

 Binary Translation

1 Abstract

 Binary translation is a technique used to change an executable program
for one computer architecture and operating system into an executable
program for a different computer architecture and operating system. Two
binary translators are among the migration tools available for Alpha AXP
computers: VEST translates OpenVMS VAX binary images to OpenVMS AXP images;
mx translates ULTRIX MIPS images to DEC OSF/1 AXP images. In both cases,
translated code usually runs on Alpha AXP computers as fast or faster
than the original code runs on the original architecture. In contrast to
other migration efforts in the industry, the VAX translator reproduces
subtle CISC behavior on a RISC machine, and both open-ended translators
provide good performance on dynamically modified programs. Alpha AXP binary
translators are important migration tools - hundreds of translated OpenVMS
VAX and ULTRIX MIPS images currently run on Alpha AXP systems.

When Digital started to design the Alpha AXP architecture in the fall
of 1988, the Alpha AXP team was concerned about how to run existing VAX
code and soon-to-exist MIPS code on the new Alpha AXP computers.[1,2]
To take full advantage of the performance capability of a new computer
architecture, an application must be ported by rebuilding, using native
compilers. For a single program written in a standard programming language,
this is a matter of recompile and run. A complex software application,
however, can be built from hundreds of source pieces using dozens of tools.
A native port of such an application is possible only when all parts of the
build path are running on the new architecture.

Therefore, devising a way to run an existing (old architecture) binary
version of a complex application on a new architecture is an important
interim measure. Such a technique allows a user to get applications up and
running immediately, with minimal porting effort. Once a user's everyday
environment is established, applications can be rebuilt over time, using
hand-written native code or partially native and partially old code.

2 Background

Several techniques are used in the industry to run the binary code of
an old architecture on a new architecture. Figure 1 shows four common
techniques, from slowest to fastest:

o Software interpreter (e.g., Insignia Solutions' SoftPC)

o Microcoded emulator (e.g., PDP-11 compatibility mode in early VAX
 computers)

o Binary translator (e.g., Hunter System's XDOS)

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 1

 Binary Translation

o Native compiler

A software interpreter is a program that reads instructions of the
old architecture one at a time, performing each operation in turn on a
software-maintained version of the old architecture's state. Interpreters
are not very fast, but they run on a wide variety of machines and can
faithfully reproduce the behavior of self-modifying programs, programs
that branch to data, programs that branch to a checksum of themselves, etc.
Caching interpreters gain speed by retaining predecoded forms of previously
interpreted instructions.

A microcoded emulator operates similarly to a software interpreter but
usually with some key hardware assists to decode the old instructions
quickly and to hold hardware state information in registers of the
micromachine. An emulator is typically faster than an interpreter but can
run only on a specific microcoded new machine. This technique cannot be
used to run existing code on a reduced instruction set computer (RISC)
machine, since RISC architectures do not have a microcoded hardware layer
underlying the visible machine architecture.

A translated binary program is a sequence of new-architecture instructions
that reproduce the behavior of an old-architecture program. Typically,
much of the state information of the old machine is kept in registers
in the new machine. Translated code faithfully reproduces the calling
standard, implicit state, instruction side effects, branching flow, and
other artifacts of the old machine. Translated programs can be much faster
than interpreters or emulators, but slower than native-compiled programs.

Translators can be classified as either (1) bounded translation systems,
in which all the instructions of the old program must exist at translate
time and must be found and translated to new instructions,[3,4,5] or (2)
open-ended translation systems, in which code may also be discovered,
created, or modified at execution time. Bounded systems usually require
manual intervention to find 100 percent of the code; open-ended systems can
be fully automatic.

To run existing VAX and MIPS programs, an open-ended system is absolutely
necessary. For example, some customer programs write license-check code
(VAX instructions) to memory, and branch to that code. A bounded system
fails on such programs.

A native-compiled program is a sequence of new-architecture instructions
produced by recompiling the program. Native-compiled programs usually use
newer, faster calling conventions than old programs. With a well-tuned
optimizing compiler, native-compiled programs can be substantially faster
than any of the other choices.

Most large programs are not self-contained; they call library routines,
windowing services, databases, and toolkits, for example. These programs
also directly or indirectly invoke operating system services. In simple
environments with a single dominant library, it can be sufficient to
rewrite that library in native code and to interpret user programs,

2 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Binary Translation

particularly user programs that actually spend most of their time in
the library. This strategy is commonly used to run Windows and Macintosh
programs under the UNIX operating system.

In more robust environments, it is not practical to rewrite all the shared
libraries by hand; collections of dozens or even hundreds of images (such
as typical VAX ALL-IN-1 systems) must be run in the old environment, with
an occasional excursion into the native operating system. Over time, it is
desirable to rebuild some images using a native compiler while retaining
other images as translated code, and to achieve interoperability between
these old and new images. The interface between an old environment and a
new one typically consists of "jacket" routines that receive a call using
old conventions and data structures, reformat the parameters, perform a
native call using new conventions and data structures, reformat the result,
and return.

The Alpha AXP Migration Tools team considered running old VAX binary
programs on Alpha AXP computers using a simple software interpreter,
but rejected this method because the performance would be too slow to
be useful. We also rejected the idea of using some form of microcoded
emulator. This technique would compromise the performance of a native Alpha
AXP implementation, and VAX compatibility would be nearly impossible to
achieve without microcode, which is inconsistent with a high-speed RISC
design.

We therefore turned to open-ended binary translation. We were aware of the
earlier Hewlett-Packard binary translator, but its single-image HP 3000
input code looked much simpler to translate than large collections of hand-
coded VAX assembly language programs.[6] One member of the team (R. Sites)
wrote a VAX-to-VAX binary translator in October 1988 as proof-of-concept.
The concept looked feasible, so we set the following ambitious product
goals:

1. Open-ended (completely automatic) translation of almost all user-mode
 applications from the OpenVMS VAX system to the OpenVMS AXP system

2. Open-ended translation of almost all user-mode applications from the
 ULTRIX system to the DEC OSF/1 system

3. Run-time performance of translated code on Alpha AXP computers that
 meets or exceeds the performance of the original code on the original
 architecture

4. Optional reproduction of subtle old-architecture details, at the
 cost of run-time performance, e.g., complex instruction set computer
 (CISC) instruction atomicity for multithreaded applications and exact
 arithmetic traps for sophisticated error handlers

5. If translation is not possible, generation of explicit messages that
 give reasons and specify what source changes are necessary

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 3

 Binary Translation

While we were creating the VAX translator, we discovered that the process
of building flow graphs of the code and tracking data dependencies
yielded information about source code bugs, performance bottlenecks, and
dependencies on features not available in all Alpha AXP operating systems.
This analysis information could be valuable to a source code maintainer.
Thus, we added one more product goal:

6. Optional source analysis information

To achieve these goals, the Alpha AXP Migration Tools team created two
binary translators: VEST, which translates OpenVMS VAX binary images to
OpenVMS AXP images, and mx, which translates ULTRIX MIPS images to DEC
OSF/1 AXP images. However, binary translation is only half the migration
process. As shown in Figure 2, the other half is to build a run-time
environment in which to execute the translated code. This second half
of the process must bridge any differences between old and new operating
systems, calling standards, exception handling, etc. For open-ended
translation, this part of the process must also include a way to run old
code that was not discovered (or did not exist) at translate time. The
translated image environment (TIE) and mxr run-time environment support
the VEST and mx translators, respectively, by reproducing the old operating
environments. Each environment supports open-ended translation by including
a fallback interpreter of old code, and extensive run-time feedback to
avoid using the interpreter except for dynamically created code. Our design
philosophy is to do everything feasible to stay out of the interpreter,
rather than to increase the speed of the interpreter. This approach
gives better performance over a wider range of programs than using pure
interpreters or bounded translation systems.

The reminder of this paper discusses the two binary translator/run-time
environment pairs available for Alpha AXP computers: VEST/TIE and mx/mxr.
To establish a basis for the discussion, the reader must understand the
following terms: datum, alignment, instruction atomicity, granularity,
interlocked update, and word tearing. Definitions of these terms appear in
the References and Note section.[7]

3 VEST: Translating a VAX Image

Translating a VAX image involves two main steps: analyzing VAX code and
generating Alpha AXP code. The translated images produced are OpenVMS AXP
images and may be run just like native images.[8] Translated images run
with the assistance of the translated image environment, which is discussed
later in this paper. The VEST binary translator is written in C++ and runs
on VAX, MIPS, and Alpha AXP machines. The TIE is written in the OpenVMS
system programming languages, BLISS and Alpha assembler.

4 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Binary Translation

Analysis

To locate VAX code, VEST starts disassembling code at known entry points
and recursively traces the program's flow of control. Entry points come
from main and global routines, debug symbol table entries, and optional
information files (including run-time feedback from the TIE).

As VEST traces the program, it builds a flow graph that consists of basic
blocks (i.e., straight-line code sequences) annotated with information
derived from parsing instructions. VEST then performs several analyses
on the flow graph to propagate context information to each basic block
and eliminate unnecessary operations. Context information includes
condition code usage, register contents, stack depth, and a variety of
other information that allows VEST to generate optimized code.

Analysis is important for achieving good performance. For example, no
condition codes exist in the Alpha AXP architecture. Without analysis it
would be necessary to compute condition codes for each VAX instruction
even if the codes were not used. Furthermore, several forms of analysis
were invented to allow correct translation. For example, VEST automatically
determines if a subroutine does a normal return.

Code analysis can detect many problems, including some that indicate latent
bugs in the source image. VEST can detect, for example, uninitialized
variables, improperly formed VAX CASE instructions, stack depth mismatches
along two different paths to the same code (the program expects data to be
at a certain stack depth), improperly formed returns from subroutines, and
modifications to a VAX call frame. A latent bug in the source image should
be fixed, since the translated image may demonstrate incorrect behavior due
to that bug.

Analysis also detects the use of unsupported OpenVMS features including
unsupported system services. The source image must be modified to eliminate
the use of these features.

Some problems reported by VEST result from code that is hackish in nature.
For example, we found code that expects a call mask at an entry point to be
executed as a no-op instruction so that the code preceding the subroutine
can simply execute the call mask, rather than go through the overhead
of a VAX jump (JMP) instruction. VEST reproduces the behavior of the VAX
program, even if this behavior is a result of luck.

A VEST-generated flow graph is displayed in Figure 3. Dashed lines
represent code paths followed if a conditional branch is taken. Solid lines
indicate fall-through paths. A problem is highlighted by a wide, dashed
pointer whose bottom end indicates the basic block in which the problem
was uncovered. Full blocks show the path that reveals the error; empty

blocks show basic blocks that are not in the error path. In Figure 3, a
path exists by which register 3 (R3) may be used without being set if the
VAX BNEQ (branch if the register does not equal zero) instruction in the
second basic block is true the first time through the code sequence.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 5

 Binary Translation

 NOTE

 Figure 3 (VEST-generated Flow Graph Showing Uninitialized Variable)
 is unavailable.

Code Generation

The VEST translator generates code by converting each VAX instruction
into zero or more Alpha AXP instructions. The architecture mapping is
straightforward because there are more Alpha AXP registers than VAX
registers. The VAX architecture has only 15 registers, which are used for
both floating-point and integer operations. The Alpha AXP architecture
has separate integer and floating-point registers. VAX R0 through R14
are mapped to Alpha AXP R0 through R14 for all operations except floating
point. R12, R13, and R14 retain their VAX designations as argument pointer,
frame pointer, and stack pointer, and R15 is used to resolve PC-relative
references. Floating-point operations are mapped to F0 through F14.

The VAX architecture has condition codes that may be referenced explicitly.
In translated images, condition codes are mapped into R22 and R23. Similar
to the HP 3000 translator, R23 is used as a fast condition code register
for positive/negative/zero results.[6] R22 contains all four condition
code bits and is calculated only when necessary. All remaining Alpha AXP
registers are used as scratch registers or for OpenVMS AXP standard calls.

VEST connects simple branches directly to their translated targets. VEST
performs backward symbolic execution of VAX instructions to resolve as many
computed branch targets as feasible. If more than one possible computed
target exists, a run-time lookup is done on the VAX target address. If
the lookup fails to find a translated target, a fallback VAX interpreter
is used, as described in the TIE section Failure to Find All Code during
Translation. Unlike bounded translation systems, which must achieve 100
percent resolution of computed targets, the VEST and mx binary translators
require no manual intervention.

Translated Images

A translated image has the same format as an OpenVMS AXP image and contains
the original OpenVMS VAX image as well as the Alpha AXP instructions that
were generated for the VAX code. The run-time VAX interpreter TIE needs the
original VAX instructions as a fallback. (Also, some error handlers look up
the call stack for pointers to specific VAX instructions.) The addresses of
statically allocated data in the translated image are identical to their
VAX addresses. The image contains a VAX-to-Alpha AXP address mapping table
for use during lookups and may contain an instruction atomicity table,
described in the VAX Instruction Guarantees section.

Translated images use the OpenVMS VAX calling standard. Native images use
different conventions, but translated images interoperate with native or
translated shareable images. Automatic jacketing services are provided in
the TIE to convert calls using one set of conventions into the other. In
many cases, jacketing services permit substitution of a native shareable

6 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Binary Translation

image for a translated shareable image without modification. However, a
jacket routine is sometimes required. For example, on OpenVMS AXP systems,
the translated FORTRAN run-time library, FORRTL_TV, invokes the native
Alpha AXP library DEC$FORRTL for I/O-related subroutine calls. DEC$FORRTL
has a different interface than FORRTL has on an OpenVMS VAX system. For
these calls, FORRTL_TV contains hand-written jacket routines.

Files Used

Translating an image requires only one file - a VAX executable image.
Several optional files make translation more effective.

1. Image information files (IIFs). VEST automatically creates IIFs to
 provide information about shareable image interfaces. The information
 includes the addresses of entry points, names of routines, and resource
 utilization.

2. Symbol information files (SIFs). VEST automatically generates SIFs
 to control the global symbol table in a translated shared library,
 facilitating interoperation between translated and native images.

3. Hand-edited information files (HIFs). The TIE automatically generates
 HIFs, which may be hand-edited to supply information that VEST cannot
 deduce. HIFs contain directives to tell VEST about undetected entry
 points, to force it to change specific assumptions about an image during
 translation, and to provide known interface properties to be propagated
 into an IIF.

4 VEST Performance Considerations

In evaluating translated code performance, we recognized that there was
a significant trade-off between performance and the accuracy of emulating
the VAX architecture. VEST permits users to select several architectural
assumptions and optimizations, including:

o D-float precision. The Alpha AXP architecture provides hardware support
 for D-float with only 53-bit mantissas, whereas the VAX architecture
 provides 56-bit mantissas. The user may select translation with either
 53-bit hardware support (faster) or 56-bit software support (slower).

o Alignment. Alpha AXP instructions support only naturally aligned
 longword (32-bit) and quadword (64-bit) memory operations. Unaligned
 memory operations cause alignment faults, which are handled
 transparently by software at significant run-time expense. The user
 may direct VEST to assume that data references are unaligned whenever
 alignment information is unavailable.

o Instruction atomicity. Multitasking and multiprocessing programs may
 depend on instruction atomicity and memory operation characteristics
 similar to those of the VAX architecture. VEST uses special code
 sequences to produce exact VAX memory characteristics. VEST and the
 TIE cooperate to ensure VAX instruction atomicity when instructed to

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 7

 Binary Translation

 do so. This mechanism is described in detail in the section Special
 Considerations for Instruction Atomicity.

5 Untranslatable Images

Some characteristics make OpenVMS VAX images untranslatable, including:

o Exception handler issues. Images that depend on examining the VAX
 processor status longword (PSL) during exception handling must be
 modified, because the VAX PSL is not available within exception
 handlers.

o Direct reference to undocumented system services. Some software contains
 references to unsupported and undocumented system services, such as
 an internal-to-VMS service, which parses image symbol tables. VEST
 highlights these references.

o Exact VAX memory management requirements. Images that depend on exact
 VAX memory management behavior do not function properly and must be
 modified. These images include those that depend on VAX page size or
 that expect certain objects to be mapped to particular addresses.

o Image format. Programs that use images as data are not able to read
 OpenVMS AXP images without modifications, because the image formats are
 different.

6 TIE Design Overview

The run-time translated image environment TIE assists in executing
translated OpenVMS VAX images under the OpenVMS AXP operating system.
Figure 4 and Table 1 show the contents of the TIE.

8 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Binary Translation

Table_1:_TIE_Contents__

VAX-to-Alpha AXP Address Used to find computed destinations and
Mapping other cases where VEST did not find the
(VAX State Manager) original VAX code. Each translated image has
 a mapping table included.

VAX Instruction Atomicity Achieves VAX instruction atomicity for
Controller asynchronous events. This allows data
(VAX State Manager) sharing between the single asynchronous
 execution context (AST) provided by OpenVMS
 and non-AST level routines.

VAX Instruction Interpreter Executes VAX instructions not found by VEST.

VAX Complex Instructions Some VAX instructions do not have
 code generated in-line by VEST. Those
 instructions are processed in the TIE.
 Examples are MOVC3 and MOVC5 that move byte
 strings.

OpenVMS VAX Exception Certain aspects of OpenVMS AXP exception
Processing processing are necessarily different from
 OpenVMS VAX. For example, the VAX computers
 have two scratch registers, but Alpha AXP
 computers have 15. Translated condition
 handlers are passed the VAX equivalents.

Routines for Differences Some operating system interfaces were
between OpenVMS VAX and rearchitected. The TIE intervenes to make
OpenVMS_AXP_System_Services____the_differences_transparent.________________

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 9

 Binary Translation

Problems Solved at Run Time

Complications may occur when translated OpenVMS VAX images are run under
the OpenVMS AXP operating system. This section discusses the following
related topics: the failure to find all code during translation, VAX
instruction guarantees, instruction atomicity, memory update, and
preserving VAX exceptions.

Failure to Find All Code during Translation. When the VEST binary
translator encounters a branch or subroutine call to an unknown
destination, VEST generates code to call one of the TIE lookup routines.
The lookup routines map a VAX instruction address to a translated Alpha
AXP code address. If an address mapping exists, then a transfer to the
translated code is performed. Otherwise, the VAX interpreter executes the
destination code. When the VAX interpreter encounters a flow of control
change, it checks for returns to translated code. If the target of the flow
change is translated code, the interpreter exits to this code. Otherwise,
the interpreter continues to interpret the target.

Lookup operations that transfer control to the interpreter also record
the starting VAX code address in an HIF file. The VAX image can then be
retranslated with the HIF information, resulting in an image that runs
faster.

Lookup routines are also used to call native Alpha AXP (nontranslated)
routines. The TIE supplies the required special autojacketing processing
that allows interoperation between translated and native routines with
no manual intervention. At load time, each translated image identifies
itself to the TIE and supplies a mapping table used by the lookup routines.
The TIE maintains a cache of translations to speed up the actual lookup
processing.

Every translated image contains both the original VAX code and the
corresponding Alpha AXP code. When a translated image identifies itself,
the TIE marks its original VAX addresses with the page protection called
fault on execute (FOE). An Alpha AXP processor that attempts to execute an
instruction on one of these pages generates an access violation fault.
This fault is processed by a TIE condition handler to convert the FOE
page protection into an appropriate destination address lookup operation.
For example, the FOE might occur when a translated routine returns to
its caller. If the caller was interpreted, then its return address is a
VAX code address instead of a translated VAX (Alpha AXP code) address.
The Alpha AXP processor attempts to execute the VAX code and generates a
FOE condition. The TIE condition handler converts this into a JMP lookup
operation.

 VAX Instruction Guarantees. Instruction guarantees are characteristics of

a computer architecture that are inherent to instructions executed on that
architecture. For example, on a VAX computer, if instruction 1 writes data
to memory and then instruction 2 writes data to memory, a second processor
must not see the write from instruction 2 before the write from instruction
1. This property is called strict read-write ordering.

10 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Binary Translation

The VEST/TIE pair can provide the illusion that a single CISC instruction
is executed in its entirety, even though the underlying translation is
a series of RISC instructions. VEST/TIE can also provide the illusion of
two processors updating adjacent memory bytes without interference, even
though the underlying RISC instructions manipulate four or eight bytes at
a time. Finally, VEST/TIE can provide exact memory read-write ordering and
arithmetic exceptions, e.g., overflow. All these provisions are optional
and require extra execution time.

Tables 2 and 3 show the visibility differences between various guarantees
on VAX and Alpha AXP systems as well as for translated VAX programs.

 Special Considerations for Instruction Atomicity. The VAX architecture
requires that interrupted instructions complete or appear never to have
started. Since translation is a process of converting one VAX instruction
to potentially many Alpha AXP instructions, run-time processing must
achieve this guarantee of instruction atomicity. Hence, a VAX instruction
atomicity controller (IAC) was created to manipulate Alpha AXP state to
an equivalent VAX state. When a translated asynchronous event processing
routine is called, the IAC is invoked. The IAC examines the Alpha AXP
instruction stream and either backs up the interrupted program counter
to restart at the equivalent VAX instruction boundary or executes the
remaining instructions to the next boundary. Many VAX programs do not
require this guarantee to operate correctly, so VEST emits code that is VAX
instruction atomic only if the qualifier /PRESERVE=INSTRUCTION_ATOMICITY is
specified when translating an image.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 11

 Binary Translation

Table_2:_Single_Processor_Guarantees_______________________________________

 Single Processor Guarantees Characterized by What an Observer
 Sees on the Same Processor That Executes the Data Change

Topic VAX Translated VAX Native
 Alpha AXP

Instruction An entire VAX An entire translated A single
Atomicity instruction VAX instruction with Alpha AXP
 /PRESERVE=INSTRUCTION instruction
 _ATOMICITY and TIE's
 instruction
 atomicity controller,
 else a single
___________________________________Alpha_AXP_instruction___________________

Table_3:_Multiple_Processor_Guarantees_____________________________________

 Multiple Processor Guarantees Characterized by What an Observer on a
 Different Processor Sees versus the One Executing the Data Change

Topic VAX Translated VAX Native Alpha
 AXP

Byte Yes, hardware Yes, with Yes, via
Granularity ensures this /PRESERVE=MEMORY LDx_L,
 _ATOMICITY merge,
 STx_C
 sequence

Interlocked Yes, for aligned Yes, for aligned Yes, via
Update datum using datum using LDx_L,
 interlock VAX interlock modify,
 instructions instructions STx_C

 sequence

Word Aligned longword Aligned longword Aligned
Tearing writes change all or quadword writes longword or
 bytes at once change all bytes at quadword
 Other writes are once writes
 allowed to change change all
 one byte at a time bytes at
___once________

12 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Binary Translation

VEST-generated code consists of four sections that are detected by the IAC.
These sections have the following functions:

o Get operands to temporary registers

o Operate on these temporary registers

o Atomically update VAX results that could generate side effects (i.e., an
 exception or interlocked access)

o Perform any updates that cannot generate side effects (e.g., register
 updates)

The VAX interpreter achieves VAX instruction atomicity by using the atomic
move, register to memory (AMOVRM) instruction. The AMOVRM instruction
is implemented in privileged architecture library (PAL) subroutines and
updates a contiguous region of memory containing VAX state without being
interrupted. At the beginning of each interpreted VAX instruction, a read
and set flag (RS) instruction sets a flag that is cleared when an interrupt
occurs on the processor. AMOVRM tests the flag, and if set, performs
the update and returns a success indication. If the flag is clear, the
AMOVRM instruction indicates failure, and the interpreter reprocesses the
interrupted instruction.

 Issues with Changing Memory. VAX instruction atomicity ensures that
an arithmetic instruction does not have any partially updated memory
locations, as viewed from the processor on which that instruction is
executed. In a multiprocessing environment, inspection from another
processor could result in a perception of partial results.

Since an Alpha AXP processor accesses memory only in aligned longwords or
quadwords, it is therefore not byte granular. To achieve byte granularity,
VEST generates a load-locked/store-conditional code sequence, which
ensures that a memory location is updated as if it were byte granular.
This sequence is also used to ensure interlocked access to shared memory.
Longword-size updates to aligned locations are performed using normal load
/store instructions to ensure longword granularity.

Many multiprocessing VAX programs depend on byte granularity for memory
update. VEST generates byte-granular code if the condition
/PRESERVE=MEMORY_ATOMICITY is specified
when translating an image. In addition, VEST generates strict read-write
ordering code if the qualifier /PRESERVE=READ_WRITE_ORDERING is specified
when translating an image.

 Preserving VAX Exceptions. Alpha AXP instructions do not have the same
exception characteristics as VAX instructions. For instance, an arithmetic

fault is imprecise, i.e., not synchronous with the instruction that caused
it. The Alpha AXP hardware generates an arithmetic fault that gets mapped
into an OpenVMS AXP high-performance arithmetic (HPARITH) exception. To
retain compatibility with VAX condition handlers, the TIE maps HPARITH into
a corresponding VAX exception when calling a translated condition handler.
Most VAX languages do not require precise exceptions. For those that do,

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 13

 Binary Translation

like BASIC, VEST generates the necessary trap barrier (TRAPB) instructions
if /PRESERVE=FLOATING_EXCEPTIONS is specified when translating an image.

OpenVMS AXP and OpenVMS VAX Differences

Functional Differences. Most OpenVMS AXP system services are identical
to their OpenVMS VAX counterparts. Services that depend on a VAX-specific
mechanism are changed for the Alpha AXP architecture. The TIE intervenes in
such system services to ensure the translated code sees the old interface.

For example, the declare change mode handler ($DCLCMH) system service
establishes a handler for VAX change mode to user (CHMU) instructions.
The handler is invoked as if it were an interrupt service routine required
to use the VAX return from interrupt or exception (REI) instruction to
return to the invoker's context. On OpenVMS AXP systems, the handler is
called as a normal procedure. To ensure compatibility, the TIE inserts its
own handler when calling OpenVMS AXP $DCLCMH. When a CHMU is invoked on
Alpha AXP computers, the TIE handler calls the handler of the translated
image, using the same VAX-specific mechanisms that the handler expects.

 Exception Handling. OpenVMS AXP exception processing is almost identical
to that performed in the OpenVMS VAX system. The major difference is that
the VAX mechanism array needs to hold the value of only two temporary
registers, R0 and R1, whereas the Alpha AXP mechanism array needs to hold
the value of 15 temporary registers, R0, R1, and R16 through R28.

 Complex Instructions. Translating some VAX instructions would require
many Alpha AXP instructions. Instead, VEST generates code that calls
a TIE subroutine. Subroutines are implemented in two ways: (1) hand-
written native emulation routines, e.g., MOVC5, and (2) VEST-translated
VAX emulation routines, e.g., POLYH.

Together, VEST and TIE can translate and run most existing user-mode
VAX binary images. As shown in Table 4, performance of translated VAX
programs slightly exceeds the original goal. Performance depends heavily
on the frequency of use of VAX features that are not present in Alpha AXP
machines.

7 ULTRIX MIPS Translation

mx is the translator that converts ULTRIX MIPS programs to DEC OSF/1 AXP
programs. The mx project started after VEST was functional, and we took
advantage of the VEST common code base for much of the analysis and Alpha
AXP code assembly phases of the translator. In fact, about half of the
code in mx is compiled from the same source files as those used for VEST,
with some architectural specifics supplied by differing include files. The
code-sharing aspects of C++ have proven quite valuable in this regard.

mxr is the run-time support system for translated programs. It provides
services similar to TIE, emulating the ULTRIX MIPS environment on a DEC
OSF/1 AXP system. mxr is written in C++, C, and Alpha assembler.

14 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Binary Translation

Challenges

Creating a translator for the MIPS R2000/R3000 architecture presented us
with a host of new opportunities, along with some significant challenges.
The basic structure of the mx translator is much simpler than that of VEST.
Both the source and the target architectures are RISC machines; therefore,
the two instruction sets have a considerable similarity. Many instructions
translate one for one. The MIPS architecture has very few instruction side
effects or subtle architectural details, although those that are present
are particularly tricky. Furthermore, the format of an executable program
under the ULTRIX system collects all code in a single contiguous segment
and makes it easy for mx to reliably find close to 100 percent of the code
in the MIPS application. The system interfaces to the ULTRIX and DEC OSF/1
systems are similar enough that most ULTRIX system calls have functionally
identical counterparts under the DEC OSF/1 system.

The challenges in mx stem from the fact that the source architecture is a
RISC machine. For example, DEC OSF/1 AXP is a 64-bit computing environment,
i.e., all pointers used to communicate with the operating system are 64
bits wide. This environment does not present a problem when the pointer
is passed in a register. However, when a pointer (or a long data item,
such as a file size) is passed in memory, it must be converted between
the 32-bit representation, used by the ULTRIX system, and the 64-bit AXP
representation, even when the semantics of the operating system call are
the same on both systems.

A significant challenge is the fact that our users' expectations for
performance of translated programs are much higher than for VEST. Reasoning
that the source and target machines are similar, users also expect mx to
achieve a translated program performance better than that of the source
program, since Alpha AXP processors are faster. Thus, as our performance
goal, we set out to produce a translated program that runs at about the
same speed as the original program would run on an MIPS R4000 machine with
a 100-megahertz (MHz) internal clock rate.

Mapping the Architectures

At first glance, it appears that we could simply assign each MIPS register
to a corresponding Alpha AXP register, because each machine has 32
general-purpose registers. The translated code would then have two scratch
registers, since the MIPS architecture does not allow user-level programs
to use registers K0 and K1, which are reserved for the operating system
kernel.

Unfortunately, translation requires more than two scratch registers. The
Alpha AXP architecture does not have byte or halfword (16-bit) loads or
stores, and the code sequences for performing these operations require

four or five scratch registers. Furthermore, mx requires a base register
to locate mxr without having to load a 64-bit address constant at each
call. Finally, the MIPS architecture has more than 32 registers, including
the HI and LO registers used by the multiply and divide instructions,

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 15

 Binary Translation

and a floating-point condition register, whose layout and contents do not
correspond to the Alpha AXP floating-point condition register.

In mx, we assign registers using standard compiler techniques. To assign
registers to 33 MIPS resources (the 32 general registers plus one 64-bit
register to hold both HI and LO), certain registers are permanently mapped,
and other MIPS registers are kept in either AXP registers or memory. The
MIPS argument-passing registers A0 through A3 are permanently assigned to
Alpha AXP registers R16 through R19, which are the argument registers in
the DEC OSF/1 AXP calling standard. This correspondence simplifies the work
needed when mxr must take arguments for an ULTRIX system call and pass them
to a DEC OSF/1 system call. Similarly, the argument return registers V0
and V1 are mapped to the Alpha AXP argument return registers R0 and R1. The
return address registers and stack pointer registers of the two machines
are also mapped. MIPS R0 is mapped to Alpha AXP R31, where both registers
contain the same hard-wired zero value. We reserve Alpha AXP registers
R22 through R24 as scratch registers and also use them when interfacing to
mxr. We reserve Alpha AXP R14 as a pointer to an mxr communication area.
Finally, we reserve three more registers as scratch registers for use by
the code generator.

The remaining 16 Alpha AXP registers are available to be assigned to
the remaining 23 MIPS resources. After the code is analyzed and we have
register usage information, the 16 most frequently used MIPS registers get
mapped to the remaining 16 Alpha AXP registers, and the remaining registers
are assigned to memory slots in the mxr communication area. When a MIPS
basic block uses one of the slotted registers, mx assigns it to one of the
scratch registers. If the first reference reads the old contents of the
register, mx generates a load instruction from the communications area.
If the value of the MIPS resource changes in the basic block, the scratch
register is stored in the communication area before the end of the block.
As in most compilers, if we run out of registers, a spill algorithm chooses
a value to save in the communication area and frees up a register.

Alpha AXP integer registers are 64 bits wide, whereas MIPS registers are
only 32 bits wide. We chose to keep all 32-bit values in Alpha AXP integer
registers as sign-extended values, with the high 32 bits equal to bit
31. This approach occasionally requires mx to generate additional code to
create canonical 32-bit integer results, but the 64-bit compare operations
do not need to change the values that they are comparing.

The floating-point architecture is more complex. Each of the 32 MIPS
floating-point registers is 32 bits wide. Only the even registers are
used for single precision, and a double-precision number is kept in an
even-odd register pair. We map each pair of MIPS floating-point registers
onto a single 64-bit Alpha AXP floating-point register. Also, one Alpha
AXP floating-point register represents the condition code bit of the MIPS

floating-point control register. Thus, the mx code generator can use 14
scratch registers. mx goes to considerable effort to find paired loads
and stores in the MIPS code stream, and to merge them into one Alpha AXP
floating-point operation.

16 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Binary Translation

MIPS single-precision operations cause problems with floating-point
correspondence. Since on MIPS machines, the single-precision number is kept
in only the even register of the register pair, the even and odd registers
in a pair are independent when single-precision (or integer) operations are
done in the floating-point unit. On Alpha AXP machines, computation must
be done on a value extended to double format in the whole 64-bit register.
We defined two forms for values in Alpha AXP floating-point registers:
computational form, in which computation is done, and canonical form, which
mimics the MIPS even and odd registers. If a MIPS program loads an even
register and uses this register as a single-precision value, mx loads the
value from memory to be used computationally. If a MIPS program loads only
an even register but does not use this register in the basic block, mx puts
the 32-bit value into half of the Alpha AXP floating-point register. This
permits correct behavior in the pathological case where half of a floating-
point number is loaded in one place, and the other half is loaded in some
other basic block. If a register is used as a single-precision number in
a basic block without first being loaded, the code generator inserts code
to convert it from canonical to computational floating-point form. If a
single-precision value has been computed in a block and is live at the end
of the block, it is converted to canonical form.

mx inserts a register mapping table into the translated program that
indicates which MIPS resources are statically mapped to which Alpha AXP
registers, and which MIPS resources are normally kept in memory. This table
allows mxr to find the MIPS resources at run time.

Finding Code

As with the VEST translator, mx finds code by starting at entry points and
recursively tracing down the flow of control. mx finds entry points using
the executable file header, the symbol table (if present), and feedback
from mxr (if present). Finally, mx performs a linear scan of the entire
text section for unexamined words. mx analyzes any data that looks like
plausible code but does not connect this data into the main flow graph.
Plausible code consists of a series of valid MIPS instructions terminated
by an unconditional transfer of control.

While finding code and connecting the basic blocks into a flow graph, mx
looks for the code sequence that indicates a switch statement, i.e., a
multi-way branch, usually through an element of a table. mx finds the
branch table and connects each of the possible targets as successors of
the branch.

Code Analysis

Our static analysis of hundreds of MIPS programs indicates that only
10 instructions account for about 85 percent of all code. These

instructions are LW, ADDIU, SW, NOP, ADDU, BEQ, JAL, BNE, LUI, and SLL.
The corresponding sequences of Alpha AXP code range from zero operation
codes, or opcodes, (for NOP, since the Alpha AXP architecture does not
require NOPs anywhere in the code stream) to two opcodes (for SLL).

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 17

 Binary Translation

Code analysis for source programs is much more important in mx than in
VEST, because the coding idioms for many common operations differ between
the Alpha AXP and MIPS processors. The simple technique of mapping each
MIPS instruction to a sequence of one or more Alpha AXP instructions loses
much of the context information in the original program.

For example, the idiom used to load a 32-bit constant into a register on
MIPS machines is to generate a load upper immediate (LUI) opcode, placing
a 16-bit constant in the high-order 16 bits of a register. This operation
is followed by an OR immediate (ORI) opcode, logically ORing a 16-bit zero-
extended value into the register. The LUI corresponds exactly to the Alpha
AXP load address high (LDAH) opcode. However, the Alpha AXP architecture
has no way of directly ORing a 16-bit value into a register and cannot
even load a zero-extended 16-bit constant into a register. When the high-
order bit of the 16-bit constant is 1, the shortest translation for the ORI
is three instructions. The mx translator scans the code looking for such
idioms, and generates the optimal two-instruction sequence of Alpha AXP
code that performs the 32-bit load. No opcode exists that corresponds to
the ORI, but the results in the registers are correct.

When we started writing the mx translator, we listed a number of code
possibilities that we thought we would never see. In retrospect, this was
a misguided assumption. For example, we have seen programs that branch
into the delay slot of other instructions, requiring us to indicate that
the delay slot instruction is a member of two different basic blocks -
the block it ends, and the one it starts. We have observed programs that
put software breakpoint (BREAK) instructions in the branch delay slot,
and thus BREAK ends a basic block without being the last instruction. Some
compilers schedule code so that half of a floating-point register is stored
and then reused before the other half is stored. The general principle that
we intuit from these observations is "if a code sequence is not expressly
prohibited by the architecture, some program somewhere will use it."

Code Generation

After the program is parsed and analyzed and the flow graph is built, the
code generator is called. It builds the register mapping table and then, in
turn, processes each basic block, generating Alpha AXP code that performs
the same functions as the MIPS code.

At each subroutine entry, mx scans the code stream with a pattern-matching
algorithm to see if the code corresponds to any of a number of standard
MIPS library routines, such as strcpy. (Note that the ULTRIX operating
system has no shared libraries, so library routines are bound into each
binary image.) If a correspondence exists, the entire subroutine is
recursively deleted from the flow graph and replaced with a canned routine
to perform the subroutine's work on Alpha AXP processors. This technique

contributes significantly to the performance of translated programs.

18 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Binary Translation

For each remaining basic block, the instructions are converted to a linked
list of intermediate opcodes. At first, each opcode corresponds exactly
to a MIPS opcode. The list is then scanned by an optimization phase,
which looks for MIPS coding idioms and replaces them with abstract machine
instructions that better reflect the idiom. For example, mx changes loads
of immediate values to a non-MIPS hardware load immediate (LI) instruction;
shift and add sequences to abstract operations that reflect the Alpha
AXP scaled add and subtract sequences; and sequences that change the
floating-point rounding mode (used to truncate a floating-point number
to an integer) to a single opcode that represents the Alpha AXP convert
operation with the chopped mode (/C) modifier.

MIPS code contains a number of common code sequences that cross basic block
boundaries, but which can be compressed into a single basic block in Alpha
AXP code. Examples of these are the min and max functions, which map neatly
onto a single conditional move (CMOVxx) instruction in Alpha AXP code.
The code generator looks for these sequences, merges the basic blocks,
and creates an extended basic block, which includes pseudo-opcodes that
indicate the MIPS code idiom.

After the optimizer completes the list of instructions, it translates each
abstract opcode to zero or more Alpha AXP opcodes, again building a linked
list of instructions. This process may permit further improvements, so the
optimizer makes a second pass over the Alpha AXP code.

When processing a basic block, the code generator assumes that it has an
unlimited number of temporary resources. Since this is not actually true,
the code generator then calls a register assigner to allocate the real
Alpha AXP temporary resources to the intermediate temporary registers.
The register assigner will load and spill MIPS resources and generated
temporary registers as needed.

Finally, the list of Alpha AXP instructions is assembled into a binary
stream, and the instruction scheduler rearranges them to remove resource
latencies and use the chip's multiple issue capability.

Image Formats

The file format for input is the standard ULTRIX extended common object
file format (COFF). In most ULTRIX MIPS programs, the text section starts
at 00400000 (hexadecimal) and the data at 10000000 (hexadecimal). In
virtually all programs, a large gap exists between the virtual address
for the end of text and the start of the data section. When mx creates the
output image, it places the generated Alpha AXP code after the MIPS code
and before the MIPS data. This allows the program to have one large text
section. The Alpha AXP code begins at an Alpha AXP page boundary, so that
we can set the memory protection on the MIPS code separately from the Alpha

AXP code.

The translated image is not in DEC OSF/1 AXP executable format. Instead, it
looks like a MIPS COFF file, but with the first few bytes changed to the
string "#!/usr/bin/mxr".

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 19

 Binary Translation

Executing a Translated Program

When a translated image is run on DEC OSF/1 AXP, its modified header
invokes mxr first. mxr uses the memory map (mmap) system call to load the
translated program at the same virtual address that it would have had under
the ULTRIX operating system. mxr resets the protection of the MIPS code to
read/no-write/no-execute, the Alpha AXP code to read/no-write/execute, and
the data to read/write/no-execute.

mxr allocates a communication area and initializes Alpha AXP R14 to
point to this area. The communication area contains save areas for MIPS
resources, initialized pointers to mxr service routines, and other scratch
space. mxr then constructs new command argument (argv) and environment
vectors as 32-bit wide pointers (as the MIPS program expects), arranges
to intercept certain signals from the DEC OSF/1 AXP system, and transfers
control to the translated start address of the program.

When a system signal is delivered to the program, control goes to the
signal intercept code in mxr. This code transforms the signal context
structure from the DEC OSF/1 AXP system and constructs an ULTRIX MIPS style
context, which it then passes to the translated signal handler.

Certain signals are processed specially. For instance, a program that
attempts to transfer control to a location containing MIPS code rather
than translated code gets a segmentation violation, since the MIPS code is
not executable. This situation can occur if a routine modifies its return
address to be a MIPS address constant. mxr will examine the target address
and, if it corresponds to the start of a pretranslated MIPS basic block,
divert the flow of control to the translated code for that block. If not,
mxr enters the MIPS interpreter. The interpreter proceeds to emulate the
MIPS code until a translated point is reached. mxr then resynchronizes its
machine state and reenters the translated code.

Translation Goals and Classes of Programs Not Supported

Our goal was to translate most user mode MIPS programs compiled for a
MIPS R2000 or R3000 machine running ULTRIX Release 4.0 (or later) to run
identically on the DEC OSF/1 AXP system with acceptable performance. As
shown in Table 5, performance of translated MIPS programs meets or exceeds
the original goal.

20 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Binary Translation

Due to extreme technical obstacles, some classes of programs will never be
supported by mx. We decided not to translate programs that use privileged
opcodes or system calls or that need to run with superuser privileges. In
cases where the file system hierarchy differs between the ULTRIX and DEC
OSF/1 AXP systems, programs that expect files to be in particular places or
in a particular format may fail. Similarly, programs that read /dev/kmem
and expect to see a ULTRIX MIPS memory layout fail.

Certain other classes of programs are not currently supported, but are
technically feasible. These include big endian MIPS programs from non-
Digital MIPS environments, programs that use R4000 or R6000 instructions
that are not present on the R3000 model, programs that need to be
multiprocessor safe, and programs that require certain categories of
precise exception behavior.

8 Summary

Building successful turnkey binary translators requires hard work but not
magic. We built two different translators, VEST and mx. In both cases,
the old and new environments are, by design, quite similar in fundamental
data types, memory addressing, register and stack usage, and operating
system services. Translators between dissimilar architectures or operating
systems are a different matter. Translating the code might be a reasonably
straightforward task. However, emulating a run-time environment in which
to execute the code might present insurmountable technical and business
obstacles. Without capturing the environment, an instruction translator
would be of no use.

The idea of binary translation is becoming more common in the computer
industry, as various other companies start on their transitions to 64-bit
architectures.

9 Acknowledgments

Steve Hobbs originally suggested the binary translation path in the
architecture task force discussions. Nancy Kronenberg and Bob Supnik
added critical early support and later coordination. Jud Leonard set the
engineering direction of doing careful static translation once, instead of
on-the-fly dynamic translation at each execution. Butler Lampson boosted
morale at a critical time. Jim Gettys has also been an important and vocal
supporter.

The success of the translators would not have been possible without the
enthusiastic support of the OpenVMS AXP and DEC OSF/1 AXP operating system
groups, and the respective run-time library groups, especially Matt LaPine,
Larry Woodman, Hai Huang, Dan Murphy, Nitin Karkhanis, Ray Lanza, Anton
Verhulst, and Terry Grieb.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 21

 Binary Translation

The Porting and Performance Engineering Group did extensive porting and
testing of customer applications. The group members, especially Shamin
Bhindarwala and Robi Al-Jaar, were sources of extremely valuable customer
feedback. The Engineering System Group under Mike Greenfield also made
extensive early use of the translators and provided valuable feedback.

The Alpha AXP Migration Tools team is relatively small for the substantial
amount of work accomplished in the past two and one-half years. Every
person has made several key contributions. In addition to the authors of
this paper, the team members are: Kate Burleson, Peigi Cleminshaw, George
Darcy, Catherine Frean, Bruce Gordon, Rick Gorton, Kevin Koch, Mark Herdeg,
Giovanni Della Libera, Nikki Mirghafori, Srinivasan Murari, Jim Paradis,
and Ashutosh Roy.

10 References and Note

1. R. Sites, ed., Alpha Architecture Reference Manual (Burlington, MA:
 Digital Press, 1992).

2. R. Sites, "Alpha AXP Architecture," Digital Technical Journal, vol. 4,
 no. 4 (1992, this issue): 19-34.

3. C. Hunter and J. Banning, "DOS at RISC," Byte Magazine (November 1989):
 361-368.

4. Echo Logic, News Release (May 4, 1992).

5. L. Wirbel, "DOS-to-UNIX Compiler," Electronic Engineering Times (March
 14, 1988): 83.

6. A. Bergh, K. Keilman, D. Magenheimer, and J. Miller, "HP 3000 Emulation
 on HP Precision Architecture Computers," Hewlett-Packard Journal
 (December 1987).

7. Datum is the term used to refer to a piece of information that has an
 address and a size.

 Alignment is the property of a datum of size 2[n] bytes. This datum is
 aligned if its byte address has n low-order zeros. A size or address not
 meeting this constraint implies that the datum is unaligned.

 Instruction atomicity is the property of instruction execution on
 single processor systems such that an interrupted instruction has
 been completed or has never started, i.e., partial execution of an
 instruction is never observed.

 Granularity is the property of memory writes on multiprocessor systems

 such that independent writes to adjacent aligned data produce consistent
 results. The terms byte, word, longword, quadword, and octaword
 granularity refer to writing 1-, 2-, 4-, 8-, and 16-byte size adjacent
 data.

22 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

 Binary Translation

 Interlocked update is the property of memory updates (read-modify-write
 sequences) on multiprocessor systems such that simultaneous independent
 updates to the same aligned datum will be consistent. This property
 causes serialization of the independent read-modify-write sequences and
 is not guaranteed for an unaligned datum.

 Word tearing is the property of aligned memory writes on multiprocessor
 systems such that a reader independent of the writer can see partial
 results of the write.

8. N. Kronenberg et al., "Porting OpenVMS from VAX to Alpha AXP," Digital
 Technical Journal, vol. 4, no. 4 (1992, this issue): 111-120.

11 Trademarks

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, Alpha AXP, AXP, DEC, DEC 3000 AXP, DEC 7000 AXP, DEC OSF/1 AXP,
DECstation, Digital, OpenVMS AXP, OpenVMS VAX, PDP-11, ULTRIX, and VAX.

The following are third-party trademarks:

HP is a registered trademark of Hewlett-Packard Company.

Macintosh is a registered trademark of Apple Computer, Inc.

MIPS is a trademark of MIPS Computer Systems, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Windows is a trademark of Microsoft Corporation.

12 Biographies

Richard L. Sites Dick Sites is a senior consultant engineer in the
Semiconductor Engineering Group, where he is working on binary translators
and the Alpha AXP architecture. He joined Digital in 1980 and has
contributed to various VAX implementations. Previously, he was employed
by IBM, Hewlett-Packard, and Burroughs, and taught at the University
of California. Dick received a B.S. in mathematics from MIT and a Ph.D.
in computer science from Stanford University. He also studied computer
architecture at the University of North Carolina. He holds a number of
patents on computer hardware and software.

Anton Chernoff Anton Chernoff is a member of the technical staff at Digital
Equipment Corporation, working in the Alpha AXP Migration Tools Group. He
joined Digital in 1991, but also worked at Digital between 1973 and 1981

as project leader and developer of the RT-11 and RSTS/E operating systems.
Anton spent 1982 through 1991 at Liant Software Corporation as a senior
consulting engineer in compiler and debugger development.

 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 23

 Binary Translation

Matthew B. Kirk Matthew Kirk is a senior software engineer in the SEG/AD
AXP Migration Tools Group, where he works on binary translator development,
testing, and support. He joined Digital in 1986 and has also designed and
developed automated architectural test software for pipelined VAX hardware
and the CI computer interconnect. Matthew holds a B.S. in computer science
(1986) from the University of Massachusetts.

Maurice P. Marks Maurice Marks is a senior engineering manager in the
Semiconductor Engineering Advanced Development Group. He currently
manages the AXP Migration Tools Group and contributed to the design and
implementation of the translators. In Maurice's twenty years with Digital,
he has led compiler, operating system, hardware and software tools, CAD,
system, and chip projects. He holds B.Sc. and B.E. degrees from the
University of New South Wales and has published papers on transaction
processing, software portability, and CAD technology. Maurice is a member
of the Australian Computer Society.

Scott G. Robinson Scott Robinson is a software engineering manager
in the AXP Migration Tools Group. He contributed to the design and
implementation of the binary translators, particularly the VAX translated
image environment. Scott has also developed implementations of DECnet and
CAD/CAM systems to design VAX processors. Prior to joining Digital in 1978,
Scott worked on a variety of Digital hardware and software implementations.
He holds a B.S. in electrical engineering from the University of Arizona
and is a member of IEEE.

24 Digital Technical Journal Vol. 4 No. 4 Special Issue 1992
===
Copyright 1992 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

