments to
the Rdb software using the CALLG |inkage.[3] On Al pha AXP systens, CALLG
linkage is very inefficient. Therefore, the dispatch code was changed to
build a user argunent vector in the sane style as the VAX argunent |ist,
and the pointer to the argunent vector was passed as a single paraneter.
The code in Rdb was changed to bind to the user argunments using the offset
fromthe pointer to the argument vector.

Using two different calling mechanisns in the dispatch to pass user
argunments was a careful design. On VAX systens, the existing CALLG
mechani sm was retained to ensure backward conpatibility between different
versions of the Rdb dispatch, Rdb | ayered products, and gateways. A new

cal ling mechani sm was used on Al pha AXP systens to ensure good performance,
since every user request to the Rdb executive goes through the dispatch

Code Generator. Rdb uses conpiled BLISS code and generated machi ne code

to execute user requests. During request conpilation, Rdb generates highly
efficient routines using the target machi ne instructions. These routines
perform basic data operations including data conversion, data novenent

bet ween buffers, aggregation, and expression eval uation.

The design of the Rdb code generator to produce Al pha AXP nachi ne code
was undoubt edly the npost conplex porting task. Use of a nmechani sm ot her

t han code generation woul d have reduced the porting effort. However, at
the tinme we began porting Rdb, it was not clear if an alternate nechanism
woul d guarantee an acceptable |l evel of performance. Good performnce was

considered critical to the success of Rdb on Al pha AXP systems. Therefore,
we decided to add functionality to the Rdb code generator to produce Al pha
AXP code. To generate efficient Al pha AXP code sequences, we observed

speci fic guidelines.[4]

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 11

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

On Al pha AXP systens, code that references data itens with increasing
menory addresses executes nore efficiently. Therefore, the algorithm was
changed to first order the data itenms by increasing nenory addresses and
then generate code to process the data.

In Rdb, each data itemhas a null bit that indicates whether or not the
value of the data itemis known. As shown in Figure 5, to conserve space,
the null bits of different data itens are stored together like a bit vector
within a record. Loading/storing a null bit is an expensive operation on

Al pha AXP systens.[4] Therefore, the algorithmwas nodified to fetch a
batch of null bits into a register. Wien all null bits in the register are
processed, the batch is witten and the next batch of null bits is fetched.
Thi s approach reduced the nunmber of |oad and store instructions and nade
the code sequence nuch nore efficient.

On Al pha AXP systens, the nachine code routines generated by Rdb use

four different addressing nodes to access data items: absol ute address,
base register plus offset, integer register content, and fl oating-point
regi ster content. Each of the Al pha AXP registers R12 through R15 is used
as a base register. Thus, any data stored within 256K (4 x 64K) of nmenory
space can be accessed efficiently. To maxim ze data access efficiency and
cachi ng, changes were made in the code generator to allocate data densely.
To i nprove performance further, data itens were allocated at quadword or

| ongword al i gned addresses.

An Al pha AXP code sequence executes nmore efficiently when instructions

can be nulti-issued and executed in parallel. This can be achi eved by
reordering the sequence of instructions while naintaining any chronol ogi ca
dependency between instructions. To take advantage of this Al pha AXP
feature, BLISS nmacros were devel oped to reorder and interleave the
instructions in a generated code sequence.

On Al pha AXP systens, backward branches in the code sl ow down the execution
because of instruction streaminvalidation.[4] Changes were nmade in the

Rdb code generator to mnimze backward branches. This change at tines

i ncreased the size of the generated code but inproved the code execution

ef ficiency. Further, Bool ean code generation algorithns were nodified

to incorporate branch prediction |logic; code sequences with a smaller
probability of execution were branched out of the main code stream This
techni que maxi m zed the effect of instruction stream caching.

Rdb Preconpilers. An Rdb preconpil er preprocesses a user application
program that includes Rdb statements and repl aces these statenents by
standard RCl calls to the Rdb software.[2] The Rdb statenents enbedded

in the applications can be one of three types: structured query | anguage
(SQ), Rdb preprocessors |anguage (RdbPRE), or relational data mani pul ation
| anguage (RDML). There are three different Rdb preconpilers to support

t hese | anguages.

12 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

The SQL preconpiler, an industry-standard | anguage interface to Rdb,

is a strategic Rdb conponent. A long-term goal of this preconpiler is
flexibility in future devel opnments and ease of nmintenance. To neet this
goal, the SQ. preconpiler was redesigned to use the GEM conpiler on Al pha
AXP systenms to preprocess SQ application prograns and produce Al pha AXP
obj ect code.

The RAbPRE preconpiler is a proprietary |anguage interface to Rdb. The

| ong-termgoal is no new functionality and m ni mal mai ntenance. So the nmin
objective was to reduce the effort required to port this conpiler. This was
achieved by retaining the existing design and using the Al pha MACRO cross
conpiler to produce Al pha AXP objects from VAX MACRO 32 files.

The RDML preconpiler is also a proprietary |anguage interface to Rdb.
Unli ke the RJbPRE preconpiler, this conpiler does not produce VAX MACRO 32
files. So porting it was an easy and straightforward task.

Rdb System Rel ati ons. Rdb uses systemrelations to record i nformati on about
the user relations and the database. The systemrel ations are stored on

di sk and | oaded into nmenory on dermand. Since they are frequently referenced
during user request processing, efficient access to data in system
relations is critical for performance. On Al pha AXP systens, accessing

data fromnmenory is efficient if it is located on either a | ongword or a
guadword address boundary.[4] Therefore, changes were made to the in-nmenory
system data structures to align each data field to at |east a | ongword
address boundary. Further, data fields that were a byte or a word were
expanded to a | ongword.

The data in systemrelations was accessed by using RIbPRE statenents
enbedded in Rdb source nodul es. Porting such Rdb nodul es posed a dil emms.
To conpil e these nmodules, first the RAbPRE conpiler had to be ported to the
Al pha AXP platform Vice versa, to port and test the RAbPRE preconpil er

Rdb had to be ported and running on the Al pha AXP platform Moreover,
RAbPRE was no | onger a strategic |anguage interface. Therefore, new BLISS
macros were designed that replaced the enbedded RAbPRE statenents.

Porti ng DBMS

Thi s section discusses sone experiences of the DBMS porting group, nanely
those related to the Database Control System (DBCS) interface, the H FLOAT
data type support, and the use of the Al pha User-node Debuggi ng Environnment
(AUD) .

DBMB32, the Primary Interface to the DBMS. The DBCS for the DBMS software
uses a single subroutine (DBMB32) as its primary entry point. This entry
point is used by the DBMS preconpilers (FDM., for FORTRAN, and DM., for
ot her | anguages except COBOL), as well as other |ayered products, such as

COBOL and DATATRI EVE.

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 13

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

After receiving control, DBMb32 perforns sonme processing and then, using
the CALLG nechani sm passes the entire argunent |list to | ower-I|eve

routines for further processing. These |ower-level routines, in turn, often
pass on the argunment |ist, sonetinmes as deep as five or six |evels.

Because we found CALLG to be inefficient, we decided to change the primary
entry point into the DBCS. Rather than passing up to 26 separate argunents,
DBMS creates a vector of |ongwords; each |ongword contains an argunment

that woul d have been passed using a paranmeter. Once this vector is created
(often during the conpil ati on phase for the preconpilers), DBMS32 VEC (the
VECTOR version of DBMb32) is called with a single paraneter: the address of
the argunent list. An exanple is shown in Figure 6.

Layered products using DBMS were advised of the new interface and were
requested to use it as soon as possi ble. However, since the changed
interface was inconpatible with sone existing products, the old interface
was retained. DBMB32_VEC uses the new i nterface, and DBMb32 homes the
argunment list (thus creating the above vector) and then passes that, by
reference, to DBMB32_VEC

Support of H FLOAT Data Types. The H FLOAT data type is fully supported
on the VAX processor, but the Al pha AXP processor has no high-precision
floating-point fornmats. Although facilities exist on Al pha AXP processors
to read an H FLOAT data type, no such facility exists to wite an H FLOAT
data type

As a result, DBMS custoners are advised to elimnate any H FLOAT data in
dat abases before nmoving themto an Al pha AXP system The DBMS Dat abase
Restructure Uility (DRU) can be used to change all H FLOAT data to another
comon fl oating-point format.

In preparation for m xed VAX and Al pha AXP VMscl uster systens, DBMS was
nodi fi ed such that databases with H FLOAT data can still be accessed.
However, a run-tine conversion error occurs if H FLOAT data is accessed
froman Al pha AXP system

Use of AUD. The Al pha User-nmpode Debuggi ng Environnent is a set of
facilities that aids testing and debuggi ng of native Al pha AXP code on
any OpenVMS VAX system AUD all owed as nmuch Al pha AXP user-node code

as possible to be ported inmediately to the Al pha AXP system and to be
substantial ly debugged before Al pha AXP hardware was available. Early in
the DBMS porting effort, we used AUD to verify our port and to ensure that
our code was working correctly.

However, several issues hanpered the success of using AUD in porting the
DBMS sof t war e:

1. DBMS mekes frequent use of signaled exceptions. AUD had difficulty in
handl i ng exceptions that cross the boundary between the Al pha AXP and
VAX systens.

14 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

2. DBMS uses special stack manipul ati on code (stream code) to perform
nmul tithreading functions. AUD woul d becone confused if the stack were to
change unexpectedly.

3. At the time we were using AUD, the DBCS had been ported, but KODA (i.e.
the |l ow 1| evel services used by the DBCS) had not. As a result, many
vari abl es needed to be defined as crossing the boundary between the
Al pha AXP and VAX systens. The setup tinme to define this information was
significant.

4. Since the code was still running on a VAX processor, many VAX
dependenci es were not caught by AUD. In particular, system services
that changed in subtle ways woul d work as before because the operating
systemwas still the OpenVMS system

5. Most of the changes that we rmade in DBMS were not conditional, that is,
t he changes woul d af fect both VAX and Al pha AXP systems. As a result,
we were able to test our code on VAX systens with a fairly high degree
of certainty that our code was correct, barring any operating system or
conpi | er bugs.

We did eventually get an AUD version of DBMS worki ng. However, since we
spent a considerabl e anount of tinme acconplishing this, and we did not
actually find any bugs in our code by using AUD, we deci ded not to use AUD
in further areas of DBMS.

Shortly after using AUD, we received our Al pha Denonstration Unit (ADU)
and coul d test our code on actual Al pha AXP hardware. The only problens we
found, which were nissed during our initial port, were VAX-style argunent
list assunptions. Some of our code assunmed that routine argunments were
contiguous in virtual nenory; on Al pha AXP systens, this is not the case.

5 Concl usi on

To concl ude the paper, we discuss our plans for performance testing and our
reflections on the porting process.

Per f or mance

We have only begun our perfornmance tests. Currently, we are running

the TPC-B perfornmance benchmark. W also plan to test against all TPC
benchmarks (A, B, and C) and ot her benchmarks such as the W sconsin
benchmark. We are trying to mnimze the anpunt of tine spent in PALcode,
decreasing the code path length, reducing the cycles per instruction, and
optim zing internal algorithns.

Pl anned testing will also evaluate the effect of additional data alignment.

As nmentioned earlier, the ease-of-migration issue is paramunt for our
current custoners. Consequently, we have not realigned the database pages
because that action would require too nuch downtine. Neverthel ess, we

do not want to preclude new custonmers, or current custoners who need the
performance boost, fromutilizing a properly aligned database page. To test

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 15

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

the potential performance inprovenent, we plan to create a test database
that is conpletely aligned, in nenory and on di sk, and conpare the TPC
performance agai nst the standard dat abase.

Ref | ecti ons

At the beginning of the paper, we stated that our goal was for Digita

to provide an easy migration path to the Al pha AXP platform for software
products. Although we encountered sone difficulties, we believe our Rdb and
DBMS porting efforts attest to Digital's success in this endeavor.

As one exanpl e of how the experience influenced our approach to porting,
we had to | earn new net hodol ogi es, practices, and system behavi or on the
Al pha AXP machi nes. For instance, when stepping through a particul ar code
sequence with the debugger, we would end up in an infinite loop; if we
just ran the code, the sequence woul d work. Although this behavior was
docunent ed, we encountered the problem several tines before we fully
understood the ranifications and appropriately changed our devel opnent

nmet hods.

Overall, the porting effort had the followi ng positive results:

o0 The port allowed us to clean up our code, even though we tried to avoid
al gorithm changes. Because we had to port and review every |line of code,
we rmanaged to nove the code to a nore consistent coding conventi on.

o0 The port acted as a |learning experience for nost of the engineers. Most
mat ure products contain some code that has not been nodified in years.
The port forced us to review and understand such code sequences. As a
result, we ended up with nore know edgeabl e engi neers.

o0 The port allowed us to transformthe code into a nore portable state.
As we noved away fromtight ties to VAX behavior, we sinplified future
tasks such as noving to the OSF/1 and W ndows NT operating systens.

o Although overl apping current VAX devel opnent with the Al pha AXP port
sl owed down the porting process, the decision to use a commbpn code base
elimnated the future need to integrate two di vergent source codes.

o Surprisingly, the code did not grow appreciably in size or conplexity.
One strength of the Rdb and DBMS software has been the ability to easily
nodi fy the code and to add new functionality. Even after the port, we
find that the products are as mull eable and as easy to nodify as before.

o W found unreported bugs in our VAX products.

Virtually all the groups involved did a masterful job. The programteam and

various Al pha AXP committees anticipated potential issues and ensured that
t he program proceeded snmoothly and predictably. The cross conpilers from
t he | anguage groups worked superbly. The OpenVMs AXP and hardware groups
delivered their products on tine, and when a user logs in to an Al pha AXP
system the OpenVMS AXP systemis not only fanmiliar but faster

16 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Porting Digital's Database Management Products to the Al pha AXP Platform

6 Acknow edgnents

The successful port of the Rdb and DBMS software to the OpenVMS AXP
operating systemwas a result of the contributions nade by many of the
engi neers in the Database Systens Group. The authors sincerely acknow edge
the effort of each engineer in achieving the project goal, that is, to be
able to quickly offer correct versions of Rdb and DBMS on the Al pha AXP
platform Finally, an unsung hero in the conpany-wi de effort was Digital's
VAX Not es conmuni cations facility. VAX Notes functioned as an excell ent
medi um for identifying and sharing problens and sol utions.

7 References

1. T. Leonard, VAX Architecture Reference Manual (Bedford, MA: Digital
Press, Order No. EY-3459E-DP, 1987).

2. DSRI Handbook (Maynard, MA: Digital Equi pment Corporation, Order No.
AA- GV71A-TE, 1986).

3. OpenVMs Calling Standard (Maynard, MA: Digital Equi pnent Corporation,
Order No. AA-PQY2A-TK, 1992).

4. R Sites, ed., Al pha Architecture Reference Manual (Burlington, MA:
Digital Press, Order No. EY-L520E-DP, 1992).

8 Trademarks

The following are trademarks of Digital Equi pnent Corporation:

ACMS, Al pha AXP, CDD, DATATRI EVE, DEC, DEC DBMs for OpenVMS, DEC RALLY, DEC
Rdb for OpenVMs, Digital, OpenVMS, VAX, and VMscl uster.

The following are third-party trademarks:

OSF/1 is a registered trademark of Open Software Foundation, Inc.

W ndows and W ndows NT are trademarks of M crosoft Corporation.

9 Biographies

Jeffrey A. Coffler A principal software engineer in the Database Systens
Engi neering Group, Jeff Coffler led the effort to port DBMS to the Al pha
AXP platform Prior to this, Jeff worked on the DBMS and Rdb backup/restore
facility and on new DBMS features and nmi ntenance. He is currently working

on the project to port Rdb for OpenVMS to operating systens such as W ndows
NT and OSF/ 1. He has also contributed to the RSTS/ E operating system

WPS- PLUS porting, and workfl ow nmanagenent projects. Jeff joined Digita
in 1984 and holds a B.S.C.S. (1983) from California State University at
Nor t hri dge.

Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992 17

Porting Digital's Database Managenment Products to the Al pha AXP Pl atform

Zi a Mbhaned Zi a Mohaned has been a nenber of the Database Systens G oup
since joining Digital in 1989. He works in the area of query optim zation
for the DEC Rdb for OpenVMs products; his contributions involve cost-

based optim zati on of database queries and al gorithns for execution of
optim zed query plans. He has devel oped dynamic OR optinization techniques,
refinement of cost-nodel, and al gorithns for better access plans for

views. Zia holds a B.S. degree in electrical engineering from Bangal ore
University, India, and an MS. degree in conputer science from Texas Tech
Uni versity.

Peter M Spiro Peter Spiro, a consulting software engineer, is currently
the technical director for the Rdb and DBMS software products. Peter's
current focus is database perfornmance for Al pha AXP systens and very | arge
dat abase i ssues. Peter joined Digital in 1985, after receiving MS. degrees
in forest science and conputer science fromthe University of Wsconsin-
Madi son. He has four patents related to database journaling and recovery,
and he has authored two papers for earlier issues of the Digital Technica
Jour nal

18 Digital Technical Journal Vol. 4 No. 4 Special |ssue 1992

Copyright 1992 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

