Using Simulation to Devel op and Port Software

1 Abstract

Anmong the tools devel oped to support Digital's Al pha AXP program were
four software sinulators. The Mannequin and | SP instruction set sinulators
were used to port the OpenVMsS and OSF/ 1 operating systenms to the Al pha AXP
platform The Al pha User-node Debuggi ng Environment (AUD) all owed Al pha
AXP user-nmode code to be debugged with support fromthe OpenVMS VAX run-
ti me environnment on VAX hardware. AUD was built from a combination of new
and existing Digital software conponents. The Al pha User-node Debuggi ng
Environnment for Translated |Images (AUDI) allowed translated i mages to be
debugged on a sinmulator running on a VAX conputer. Wth these debugging
envi ronnents, user-node applications and code conmponents could be tested
bef ore Al pha AXP hardware and operating system software were avail abl e.

Di gital devel oped several software sinmulators to support its Al pha AXP
program [1] These tools enabl ed engi neers to devel op and port software
for the 64-bit RI SC Al pha AXP architecture concurrently with hardware
devel opnent. The simulators were used for a variety of purposes including
porting, testing, verification, and performance analysis. This paper

di scusses four Al pha AXP software sinulators: Mannequin, |1SP, AUD, and
AUDI .

2 The Mannequin and | SP Sinul ators

Two Al pha AXP instruction set simulators, Mannequin and | SP, were used to
port operating systems to the Al pha AXP platform The OpenVMS group used
the Mannequin sinulator to port the OpenVMS VAX systemto the Al pha AXP
platform Likew se, the OSF/1 group used the ISP sinulator in their port
of the ULTRI X and OSF/ 1 operating systenms to the Al pha AXP platform Both
simul ators were also used for architectural and design verification, and
for performance nodeling.

The Mannequi n sinul ator grew out of a sinulator devel oped for an earlier
RI SC project at Digital. The ISP simulator was witten anew by engi neers
closely associated with the Al pha AXP architecture.

The two devel opnent groups were requested to boot their respective
operating systens on the sinulators before attenpting to boot on the

Al pha Denpnstration Unit (ADU), the Al pha AXP prototype hardware.[2] The
simul ators were so successful in tracking the Alpha AXP architecture and in
rooting out software bugs that the OSF/1 group was able to boot the ULTRI X
operating systemon the hardware on the first attenpt. The OpenVMS group
had sim|ar success and booted the OpenVMS AXP operating systemin a few
hours.
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Not e that the Al pha Denponstration Unit (ADU) is an Al pha AXP prototype
har dwar e system and shoul d not be confused with the Al pha User-node
Debuggi ng Envi ronnent (AUD) or the Al pha User-node Debuggi ng Environnment
for Translated I nages (AUDI), two software sinmulator facilities discussed
later in the paper

OpenVMS AXP Porting

The OpenVMS group used Mannequin as their Al pha AXP instruction sinulator
in porting the OpenVMS VAX operating systemto the Al pha AXP hardware.
Never before had an OpenVMS porting effort been able to debug as nuch
operating system code in advance of hardware. Prior porting efforts
debugged only up to VMB, a prinmary boot stage in the OpenVMS operating
system Using Mannequi n, operating system devel opers were able to boot

the entire operating systemon the sinulator and actually log in and debug
utilities.

Some devel opers used Mannequin's own wi ndows interface and debuggi ng
facilities to debug their code. Others ran the XDelta utility on top of
Mannequin. [ 3] XDelta is a |l ow1|evel system debugger used to debug the
OpenVMS VAX kernel and drivers. However, the Mannequin interface was usefu
ininitially debugging XDelta, since the Al pha AXP console allows neither
breakpoi nts nor single stepping.

To debug their code before the full OpenVMS AXP operating system was

avail abl e, other devel opers used Mannequin in conjunction with the Al pha
primary boot (APB) code and a test harness. Mannequin was especially usefu
in finding alignment faults in the boot sequence, since the alignnment tools
are not operational until the OpenVMsS AXP systemis conpletely booted.
Alignment faults occur when an attenpt is nade to access a unit of data

| ocated at an address that is not a nultiple of the size of the data.

M crocode Speedup

One nmi n reason the OpenVMS team was able to debug a | arge part of the
operating systemin real tinme was the use of specially witten microcode to
speed up the sinmulator. Mannequin is capable of running with special user-
written nmicrocode on the VAX 8800 fam |y of machines.[4] This m crocode

is an addition to the normal VAX mcrocode for the 8800 machines; the VAX
nm crocode renmi ns unchanged. Wth nmicrocode support, a |arge subset of

Al pha AXP instructions is executed in mcrocode and attains performance
conparable to native VAX instructions. The Mannequi n m crocode occupi es 93
percent of the total 1,024 words of the user-witable control store.

Usi ng mi crocode assistance greatly speeds up Mannequi n execution, vyielding
from 350 thousand Al pha AXP instructions per CPU second (KIPS) to a peak
performance of 1 million Al pha AXP instructions per CPU second (M PS)



on a VAX 8800. W thout microcode assistance, Mannequin performance is

on the order of 10 KIPS. (For conparison, the |SP sinulator operates at
approximately 30 KIPS.) Code streans that execute conpletely in Mannequin
nm crocode show nuch better performance than those that switch back

and forth between microcode and the software sinmulator. Wth m crocode
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assi stance on an unl oaded VAX 8800, it takes from 20 to 30 m nutes to boot
the OpenVMS AXP system and reach the Digital Conmand Language (DCL) pronpt
after login. Because of this mcrocode speedup, software engi neers were
able to sinmulate and debug a nmuch [ arger part of the operating system and
utilities than ever before.

OSF/ 1 AXP Porting

The OSF/ 1 operating system group used the ISP sinulator as an Al pha AXP

i nstruction conpute engine. The strategy was to connect the |SP simul ator
to dbx, a standard UNI X source-| evel debugger, via dbx's renote interface.
An interface was added to the ISP to support the followi ng | ow1|eve
debugger commands:

0 Instruction stream exam ne and deposit
o Data stream exam ne and deposit

0 Register exam ne and deposit

o Single step

o Continue

o Boot

The dbx debugger was nmodified to work with the 64-bit Al pha AXP
architecture. That is, addresses in the debugger were extended to 64

bits, and an Al pha AXP di sassenbl er was provi ded. The | SP sinul ator and dbx
debugger operated as separate processes communi cating on the same nmachine
by means of a socket. A socket is a protocol-independent connection point
for interprocess comunications.

Hi storically, the OSF/1 group used the | SP-dbx conbination to port

the ULTRI X operating systemto the Al pha AXP platformas an advanced
devel opnent effort. Wen the group began to port the OSF/1 system Al pha
AXP prototype hardware (ADUs) and field-test conpilers were avail able.
Thus, the OSF/ 1 group used the ISP in its ADU node, where the ISP sinul ator
operated as a console to the ADU hardware system The ADU consi sts of

an Al pha AXP DECchi p 21064 processor, menory, disks, Ethernet, and a
DECst ati on 5000 wor kstati on, which acted as the console interface.
Instructions that normally execute on the sinulator were transferred to
the ADU for execution. However, the entire synbolic debuggi ng environnment
remai ned unchanged.

Si mul at or Specifics



The ISP sinmulator was witten entirely in portable C. The Mannequin
simul ator was a hybrid of the C++ and C | anguages. | SP consi sted of
approxi mately 25,000 |lines of code, Mannequin 31,800 |ines. The two
simul ators shared conmon code: the | SP sinulator provided Mannequin with
floati ng-point routines and a conprehensive instruction test program
Mannequi n provided ISP with I/O device routines. Thus, the sinulators
verified the Al pha AXP architecture as well as each other
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The Mannequin and | SP sinulators tracked and supported changes in the

evol ving Al pha AXP architecture and in PALcode. PALcode is special nmachine-
dependent software that provides support for many |ow 1| evel operating
system services such as faults and exceptions. PALcode al so provides

i nstructions not in the base Al pha AXP hardware.

The two sinulators have features conmon to many sinul ators, including
support for |oading and runni ng prograns, setting breakpoints and

wat chpoi nts, accessing nenory, and saving and restoring machi ne state. Also
supported are nmany machi ne-specific features, such as I/O devices, interva
timers, and configurable translation | ookaside buffers. Besides a command
line interface, the Mannequin sinul ator has a graphical w ndows interface
that all owed users to see nost nmachine resources in a w ndows-based format,
as shown in Figure 1.

The Mannequin and | SP simnul ators support three basic devices:
o A console device used for termnal 1/0

o A disk device used to boot the operating system

0o An interval timer used for interrupts

The di sk device on the sinmulators can be either a file or a physical disk
devi ce. The OpenVMS group used a shared di sk so that devel opers coul d boot
froma common di sk while running on the sinmulator

The sinmul ators provide 16 negabytes (MB) of physical nmenmory with a default
page size of 8 kilobytes (kB). The physical nmenory of the sinulators may
be increased to the practical limt of available virtual nenory on a VAX
system (m nus a small amount for the actual sinmulator code).

Both sinmul ators have configurable instruction stream (l-strean) and

data stream (D-strean) translation | ookaside buffers (TLBs). A TLB is

a small cache that holds recent virtual -to-physical address translation
and protection information. The simulator TLBs can have a vari abl e nunber
of entries in each of the four granularity hint block sizes. Ganularity
hints indicate to the translation buffer inplenentations that a bl ock

of pages can be treated as a single, |larger page. In essence, there are
four mnitranslation buffers. The | SP sinulator supports selectable TLB
repl acenent al gorithnms, whereas Mannequi n supports only the not-1|ast-used
(NLU) al gorithm The configurable TLBs allowed the operating system and
chip design groups to analyze and finely tune the translation | ookaside
buffers for optinmum performance

Per f ormance Anal ysis and Benchnar ki ng



The Mannequin and | SP sinulators al so support execution of user-nopde,

st and-al one prograns, i.e., those with |ittle or no operating system
run-time support, by providing program |l oaders for several formats. These
formats include two UNI X object formats (COFF and a.out), an OpenVMS AXP
i mmge format, and a system (raw data) inmage fornmat.
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Progranms were conpiled with early field-test Al pha AXP conpilers. Program
execution was especially useful for hardware designers and conpiler witers
for performance anal ysis and benchmar ki ng purposes. Note that applications
requiring full operating system support used the AUD facility, described in
a later section.

The sinmul ators can generate trace files in a standard trace file format.
This commonal ity enabled the two facilities to share the sanme trace

anal ysis tools. The trace files generated by Mannequin and | SP were al so
used as input to the Al pha Performance Mddel, another simnulator that
generated detail ed performance data.

EVI LI ST and ALPHASREPORT were two tools frequently used to anal yze trace
files and generate statistics concerning nachine resources used during
program executi on. The types of data generated by ALPHASREPORT i nclude the
fol | owi ng:

0o Instruction distribution by opcode, class, and fornmat

0o Instruction and floating-point register utilization sunmmry
o Distribution of code block run | engths

0 Opcode pair distribution by class

o Control/branch instruction flow summary

An actual trace analysis report generated by ALPHA$SREPORT is shown in
Figure 2. This exanple conmes froma scal ed version of FPPPP (one of the

14 benchmarks in the SPECfp92 floating-point test suite), with the constant
NATOMS set equal to 2. Figure 2 displays a report listing instruction

di stribution by opcode.

Al pha AXP operating system devel opers and conpiler witers relied heavily
on the trace reports for help in designing critical sections of code. For
exanpl e, the register usage distribution report hel ped determ ne how nmany
regi sters should be preserved by a call and how many shoul d be scratch
(usable by a called routine without being preserved).
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3 The AUD Facility

Whereas the Mannequin and | SP sinulators were suitable for initia
debuggi ng of | owlevel software such as operating systens, direct use

of these tools for user-node applications, i.e., layered products, is a
different matter. Porting and debuggi ng Al pha AXP user-node code is at
best difficult without the full run-tine support of an operating system
User-node applications typically take advantage of a wi de variety of run-
time libraries, including conmpiled code support (such as the Fortran
run-time library), mathematical routines, graphics |I/O services, and

dat abase software (such as Rdb for OpenvVMS). Even if all this software were
i medi ately avail abl e for Al pha AXP systens, running it under sinulation
woul d be prohibitively slow.

Therefore, Digital devel oped a m xed-execution debuggi ng environnment. This
Al pha User-nmode Debuggi ng Environnment (AUD) was built from a conbination of
new and existing Digital software conponents. In the AUD environnment, user-
node code bei ng devel oped for or ported to the Al pha AXP platform could be
conpi |l ed and executed as Al pha AXP code using sinmulation on VAX hardware.
At the sanme tinme, OpenVMs VAX run-time services called by the code could
be executed as native VAX instructions. Thus, nodules could be ported and
debugged one at a tine, until alnost the entire application consisted of
bug-free Al pha AXP code.

During the design of the AUD environnent, two key technical issues were

o Howto efficiently detect calls made by executing VAX code to a routine
in Al pha AXP code that could be "executed" only by simulation, and
conversely, how to detect calls nade by Al pha AXP code being sinul ated
to native VAX code

o Howto effect the transformati on of paraneters, both location and
representation, fromthat provided by the caller in one domain into
the |l ocations and representati ons expected by the called routine in the
ot her domain. Although there existed well-defined and wi dely foll owed
calling standards for both domains, a variety of special-purpose, high-
performance calling conventions were used in many situations.

Thi s m xed-execution environnment was expected to have a relatively short
lifetime, because it would beconme obsol ete as soon as significant nunbers
of real Al pha AXP hardware systens becane avail able. Consequently, AUD
itself had to be sinple and i nexpensive enough to be created quickly and
put into use. The devel opnment effort nmet this requirenent. The el apsed
time frominitial concept to first use was about eight nonths; the tota
devel opnent effort for AUD over its lifetinme was between three and four
man- years.
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AUD Conponent s

Despite the desire for sinplicity, AUD consists of a nunber of cooperating
conmponent s:

o Callable Mannequi n Al pha Sinul at or
o AUD debugger

o AUD Iinker

o Al pha AXP native services

0 VAX jacketing services

o AUD Linkage Analyzer (ALA)

0 Selected VAX jackets

Cal | abl e Mannequi n Al pha Sinulator. Call abl e Mannequin, the Al pha AXP
instruction set sinmulator, is essentially a subset of the Mannequin

simul ator described earlier. In particular, Callable Mannequin onits

the user interface and Al pha AXP machine state. |Instead, the AUD debugger
supplies the user interface. Al so, storage for the Al pha AXP nmachine state
is separately linked into the AUD environment to make this information

gl obal Iy accessible. Callable Mannequin does retain the m crocode-assi st
feature.

AUD Debugger. The AUD debugger is a nodified version of DEBUG 32, the
user-nmode debug utility on the OpenVMs VAX operating system The AUD
debugger provides nost of the sane features of DEBUG 32. A configuration
option allows the DEBUG 32 utility to use an internal, |owlevel renpote
debugger interface to interface with a foreign target. (This capability
was originally devel oped for use in other products such as VAXELN Ada.)

We devel oped new code to join DEBUG 32 and Mannequin using this interface.
As a result, the AUD debugger works directly with VAX code, in the usua
manner, and works with Al pha AXP code by passing commands to the Callable
Mannequi n simul ator to set breakpoints, exam ne instructions, execute code,
etc.

AUD Linker. The AUD linker is a variant of the Al pha AXP cross |inker
that reads Al pha AXP object nodul es as input and produces an OpenVMS VAX
format i mage as output. The standard VAX |inker can therefore reference

| ocations in the Alpha AXP image in the normal way, and the standard
OpenVMS i nage activator can be used to |load the Al pha AXP i nage for
execution. However, to mnimze conplexity, we did constrain the Al pha
AXP image to be linked as an absolute image (i.e., a based inmage, in



OpenVMs jargon). This restriction elimnated the problem of how to relocate
Al pha AXP instructions using the OpenVMS i nage activator. As nentioned
previously, the Al pha AXP i mage al so i ncludes a global storage area to hold
the sinmul ated Al pha AXP machi ne state.
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Al pha AXP Native Services. Al pha AXP native services is a special operating
system shel |, part of which executes as Al pha AXP code (under sinulation)
and part of which is included in the AUD jacketing services. The native
services provide the | owest-|evel support for hardware exception handling
and the OpenVMS condition-handling facility. Wile AUD ultimtely supported
frame-based condition handling within the Al pha AXP i nmage, interoperation
of application exceptions between the Al pha AXP and VAX domai ns was not
support ed.

VAX Jacketing Services. VAX jacketing services is VAX code that supports
the ability to wite jackets that pass control back and forth between VAX
and Al pha AXP code. The nechanics for acconplishing this are discussed in
the Jacketing section.

AUD Li nkage Analyzer. The ALA is a specialized conpiler that reads a
speci al i zed jacket description | anguage. This | anguage describes how calls
in one domain are to be transformed into calls in the other domain on

a routine-by-routine, paraneter-by-paraneter basis. The output fromthe
ALA is an Al pha AXP object nodule and a |inker options control file, both
used to link the Al pha AXP i mage, and a VAX object nodule. The Al pha AXP
obj ect nodul e provides a transfer vector into the Al pha AXP procedures.
The |inker options control file provides synbol definitions in an encoded
formto manage calls fromthe Al pha AXP inage to the main VAX i mage, which
is linked later. The VAX object nodul e contains a table that encodes the

j acketing description.

Sel ected VAX Jackets. Selected VAX jackets are ALA jacketing files (in both
source and conpiled forms) for calling conmon VAX facilities from Al pha
AXP code. Jackets are provided for OpenVMsS system services, the C run-tine
library, and sone parts of the general -purpose, run-tinme library (LIBRTL).
The DECw ndows group al so supplied jacket definition files for use by other
groups. AUD users are able to supplenment these files as needed by creating
and conpiling their own jacketing descriptions for other VAX facilities.

Figure 3 shows the nain steps in building an AUD environment. The upper npst
sequence shows the conpilation and |inking of the Al pha AXP conponents,
which results in the creation of the Al pha AXP i nage. The central sequence
shows the conpilation of the jacket descriptions, which results in the
creation of conponents that are included in both the Al pha AXP and the VAX
i mmges. The | ower rows of Figure 3 show the conpilation of the VAX part

of an application and its linking with the AUD nanager to create the VAX
mai n i mage. When the ni xed VAX and Al pha AXP application is executed, these
i mages are conbined in nenory with Call able Mannequin, the AUD debugger,
and ot her shareable inmages. This relationship is illustrated in Figure 4.
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Jacketing

Jacketing is the key feature that allows VAX and Al pha AXP
interoperability, i.e., gives a processor the appearance of being able

to execute both VAX and Al pha AXP instructions. Although the details of
jacketing are intricate, the result is sinple and elegant. Calls can be
made freely back and forth between VAX conpiled code and Al pha AXP conpil ed
code, without any special conpilation nodes on either side. The AUD support
is fully recursive and reentrant.

Static calls from VAX to Al pha AXP code are directed to dumry entry points
in the object nodul e produced by the ALA conpiler. Each entry point is
sinmply an instruction that |oads a pointer to the jacketing description
table for the target Al pha AXP procedure, followed by a transfer into
comon jacket interpretation code.

Calls from Al pha AXP code to VAX code use the fact that the Call able
Mannequi n conponent stops and returns control to the AUD environment

when it detects an instruction that transfers control out of the Al pha AXP
imge. In this case, the apparent address is an encoded i nteger (created
by the ALA), whose high four bits nake it ook like an illegal address (in
the VAX reserved Sl space) and whose renmining bits are a two-I|evel index
(i.e., 12 bits of facility code and 16 bits of offset) into the jacket
description table for the target VAX procedure. This two-level scheme was
chosen to allow jacket descriptions for different shared library facilities
to be prepared and conpil ed i ndependently. The facility code is a nunber
normal |y already associated with that facility by software convention for
ot her purposes.

When a routine is called using a dynami cally determ ned address, such as
an address given in a function variable, a property of the VAX and Al pha
AXP architectures is exploited to determ ne dynanmically whether the target
routine is a VAX routine or an Al pha AXP routine. According to the VAX
architecture, the first 16 bits of a routine conprise a mask that encodes

the registers to be preserved as part of the call. Bits 12 and 13 of this
mask are unused and required to be 0; if one of these bits is set at the
time of a call, then a hardware exception results. According to the OpenVMsS

AXP software architecture, an Al pha AXP procedure address is actually the
address of a procedure descriptor, which is a data structure and not the
actual Al pha AXP code. By design, bits 12 and 13 of this data structure
nmust be set to 1.

VAX execution of a VAX CALL instruction that attenpts to transfer to an

Al pha AXP procedure results in an exception. A special AUD exception
handl er intercepts the exception, determnes if the illegal entry mask

is caused by a reference into an Al pha AXP inmage, and if so, calls into
the AUD jacketing routines to reformat the call frame. This nechanism al so



wor ks for handling asynchronous systemtraps (ASTs) fromthe OpenVMS VAX
operating systemto Al pha AXP code.
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For computed calls from Al pha AXP code, conpiled code calls an Al pha

AXP run-tinme library routine to performthe conparable bit 13 test

(under sinulation). If bit 13 of the target location is set to 1, then

si mul at ed execution continues and an Al pha-to-Alpha call is carried out.
O herwi se, control transfers to a special VAX code entry point in AUD,
which term nates sinulation and perforns jacketing back to the VAX target
procedure.

Basi ¢ Operation

To start executing a m xed application, the AUD environment first perforns
several initialization steps. In particular, AUD scans all the inages

| oaded in process nmenory to identify the Al pha AXP i mage (only one was

al l oned and supported).

Some AUD options are set through the use of OpenVMs | ogi cal nanmes, which
are interrogated during inmage initialization. These options include

o Selecting Al pha AXP stack size

o Enabling delivery of ASTs to Al pha AXP routines

o Disabling the normal Al pha AXP stack consistency checks
o Disabling unaligned nenory reference nessages

o Enabling AUD initialization tracing

o Disabling integer overflow checking

Debuggi ng combi ned VAX and Al pha AXP code under the AUD environnent is
simlar to debuggi ng normal VAX code under the DEBUG 32 OpenVMS debugger
Basically, if the address involved in a debug command is within an Al pha
AXP i mage, then the debugger calls the Mannequin sinmulator to performthe
command for the Al pha AXP code. Ot herw se, the DEBUG 32 debugger itself
performs the conmand for the VAX code, as usual. Al pha AXP nachine state is
kept in static global storage by Mannequin and thus is visible to the AUD
debugger.

In the DEBUG synbol table (DST) representation, variables that are
allocated in the Al pha AXP registers are described as being allocated

in the corresponding global state locations. This "trick" allowed AUD to
handl e the 64 Al pha AXP registers using the VAX DST representation, which
can encode only the 16 VAX registers.

Once sinul ation begi ns, Mannequin continues to sinulate Al pha AXP
instructions until it either detects an instruction that would transfer



control outside of the Al pha AXP i nage, conpletes a single-step request,
or detects an error condition. Upon returning to the AUD environment,
Mannequi n supplies status information that indicates the reason sinmulation
ended.
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For a transfer of control from Al pha AXP to VAX code, AUD must first
deterni ne whether the transfer is a return from Al pha AXP code as a result
of a prior VAX call or a new call from Al pha AXP code to VAX code. AUD is
fully reentrant, so AUD cannot nmake this determ nation from gl obal state.
If the target address is a distinguished address that AUD supplies when it
sets up a VAX-to-Alpha call (i.e., an address in the reserved S1 part of

t he VAX address space), the address is interpreted as a return transfer

O herwise, AUD initiates a new Al pha-to-VAX call.

For a return operation, the AUD code copies the return value or values from
the Al pha AXP regi sters and passes them back to the VAX code. A VAX return
instruction is then executed to resune execution of the calling VAX code.

For a call operation, the VAX code fetches the Al pha AXP paraneters and
builds a VAX argunent list, which is then used to call the target VAX

routi ne. When the VAX routine returns, the contents of the result registers
are copied to the correspondi ng Al pha AXP machi ne state |ocations, and
Mannequin is restarted to resunme executi ng Al pha AXP code.

Despite sonme linmtations (e.g., only one Al pha i mage and no exception
handl i ng across the VAX to Al pha AXP donmins), AUD greatly aided the
OpenVMS AXP porting effort. The sinulator provided software groups with

a pseudo- Al pha AXP environnent in which to debug their Al pha AXP code,

wel | before either Al pha AXP hardware or the OpenVMsS AXP operating system
was avail able. Many OpenVMs AXP groups successfully used AUD to facilitate
their porting, including the Record Managenent Services (RMS), DECw ndows,
Forms Managenent System (FMS), various OpenVMS comrand utilities, text
processing utility (TPU), DEBUG and GEM conpil er back-end groups.

4 The AUDI Facility

The VAX Environnment Software Translator (VEST) is an inportant part of the
initial OpenVMs AXP offering.[5] VEST translates an OpenVMsS VAX execut abl e
or shareable imge into an OpenVMS AXP i mage that can then be executed with
support on an OpenVMS AXP system As for other user-node |ayer software
conponents, it was desirable to test VEST and i mages transl ated by VEST

as early as possible in a sinulation environnment such as AUD. However, AUD
could not be used directly to test translated i mages for two reasons:

0 VEST directly creates an Al pha AXP imge. In effect, VEST is a conbined
conpil er and linker. Thus, the synbol mappi ng protocols used by AUD were
extraneous, and the |inking protocols had to be conpletely repl aced.

o Actual execution of a translated i mage on an OpenVMS AXP system
makes use of the Translated | nmage Environment (TIE).[5] The TIE is
a shareable library that contains support routines for translated
i mges. |In particular, TIE provides support for VAX conpl ex instruction



processi ng, VAX-to- Al pha address mappi ng, and OpenVMsS VAX exception
handling. Creating a VAX version of the TIE to use with AUD required
intimate interfaces with the OpenVMs VAX operating systemas well as
conpatibility with AUD.
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Thus, the need to debug translated inmages led to the creation of the Al pha
User - node Debuggi ng Environnment for Translated | mages (AUDI). Just as
Cal | abl e Mannequi n provi ded a key building block for AUD, AUD in turn
provi ded a key building block for AUDI . Al pha AXP software teans and
porting centers used AUDI to port both Digital and third-party translated
applications prior to the arrival of Al pha AXP hardware. The porting
process was as follows: a VAX application was translated to Al pha AXP code
by means of the VEST translator; this code was then run on a VAX system
usi ng the AUDI sinul ator

The AUDI process conponents shown in Figure 5 include the
o Callable Mannequi n Al pha sinul at or

o AUD debugger

o VAX version of the TIE

o Translated VAX code (Al pha AXP code)
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AUDI Envi r onment

Emul ated VAX state in AUDI is maintained in a global context block
Ermul at ed VAX registers RO through R14 are used exactly as their VAX
counterparts. The correspondence between a translated and equi val ent VAX
program counter (PC) is not directly available during execution, since
transl ated code occupies different address space than the original VAX
code. Thus, register R15 is used instead as an in-inage index register

The user-npde VAX stack is split into a VAX stack and an Al pha and enul at ed
VAX stack. The VAX stack services both the AUDI environment and any VAX
system services or run-time library routines that the translated i nage may
call. The Al pha and emul ated VAX stack services Al pha AXP and transl ated
code.

Transl ated i nmages contain calls to the TIE as necessary to simulate VAX
conpl ex instructions and procedure calls. Conplex instruction routines
are used to simulate VAX instructions that woul d otherw se expand into
excessive Al pha AXP code. However, since AUDI is running on VAX hardware,
conpl ex instructions can be executed native on the VAX hardware.

To initialize the AUDI environment, the translated i mage calls an
initialization routine in the TIE by neans of an initialization program
section (PSECT). This routine determ nes the address range of the Al pha
AXP code and the |ocation of the VAX-to-Al pha address mappi ng structure,
saves the current Al pha AXP register state, and calls Mannequin to begin
executing transl ated code at the appropriate entry point. Transl ated code
uses the address mapping structure to find conputed branch destinations
on the fly. Callable Mannequin then executes translated code until it
encounters some instruction that would transfer control out of translated
code. The cause of this transfer would be either a TIE-based procedure or
conplex instruction call, or calls to native VAX routines.

Li ke AUD, AUDI allows interoperation between translated VAX code (Al pha AXP
code) and VAX code. Transl ated code can use existing VAX system services
and run-tinme libraries. AUDI does not use the jacketing | anguage descri bed
in the section The AUD Facility. Instead, AUDI automatically jackets
procedure calls between the transl ated VAX code and the native VAX code.

Aut oj acketing includes building proper paranmeter lists and call franes for
the destination calling standard.

The fact that AUDI does not use a jacketing |anguage |eads to sone
procedure call linmtations. However, note that these limtations do not
appear when running translated code on actual Al pha AXP hardware. For
incomng calls (VAX code to translated VAX code), all AST delivery and
condition handl ers execute as VAX code rather than as translated VAX
code. Thus, translated programs may not function properly. For outgoing



calls (translated VAX code to VAX code), routines in which a callee
nodi fies its caller's stack frame argunent list or return address may

produce unpredictablte results, since the autojacketing may be altered
or di sconnected.
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AUDI Exanpl e

Figure 6 shows the execution of a translated i mage under AUDI. Note that
both the BASIC i mage (HELLO WORLD) and the BASIC run-tine library (BASRTL)
are translated. Run-tine libraries that are used by the AUDI environnment
cannot be translated under AUDI. Translating run-tine libraries that

AUDI itself uses causes a "circularity in activation" and incorrect or

no execution.

In the HELLO WORLD exanple, there are 28 calls to VAX routines, nost |ikely
those to LIBRTL and OpenVMS system services. There are 21 uni que CALLX
contexts and 7 reused ones. In addition, the exanple uses four different
conpl ex instructions.
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5 Sunmmary

The software sinmulators Mannequin, |SP, AUD, and AUDI greatly aided Al pha
AXP software porting and devel opnent efforts. Substantial parts of both
system and application software were sinulated and verified concurrently
wi t h hardware devel opnent. When Al pha AXP hardware becane avail abl e, npst
software could be plugged in sinply and ran exactly as expected. The use
of these sinulation tools saved a year or nmore fromthe overall Al pha AXP
schedul e.
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