Bi nary Transl ation

1 Abstract

Binary translation is a technique used to change an executabl e program
for one conputer architecture and operating systeminto an executable
program for a different conputer architecture and operati ng system Two
bi nary translators are anong the migration tools avail able for Al pha AXP
conmput ers: VEST transl ates OpenVMS VAX binary i nmages to OpenVMS AXP i nages;
nk translates ULTRIX MPS images to DEC OSF/ 1 AXP imges. |In both cases,
transl ated code usually runs on Al pha AXP conputers as fast or faster
than the original code runs on the original architecture. In contrast to
other mgration efforts in the industry, the VAX transl ator reproduces
subtl e ClI SC behavior on a RI SC nmachi ne, and both open-ended translators
provi de good perfornmance on dynam cally nodified progranms. Al pha AXP binary
translators are inportant migration tools - hundreds of translated OpenVMS
VAX and ULTRI X M PS images currently run on Al pha AXP systens.

When Digital started to design the Al pha AXP architecture in the fal

of 1988, the Al pha AXP team was concerned about how to run existing VAX
code and soon-to-exi st MPS code on the new Al pha AXP conputers.[1, 2]

To take full advantage of the performance capability of a new conputer
architecture, an application nust be ported by rebuilding, using native
conpilers. For a single programwitten in a standard programr ng | anguage,
this is a matter of reconpile and run. A conplex software application
however, can be built from hundreds of source pieces using dozens of tools.
A native port of such an application is possible only when all parts of the
build path are running on the new architecture.

Therefore, devising a way to run an existing (old architecture) binary
version of a conplex application on a new architecture is an inportant
interimmeasure. Such a technique allows a user to get applications up and
running i mrediately, with miniml porting effort. Once a user's everyday
environnent is established, applications can be rebuilt over tinme, using
hand-written native code or partially native and partially old code.

2 Background

Several techniques are used in the industry to run the binary code of
an old architecture on a new architecture. Figure 1 shows four common
techni ques, from sl owest to fastest:

o Software interpreter (e.g., Insignia Solutions' SoftPC)

0o Mcrocoded emul ator (e.g., PDP-11 conpatibility node in early VAX
conmput ers)



o Binary translator (e.g., Hunter Systenl s XDOS)
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o Native conpiler

A software interpreter is a programthat reads instructions of the

old architecture one at a tine, performng each operation in turn on a

sof tware- mai ntai ned version of the old architecture's state. Interpreters
are not very fast, but they run on a wide variety of nmachines and can
faithfully reproduce the behavi or of self-nodifying prograns, prograns

that branch to data, prograns that branch to a checksum of thensel ves, etc.
Caching interpreters gain speed by retaining predecoded forns of previously
interpreted instructions.

A microcoded emul ator operates sinmlarly to a software interpreter but
usually with sone key hardware assists to decode the old instructions

qui ckly and to hold hardware state information in registers of the

m cromachi ne. An enulator is typically faster than an interpreter but can
run only on a specific mcrocoded new nachine. This techni que cannot be
used to run existing code on a reduced instruction set conputer (RISC)
machi ne, since RI SC architectures do not have a mi crocoded hardware | ayer
underlying the visible nmachine architecture.

A translated binary programis a sequence of newarchitecture instructions
that reproduce the behavior of an old-architecture program Typically,
much of the state information of the old machine is kept in registers

in the new machine. Translated code faithfully reproduces the calling
standard, inplicit state, instruction side effects, branching flow, and
other artifacts of the old machine. Transl ated prograns can be much faster
than interpreters or enulators, but slower than native-conpiled prograns.

Transl ators can be classified as either (1) bounded translation systens,

in which all the instructions of the old program nust exist at translate
time and must be found and translated to new instructions,[3,4,5] or (2)
open-ended transl ati on systens, in which code may al so be discovered,
created, or nodified at execution tinme. Bounded systens usually require
manual intervention to find 100 percent of the code; open-ended systens can
be fully automati c.

To run existing VAX and M PS prograns, an open-ended systemis absolutely
necessary. For exanple, sonme custoner prograns wite |icense-check code
(VAX instructions) to nenory, and branch to that code. A bounded system
fails on such prograns.

A native-conpiled programis a sequence of new architecture instructions
produced by reconpiling the program Native-conpiled prograns usually use
newer, faster calling conventions than old prograns. Wth a well-tuned
optim zing conpiler, native-conpiled prograns can be substantially faster
than any of the other choices.



Most | arge prograns are not self-contained; they call library routines,
wi ndowi ng servi ces, databases, and toolkits, for exanple. These prograns
also directly or indirectly invoke operating systemservices. In sinple
environnents with a single domnant library, it can be sufficient to
rewite that library in native code and to interpret user prograns,
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particul arly user programs that actually spend nost of their tine in
the library. This strategy is commonly used to run Wndows and Maci nt osh
prograns under the UNI X operating system

In nore robust environnments, it is not practical to rewrite all the shared
libraries by hand; collections of dozens or even hundreds of inmages (such
as typical VAX ALL-IN-1 systens) nust be run in the old environment, with
an occasional excursion into the native operating system Over tine, it is
desirable to rebuild some i mages using a native conpiler while retaining
ot her inages as translated code, and to achieve interoperability between
these ol d and new i mages. The interface between an old environnent and a
new one typically consists of "jacket" routines that receive a call using
ol d conventions and data structures, reformat the paraneters, performa
native call using new conventions and data structures, reformat the result,
and return.

The Al pha AXP M gration Tools team considered running old VAX binary
progranms on Al pha AXP conputers using a sinple software interpreter

but rejected this nmethod because the performance would be too slowto

be useful. W also rejected the idea of using sonme form of m crocoded

emul ator. This technique woul d conprom se the performance of a native Al pha
AXP i npl emrent ati on, and VAX conpatibility would be nearly inpossible to
achi eve without m crocode, which is inconsistent with a high-speed RI SC
desi gn.

We therefore turned to open-ended binary translation. W were aware of the
earlier Hew ett-Packard binary translator, but its single-inmge HP 3000

i nput code | ooked rmuch sinpler to translate than large collections of hand-
coded VAX assenbly | anguage prograns.[6] One nenber of the team (R Sites)
wrote a VAX-to-VAX binary translator in October 1988 as proof-of-concept.
The concept | ooked feasible, so we set the follow ng anbitious product
goal s:

1. Open-ended (conpletely automatic) translation of alnost all user-node
applications fromthe OpenVMsS VAX systemto the OpenVMS AXP system

2. Open-ended translation of alnmost all user-node applications fromthe
ULTRI X systemto the DEC OSF/1 system

3. Run-tine performance of translated code on Al pha AXP conputers that
neets or exceeds the performance of the original code on the origina
architecture

4. Optional reproduction of subtle old-architecture details, at the
cost of run-tinme performance, e.g., conplex instruction set conputer
(CISC) instruction atomcity for nmultithreaded applications and exact
arithnetic traps for sophisticated error handl ers



5. If translation is not possible, generation of explicit nmessages that
gi ve reasons and specify what source changes are necessary
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While we were creating the VAX translator, we discovered that the process
of building flow graphs of the code and tracki ng data dependenci es

yi el ded informati on about source code bugs, perfornance bottl enecks, and
dependenci es on features not available in all Al pha AXP operating systens.
This analysis information could be valuable to a source code nmi ntai ner
Thus, we added one nore product goal

6. Optional source analysis informtion

To achi eve these goals, the Al pha AXP Mgration Tools team created two

bi nary translators: VEST, which translates OpenVMS VAX binary inages to
OpenVMS AXP i mages, and nx, which translates ULTRIX MPS i mages to DEC
OSF/ 1 AXP i mages. However, binary translation is only half the migration
process. As shown in Figure 2, the other half is to build a run-tine
environnent in which to execute the translated code. This second hal f

of the process nust bridge any differences between old and new operating
systenms, calling standards, exception handling, etc. For open-ended
translation, this part of the process nust also include a way to run old
code that was not discovered (or did not exist) at translate tinme. The
transl ated i mage environment (TIE) and nxr run-time environment support

the VEST and nx translators, respectively, by reproducing the old operating
envi ronnents. Each environnent supports open-ended translation by including
a fallback interpreter of old code, and extensive run-tinme feedback to
avoid using the interpreter except for dynam cally created code. Qur design
phil osophy is to do everything feasible to stay out of the interpreter
rather than to increase the speed of the interpreter. This approach

gi ves better performance over a wi der range of prograns than using pure
interpreters or bounded translation systens.

The rem nder of this paper discusses the two binary translator/run-tine
envi ronnent pairs available for Al pha AXP conputers: VEST/TIE and nx/ nxr.
To establish a basis for the discussion, the reader nust understand the
following terns: datum alignnent, instruction atomcity, granularity,

i nterl ocked update, and word tearing. Definitions of these terns appear in
the References and Note section.[7]

3 VEST: Translating a VAX | nage

Transl ating a VAX i mage involves two nain steps: analyzing VAX code and
generating Al pha AXP code. The transl ated i mages produced are OpenVMS AXP

i mmges and may be run just |like native inages.[8] Translated inmages run
with the assistance of the translated i mage environnment, which is discussed
later in this paper. The VEST binary translator is witten in C++ and runs
on VAX, MPS, and Al pha AXP nachines. The TIE is witten in the OpenVMS
syst em programmi ng | anguages, BLISS and Al pha assenbl er.
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Anal ysi s

To | ocate VAX code, VEST starts disassenbling code at known entry points
and recursively traces the programs flow of control. Entry points cone
frommain and gl obal routines, debug synbol table entries, and optiona
information files (including run-tinme feedback fromthe TIE).

As VEST traces the program it builds a flow graph that consists of basic
bl ocks (i.e., straight-line code sequences) annotated with information
derived from parsing instructions. VEST then perforns several analyses

on the flow graph to propagate context information to each basic bl ock
and elinminate unnecessary operations. Context information includes
condition code usage, register contents, stack depth, and a variety of
other information that allows VEST to generate optim zed code.

Anal ysis is inportant for achieving good performance. For exanple, no
condition codes exist in the Al pha AXP architecture. Wthout analysis it
woul d be necessary to conpute condition codes for each VAX instruction

even if the codes were not used. Furthernore, several forns of analysis
were invented to allow correct translation. For exanple, VEST automatically
determ nes if a subroutine does a normal return.

Code anal ysis can detect many problens, including sonme that indicate |atent
bugs in the source i mage. VEST can detect, for exanple, uninitialized

vari ables, inproperly fornmed VAX CASE instructions, stack depth m smatches

along two different paths to the sanme code (the program expects data to be

at a certain stack depth), inproperly fornmed returns from subroutines, and

nodi fications to a VAX call frame. A latent bug in the source inage should

be fixed, since the translated i mage nmay denonstrate incorrect behavior due
to that bug.

Anal ysis al so detects the use of unsupported OpenVMs features including
unsupported system services. The source image nust be nmodified to elininate
the use of these features.

Some problens reported by VEST result from code that is hackish in nature.
For exanple, we found code that expects a call mask at an entry point to be
executed as a no-op instruction so that the code preceding the subroutine
can sinply execute the call nask, rather than go through the overhead

of a VAX junp (JMP) instruction. VEST reproduces the behavior of the VAX
program even if this behavior is a result of |uck

A VEST-generated fl ow graph is displayed in Figure 3. Dashed |ines
represent code paths followed if a conditional branch is taken. Solid |ines
i ndicate fall-through paths. A problemis highlighted by a wi de, dashed

poi nter whose bottom end indicates the basic block in which the problem
was uncovered. Full blocks show the path that reveals the error; enpty



bl ocks show basic blocks that are not in the error path. In Figure 3, a
path exists by which register 3 (R3) may be used without being set if the
VAX BNEQ (branch if the register does not equal zero) instruction in the
second basic block is true the first tine through the code sequence.
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NOTE

Figure 3 (VEST-generated Fl ow Graph Showi ng Uninitialized Variable)
i s unavail abl e.

Code GCeneration

The VEST transl ator generates code by converting each VAX instruction
into zero or nore Al pha AXP instructions. The architecture mapping is
strai ghtforward because there are nore Al pha AXP regi sters than VAX

regi sters. The VAX architecture has only 15 regi sters, which are used for
both floating-point and integer operations. The Al pha AXP architecture
has separate integer and floating-point registers. VAX RO through R14

are mapped to Al pha AXP RO through R14 for all operations except floating
point. R12, R13, and R14 retain their VAX designations as argunment pointer
frame pointer, and stack pointer, and R15 is used to resolve PC-relative
references. Floating-point operations are mapped to FO through F14.

The VAX architecture has condition codes that may be referenced explicitly.
In translated i mages, condition codes are mapped into R22 and R23. Sinilar
to the HP 3000 translator, R23 is used as a fast condition code register
for positivel/negativel/zero results.[6] R22 contains all four condition
code bits and is cal cul ated only when necessary. All renmining Al pha AXP
regi sters are used as scratch registers or for OpenVMS AXP standard calls.

VEST connects sinple branches directly to their translated targets. VEST
performs backward synbolic execution of VAX instructions to resolve as nany
conmput ed branch targets as feasible. If nore than one possible conmputed
target exists, a run-tinme | ookup is done on the VAX target address. If

the lookup fails to find a translated target, a fallback VAX interpreter

is used, as described in the TIE section Failure to Find Al Code during
Transl ation. Unlike bounded transl ation systens, which nmust achi eve 100
percent resolution of conmputed targets, the VEST and nx binary translators
requi re no manual intervention.

Transl at ed | mages

A translated i mage has the sane format as an OpenVMS AXP i mage and contains
the original OpenVMS VAX image as well as the Al pha AXP instructions that
were generated for the VAX code. The run-time VAX interpreter TIE needs the
original VAX instructions as a fallback. (Al so, sonme error handl ers | ook up
the call stack for pointers to specific VAX instructions.) The addresses of
statically allocated data in the translated inmage are identical to their
VAX addresses. The inmge contains a VAX-to-Al pha AXP address mapping table
for use during |l ookups and may contain an instruction atomcity table,
described in the VAX Instruction Guarantees section.



Transl ated i nages use the OpenVMs VAX calling standard. Native inmages use
di fferent conventions, but translated i mages interoperate with native or
transl ated shareabl e i mages. Automatic jacketing services are provided in
the TIE to convert calls using one set of conventions into the other. In
many cases, jacketing services permt substitution of a native shareable
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i mge for a translated shareabl e i mage wi thout nodification. However, a
jacket routine is sonmetines required. For exanple, on OpenVMS AXP systens,
the translated FORTRAN run-tine library, FORRTL_TV, invokes the native

Al pha AXP |library DEC$FORRTL for I/ Orelated subroutine calls. DEC$FORRTL
has a different interface than FORRTL has on an OpenVMs VAX system For
these calls, FORRTL_TV contains hand-written jacket routines.

Fil es Used

Transl ating an inage requires only one file - a VAX executabl e i nage.
Several optional files make translation nore effective.

1. Image information files (I1Fs). VEST automatically creates IIFs to
provi de i nformati on about shareable inmage interfaces. The infornmation
i ncludes the addresses of entry points, nanes of routines, and resource
utilization.

2. Synbol information files (SIFs). VEST automatically generates SIFs
to control the global synbol table in a translated shared |ibrary,
facilitating interoperation between translated and native i nmages.

3. Hand-edited information files (HIFs). The TIE automatically generates
Hl Fs, which nmay be hand-edited to supply information that VEST cannot
deduce. HIFs contain directives to tell VEST about undetected entry
points, to force it to change specific assunptions about an inage during
transl ation, and to provide known interface properties to be propagated
into an IIF.

4 VEST Performance Consi derations

In evaluating translated code performance, we recogni zed that there was

a significant trade-off between performance and the accuracy of emulating
the VAX architecture. VEST permits users to select several architectura
assunptions and optim zations, including:

o D float precision. The Al pha AXP architecture provi des hardware support
for Dfloat with only 53-bit mantissas, whereas the VAX architecture
provi des 56-bit mantissas. The user may select translation with either
53-bit hardware support (faster) or 56-bit software support (slower).

o Alignment. Al pha AXP instructions support only naturally aligned
| ongword (32-bit) and quadword (64-bit) nenory operations. Unaligned
menory operations cause alignnment faults, which are handl ed
transparently by software at significant run-time expense. The user
may direct VEST to assunme that data references are unaligned whenever
alignnment information is unavail abl e.



(0]

Instruction atomcity. Multitasking and nul ti processing prograns nmay
depend on instruction atomicity and nenory operation characteristics
simlar to those of the VAX architecture. VEST uses special code

sequences to produce exact VAX nenory characteristics. VEST and the
TIE cooperate to ensure VAX instruction atonmicity when instructed to
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do so. This mechanismis described in detail in the section Specia
Considerations for Instruction Atomcity.

5 Untransl atabl e | mages
Some characteristics make OpenVMS VAX i mages untransl atabl e, including:

o Exception handl er issues. |Inages that depend on exam ning the VAX
processor status |ongword (PSL) during exception handling nust be
nodi fi ed, because the VAX PSL is not available within exception
handl ers.

o Direct reference to undocunented system services. Sone software contains
references to unsupported and undocunented system services, such as
an internal-to-VMS service, which parses image synbol tables. VEST
hi ghl i ghts these references.

o Exact VAX nenory managenent requirenents. |nmages that depend on exact
VAX menory managenent behavi or do not function properly and nust be
nodi fi ed. These inages include those that depend on VAX page size or
t hat expect certain objects to be mapped to particul ar addresses.

o Image format. Prograns that use inmges as data are not able to read
OpenVMS AXP i mages without nodifications, because the inmage formats are
di fferent.

6 TIE Design Overview
The run-tine translated i mage environnent TIE assists in executing

transl ated OpenVMS VAX i mages under the OpenVMS AXP operating system
Figure 4 and Table 1 show the contents of the TIE
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Table_1: TIE Contents

VAX-t o- Al pha AXP Address
Mappi ng
(VAX State Manager)

VAX Instruction Atomcity
Controller
(VAX State Manager)

VAX Instruction Interpreter

VAX Conpl ex Instructions

OpenVMS VAX Exception
Processi ng

Routines for Differences
bet ween OpenVMs VAX and

OpenVMS_AXP_System Services__

Used to find conputed destinations and

ot her cases where VEST did not find the
original VAX code. Each translated i mage has
a mapping tabl e included.

Achi eves VAX instruction atomcity for
asynchronous events. This allows data
sharing between the single asynchronous
execution context (AST) provided by OpenVMs
and non- AST | evel routines.

Executes VAX instructions not found by VEST.

Sone VAX instructions do not have

code generated in-line by VEST. Those

i nstructions are processed in the TIE
Exanpl es are MOVC3 and MOVC5 that nove byte
strings.

Certain aspects of OpenVMs AXP exception
processing are necessarily different from
OpenVMs VAX. For exanple, the VAX conputers
have two scratch registers, but Al pha AXP
conmput ers have 15. Translated condition
handl ers are passed the VAX equival ents.

Some operating systeminterfaces were
rearchitected. The TIE intervenes to make
the_differences_transparent.
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Probl ens Sol ved at Run Tine

Conplications may occur when transl ated OpenVMs VAX i nages are run under
the OpenVMS AXP operating system This section discusses the follow ng
related topics: the failure to find all code during translation, VAX

i nstruction guarantees, instruction atomcity, nmenory update, and
preservi ng VAX exceptions.

Failure to Find All Code during Translation. Wen the VEST binary

transl ator encounters a branch or subroutine call to an unknown
destination, VEST generates code to call one of the TIE | ookup routines.
The | ookup routines map a VAX instruction address to a translated Al pha

AXP code address. |If an address mapping exists, then a transfer to the
transl ated code is perfornmed. Otherwi se, the VAX interpreter executes the
destination code. Wen the VAX interpreter encounters a flow of contro
change, it checks for returns to translated code. If the target of the flow
change is translated code, the interpreter exits to this code. O herw se,
the interpreter continues to interpret the target.

Lookup operations that transfer control to the interpreter also record
the starting VAX code address in an H F file. The VAX i mage can then be
retranslated with the HIF information, resulting in an inmage that runs
faster.

Lookup routines are also used to call native Al pha AXP (nontransl ated)
routines. The TIE supplies the required special autojacketing processing
that allows interoperation between translated and native routines with

no manual intervention. At load tine, each translated i mage identifies
itself to the TIE and supplies a mapping table used by the | ookup routines.
The TIE maintains a cache of translations to speed up the actual | ookup
processi ng.

Every transl ated i mage contains both the original VAX code and the
correspondi ng Al pha AXP code. When a translated i nage identifies itself,
the TIE marks its original VAX addresses with the page protection called
fault on execute (FOE). An Al pha AXP processor that attenpts to execute an
i nstruction on one of these pages generates an access violation fault.
This fault is processed by a TIE condition handler to convert the FOCE
page protection into an appropriate destination address | ookup operation
For exanple, the FOE might occur when a translated routine returns to
its caller. If the caller was interpreted, then its return address is a
VAX code address instead of a translated VAX (Al pha AXP code) address.
The Al pha AXP processor attenpts to execute the VAX code and generates a
FOE condition. The TIE condition handler converts this into a JMP | ookup
operation.

VAX I nstruction Guarantees. Instruction guarantees are characteristics of



a conputer architecture that are inherent to instructions executed on that

architecture. For exanple, on a VAX computer, if instruction 1 wites data
to menmory and then instruction 2 wites data to nenory, a second processor

must not see the wite frominstruction 2 before the wite frominstruction
1. This property is called strict read-wite ordering.
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The VEST/TIE pair can provide the illusion that a single CISC instruction
is executed in its entirety, even though the underlying translation is

a series of RISC instructions. VEST/TIE can al so provide the illusion of
two processors updating adjacent nenory bytes without interference, even

t hough the underlying RISC instructions manipul ate four or eight bytes at
atinme. Finally, VEST/TIE can provide exact nmenory read-wite ordering and
arithnetic exceptions, e.g., overflow. Al these provisions are optiona
and require extra execution tine.

Tables 2 and 3 show the visibility differences between various guarantees
on VAX and Al pha AXP systens as well as for translated VAX prograns.

Speci al Considerations for Instruction Atomicity. The VAX architecture
requires that interrupted instructions conplete or appear never to have
started. Since translation is a process of converting one VAX instruction
to potentially many Al pha AXP instructions, run-tinme processing nust
achieve this guarantee of instruction atomcity. Hence, a VAX instruction
atomicity controller (IAC) was created to mani pul ate Al pha AXP state to
an equi val ent VAX state. When a transl ated asynchronous event processing
routine is called, the IAC is invoked. The | AC exam nes the Al pha AXP
i nstruction stream and either backs up the interrupted program counter
to restart at the equival ent VAX instruction boundary or executes the
remai ning i nstructions to the next boundary. Many VAX prograns do not
require this guarantee to operate correctly, so VEST enmits code that is VAX
instruction atonmic only if the qualifier /PRESERVE=I NSTRUCTI ON_ ATOMCITY is
speci fied when translating an i nage.
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Tabl e_2: _Singl e_Processor_Guar ant ees

Si ngl e Processor Guarantees Characterized by What an Observer
Sees on the Same Processor That Executes the Data Change

Topi ¢ VAX Transl at ed VAX Native

Al pha AXP
I nstruction An entire VAX An entire transl ated A single
Atomicity i nstruction VAX instruction with Al pha AXP

/ PRESERVE=] NSTRUCTI ON
_ATOM CITY and TIE's

i nstruction

atomicity controller,
el se a single

Al pha_AXP_i nstruction

i nstruction

Tabl e_3: Ml tiple_Processor_Guarant ees

Mul ti pl e Processor Guarantees Characterized by What an Observer on a
Di fferent Processor Sees versus the One Executing the Data Change

Topi ¢ VAX Transl at ed VAX Native Al pha
AXP
Byt e Yes, hardware Yes, with Yes, via
Granularity ensures this / PRESERVE=MEMORY LDx_L,
_ATOM CI' TY nmer ge,
STx_C
sequence
I nterl ocked Yes, for aligned Yes, for aligned Yes, via
Updat e dat um usi ng dat um usi ng LDx_L,
i nterlock VAX interl ock nodi fy,
i nstructions i nstructions STx_C



sequence

Wor d Ali gned | ongword Ali gned | ongword Ali gned
Tearing writes change all or quadword wites | ongword or
bytes at once change all bytes at quadwor d
O her wites are once wites
al l oned to change change al
one byte at a tine byt es at
once
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VEST- generated code consists of four sections that are detected by the I AC
These sections have the follow ng functions:

0 Get operands to tenmporary registers
0 Operate on these tenporary registers

o Atomically update VAX results that could generate side effects (i.e., an
exception or interlocked access)

o Perform any updates that cannot generate side effects (e.g., register
updat es)

The VAX interpreter achieves VAX instruction atomcity by using the atom c
nove, register to memory (AMOVRM) instruction. The AMOVRM i nstruction

is inmplemented in privileged architecture library (PAL) subroutines and
updates a contiguous region of menory containing VAX state without being
interrupted. At the beginning of each interpreted VAX instruction, a read
and set flag (RS) instruction sets a flag that is cleared when an interrupt
occurs on the processor. AMOVRM tests the flag, and if set, performs

the update and returns a success indication. If the flag is clear, the
AMOVRM i nstruction indicates failure, and the interpreter reprocesses the
interrupted instruction.

| ssues with Changing Menory. VAX instruction atomicity ensures that
an arithnmetic instruction does not have any partially updated nmenory
| ocations, as viewed fromthe processor on which that instruction is
executed. In a multiprocessing environnment, inspection from another
processor could result in a perception of partial results.

Since an Al pha AXP processor accesses menory only in aligned | ongwords or
gquadwords, it is therefore not byte granular. To achieve byte granularity,
VEST generates a | oad-I| ocked/store-conditional code sequence, which
ensures that a menory location is updated as if it were byte granul ar

Thi s sequence is also used to ensure interlocked access to shared nenory.
Longwor d-si ze updates to aligned | ocations are perforned using normal | oad
/store instructions to ensure |longword granularity.

Many mul ti processi ng VAX prograns depend on byte granularity for nenory
updat e. VEST generates byte-granular code if the condition

/ PRESERVE=MEMORY_ATOM CI TY i s specified

when translating an image. In addition, VEST generates strict read-wite
ordering code if the qualifier /PRESERVE=READ WRI TE_ORDERI NG i s specified
when translating an i nage.

Preservi ng VAX Exceptions. Al pha AXP instructions do not have the sane
exception characteristics as VAX instructions. For instance, an arithnetic



fault is inprecise, i.e., not synchronous with the instruction that caused
it. The Al pha AXP hardware generates an arithnmetic fault that gets napped
into an OpenVMs AXP hi gh-performance arithnetic (HPARI TH) exception. To
retain conpatibility with VAX condition handlers, the TIE maps HPARI TH i nto
a correspondi ng VAX exception when calling a translated condition handl er
Most VAX | anguages do not require precise exceptions. For those that do,
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i ke BASIC, VEST generates the necessary trap barrier (TRAPB) instructions
i f / PRESERVE=FLOATI NG_EXCEPTI ONS i s specified when translating an inage.

OpenVMs AXP and OpenVMS VAX Differences

Functional Differences. Mst OpenVMs AXP system services are identica

to their OpenVMs VAX counterparts. Services that depend on a VAX-specific
mechani sm are changed for the Al pha AXP architecture. The TIE intervenes in
such system services to ensure the translated code sees the old interface.

For exanple, the declare change node handl er ($DCLCMVH) system service
establishes a handl er for VAX change nmode to user (CHMJ) instructions.

The handler is invoked as if it were an interrupt service routine required
to use the VAX return frominterrupt or exception (RElI) instruction to
return to the invoker's context. On OpenVMS AXP systens, the handler is
called as a normal procedure. To ensure conpatibility, the TIE inserts its
own handl er when calling OpenVMS AXP $DCLCVMH. When a CHMU is invoked on

Al pha AXP conputers, the TIE handler calls the handler of the translated

i mge, using the sane VAX-specific mechani sms that the handl er expects.

Excepti on Handling. OpenVMS AXP exception processing is al nost identica
to that perforned in the OpenVMS VAX system The mmjor difference is that
t he VAX nechanism array needs to hold the value of only two tenporary
regi sters, RO and Rl, whereas the Al pha AXP nechani smarray needs to hold
the value of 15 tenporary registers, RO, Rl, and R16 through R28.

Conpl ex Instructions. Translating some VAX instructions would require
many Al pha AXP instructions. |nstead, VEST generates code that calls

a TIE subroutine. Subroutines are inplenented in two ways: (1) hand-
written native emulation routines, e.g., MOWC5, and (2) VEST-transl ated
VAX emul ation routines, e.g., POLYH

Toget her, VEST and TIE can translate and run nost existing user-node

VAX binary images. As shown in Table 4, performance of translated VAX
programs slightly exceeds the original goal. Performnce depends heavily
on the frequency of use of VAX features that are not present in Al pha AXP
machi nes.

7 ULTRIX MPS Transl ation

nK is the translator that converts ULTRIX MPS prograns to DEC OSF/ 1 AXP
progranms. The nx project started after VEST was functional, and we took
advant age of the VEST common code base for nuch of the analysis and Al pha
AXP code assenbly phases of the translator. In fact, about half of the
code in nx is conpiled fromthe same source files as those used for VEST,
with sonme architectural specifics supplied by differing include files. The
code-sharing aspects of C++ have proven quite valuable in this regard.



nKr is the run-tine support systemfor translated progranms. It provides
services simlar to TIE, emulating the ULTRIX MPS environnent on a DEC
OSF/ 1 AXP system nxr is witten in C++, C, and Al pha assenbl er.
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Chal | enges

Creating a translator for the MPS R2000/ R3000 architecture presented us
with a host of new opportunities, along with some significant chall enges.
The basic structure of the nx translator is much sinpler than that of VEST.
Both the source and the target architectures are Rl SC nmachi nes; therefore,
the two instruction sets have a considerable simlarity. Many instructions
transl ate one for one. The MPS architecture has very few instruction side
effects or subtle architectural details, although those that are present
are particularly tricky. Furthernore, the format of an executabl e program
under the ULTRI X system collects all code in a single contiguous segnent
and nmakes it easy for nx to reliably find close to 100 percent of the code
in the MPS application. The systeminterfaces to the ULTRI X and DEC OSF/ 1
systens are simlar enough that nmost ULTRI X system calls have functionally
i dentical counterparts under the DEC OSF/ 1 system

The challenges in nk stemfromthe fact that the source architecture is a
RI SC machi ne. For exanple, DEC OSF/1 AXP is a 64-bit conputing environment,
i.e., all pointers used to communicate with the operating systemare 64
bits wide. This environnment does not present a problem when the pointer

is passed in a register. However, when a pointer (or a long data item

such as a file size) is passed in nmenory, it nust be converted between

the 32-bit representation, used by the ULTRI X system and the 64-bit AXP
representation, even when the semantics of the operating systemcall are
the sane on both systens.

A significant challenge is the fact that our users' expectations for
performance of translated prograns are much higher than for VEST. Reasoning
that the source and target machines are simlar, users also expect nx to
achieve a transl ated program performance better than that of the source
program since Al pha AXP processors are faster. Thus, as our perfornmance
goal, we set out to produce a translated programthat runs at about the
sanme speed as the original programwould run on an M PS R4000 nachine with
a 100-negahertz (MHz) internal clock rate.

Mappi ng the Architectures

At first glance, it appears that we could sinply assign each MPS register
to a correspondi ng Al pha AXP regi ster, because each machi ne has 32
general - purpose regi sters. The transl ated code would then have two scratch
regi sters, since the MPS architecture does not allow user-1|evel prograns
to use registers KO and K1, which are reserved for the operating system
kernel .

Unfortunately, translation requires nore than two scratch registers. The
Al pha AXP architecture does not have byte or hal fword (16-bit) |oads or
stores, and the code sequences for perforning these operations require



four or five scratch registers. Furthernore, nx requires a base register
to locate nxr without having to | oad a 64-bit address constant at each
call. Finally, the MPS architecture has nore than 32 registers, including
the Hl and LO registers used by the multiply and divide instructions,
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and a floating-point condition register, whose |ayout and contents do not
correspond to the Al pha AXP floating-point condition register

In nmx, we assign registers using standard conpiler techniques. To assign
registers to 33 MPS resources (the 32 general registers plus one 64-bit
register to hold both H and LO), certain registers are pernmanently mapped,
and other MPS registers are kept in either AXP registers or nenory. The

M PS ar gunent - passing registers A0 through A3 are permanently assigned to
Al pha AXP registers R16 through R19, which are the argunment registers in
the DEC OSF/ 1 AXP calling standard. This correspondence sinplifies the work
needed when nxr nust take argunents for an ULTRI X system call and pass them
to a DEC OSF/ 1 systemcall. Simlarly, the argunent return registers VO

and V1 are mapped to the Al pha AXP argunent return registers RO and Rl. The
return address registers and stack pointer registers of the two machi nes
are al so nmapped. MPS RO is nmapped to Al pha AXP R31, where both registers
contain the same hard-wired zero value. W reserve Al pha AXP registers

R22 through R24 as scratch registers and al so use them when interfacing to
nxr. We reserve Al pha AXP R14 as a pointer to an nxr comruni cation area.
Finally, we reserve three nore registers as scratch registers for use by

t he code generator.

The remaining 16 Al pha AXP registers are available to be assigned to

the remaining 23 MPS resources. After the code is analyzed and we have
regi ster usage information, the 16 nost frequently used MPS regi sters get
mapped to the remaining 16 Al pha AXP registers, and the renaining registers
are assigned to nenory slots in the nkr communi cation area. Wien a MPS
basi ¢ bl ock uses one of the slotted registers, nx assigns it to one of the
scratch registers. If the first reference reads the old contents of the
regi ster, nmx generates a load instruction fromthe comruni cati ons area.

If the value of the M PS resource changes in the basic block, the scratch
register is stored in the comruni cati on area before the end of the bl ock

As in nost conpilers, if we run out of registers, a spill algorithm chooses
a value to save in the comunication area and frees up a register

Al pha AXP integer registers are 64 bits wi de, whereas MPS registers are
only 32 bits wide. We chose to keep all 32-bit values in Al pha AXP integer
regi sters as sign-extended values, with the high 32 bits equal to bit

31. This approach occasionally requires mx to generate additional code to
create canonical 32-bit integer results, but the 64-bit conpare operations
do not need to change the values that they are conparing.

The floating-point architecture is nore conplex. Each of the 32 MPS
floating-point registers is 32 bits wide. Only the even registers are
used for single precision, and a doubl e-precision nunber is kept in an
even-odd register pair. We map each pair of MPS floating-point registers
onto a single 64-bit Al pha AXP floating-point register. Also, one Al pha
AXP floating-point register represents the condition code bit of the MPS



fl oati ng-point control register. Thus, the nx code generator can use 14
scratch registers. nx goes to considerable effort to find paired | oads
and stores in the MPS code stream and to nerge theminto one Al pha AXP
fl oati ng-poi nt operation.
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M PS si ngl e-preci sion operations cause problems with floating-point
correspondence. Since on MPS nachines, the single-precision nunber is kept
in only the even register of the register pair, the even and odd registers
in a pair are independent when single-precision (or integer) operations are
done in the floating-point unit. On Al pha AXP machi nes, conputation nust

be done on a val ue extended to double format in the whole 64-bit register
We defined two fornms for values in Al pha AXP floating-point registers:
conputational form in which conputation is done, and canonical form which
mmcs the MPS even and odd registers. If a MPS program | oads an even
regi ster and uses this register as a single-precision value, nx |oads the
value fromnmenory to be used conputationally. If a MPS program | oads only
an even register but does not use this register in the basic block, nx puts
the 32-bit value into half of the Al pha AXP floating-point register. This
permts correct behavior in the pathol ogical case where half of a floating-
poi nt number is loaded in one place, and the other half is |oaded in sone
ot her basic block. If a register is used as a single-precision nunber in

a basic block without first being | oaded, the code generator inserts code
to convert it from canonical to conputational floating-point form If a

si ngl e-preci sion val ue has been conmputed in a block and is live at the end
of the block, it is converted to canonical form

MK inserts a register mapping table into the translated programthat

i ndicates which MPS resources are statically nmapped to which Al pha AXP
regi sters, and which MPS resources are norrmally kept in nenory. This table
allows nxr to find the MPS resources at run tinme.

Fi ndi ng Code

As with the VEST translator, nx finds code by starting at entry points and
recursively tracing down the flow of control. nx finds entry points using
the executable file header, the synbol table (if present), and feedback
frommxkr (if present). Finally, nmx perforns a linear scan of the entire
text section for unexanm ned words. nx analyzes any data that |ooks like

pl ausi bl e code but does not connect this data into the main flow graph

Pl ausi bl e code consists of a series of valid MPS instructions termn nated
by an unconditional transfer of control

While finding code and connecting the basic blocks into a flow graph, nx
| ooks for the code sequence that indicates a switch statenent, i.e., a
mul ti-way branch, usually through an elenent of a table. nx finds the
branch tabl e and connects each of the possible targets as successors of
t he branch.

Code Anal ysi s

Qur static analysis of hundreds of MPS prograns indicates that only
10 instructions account for about 85 percent of all code. These



instructions are LW ADDI U, SW NOP, ADDU, BEQ JAL, BNE, LU, and SLL

The correspondi ng sequences of Al pha AXP code range from zero operation
codes, or opcodes, (for NOP, since the Al pha AXP architecture does not

requi re NOPs anywhere in the code stream to two opcodes (for SLL).
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Code anal ysis for source programs is rmuch nore inportant in nx than in
VEST, because the coding idions for many conmon operations differ between
the Al pha AXP and M PS processors. The sinple techni que of mapping each

M PS instruction to a sequence of one or nore Al pha AXP instructions |oses
much of the context information in the original program

For exanple, the idiomused to |load a 32-bit constant into a register on

M PS machines is to generate a | oad upper i mediate (LU ) opcode, placing
a 16-bit constant in the high-order 16 bits of a register. This operation
is followed by an OR i medi ate (ORI) opcode, logically ORing a 16-bit zero-
extended value into the register. The LU corresponds exactly to the Al pha
AXP | oad address high (LDAH) opcode. However, the Al pha AXP architecture
has no way of directly ORing a 16-bit value into a register and cannot
even | oad a zero-extended 16-bit constant into a register. Wen the high-
order bit of the 16-bit constant is 1, the shortest translation for the OR
is three instructions. The nmx translator scans the code | ooking for such

i di oms, and generates the optinml two-instruction sequence of Al pha AXP
code that perfornms the 32-bit | oad. No opcode exists that corresponds to
the ORI, but the results in the registers are correct.

When we started witing the nx translator, we |isted a nunber of code
possibilities that we thought we would never see. In retrospect, this was
a msgui ded assunption. For exanple, we have seen progranms that branch
into the delay slot of other instructions, requiring us to indicate that
the delay slot instruction is a nmenber of two different basic blocks -

the block it ends, and the one it starts. W have observed prograns that
put software breakpoint (BREAK) instructions in the branch delay slot,

and thus BREAK ends a basic block without being the last instruction. Sone
conpi |l ers schedul e code so that half of a floating-point register is stored
and then reused before the other half is stored. The general principle that
we intuit fromthese observations is "if a code sequence is not expressly
prohi bited by the architecture, sone program somewhere will use it."

Code Generation

After the programis parsed and anal yzed and the flow graph is built, the
code generator is called. It builds the register mapping table and then, in
turn, processes each basic bl ock, generating Al pha AXP code that performs
the sane functions as the MPS code.

At each subroutine entry, nx scans the code streamwi th a pattern-nmatching
algorithmto see if the code corresponds to any of a nunber of standard

M PS library routines, such as strcpy. (Note that the ULTRI X operating
system has no shared libraries, so library routines are bound into each
binary image.) If a correspondence exists, the entire subroutine is
recursively deleted fromthe flow graph and replaced with a canned routine
to performthe subroutine's work on Al pha AXP processors. This technique



contributes significantly to the performnce of translated prograns.
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For each renmmini ng basic block, the instructions are converted to a |inked
list of internediate opcodes. At first, each opcode corresponds exactly

to a MPS opcode. The list is then scanned by an optim zati on phase,

whi ch | ooks for MPS coding idioms and replaces them wi th abstract nachine
instructions that better reflect the idiom For exanple, nx changes | oads
of imediate values to a non-MPS hardware |oad inmediate (LI) instruction
shift and add sequences to abstract operations that reflect the Al pha

AXP scal ed add and subtract sequences; and sequences that change the

fl oati ng-point roundi ng node (used to truncate a floating-point nunber

to an integer) to a single opcode that represents the Al pha AXP convert
operation with the chopped node (/C) nodifier.

M PS code contains a nunber of commpn code sequences that cross basic bl ock
boundari es, but which can be conpressed into a single basic block in Al pha
AXP code. Exanples of these are the min and nmax functions, which map neatly
onto a single conditional nove (CMOVxx) instruction in Al pha AXP code.

The code generator |ooks for these sequences, nerges the basic bl ocks,

and creates an extended basic block, which includes pseudo-opcodes that

i ndicate the M PS code idiom

After the optim zer conpletes the list of instructions, it translates each
abstract opcode to zero or nore Al pha AXP opcodes, again building a |inked
list of instructions. This process may pernit further inprovenents, so the
optim zer makes a second pass over the Al pha AXP code.

When processing a basic block, the code generator assunes that it has an
unlimted nunber of tenporary resources. Since this is not actually true,
the code generator then calls a register assigner to allocate the rea

Al pha AXP tenporary resources to the internedi ate tenporary registers.
The register assigner will load and spill MPS resources and generated
tenporary regi sters as needed.

Finally, the list of Alpha AXP instructions is assenbled into a binary
stream and the instruction schedul er rearranges themto renove resource
| atenci es and use the chip's multiple issue capability.

| mage Formats

The file format for input is the standard ULTRI X extended conmon obj ect
file format (COFF). In nmost ULTRIX M PS programs, the text section starts
at 00400000 (hexadecimal) and the data at 10000000 (hexadecimal). In
virtually all progranms, a |large gap exists between the virtual address

for the end of text and the start of the data section. When nx creates the
output image, it places the generated Al pha AXP code after the M PS code
and before the MPS data. This allows the programto have one | arge text
section. The Al pha AXP code begins at an Al pha AXP page boundary, so that
we can set the nenory protection on the MPS code separately fromthe Al pha



AXP code.

The translated inage is not in DEC OSF/ 1 AXP executable format. Instead, it
| ooks like a MPS COFF file, but with the first few bytes changed to the
string "#!'/usr/bin/mxr".
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Executing a Transl ated Program

When a translated image is run on DEC OSF/ 1 AXP, its nodified header

i nvokes mxr first. nxr uses the nenory map (nmap) systemcall to |oad the
transl ated program at the sanme virtual address that it would have had under
the ULTRI X operating system nxr resets the protection of the MPS code to
read/ no-wite/ no-execute, the Al pha AXP code to read/no-wite/execute, and
the data to read/write/no-execute.

nxr all ocates a comunication area and initializes Al pha AXP R14 to

point to this area. The comruni cation area contains save areas for MPS
resources, initialized pointers to nxr service routines, and other scratch
space. mxr then constructs new command argunent (argv) and environnent
vectors as 32-bit wide pointers (as the MPS program expects), arranges

to intercept certain signals fromthe DEC OSF/ 1 AXP system and transfers
control to the translated start address of the program

When a system signal is delivered to the program control goes to the
signal intercept code in nxr. This code transforns the signal context
structure fromthe DEC OSF/ 1 AXP system and constructs an ULTRI X MPS style
context, which it then passes to the translated signal handl er

Certain signals are processed specially. For instance, a programthat
attenpts to transfer control to a location containing MPS code rather
than transl ated code gets a segnentation violation, since the MPS code is
not executable. This situation can occur if a routine nodifies its return
address to be a MPS address constant. nxr will exanine the target address
and, if it corresponds to the start of a pretranslated MPS basic bl ock
divert the flow of control to the translated code for that block. If not,
nkr enters the MPS interpreter. The interpreter proceeds to emulate the
M PS code until a translated point is reached. nxr then resynchronizes its
machi ne state and reenters the transl ated code.

Transl ati on Goals and Cl asses of Prograns Not Supported

Qur goal was to translate nost user node MPS prograns conpiled for a

M PS R2000 or R3000 machine running ULTRI X Rel ease 4.0 (or later) to run
identically on the DEC OSF/ 1 AXP systemwi th acceptabl e performance. As
shown in Table 5, performance of translated MPS prograns neets or exceeds
the original goal
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Due to extrenme technical obstacles, sone classes of programs will never be
supported by nx. We decided not to translate progranms that use privileged
opcodes or systemcalls or that need to run with superuser privileges. In
cases where the file system hierarchy differs between the ULTRI X and DEC
OSF/ 1 AXP systens, prograns that expect files to be in particular places or
in a particular format may fail. Simlarly, progranms that read /dev/knmem
and expect to see a ULTRIX MPS nenory | ayout fail

Certain other classes of programs are not currently supported, but are
technically feasible. These include big endian M PS prograns from non-
Digital MPS environments, prograns that use R4000 or R6000 instructions
that are not present on the R3000 nodel, prograns that need to be

mul ti processor safe, and progranms that require certain categories of
preci se exception behavi or

8 Sunmmary

Bui | di ng successful turnkey binary translators requires hard work but not
magic. We built two different translators, VEST and nx. |In both cases,

the old and new environnments are, by design, quite simlar in fundanenta
data types, nmenory addressing, register and stack usage, and operating
system services. Translators between dissimlar architectures or operating
systens are a different matter. Translating the code m ght be a reasonably
straightforward task. However, emulating a run-tinme environnment in which
to execute the code night present insurnountable technical and business
obstacles. Wthout capturing the environnment, an instruction translator
woul d be of no use.

The idea of binary translation is becom ng nore common in the conputer
i ndustry, as various other conpanies start on their transitions to 64-bit
architectures.
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