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1  Abstract

 The DECnet for OpenVMS AXP networking software facilitates the integration
of OpenVMS AXP systems into existing DECnet computing environments.
This new software product supports application migration by providing
the following networking capabilities: support of compatible libraries,
consistent application programming interfaces, and the assurance of a
common semantic operation with the OpenVMS VAX system. The team implemented
a phased porting process and executed the project cooperatively. The effort
resulted in a solid knowledge base with which to approach future porting
undertakings. Using common code where possible and avoiding architecture-
specific code were lessons learned during the project.

The DECnet for OpenVMS AXP networking software product plays an important
role in the integration of OpenVMS AXP systems into existing DECnet
computing environments. The availability of DECnet software on the Alpha
AXP hardware platform facilitates application migration. The networking
capabilities needed to support this migration activity include support
of compatible libraries, consistent application programming interfaces
(APIs), and the assurance of a common semantic operation with the OpenVMS
VAX system. The network features such as network file transfer, remote
file access, remote login, downline load, and local and remote network
management allow the OpenVMS AXP system to participate fully in a DECnet
network.

The purpose of this paper is to describe the process of porting the
DECnet-VAX product to the OpenVMS AXP operating system. The DECnet-VAX
product consists of networking software written in the MACRO-32 and BLISS-
32 programming languages. The software contains privileged system code,
device drivers, and user-mode utilities.

This paper is divided into two major sections. The first section presents
an overview of the project, including discussions about the DECnet features
supported in the OpenVMS AXP operating system, the project schedule, and
the major DECnet for OpenVMS AXP components. The second major section
details the process of porting DECnet-VAX software to the OpenVMS AXP
operating system, including testing and debugging. This section provides
information on nonportable coding practices and identifies specific problem
areas. It concludes with a summary of the lessons learned during the course
of the project.

2  Project Overview

In addition to presenting the DECnet for OpenVMS AXP features, this section



details how we derived a project schedule and gives an overview of the
software components.
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Software Code Base

Prior to the formation of a team to port a DECnet product from VAX to
the Alpha AXP architecture, the DECnet-VAX development group completed
a feasibility study of porting DECnet-VAX Phase IV to the Alpha AXP
architecture. This effort was necessary because the DECnet-VAX software was
not designed with porting in mind. The study concluded that it would take
four engineers twelve months (i.e., 48 person-months) to port DECnet-VAX
to the OpenVMS AXP operating system. After examining the proposal and
investigating the alternatives, we decided that the best approach would be
to start by porting DECnet-VAX V5-4.3, a Digital Network Architecture (DNA)
Phase IV implementation.[1] One of the most important factors in making
this decision was that this software version was in external field test
and was nearly ready for shipment to customers. Another consideration was
that some very important fixes had been made in that release, and we wanted
to offer our customers the highest quality possible in the first version
of DECnet for OpenVMS AXP software. Since that time, we have continued to
improve our DECnet software for the OpenVMS AXP operating system and have
recently incorporated some fixes from DECnet for OpenVMS VAX V5.5-2.
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DECnet for OpenVMS AXP Features

The first release of the DECnet for OpenVMS AXP networking product is
packaged with the OpenVMS AXP operating system. The initial offering
includes the support of DECnet Phase IV protocols running over Ethernet or
fiber distributed data interface (FDDI) local area networks. This release
supports distributed task-to-task communications using the same set of
documented programming interfaces supported in the DECnet-VAX environment.
At this time, DECnet for OpenVMS AXP software does not support wide area
communications devices and host-based routing. Future releases of DECnet
for OpenVMS AXP may include symmetric multiprocessor (SMP) and cluster
alias support.

Project Schedule

The DECnet for OpenVMS AXP project schedule was primarily driven by the
overall OpenVMS AXP operating system product schedule, with the DECnet
component scheduled for delivery in November 1991. The DECnet-VAX porting
project officially began in early January 1991, after the code base was
selected.

Porting Estimates. After analyzing the work required to achieve the port,
we developed general porting guidelines and estimates based on a number
of factors, including the language the software was written in, the amount
of software to port, and the number of software component modules. We then
combined these estimates to determine an overall project schedule. Table 1
presents the guidelines we used for the porting estimates.

We used two methods to estimate the amount of work required to complete
the port. The Module Size Method takes into account the number of lines
of code per software module. The Module Count Method uses the number of
modules per software component to determine the workload. Both methods
take into consideration the programming language used in each module.
Table 2 presents details of the component module count and sizes. We
further categorized the software being ported into three groups: privileged
code, device driver, and user-mode utility. The software type was used to
estimate the amount of time needed for linking. In general, we allocated
more time for privileged code and device drivers.

The estimates were used to derive a first-pass schedule and to determine
resource allocation. A number of other factors affected the final schedule.
A major factor that we could not quickly estimate was the portability of
the software. The software techniques encountered and described in this
paper such as coroutines, up-level stack references, and condition code
usage had a direct impact on the schedule. Also, during the first three
months of the project, significant time was spent learning how to port
code. During this learning period, we developed the skills, knowledge, and



techniques used throughout the remainder of our porting work.

Once we established the estimation metrics, the data was compiled and time
estimates calculated for each component. Tables 3 and 4 show the average
amount of time required to port each DECnet for OpenVMS AXP component.
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Based on these calculations, we estimated that it would take 13 person-
months just to port the DECnet-VAX software. We then used project
management software to plan the schedule. The schedule shown in Table
5 indicated that it would take 48 person-months to meet the OpenVMS AXP
scheduled completion date of November 22, 1991. We made our first network
connection on July 25, 1991, 20 person-months into the project. Although
much work remained, we were well ahead of the November target date.

Since we were ahead of schedule, we assisted in the porting of other
components, including RTPAD, CTDRIVER, RTTDRIVER, and REMACP, all discussed
later in the paper. In addition, we were able to add support for FDDI.

Milestones. The OpenVMS AXP project schedule consisted of a series of
functional internal base levels numbered one to five. In terms of the whole
OpenVMS AXP project schedule, DECnet for OpenVMS AXP was targeted for base
level five. However, it was highly desirable to provide file transfer and
remote login capability over DECnet as early as possible. The project team
worked closely with the OpenVMS AXP group to deliver this support prior to
base level four.
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Common Code

One of the most important decisions that helped us deliver our software
ahead of schedule was building common code for the VAX and Alpha AXP
systems. During the course of porting code, we discovered two advantages
to building common code. The first was having the ability to generate VAX
and Alpha AXP images from a single set of source code. The second was being
able to debug our ported changes in a stable OpenVMS VAX environment. We
accomplished this by rewriting code that required change so that it worked
on both platforms. We made architecture-specific code conditional on the
platform on which it would execute. Our long-term goal is to incorporate
common code into future DECnet for OpenVMS products.

DECnet for OpenVMS AXP Components

This section describes the major DECnet for OpenVMS AXP components
and lists the porting issues relevant to each.[2] Figure 1 shows the
interconnection of the various components of the DECnet for OpenVMS AXP
software. Detailed information for each porting issue is further discussed
in this paper under the Porting Issues heading.

NETDRIVER. NETDRIVER is a pseudo device driver, i.e., a device driver that
does not directly control any hardware devices. It implements the routing,
end communication, and session control layers of the Phase IV version of
DNA.[1]

The queue I/O request ($QIO) system service is the interface into the
session control layer. The NETDRIVER routing layer communicates with
other device drivers that implement the data link layer of DNA. NETDRIVER
communicates with NETACP (another component discussed later in this
section) to perform network management functions, to report state and
network topology changes, and to perform operations that require process
context.

NETDRIVER is written in MACRO-32 code and presented us with many porting
issues, including device driver changes, coroutines, memory management
changes, page size dependencies, atomicity and granularity problems,
OpenVMS AXP operating system data structure changes, unaligned references,
and up-level stack references.

MOM. The maintenance operations module (MOM) image processes service
operations defined by the maintenance operation protocol (MOP). One such
service operation is downline loading remote systems. MOM uses NDDRIVER
(described in the next subsection) to communicate with the remote system
over a DECnet circuit. MOM communicates with NETACP to gather information
about nodes requesting to be downline loaded. NETACP creates a process
running the MOM image when a request for a service operation is received on



a circuit enabled to perform service operations.

MOM is written primarily in BLISS-32 code. Porting issues included removing
dependencies on the format of a VAX argument list, condition handling
changes, and Alpha AXP image header changes.
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NDDRIVER. The pseudo device driver NDDRIVER implements an interface that
allows MOM to use a DECnet circuit to perform service operations using
DNA MOP. The MOM image uses the $QIO system service interface to send MOP
messages to and receive MOP messages from NDDRIVER, which then communicates
with the data link device drivers to transmit and receive these messages.
NDDRIVER communicates with NETACP to perform tasks that require process
context and to receive notification of state changes to circuits enabled
for service operations.

NDDRIVER is written in MACRO-32 code. Porting issues included changes to
device drivers, memory management, and OpenVMS AXP operating system data
structures, as well as page size dependencies.

CTDRIVER, RTTDRIVER, and REMACP. CTDRIVER is a pseudo device driver for
remote terminals using the DNA command terminal (CTERM) protocol. CTDRIVER
and RTTDRIVER perform similar functions with the exception that RTTDRIVER
is used for interoperability with older implementations of remote terminal
support. REMACP is an ancillary control process (ACP) that receives
incoming requests for remote terminal support. After REMACP establishes a
connection with the remote node, either CTDRIVER or RTTDRIVER communicates
directly with NETDRIVER to send and receive remote terminal protocol
messages.

CTDRIVER, RTTDRIVER, and REMACP are written in MACRO-32 code and presented
the following porting issues: device driver changes, unaligned references,
OpenVMS AXP operating system data structure changes, and for REMACP,
changes in the interface with CTDRIVER.

NETACP. NETACP runs as an ACP that assists NETDRIVER in performing
network operations that require process context. Examples include creating
processes for incoming logical links and assigning channels to data link
devices. NETDRIVER and NETACP also work together to maintain information
about the state of the network. Another major function performed by NETACP
is the management of the network configuration parameters residing in
virtual memory.

NETACP is written in MACRO-32 code. Porting issues included coroutines,
usage of processor status longword (PSL) condition codes, memory management
changes, page size dependencies, atomicity and granularity problems,
OpenVMS AXP operating system data structure changes, and unaligned
references. In addition, the use of "poor programmer's lockdown," a method
of locking pages into a working set, required modification.

NETSERVER. The NETSERVER image is run by server processes created to handle
incoming logical link requests. NETSERVER invokes the image or command
procedure associated with the network object specified by the incoming
logical link. To avoid the overhead of process creation, a server process



can be reused after the logical link it was servicing is terminated. Idle
server processes register themselves with NETACP so that they may be reused
for another logical link.
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NETSERVER is written in BLISS-32 code. The only porting change necessary
was the addition of the BLISS VOLATILE attribute to several data
declarations.

NCP. The network control program (NCP) is the user interface for network
management. NCP communicates with other network management components using
the network information and control exchange (NICE) protocol. NCP can be
used to manage the local node as well as remote nodes. When managing the
local node, NCP exchanges NICE protocol messages with the NMLSHR shareable
image. For remote management, NCP creates a logical link to the network
management listener (NML) object on the remote node and exchanges NICE
protocol messages over this logical link.

NCP consists primarily of BLISS-32 modules. The major porting issue
associated with NCP was changing the code to use LIB$TABLE_PARSE rather
than LIB$TPARSE.

NMLSHR. NMLSHR is a shareable image that processes NICE protocol network
management messages on an OpenVMS system. NMLSHR decodes NICE messages
received as input and performs the requested management operation. NMLSHR
builds NICE protocol messages as a response to requests asking for network
management information to be returned. NCP and NML both link with the
NMLSHR image to call the routines that process the NICE protocol messages.

NMLSHR is written in BLISS-32 and MACRO-32. Porting issues included
dependencies on the format of a VAX argument list and changes required
to link shareable images.

NML. The network management listener (NML) image is run when a remote
node requests a connection to the NML object to perform remote network
management operations. NML sends NICE protocol messages to and receives
them from the remote node. NML passes NICE protocol messages received from
the remote node to NMLSHR for decoding and receives messages from NMLSHR to
send to the remote node.

NML is written in BLISS-32 code. The only porting change made to NML code
was to add the BLISS VOLATILE attribute to one data declaration.

EVL. The event logger (EVL) receives event messages from the various DNA
layers. EVL can also act as an event sink for messages generated at a
remote node. EVL is started by NETACP and declares itself as a network
object so that remote nodes can connect to the EVL object and send event
messages. EVL can log events to a file in binary form or format the
messages into something readable by a network manager.

EVL is written in BLISS-32 code. Porting issues included adding the BLISS
VOLATILE attribute to some data structure definitions and aligning data



structure fields on natural boundaries.
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DTS and DTR. The DECnet test sender (DTS) and the DECnet test receiver
(DTR) are cooperating programs that can be used to test the network
connection between two nodes. DTS runs on the local node and communicates
with DTR on the remote node. DTS and DTR can be used to test the throughput
and reliability of a line over which DECnet is running.

DTS and DTR are written primarily in MACRO-32 code. The two major porting
issues associated with DTS and DTR were changing the code to use LIB$TABLE_
PARSE rather than LIB$TPARSE and adding some BLISS-32 code to support
floating-point operations.

RTPAD. RTPAD provides the connection between a local terminal and the
remote terminal services of a remote node. RTPAD is invoked as the result
of executing the SET HOST command of the Digital Command Language (DCL).
RTPAD communicates with REMACP and CTDRIVER or RTTDRIVER on the remote
system to provide remote terminal support. RTPAD accepts input from the
local terminal (which could be another remote terminal) and sends this
data over the network to the remote node. Output from the remote node is
received by RTPAD and displayed on the local terminal.

RTPAD is written in MACRO-32 code. Porting issues included unaligned
references and aligning data structure fields on natural boundaries.

NICONFIG. NICONFIG is the Ethernet configurator that listens to the MOP
system identification messages broadcast on Ethernet circuits and maintains
a database of configuration information for all systems heard. NCP is used
to manage and display the information maintained by NICONFIG. NICONFIG runs
as a process created by NMLSHR and communicates with NMLSHR over a DECnet
logical link using the NICE protocol.

NICONFIG is written in BLISS-32 code. The only porting change was to remove
the module switch LANGUAGE.

HLD. The host loader (HLD) communicates with the DECnet-RSX satellite
loader to downline load tasks to an RSX-11S node. HLD is written in MACRO-
32 code. The only porting change was to update the structure definition
language used to create one data structure.

MIRROR. The loopback mirror participates in network services protocol
and routing layer loopback testing. MIRROR is written in MACRO-32 code.
No porting changes were required though changes were made to the link
procedure.

3  DECnet-VAX Port to the OpenVMS AXP Operating System

This section discusses the development environment, process, and issues
related to porting the DECnet-VAX product to the OpenVMS operating system.
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DECnet for OpenVMS AXP Development Environment

DECnet for OpenVMS AXP is built with and integrated into the OpenVMS AXP
operating system. Many changes were being made to system data structures
that directly affected the DECnet software. These changes required the
DECnet for OpenVMS AXP software to be built with and tested on many interim
operating system base levels before the combined OpenVMS AXP operating
system and DECnet for OpenVMS AXP kit was shipped for layered product
development.

Because the development tools changed throughout the project, we used the
same tools to port the DECnet-VAX software as were used to develop the
operating system base levels. When we copied portions of an OpenVMS AXP
base level, we also copied the tool directories associated with the system
build. We used cross compilers for MACRO-32 and BLISS-32, which allowed
us to develop Alpha AXP software on an OpenVMS VAX system.[3] In addition,
we used the OpenVMS AXP linker, librarian, and system dump analyzer (SDA)
cross tools on the VAX system.[4,5] We also used the OpenVMS AXP debugging
tools Delta and XDelta on the Alpha AXP prototype hardware.[6]

Initial DECnet for OpenVMS AXP testing was accomplished on a VAX system.
Such testing was possible because we designed a majority of the DECnet for
OpenVMS AXP code to run on both VAX and Alpha AXP hardware platforms.

The Alpha AXP prototype system used for testing utilized a shared disk
that contained the OpenVMS AXP operating system images. The images and
test procedures were copied onto the disk from a VAX system. Each time new
DECnet for OpenVMS AXP images or test procedures had to be added to the
shared disk during a test or debug session, the Alpha AXP test system had
to be stopped, the disk mounted on the VAX system, images copied, the disk
dismounted, and the Alpha AXP system rebooted. Providing file transfer
support by means of the DECnet for OpenVMS AXP software early in the Alpha
AXP project provided increased productivity for anyone testing on Alpha AXP
prototype systems.

Porting Process

The process of porting the DECnet software from the VAX hardware platform
to the Alpha AXP platform consisted of the following steps: code
preparation, compilation, linking, code review, debug, and testing. We
did not start the task of porting DECnet-VAX with a completely clear vision
of the total process. As we progressed and learned more about the tools and
porting process, we improved our porting techniques and, as a result, our
productivity.

Our strategy was to begin by porting the drivers and privileged code.
These components were the most complex; they were written completely in



MACRO-32 code and had the greatest potential for change. We started with
NETDRIVER and NETACP, assigning one engineer to work on each component. As
our porting group grew in number, we began to port, in parallel, the BLISS
modules that comprise NCP, NML, NMLSHR, EVL, and MOM.
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The following is an overview of the process we used to port the DECnet-VAX
software to the Alpha AXP platform. Later sections contain details of
coding practices that had to change.

Code Preparation. Our first task was to create procedures that we could
use early in the porting process to compile single modules of a DECnet for
OpenVMS AXP component. We also ported the component's build procedure to
use the new Alpha AXP cross tools.

Next, we began to prepare the code for initial compilation. MACRO-32 code
must have each entry point identified prior to the initial compile. Entry
points are identified by a compiler directive such as .JSB_ENTRY and .CALL_
ENTRY. Each directive accepts optional parameters that identify register
usage. However, this information is not required at this point in the
porting process. The Alpha AXP MACRO-32 compiler will provide register
usage hints during the compilation, if so directed. As the team became
familiar with the porting process, we were able to combine these steps and
include the register usage information when declaring entry points. Also,
as our experience increased, we were able to make changes to nonportable
coding practices prior to the initial compile of a module.

Our experience proved, as we expected, that BLISS code is far easier to
port than MACRO-32 code. For the DECnet-VAX components containing BLISS
modules, we began the port by running the component's build procedure.
BLISS routines do not require that entry points be identified. The
compiler can process each module, identify errors, and provide warning
and informational messages.

Compile Process. After we completed the initial code preparation and
created customized build procedures, the real iterative process of porting
began. At this point we compiled one or more modules, made additional
modifications based on the compilation results, and recompiled until we
were reasonably satisfied that all the errors were fixed.

The Alpha AXP cross compilers, the MACRO-32 compiler in particular, have
the capability of providing a vast array of informational and warning
messages. When compiling a module, we always requested all informational
messages. The information assisted us in identifying the input and output
registers as well as the registers that the compiler automatically
preserved. Using this information, we verified the register usage in
each routine and added the information to the entry-point directives.
Other informational and warning messages directed us to coding techniques
that required change. By working with one module at a time, we avoided
making repetitive porting errors in multiple modules prior to our complete
understanding of how to solve the more complex porting problems.

Some informational messages caution that certain coding techniques such



as data alignment should be modified. We observed that attempting to
make changes to align all data structure elements prior to completing
preliminary debug and testing caused many debug problems. Therefore, we
decided to establish a porting policy to change only as much code as was
absolutely necessary prior to the initial debug and test of a DECnet for
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OpenVMS AXP software component. Adhering to this policy required careful
consideration, since some atomicity and granularity problems that are not
resolved/addressed might cause code failures during debug.[3]

NETDRIVER and NETACP contained architecture-specific code, including memory
management, driver tables, and structure definitions, which had to be made
conditional for the OpenVMS AXP and OpenVMS VAX systems. A prefix file was
added to each MACRO-32 module during the Alpha AXP compilation step. This
file contained an Alpha AXP declaration that allowed us to include the
directives required for conditional compilation. To compile the ported code
on a VAX system, it was necessary to provide a VAX declaration and macros
for the various entry-point directives that when expanded contained no
instructions. These were placed in a common library file and conditionally
compiled. The library file is included in each module. Figure 2 is an
example of a library file that contains a VAX declaration and macros.

BLISS architecture-specific code was made conditional using the %if
%bliss(bliss32v) or %if %bliss(bliss32e) constructs for OpenVMS VAX and
OpenVMS AXP, respectively.

After porting all the modules within a component, the component's build
procedure was run to ensure that each module had been ported without error.
This was typically the first attempt to link the component. We also ran the
OpenVMS VAX procedure to ensure that the code would continue to compile and
link on the OpenVMS VAX operating system.

Linking. The process of linking was difficult at times. The DECnet for
OpenVMS AXP software contains drivers, system images, and shareable
images. Each component required changes to the link procedures. We made
these procedures conditional for both the OpenVMS VAX and the OpenVMS AXP
operating systems.

The process of linking the ported modules brought to light many unresolved
references. In general, these references were to external routines that
had changed for the OpenVMS AXP operating system. One of the most difficult
aspects of the porting project was determining which changes to the OpenVMS
operating system had an impact on our project. Determining these changes
was difficult because DECnet for OpenVMS AXP is tightly integrated into the
OpenVMS AXP operating system. The process of porting applications to the
OpenVMS AXP environment should not be as difficult.

Code Review. When all the known porting problems found during the compile
and link phases had been corrected, we began our code review process.
The original VAX code, the ported code, and a difference listing were
available to the porting team. One or more members of the team reviewed
the changes made and pointed out any problems that were identified to the
person responsible for the module being reviewed. We all had previously



agreed that the reviews would be friendly and that egos would be left out
of the process. We found that our successful code reviews were well worth
the effort.
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Initial reviews turned up differing philosophies regarding the porting
process. We discussed these differences and reached a consensus. The
reviews uncovered errors in the porting process, and correcting these
problems reduced the amount of debugging required. The review process also
allowed us to agree on and maintain coding standards.

Debugging. Our approach to debugging the DECnet for OpenVMS AXP software
was to build the common ported code for a VAX system and to replace the
OpenVMS VAX images with our ported version on one of our workstations. We
began by loading the ported NETDRIVER and NETACP components. Since many
of the required changes were common to both OpenVMS AXP and OpenVMS VAX
systems, we were able to debug much of this code before we had access to
Alpha AXP hardware. We found and fixed a number of problems using this
technique.

When we were reasonably confident that the ported code was working on the
OpenVMS VAX operating system, we began testing on Alpha AXP prototype
hardware, which fortunately had just become available. We completed the
driver load and ACP initialization testing. The initial test uncovered
some problems that required special workarounds to allow debug to continue.
These problems were corrected in later versions of the tools. Since the
user interface had not yet been ported, test code was written to start
DECnet for OpenVMS AXP and begin debugging the $QIO interface to the
driver.

Eventually NCP, NML, and NMLSHR were ported, and more comprehensive
debugging began. We used the OpenVMS AXP XDelta and Delta tools to debug
the DECnet for OpenVMS AXP code on our Alpha AXP prototype hardware. System
failures were debugged using the SDA cross tool on a VAX system. We learned
how to trace call chains by studying the OpenVMS calling standard.[7]
Understanding the format of linkage pairs, procedure descriptors, and
register save areas made debugging much easier prior to the availability of
these features in SDA. Debugging on an Alpha AXP system is more difficult
than on a VAX system since most VAX instructions generate multiple Alpha
AXP instructions whose positions are optimized by the compiler to take
advantage of Alpha AXP architecture features. Thus, it is not always easy
to follow the Alpha AXP code line by line because the generated Alpha
AXP code from one language statement is interspersed with Alpha AXP code
generated from another language statement.

Testing. After solving the obvious problems during the debug process,
we began to test the DECnet for OpenVMS AXP code. Early versions of the
OpenVMS AXP file system, record management services (RMS), and the file
access listener (FAL) were made available to us. We in turn provided the
DECnet for OpenVMS AXP code to the group porting OpenVMS RMS and FAL for
their use in debugging. We were then able to run test scripts that used
a variety of DCL commands to perform loops of remote copies, differences,



and directory listings of remote files. DECnet network management scripts
tested the network management interface. DTS and DTR were used to perform
data transfer testing. Since the DECnet for OpenVMS AXP software was
available early, it was used by other Alpha AXP porting groups on Alpha
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AXP prototype hardware in various locations. As the code stabilized, a
timesharing system was set up, which provided the opportunity for more
testing.

Porting Issues

When we began porting the DECnet-VAX software to the Alpha AXP hardware
platform, we found many coding conventions could not be used. Most of these
coding practices are called out by the cross compilers, which significantly
helped the porting effort.[3]

The following is a discussion of some problems we encountered while porting
and how we solved them.

Entry Points. Approximately four months into the project, the porting team
determined that using the .JSB_ENTRY directive in NETDRIVER was going
to make porting difficult. The difficulty was due to the complexity of
the code and the fact that some code paths contained more than a dozen
layers of subroutine calls. We concluded that the code, which had existed
for a long time, already saved and restored the correct registers. We
decided that trying to communicate the correct list of input, output, pass-
through, and preserve registers to the compiler could be an impossible
task, especially given our schedule. We investigated the possibility of
using the .JSB32_ENTRY directive. This directive allows the specification
of registers that must be preserved but does not take any input, output,
or scratch parameters. The OpenVMS AXP MACRO-32 cross compiler will not
automatically preserve any registers when this directive is used. A great
deal of care must be taken when using this entry-point directive.

Our decision to use .JSB32_ENTRY to declare entry points led to an
interesting problem with asynchronously executing code that could interrupt
other threads of execution. The DECnet-VAX code that we ported used PUSHR
and POPR instructions to save and restore registers that were modified
by DECnet-VAX code interrupting another thread of execution. When adding
the .JSB32_ENTRY directives, we specified a register preserve parameter
only on external entry points, assuming that the remainder of the original
DECnet-VAX code was saving the proper registers. The preserve parameter
ensures that all 64 bits of the registers specified are saved at routine
entry and restored at routine exit. The PUSHR and POPR instructions
preserve only the low-order 32 bits of the specified registers. However, if
DECnet-VAX code in a routine without the .JSB32_ENTRY preserve parameter
interrupts another thread of execution that makes use of the upper 32 bits
of a register, these upper 32 bits would not be properly restored when
control returned to the interrupted thread. The solution was to specify the
register preserve parameter on the .JSB32_ENTRY directives used to declare
the entry points of routines in DECnet for OpenVMS AXP that are capable of
interrupting other threads of execution.



Whenever we changed the input or output parameters to an internal
subroutine, we also changed the name of that subroutine. This effort helped
identify all the internal calls made to subroutines whose interface had
changed.
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Coroutines. A feature of the VAX architecture used throughout the NETACP
and NETDRIVER components is called a coroutine. Coroutines used in MACRO-
32 allow a subroutine to call code fragments in other subroutines. This
technique uses the jump-to-subroutine construct JSB @(SP)+ to jump between
coroutines. The code example shown in Figure 3 demonstrates the use of the
JSB construct.

The general flow of the example is for MAIN to call COROUTINE with R0 equal
to 0 and R1 equal to 1. Usually, COROUTINE changes the value of R1 to 2
and calls back MAIN at address SAVE. If COROUTINE is entered with R1 not
equal to 1, then R0 is set to 1 and the coroutine dialogue terminates. MAIN
at address SAVE then tests R0 and exits. Under normal circumstances, MAIN
at address SAVE continues, storing the returned value of R1 in DATA and
calling back the coroutine at address FINAL. COROUTINE at address FINAL
then changes the value of R1 to 3, sets the return status in R0 to 1, and
returns to MAIN at address TERMINATE. TERMINATE then exits MAIN via the RSB
instruction.

All entry points in MACRO-32 code on an OpenVMS AXP operating system
must have an entry directive. Thus, it is not possible to use the JSB
construct to jump to any random line of code, as the previous example
demonstrates. To do so, the code shown in Figure 3 would have to be split
into subroutines, each with a .JSB_ENTRY or .JSB32_ENTRY entry directive.
Also, we had to change the implementation of coroutines. Rather than use
the stack to pass return addresses, we passed each return address in a
register.

Since some coroutines ported were more complex than the example shown in
Figure 3, we developed a technique to port VAX coroutines to the Alpha AXP
architecture. When a coroutine is split into multiple routines, some code,
such as that testing returned values, may change relative location. In
our example, the error processing at SAVE is no longer necessary. Instead,
COROUTINE returns to MAIN if it detects an error, and MAIN simply returns
to its caller with the status in R0. The VAX code example in Figure 3 was
converted to Alpha AXP code using our technique. The resulting code is
shown in Figure 4.

The use of coroutines on Alpha AXP systems should be discouraged because of
the overhead associated with storing the return address in registers and
the additional consumption of stack space. Rather than a simple return
address on the stack, there will be a register save area on the stack
for each subroutine that makes up the coroutine. Recursive coroutines can
consume large quantities of stack space. We have since converted coroutines
used in main code paths to straight in-line subroutine calls.

Stack Usage. MACRO-32 code uses a number of common coding techniques that
require knowledge of the state of the stack and that must be changed for



the OpenVMS AXP operating system. One such technique, referred to as an
up-level stack reference, occurs whenever a subroutine attempts to access
information (address or data) stored on the stack by its caller. Parameter
passing sometimes uses this technique. If a routine pushes arguments onto
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the stack prior to jumping to a subroutine, the called subroutine does
up-level stack references to retrieve the arguments. Other techniques
include using the stack as a common data area or attempting to manipulate
the caller's return address in order to alter the program flow.

All these techniques require re-coding. When we encountered code that
passed parameters on the stack, we modified the code to pass parameters in
registers. If a structure was being passed, separate memory was allocated
and the address of the structure passed in a register. In one case, NETACP
used coroutines to perform specific functions to update a common data
area allocated on the stack. This code was redesigned to eliminate the
coroutines and up-level stack references. Another alternative would have
been to pass the address of the data area on the stack to the called
routine.

Altering the program flow when error conditions were encountered was also a
common technique used in the DECnet-VAX MACRO-32 code. Subroutines removed
the return address from the stack and returned to the caller's caller.
We modified the code to remove the up-level stack reference (the caller's
return address) and return a flag in a register to signal the caller that a
change in the program flow was desired.

Condition Codes. The Alpha AXP architecture does not support global
condition codes in the processor status word. Some routines set condition
codes and returned to the caller, which proceeded to perform a conditional
branch on the results of the called routine. All occurrences of this
technique were changed; routines now pass the result of any conditional
test to the caller in a register.

 Granularity and Atomicity Issues.[8] The NETACP and NETDRIVER components
access shared data structures. Since NETDRIVER can interrupt NETACP, the
DECnet-VAX code relies on the atomicity of VAX instructions to provide
synchronized access to shared fields in the data structures. The DECnet-VAX
code also relies on byte (8-bit) and word (16-bit) granularity for memory
writes. Since the granularity of Alpha AXP memory writes is either longword
(32-bit) or quadword (64-bit), DECnet-VAX code that required atomic access
to word fields had to be modified to protect against writes to neighboring
byte and word fields sharing the same longword or quadword. In DECnet for
OpenVMS AXP, word data structure fields shared by NETACP and NETDRIVER that
required atomic access were moved to their own aligned quadwords to prevent
interference from simultaneous writes to other byte and word fields sharing
the same quadword. After the word fields were placed in their own aligned
quadwords, the code generated by the MACRO-32 cross compiler for the ADAWI
instruction was sufficient to provide atomic access to the word fields. We
could also have used compiler directives to specify that VAX granularity
and atomicity rules be preserved.



BLISS-32 Code. The BLISS-32 code in the DECnet-VAX software was relatively
simple to port. We made minor changes to add the VOLATILE parameter to
data items that should not be cached in registers, to conditionally compile
the exception handlers for VAX or Alpha AXP, and to remove unsupported
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built-ins. Other modifications were more extensive, such as the changes to
accommodate the new LIB$TABLE_PARSE.

LIB$TPARSE Changes. LIB$TPARSE and
LIB$TABLE_PARSE are the interface routines to a general-purpose, table-
driven parser for the OpenVMS VAX and OpenVMS AXP operating systems,
respectively. The call to these routines was made conditional for the VAX
and Alpha AXP architectures. Other changes were required because LIB$TPARSE
and LIB$TABLE_PARSE differ in the way argument lists are passed. The method
used by LIB$TPARSE to pass arguments is incompatible with the OpenVMS AXP
calling standard. The LIB$TPARSE action routines required modification
as a result of the required change to LIB$TABLE_PARSE for the OpenVMS AXP
operating system. The LIB$TPARSE action routines received all or a subset
of the argument block as parameters. LIB$TABLE_PARSE passes the address
of the argument block to the action routines. The solution we used was
to make the routine declaration conditional so that on the OpenVMS VAX
operating system the action routines continued to receive the argument
block parameters, and on the OpenVMS AXP operating system the action
routines received the address of the argument block. Next, for the OpenVMS
AXP operating system, the parameter names used by the common code were
bound to the argument block. These changes are shown in Figure 5.

As a result of this relatively simple though repetitive change, no other
changes had to be made in the action routines. If at some future time the
OpenVMS VAX operating system uses LIB$TABLE_PARSE, there will be no need
for conditionals.

4  Conclusion

This porting effort not only provided a solid base of knowledge with
which to begin the port of the DECnet/OSI for OpenVMS VAX software and
the associated products, but also gave us an appreciation of common code
and the avoidance of architecture-specific code.

More and more software is being ported to new hardware platforms. The
porting process is often carried out by individuals who did not develop
the original software and who may not even be familiar with it. Our
experience porting the DECnet-VAX code leads us to believe that new
software development should take into account the possibility that the
code will be ported to new hardware platforms at some future date. As we
continue to port the DECnet/OSI for OpenVMS VAX software, it is becoming
increasingly obvious that certain coding practices are difficult to port.
As a general suggestion, if the code has knowledge of the architecture
but can be written using system routines, system services, or run-time
library functions, write the code in that manner. These system routines
will be ported with the operating system, and in a majority of the cases,
the application code will not require modification.



16  Digital Technical Journal Vol. 4 No. 4 Special Issue 1992



 

                                     DECnet for OpenVMS AXP: A Case History

Also, if architecture-specific functions are required, provide only a
minimum amount of code to perform these required functions and segregate
the code. Document how the code works, why it had to be done that way, what
the alternatives were, and why they were not taken. In addition to helping
maintain the code, this information may provide valuable assistance to a
person porting the code in the future.
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If a routine is written in assembly language for the sole purpose of
performance improvement, consider rewriting it in a high-level language. It
is possible that the assembly language coding conventions that may have
been optimal for one hardware platform will be slower on a different
hardware platform. Using high-level language compilers, which generate
optimized hardware-specific code, will eliminate additional porting effort
and may very likely be the best performance solution.

As we discovered during the process of porting the DECnet-VAX software,
MACRO-32 code is significantly more difficult to port than code written in
higher-level languages. However, certain architecture-specific functions
may have to be written in assembly language. We recommend that these
functions be isolated. In addition, we recommend that any other code
written in MACRO-32 be rewritten, over time, in a higher-level language.

We determined that the fastest approach to porting was to make the minimum
number of changes required to get the DECnet for OpenVMS AXP software
running. The porting process was accomplished in phases. The first phase
included the initial port and addressed any errors that occurred until
we successfully completed linking the image. This phase also included
the initial debug, which was first performed on VAX systems because of
our common code approach and, subsequently, done on Alpha AXP prototype
hardware. When the product was stable, we proceeded to the second phase in
which we began to methodically align data structures and fix granularity
and atomicity problems. Small changes could then be made and tested, and
any new problems were generally easy to identify.

Our team approach to the project worked extremely well. Each team member
was initially responsible for porting specific portions of the code. As
the project progressed, individuals worked on any part of the product that
needed attention. This flexibility was also used when we began to debug
the ported code and again when we began to respond to problem reports.
Priorities were used to assign resources in order to solve problems as
quickly as possible. Throughout the project, team members worked together
to share knowledge and to solve problems efficiently. This effective
teamwork allowed us to deliver the DECnet for OpenVMS AXP product ahead
of schedule.
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The DECnet for OpenVMS AXP project was only part of the Alpha AXP team
effort. We feel fortunate to have experienced the synergy that this team
created.
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