

 Using Simulation to Develop and Port Software

1 Abstract

 Among the tools developed to support Digital's Alpha AXP program were
four software simulators. The Mannequin and ISP instruction set simulators
were used to port the OpenVMS and OSF/1 operating systems to the Alpha AXP
platform. The Alpha User-mode Debugging Environment (AUD) allowed Alpha
AXP user-mode code to be debugged with support from the OpenVMS VAX run-
time environment on VAX hardware. AUD was built from a combination of new
and existing Digital software components. The Alpha User-mode Debugging
Environment for Translated Images (AUDI) allowed translated images to be
debugged on a simulator running on a VAX computer. With these debugging
environments, user-mode applications and code components could be tested
before Alpha AXP hardware and operating system software were available.

Digital developed several software simulators to support its Alpha AXP
program.[1] These tools enabled engineers to develop and port software
for the 64-bit RISC Alpha AXP architecture concurrently with hardware
development. The simulators were used for a variety of purposes including
porting, testing, verification, and performance analysis. This paper
discusses four Alpha AXP software simulators: Mannequin, ISP, AUD, and
AUDI.

2 The Mannequin and ISP Simulators

Two Alpha AXP instruction set simulators, Mannequin and ISP, were used to
port operating systems to the Alpha AXP platform. The OpenVMS group used
the Mannequin simulator to port the OpenVMS VAX system to the Alpha AXP
platform. Likewise, the OSF/1 group used the ISP simulator in their port
of the ULTRIX and OSF/1 operating systems to the Alpha AXP platform. Both
simulators were also used for architectural and design verification, and
for performance modeling.

The Mannequin simulator grew out of a simulator developed for an earlier
RISC project at Digital. The ISP simulator was written anew by engineers
closely associated with the Alpha AXP architecture.

The two development groups were requested to boot their respective
operating systems on the simulators before attempting to boot on the
Alpha Demonstration Unit (ADU), the Alpha AXP prototype hardware.[2] The
simulators were so successful in tracking the Alpha AXP architecture and in
rooting out software bugs that the OSF/1 group was able to boot the ULTRIX
operating system on the hardware on the first attempt. The OpenVMS group
had similar success and booted the OpenVMS AXP operating system in a few
hours.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 1

 Using Simulation to Develop and Port Software

Note that the Alpha Demonstration Unit (ADU) is an Alpha AXP prototype
hardware system and should not be confused with the Alpha User-mode
Debugging Environment (AUD) or the Alpha User-mode Debugging Environment
for Translated Images (AUDI), two software simulator facilities discussed
later in the paper.

OpenVMS AXP Porting

The OpenVMS group used Mannequin as their Alpha AXP instruction simulator
in porting the OpenVMS VAX operating system to the Alpha AXP hardware.
Never before had an OpenVMS porting effort been able to debug as much
operating system code in advance of hardware. Prior porting efforts
debugged only up to VMB, a primary boot stage in the OpenVMS operating
system. Using Mannequin, operating system developers were able to boot
the entire operating system on the simulator and actually log in and debug
utilities.

Some developers used Mannequin's own windows interface and debugging
facilities to debug their code. Others ran the XDelta utility on top of
Mannequin.[3] XDelta is a low-level system debugger used to debug the
OpenVMS VAX kernel and drivers. However, the Mannequin interface was useful
in initially debugging XDelta, since the Alpha AXP console allows neither
breakpoints nor single stepping.

To debug their code before the full OpenVMS AXP operating system was
available, other developers used Mannequin in conjunction with the Alpha
primary boot (APB) code and a test harness. Mannequin was especially useful
in finding alignment faults in the boot sequence, since the alignment tools
are not operational until the OpenVMS AXP system is completely booted.
Alignment faults occur when an attempt is made to access a unit of data
located at an address that is not a multiple of the size of the data.

Microcode Speedup

One main reason the OpenVMS team was able to debug a large part of the
operating system in real time was the use of specially written microcode to
speed up the simulator. Mannequin is capable of running with special user-
written microcode on the VAX 8800 family of machines.[4] This microcode
is an addition to the normal VAX microcode for the 8800 machines; the VAX
microcode remains unchanged. With microcode support, a large subset of
Alpha AXP instructions is executed in microcode and attains performance
comparable to native VAX instructions. The Mannequin microcode occupies 93
percent of the total 1,024 words of the user-writable control store.

Using microcode assistance greatly speeds up Mannequin execution, yielding
from 350 thousand Alpha AXP instructions per CPU second (KIPS) to a peak
performance of 1 million Alpha AXP instructions per CPU second (MIPS)

on a VAX 8800. Without microcode assistance, Mannequin performance is
on the order of 10 KIPS. (For comparison, the ISP simulator operates at
approximately 30 KIPS.) Code streams that execute completely in Mannequin
microcode show much better performance than those that switch back
and forth between microcode and the software simulator. With microcode

2 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Using Simulation to Develop and Port Software

assistance on an unloaded VAX 8800, it takes from 20 to 30 minutes to boot
the OpenVMS AXP system and reach the Digital Command Language (DCL) prompt
after login. Because of this microcode speedup, software engineers were
able to simulate and debug a much larger part of the operating system and
utilities than ever before.

OSF/1 AXP Porting

The OSF/1 operating system group used the ISP simulator as an Alpha AXP
instruction compute engine. The strategy was to connect the ISP simulator
to dbx, a standard UNIX source-level debugger, via dbx's remote interface.
An interface was added to the ISP to support the following low-level
debugger commands:

o Instruction stream examine and deposit

o Data stream examine and deposit

o Register examine and deposit

o Single step

o Continue

o Boot

The dbx debugger was modified to work with the 64-bit Alpha AXP
architecture. That is, addresses in the debugger were extended to 64
bits, and an Alpha AXP disassembler was provided. The ISP simulator and dbx
debugger operated as separate processes communicating on the same machine
by means of a socket. A socket is a protocol-independent connection point
for interprocess communications.

Historically, the OSF/1 group used the ISP-dbx combination to port
the ULTRIX operating system to the Alpha AXP platform as an advanced
development effort. When the group began to port the OSF/1 system, Alpha
AXP prototype hardware (ADUs) and field-test compilers were available.
Thus, the OSF/1 group used the ISP in its ADU mode, where the ISP simulator
operated as a console to the ADU hardware system. The ADU consists of
an Alpha AXP DECchip 21064 processor, memory, disks, Ethernet, and a
DECstation 5000 workstation, which acted as the console interface.
Instructions that normally execute on the simulator were transferred to
the ADU for execution. However, the entire symbolic debugging environment
remained unchanged.

Simulator Specifics

The ISP simulator was written entirely in portable C. The Mannequin
simulator was a hybrid of the C++ and C languages. ISP consisted of
approximately 25,000 lines of code, Mannequin 31,800 lines. The two
simulators shared common code: the ISP simulator provided Mannequin with
floating-point routines and a comprehensive instruction test program;
Mannequin provided ISP with I/O device routines. Thus, the simulators
verified the Alpha AXP architecture as well as each other.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 3

 Using Simulation to Develop and Port Software

The Mannequin and ISP simulators tracked and supported changes in the
evolving Alpha AXP architecture and in PALcode. PALcode is special machine-
dependent software that provides support for many low-level operating
system services such as faults and exceptions. PALcode also provides
instructions not in the base Alpha AXP hardware.

The two simulators have features common to many simulators, including
support for loading and running programs, setting breakpoints and
watchpoints, accessing memory, and saving and restoring machine state. Also
supported are many machine-specific features, such as I/O devices, interval
timers, and configurable translation lookaside buffers. Besides a command
line interface, the Mannequin simulator has a graphical windows interface
that allowed users to see most machine resources in a windows-based format,
as shown in Figure 1.

The Mannequin and ISP simulators support three basic devices:

o A console device used for terminal I/O

o A disk device used to boot the operating system

o An interval timer used for interrupts

The disk device on the simulators can be either a file or a physical disk
device. The OpenVMS group used a shared disk so that developers could boot
from a common disk while running on the simulator.

The simulators provide 16 megabytes (MB) of physical memory with a default
page size of 8 kilobytes (kB). The physical memory of the simulators may
be increased to the practical limit of available virtual memory on a VAX
system (minus a small amount for the actual simulator code).

Both simulators have configurable instruction stream (I-stream) and
data stream (D-stream) translation lookaside buffers (TLBs). A TLB is
a small cache that holds recent virtual-to-physical address translation
and protection information. The simulator TLBs can have a variable number
of entries in each of the four granularity hint block sizes. Granularity
hints indicate to the translation buffer implementations that a block
of pages can be treated as a single, larger page. In essence, there are
four minitranslation buffers. The ISP simulator supports selectable TLB
replacement algorithms, whereas Mannequin supports only the not-last-used
(NLU) algorithm. The configurable TLBs allowed the operating system and
chip design groups to analyze and finely tune the translation lookaside
buffers for optimum performance.

Performance Analysis and Benchmarking

The Mannequin and ISP simulators also support execution of user-mode,
stand-alone programs, i.e., those with little or no operating system
run-time support, by providing program loaders for several formats. These
formats include two UNIX object formats (COFF and a.out), an OpenVMS AXP
image format, and a system (raw data) image format.

4 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Using Simulation to Develop and Port Software

Programs were compiled with early field-test Alpha AXP compilers. Program
execution was especially useful for hardware designers and compiler writers
for performance analysis and benchmarking purposes. Note that applications
requiring full operating system support used the AUD facility, described in
a later section.

The simulators can generate trace files in a standard trace file format.
This commonality enabled the two facilities to share the same trace
analysis tools. The trace files generated by Mannequin and ISP were also
used as input to the Alpha Performance Model, another simulator that
generated detailed performance data.

EVILIST and ALPHA$REPORT were two tools frequently used to analyze trace
files and generate statistics concerning machine resources used during
program execution. The types of data generated by ALPHA$REPORT include the
following:

o Instruction distribution by opcode, class, and format

o Instruction and floating-point register utilization summary

o Distribution of code block run lengths

o Opcode pair distribution by class

o Control/branch instruction flow summary

An actual trace analysis report generated by ALPHA$REPORT is shown in
Figure 2. This example comes from a scaled version of FPPPP (one of the
14 benchmarks in the SPECfp92 floating-point test suite), with the constant
NATOMS set equal to 2. Figure 2 displays a report listing instruction
distribution by opcode.

Alpha AXP operating system developers and compiler writers relied heavily
on the trace reports for help in designing critical sections of code. For
example, the register usage distribution report helped determine how many
registers should be preserved by a call and how many should be scratch
(usable by a called routine without being preserved).

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 5

 Using Simulation to Develop and Port Software

3 The AUD Facility

Whereas the Mannequin and ISP simulators were suitable for initial
debugging of low-level software such as operating systems, direct use
of these tools for user-mode applications, i.e., layered products, is a
different matter. Porting and debugging Alpha AXP user-mode code is at
best difficult without the full run-time support of an operating system.
User-mode applications typically take advantage of a wide variety of run-
time libraries, including compiled code support (such as the Fortran
run-time library), mathematical routines, graphics I/O services, and
database software (such as Rdb for OpenVMS). Even if all this software were
immediately available for Alpha AXP systems, running it under simulation
would be prohibitively slow.

Therefore, Digital developed a mixed-execution debugging environment. This
Alpha User-mode Debugging Environment (AUD) was built from a combination of
new and existing Digital software components. In the AUD environment, user-
mode code being developed for or ported to the Alpha AXP platform could be
compiled and executed as Alpha AXP code using simulation on VAX hardware.
At the same time, OpenVMS VAX run-time services called by the code could
be executed as native VAX instructions. Thus, modules could be ported and
debugged one at a time, until almost the entire application consisted of
bug-free Alpha AXP code.

During the design of the AUD environment, two key technical issues were

o How to efficiently detect calls made by executing VAX code to a routine
 in Alpha AXP code that could be "executed" only by simulation, and
 conversely, how to detect calls made by Alpha AXP code being simulated
 to native VAX code.

o How to effect the transformation of parameters, both location and
 representation, from that provided by the caller in one domain into
 the locations and representations expected by the called routine in the
 other domain. Although there existed well-defined and widely followed
 calling standards for both domains, a variety of special-purpose, high-
 performance calling conventions were used in many situations.

This mixed-execution environment was expected to have a relatively short
lifetime, because it would become obsolete as soon as significant numbers
of real Alpha AXP hardware systems became available. Consequently, AUD
itself had to be simple and inexpensive enough to be created quickly and
put into use. The development effort met this requirement. The elapsed
time from initial concept to first use was about eight months; the total
development effort for AUD over its lifetime was between three and four
man-years.

6 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Using Simulation to Develop and Port Software

AUD Components

Despite the desire for simplicity, AUD consists of a number of cooperating
components:

o Callable Mannequin Alpha Simulator

o AUD debugger

o AUD linker

o Alpha AXP native services

o VAX jacketing services

o AUD Linkage Analyzer (ALA)

o Selected VAX jackets

Callable Mannequin Alpha Simulator. Callable Mannequin, the Alpha AXP
instruction set simulator, is essentially a subset of the Mannequin
simulator described earlier. In particular, Callable Mannequin omits
the user interface and Alpha AXP machine state. Instead, the AUD debugger
supplies the user interface. Also, storage for the Alpha AXP machine state
is separately linked into the AUD environment to make this information
globally accessible. Callable Mannequin does retain the microcode-assist
feature.

AUD Debugger. The AUD debugger is a modified version of DEBUG-32, the
user-mode debug utility on the OpenVMS VAX operating system. The AUD
debugger provides most of the same features of DEBUG-32. A configuration
option allows the DEBUG-32 utility to use an internal, low-level remote
debugger interface to interface with a foreign target. (This capability
was originally developed for use in other products such as VAXELN Ada.)
We developed new code to join DEBUG-32 and Mannequin using this interface.
As a result, the AUD debugger works directly with VAX code, in the usual
manner, and works with Alpha AXP code by passing commands to the Callable
Mannequin simulator to set breakpoints, examine instructions, execute code,
etc.

AUD Linker. The AUD linker is a variant of the Alpha AXP cross linker
that reads Alpha AXP object modules as input and produces an OpenVMS VAX
format image as output. The standard VAX linker can therefore reference
locations in the Alpha AXP image in the normal way, and the standard
OpenVMS image activator can be used to load the Alpha AXP image for
execution. However, to minimize complexity, we did constrain the Alpha
AXP image to be linked as an absolute image (i.e., a based image, in

OpenVMS jargon). This restriction eliminated the problem of how to relocate
Alpha AXP instructions using the OpenVMS image activator. As mentioned
previously, the Alpha AXP image also includes a global storage area to hold
the simulated Alpha AXP machine state.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 7

 Using Simulation to Develop and Port Software

Alpha AXP Native Services. Alpha AXP native services is a special operating
system shell, part of which executes as Alpha AXP code (under simulation)
and part of which is included in the AUD jacketing services. The native
services provide the lowest-level support for hardware exception handling
and the OpenVMS condition-handling facility. While AUD ultimately supported
frame-based condition handling within the Alpha AXP image, interoperation
of application exceptions between the Alpha AXP and VAX domains was not
supported.

VAX Jacketing Services. VAX jacketing services is VAX code that supports
the ability to write jackets that pass control back and forth between VAX
and Alpha AXP code. The mechanics for accomplishing this are discussed in
the Jacketing section.

AUD Linkage Analyzer. The ALA is a specialized compiler that reads a
specialized jacket description language. This language describes how calls
in one domain are to be transformed into calls in the other domain on
a routine-by-routine, parameter-by-parameter basis. The output from the
ALA is an Alpha AXP object module and a linker options control file, both
used to link the Alpha AXP image, and a VAX object module. The Alpha AXP
object module provides a transfer vector into the Alpha AXP procedures.
The linker options control file provides symbol definitions in an encoded
form to manage calls from the Alpha AXP image to the main VAX image, which
is linked later. The VAX object module contains a table that encodes the
jacketing description.

Selected VAX Jackets. Selected VAX jackets are ALA jacketing files (in both
source and compiled forms) for calling common VAX facilities from Alpha
AXP code. Jackets are provided for OpenVMS system services, the C run-time
library, and some parts of the general-purpose, run-time library (LIBRTL).
The DECwindows group also supplied jacket definition files for use by other
groups. AUD users are able to supplement these files as needed by creating
and compiling their own jacketing descriptions for other VAX facilities.

Figure 3 shows the main steps in building an AUD environment. The uppermost
sequence shows the compilation and linking of the Alpha AXP components,
which results in the creation of the Alpha AXP image. The central sequence
shows the compilation of the jacket descriptions, which results in the
creation of components that are included in both the Alpha AXP and the VAX
images. The lower rows of Figure 3 show the compilation of the VAX part
of an application and its linking with the AUD manager to create the VAX
main image. When the mixed VAX and Alpha AXP application is executed, these
images are combined in memory with Callable Mannequin, the AUD debugger,
and other shareable images. This relationship is illustrated in Figure 4.

8 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Using Simulation to Develop and Port Software

Jacketing

Jacketing is the key feature that allows VAX and Alpha AXP
interoperability, i.e., gives a processor the appearance of being able
to execute both VAX and Alpha AXP instructions. Although the details of
jacketing are intricate, the result is simple and elegant. Calls can be
made freely back and forth between VAX compiled code and Alpha AXP compiled
code, without any special compilation modes on either side. The AUD support
is fully recursive and reentrant.

Static calls from VAX to Alpha AXP code are directed to dummy entry points
in the object module produced by the ALA compiler. Each entry point is
simply an instruction that loads a pointer to the jacketing description
table for the target Alpha AXP procedure, followed by a transfer into
common jacket interpretation code.

Calls from Alpha AXP code to VAX code use the fact that the Callable
Mannequin component stops and returns control to the AUD environment
when it detects an instruction that transfers control out of the Alpha AXP
image. In this case, the apparent address is an encoded integer (created
by the ALA), whose high four bits make it look like an illegal address (in
the VAX reserved S1 space) and whose remaining bits are a two-level index
(i.e., 12 bits of facility code and 16 bits of offset) into the jacket
description table for the target VAX procedure. This two-level scheme was
chosen to allow jacket descriptions for different shared library facilities
to be prepared and compiled independently. The facility code is a number
normally already associated with that facility by software convention for
other purposes.

When a routine is called using a dynamically determined address, such as
an address given in a function variable, a property of the VAX and Alpha
AXP architectures is exploited to determine dynamically whether the target
routine is a VAX routine or an Alpha AXP routine. According to the VAX
architecture, the first 16 bits of a routine comprise a mask that encodes
the registers to be preserved as part of the call. Bits 12 and 13 of this
mask are unused and required to be 0; if one of these bits is set at the
time of a call, then a hardware exception results. According to the OpenVMS
AXP software architecture, an Alpha AXP procedure address is actually the
address of a procedure descriptor, which is a data structure and not the
actual Alpha AXP code. By design, bits 12 and 13 of this data structure
must be set to 1.

VAX execution of a VAX CALL instruction that attempts to transfer to an
Alpha AXP procedure results in an exception. A special AUD exception
handler intercepts the exception, determines if the illegal entry mask
is caused by a reference into an Alpha AXP image, and if so, calls into
the AUD jacketing routines to reformat the call frame. This mechanism also

works for handling asynchronous system traps (ASTs) from the OpenVMS VAX
operating system to Alpha AXP code.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 9

 Using Simulation to Develop and Port Software

For computed calls from Alpha AXP code, compiled code calls an Alpha
AXP run-time library routine to perform the comparable bit 13 test
(under simulation). If bit 13 of the target location is set to 1, then
simulated execution continues and an Alpha-to-Alpha call is carried out.
Otherwise, control transfers to a special VAX code entry point in AUD,
which terminates simulation and performs jacketing back to the VAX target
procedure.

Basic Operation

To start executing a mixed application, the AUD environment first performs
several initialization steps. In particular, AUD scans all the images
loaded in process memory to identify the Alpha AXP image (only one was
allowed and supported).

Some AUD options are set through the use of OpenVMS logical names, which
are interrogated during image initialization. These options include

o Selecting Alpha AXP stack size

o Enabling delivery of ASTs to Alpha AXP routines

o Disabling the normal Alpha AXP stack consistency checks

o Disabling unaligned memory reference messages

o Enabling AUD initialization tracing

o Disabling integer overflow checking

Debugging combined VAX and Alpha AXP code under the AUD environment is
similar to debugging normal VAX code under the DEBUG-32 OpenVMS debugger.
Basically, if the address involved in a debug command is within an Alpha
AXP image, then the debugger calls the Mannequin simulator to perform the
command for the Alpha AXP code. Otherwise, the DEBUG-32 debugger itself
performs the command for the VAX code, as usual. Alpha AXP machine state is
kept in static global storage by Mannequin and thus is visible to the AUD
debugger.

In the DEBUG symbol table (DST) representation, variables that are
allocated in the Alpha AXP registers are described as being allocated
in the corresponding global state locations. This "trick" allowed AUD to
handle the 64 Alpha AXP registers using the VAX DST representation, which
can encode only the 16 VAX registers.

Once simulation begins, Mannequin continues to simulate Alpha AXP
instructions until it either detects an instruction that would transfer

control outside of the Alpha AXP image, completes a single-step request,
or detects an error condition. Upon returning to the AUD environment,
Mannequin supplies status information that indicates the reason simulation
ended.

10 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Using Simulation to Develop and Port Software

For a transfer of control from Alpha AXP to VAX code, AUD must first
determine whether the transfer is a return from Alpha AXP code as a result
of a prior VAX call or a new call from Alpha AXP code to VAX code. AUD is
fully reentrant, so AUD cannot make this determination from global state.
If the target address is a distinguished address that AUD supplies when it
sets up a VAX-to-Alpha call (i.e., an address in the reserved S1 part of
the VAX address space), the address is interpreted as a return transfer.
Otherwise, AUD initiates a new Alpha-to-VAX call.

For a return operation, the AUD code copies the return value or values from
the Alpha AXP registers and passes them back to the VAX code. A VAX return
instruction is then executed to resume execution of the calling VAX code.

For a call operation, the VAX code fetches the Alpha AXP parameters and
builds a VAX argument list, which is then used to call the target VAX
routine. When the VAX routine returns, the contents of the result registers
are copied to the corresponding Alpha AXP machine state locations, and
Mannequin is restarted to resume executing Alpha AXP code.

Despite some limitations (e.g., only one Alpha image and no exception
handling across the VAX to Alpha AXP domains), AUD greatly aided the
OpenVMS AXP porting effort. The simulator provided software groups with
a pseudo-Alpha AXP environment in which to debug their Alpha AXP code,
well before either Alpha AXP hardware or the OpenVMS AXP operating system
was available. Many OpenVMS AXP groups successfully used AUD to facilitate
their porting, including the Record Management Services (RMS), DECwindows,
Forms Management System (FMS), various OpenVMS command utilities, text
processing utility (TPU), DEBUG, and GEM compiler back-end groups.

4 The AUDI Facility

The VAX Environment Software Translator (VEST) is an important part of the
initial OpenVMS AXP offering.[5] VEST translates an OpenVMS VAX executable
or shareable image into an OpenVMS AXP image that can then be executed with
support on an OpenVMS AXP system. As for other user-mode layer software
components, it was desirable to test VEST and images translated by VEST
as early as possible in a simulation environment such as AUD. However, AUD
could not be used directly to test translated images for two reasons:

o VEST directly creates an Alpha AXP image. In effect, VEST is a combined
 compiler and linker. Thus, the symbol mapping protocols used by AUD were
 extraneous, and the linking protocols had to be completely replaced.

o Actual execution of a translated image on an OpenVMS AXP system
 makes use of the Translated Image Environment (TIE).[5] The TIE is
 a shareable library that contains support routines for translated
 images. In particular, TIE provides support for VAX complex instruction

 processing, VAX-to-Alpha address mapping, and OpenVMS VAX exception
 handling. Creating a VAX version of the TIE to use with AUD required
 intimate interfaces with the OpenVMS VAX operating system as well as
 compatibility with AUD.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 11

 Using Simulation to Develop and Port Software

Thus, the need to debug translated images led to the creation of the Alpha
User-mode Debugging Environment for Translated Images (AUDI). Just as
Callable Mannequin provided a key building block for AUD, AUD in turn
provided a key building block for AUDI. Alpha AXP software teams and
porting centers used AUDI to port both Digital and third-party translated
applications prior to the arrival of Alpha AXP hardware. The porting
process was as follows: a VAX application was translated to Alpha AXP code
by means of the VEST translator; this code was then run on a VAX system
using the AUDI simulator.

The AUDI process components shown in Figure 5 include the

o Callable Mannequin Alpha simulator

o AUD debugger

o VAX version of the TIE

o Translated VAX code (Alpha AXP code)

12 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Using Simulation to Develop and Port Software

AUDI Environment

Emulated VAX state in AUDI is maintained in a global context block.
Emulated VAX registers R0 through R14 are used exactly as their VAX
counterparts. The correspondence between a translated and equivalent VAX
program counter (PC) is not directly available during execution, since
translated code occupies different address space than the original VAX
code. Thus, register R15 is used instead as an in-image index register.

The user-mode VAX stack is split into a VAX stack and an Alpha and emulated
VAX stack. The VAX stack services both the AUDI environment and any VAX
system services or run-time library routines that the translated image may
call. The Alpha and emulated VAX stack services Alpha AXP and translated
code.

Translated images contain calls to the TIE as necessary to simulate VAX
complex instructions and procedure calls. Complex instruction routines
are used to simulate VAX instructions that would otherwise expand into
excessive Alpha AXP code. However, since AUDI is running on VAX hardware,
complex instructions can be executed native on the VAX hardware.

To initialize the AUDI environment, the translated image calls an
initialization routine in the TIE by means of an initialization program
section (PSECT). This routine determines the address range of the Alpha
AXP code and the location of the VAX-to-Alpha address mapping structure,
saves the current Alpha AXP register state, and calls Mannequin to begin
executing translated code at the appropriate entry point. Translated code
uses the address mapping structure to find computed branch destinations
on the fly. Callable Mannequin then executes translated code until it
encounters some instruction that would transfer control out of translated
code. The cause of this transfer would be either a TIE-based procedure or
complex instruction call, or calls to native VAX routines.

Like AUD, AUDI allows interoperation between translated VAX code (Alpha AXP
code) and VAX code. Translated code can use existing VAX system services
and run-time libraries. AUDI does not use the jacketing language described
in the section The AUD Facility. Instead, AUDI automatically jackets
procedure calls between the translated VAX code and the native VAX code.
Autojacketing includes building proper parameter lists and call frames for
the destination calling standard.

The fact that AUDI does not use a jacketing language leads to some
procedure call limitations. However, note that these limitations do not
appear when running translated code on actual Alpha AXP hardware. For
incoming calls (VAX code to translated VAX code), all AST delivery and
condition handlers execute as VAX code rather than as translated VAX
code. Thus, translated programs may not function properly. For outgoing

calls (translated VAX code to VAX code), routines in which a callee
modifies its caller's stack frame argument list or return address may
produce unpredictablte results, since the autojacketing may be altered
or disconnected.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 13

 Using Simulation to Develop and Port Software

AUDI Example

Figure 6 shows the execution of a translated image under AUDI. Note that
both the BASIC image (HELLO_WORLD) and the BASIC run-time library (BASRTL)
are translated. Run-time libraries that are used by the AUDI environment
cannot be translated under AUDI. Translating run-time libraries that
AUDI itself uses causes a "circularity in activation" and incorrect or
no execution.

In the HELLO_WORLD example, there are 28 calls to VAX routines, most likely
those to LIBRTL and OpenVMS system services. There are 21 unique CALLx
contexts and 7 reused ones. In addition, the example uses four different
complex instructions.

14 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Using Simulation to Develop and Port Software

5 Summary

The software simulators Mannequin, ISP, AUD, and AUDI greatly aided Alpha
AXP software porting and development efforts. Substantial parts of both
system and application software were simulated and verified concurrently
with hardware development. When Alpha AXP hardware became available, most
software could be plugged in simply and ran exactly as expected. The use
of these simulation tools saved a year or more from the overall Alpha AXP
schedule.

6 Acknowledgments

Many people throughout Digital contributed to the success of the Alpha
AXP simulators. Homayoon Akhiani, Ray Lanza, Stephan Meier, Steve Morris,
Andrew Payne, and Jon Reeves worked on the ISP model. George Darcy, Mark
Herdeg, Kevin Koch, Eric Rasmussen, and Scott Robinson contributed to the
Mannequin simulator. The AUD effort included several groups from across
Digital. Their primary contributors were Walter Arbo, Ronald Brender,
Henry Grieb, Mark Herdeg, Michael Iles, James Johnson, Robert Landau,
Maurice Marks, Dennis Murphy, Scott Robinson, Larry Woodman, and James
Wooldridge. Finally, much of the AUDI information in this article is
taken from work originally done by Scott Robinson. Other AUDI contributors
include George Darcy, Mark Herdeg, Matthew Kirk, Naghmeh Mirghafori, and
Murari Srinivasan.

7 References

1. R. Sites, ed., Alpha Architecture Reference Manual (Burlington, MA:
 Digital Press, 1992).

2. C. Thacker, D. Conroy, and L. Stewart, "The Alpha Demonstration Unit:
 A High-performance Multiprocessor for Software and Chip Development,"
 Digital Technical Journal, vol. 4, no. 4 (1992, this issue): 51-65.

3. OpenVMS Delta/XDelta Utility Manual (Maynard: Digital Equipment
 Corporation, Order No. AA-PQYPA-TK, 1992).

4. S. Mishra, "The VAX 8800 Microarchitecture," Digital Technical Journal,
 vol. 1, no. 4 (February 1987): 20-33.

5. R. Sites, A. Chernoff, M. Kirk, M. Marks, and S. Robinson, "Binary
 Translation," Digital Technical Journal, vol. 4, no. 4 (1992, this
 issue): 137-152.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 15

 Using Simulation to Develop and Port Software

8 Trademarks

The following are trademarks of Digital Equipment Corporation:

Alpha AXP, AXP, DEC, DECchip 21064, DECstation, DECwindows, Digital,
OpenVMS, OpenVMS AXP, OpenVMS VAX, DEC Rdb for OpenVMS, ULTRIX, VAX, VAX
8800, DECstation, and DECwindows.

The following are third-party trademarks:

OSF/1 is a registered trademark of Open Software Foundation, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

9 Biographies

George A. Darcy III As a senior software engineer in the Alpha Migration
Tools Group, George Darcy has worked on the Mannequin Alpha AXP simulator,
the VEST binary translator, and the Translated Image Environment (TIE) run-
time library. In his ten years at Digital, he has also developed a virtual
disk driver for the OpenVMS V5.0 SMP operating system, software behavioral
models of a high-end VAX processor, and various simulation and CAD software
tools. George received a B.S.C.E. (cum laude, 1984) from Boston University,
where he was an Engineering Merit Scholar and a member of Tau Beta Pi.

Ronald F. Brender Ron Brender is a senior consultant software engineer,
contributing to the GEM compiler back-end project in the Software
Development Technologies Group. He has worked on compilers and programming
language definition for Alpha AXP, VAX, PDP-11, and PDP-10 systems,
including Ada, FORTRAN and BLISS. A member of various standards committees
since the mid-1970s, Ron is now responsible for VAX and Alpha AXP calling
standards. He joined Digital in 1970, after receiving a Ph.D. in computer
and communication sciences at the University of Michigan.

Stephen J. Morris Stephen Morris is a consultant software engineer in
the Semiconductor Engineering Advanced Development Group. In addition
to writing the Alpha ISP simulator, he wrote the OpenVMS and OSF PALcode
for the Alpha AXP program. In previous work, Stephen designed the control
sections of the instruction prefetch and translation look-aside buffer
for an experimental Digital RISC chip. He also worked on the MicroVAX chip
team, doing console and debug work, and in the RSTS/E operating system
group. Stephen joined Digital after receiving a B.A. in biology from the
University of Rochester in 1977.

Michael V. Iles Michael Iles is a senior technology consultant at the UK
Alpha AXP Migration Centre. Since joining Digital in 1975, Mike has worked
in various field positions, in Advanced VAX development as a microcoder,

and for VMS engineering as a software engineer. He worked on the migration
of OpenVMS VAX to the Alpha AXP platform, designing and implementing a
user-mode simulation environment that became AUD. Mike has a B.Sc. in
electrical engineering (honors, 1973) from City University, London, and

16 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Using Simulation to Develop and Port Software

holds a patent for digital speech synthesis techniques. He has several
patents pending for AUD.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 17
===
Copyright 1992 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

