

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

1 Abstract

 The DECnet/OSI for OpenVMS version 5.5 product implements a functional
Digital Network Architecture Phase V networking product on the OpenVMS
system. This new software product ensures that all existing OpenVMS
application programs utilizing published interfaces to DECnet-VAX Phase
IV operate without modification over the new DECnet product. The components
of DECnet/OSI for OpenVMS version 5.5 include the new interprocess
communication interface. The design goals and implementation strategy
were redefined for network management, the session control layer, and the
transport layer. The configuration utility was structured into several
files that are easy to read.

The DECnet Phase V networking software presented the DECnet-VAX development
team with a major challenge. Although the Digital Network Architecture
(DNA) has always corresponded to the lower layers of open systems
interconnection (OSI), the Phase V architecture has substantial differences
from Phase IV in many layers. For example, the session control layer now
contains a global name service.[1]

DECnet Phase V also added new network management requirements for all
layers. In most cases, the existing Phase IV code could not be adapted
to the new architecture; it had to be redesigned and rewritten. This
presented the engineers with the opportunity to restructure and improve
the older pieces of code that have been continually modified and enhanced
since the first release of DECnet-VAX. Due to the large installed customer
base, however, it also presented a huge compatibility problem. We could
not simply drop the old in favor of the new; we needed to ensure that the
customers' DECnet-VAX applications would continue to be supported.

This paper gives an overview of the design of the base components in
the new DECnet/OSI for OpenVMS version 5.5 product. It then presents
details about the internals of the network management, session control,
and transport layers. Finally, the new configuration tool designed for
DECnet/OSI for OpenVMS version 5.5 is discussed. Unless otherwise noted in
this paper, the term DECnet/OSI for OpenVMS refers to version 5.5 of the
product.

2 High-level Design

Numerous goals were identified during the design phase of the base
components for the DECnet/OSI for OpenVMS software. Foremost among these
goals was to conform to the DNA Phase V architecture and to support image-
level compatibility for existing Phase IV applications. Care was also taken

in the design to allow the product to be extensible to accommodate the
ongoing work with industry standards.

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 1

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

Design Overview

The queue I/O request ($QIO) application programming interfaces (APIs) for
the VAX OSI transport service and DECnet-VAX are already defined and widely
used by network applications. To ensure that existing applications would
continue to work, these interfaces were modified in a compatible fashion.
As a result, not all of the capabilities of Phase V could be added to the
existing APIs. A new API, the interprocess communication interface ($IPC),
was developed to support all the functions defined in the Phase V session
control layer. In addition, the $IPC interface was designed to allow for
future capabilities.

The $QIO and $IPC interfaces interpret the application's requests and
communicate them to the DNA session control layer through a kernel mode
system interface called session services. In the initial release of DECnet
/OSI for OpenVMS, the VAX OSI transport service joined its $QIO interface
to the stack at the network layer. The first follow-on release will fully
support this API. It will be rewritten to interface directly to the common
OSI transport module.

DECnet/OSI for OpenVMS implements each layer of the Phase V architecture
in separate modules. These modules require a well-defined interface to
communicate. This is supplied by the new interrupt-driven VAX communication
interface. This interface defines the rules used by cooperating VAX
communication modules to exchange information. The upper VAX communication
modules consume a set of services, and the lower modules provide services.
The lower VAX communication modules define the explicit messages and
commands that are passed between the modules. This definition is then
referred to as the lower layer's VAX communication interface. For example,
the transport layer provides a service to the session control layer.
Transport is the lower module, and session is the upper. The rules for how
the interface works are defined by the VAX communication interface itself,
but the commands and services supplied by the transport layer are defined
by that layer. As a result, the interface between the session and transport
layers is referred to as the transport VAX communication interface.

To comply with the new Enterprise Management Architecture (EMA), each of
the modules supplies one or more manageable entities to network management.
This is accomplished by the EMA agent (EMAA) management facility. EMAA
supplies both an entity interface to the individual modules and an EMAA
interface to the network. This interface is discussed further in the
Network Management section.

Implementation of the Modules

Each DECnet/OSI for OpenVMS base component is implemented in one of three
ways. The most prominent method is through OpenVMS executive loadable

images. These loadable images are all placed in the SYS$LOADABLE_IMAGES
system directory during installation and loaded as part of the NET$STARTUP
procedure, which the OpenVMS system runs during a system boot.

2 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

The two $QIO interfaces must operate within the OpenVMS I/O subsystem.
As a result, they are both coded as device drivers and loaded during
NET$STARTUP by the SYSGEN utility. Once started, they can create a VAX
communication interface port to the appropriate modules to process their
network requests.

Figure 1 shows the components of the DECnet/OSI for OpenVMS product and
their logical relationship to each other.

The third way a component can be implemented is as a standard OpenVMS image
or shareable image. These images include NET$ACP.EXE, which is started as
a system process by NET$STARTUP, and NCL.EXE, which is the utility that
supplies the network control language (NCL) interface to users. Other
images, such as NET$MIRROR.EXE, are started by the network software in
a separate process when a network request is received for the application.

Implementation of the Base Image

The base image, SYS$NETWORK_SERVICES.EXE, has been present on all OpenVMS
systems since version 5.4. The OpenVMS system loads this executive image
early in the boot cycle. The default file shipped with OpenVMS is a stub
that simply sets a system cell during initialization to indicate that the
older Phase IV code is loaded. This system cell can then be interrogated
through an OpenVMS system service or from a Digital Command Language (DCL)
command line to determine which version of the DECnet software is loaded.

When the DECnet/OSI for OpenVMS product is installed, the base image is
replaced with the Phase V version. The new image sets the system cell to
indicate that Phase V is loaded. It provides a host of common services,
including EMAA, to the remaining system components. It also contains the
code used to implement the Phase V node agent required by EMA on each node.
Each of the remaining DECnet/OSI for OpenVMS components makes use of the
base image by vectoring through a system cell to the desired function.

Network Item Lists

The DECnet/OSI for OpenVMS modules pass large amounts of data between
themselves. This exchange requires an efficient means to encode and move
the data. Conversions are expensive operations; therefore a decision was
made to use the same structure for all the interfaces within the base
components. The structure chosen, a network item list, is a simple length
/tag/value arrangement in which the tags are defined in a common area
between sharing modules. Network item lists are very easily extended as
new functions are added to the software. Since they contain no absolute
addresses, they are also position independent. This has the advantage of
making it easy to copy or move them when necessary.

Network item lists are used between all VAX communication modules, by
EMAA, and by the session services interface. They are also presented to
user-written applications through the $IPC interface, thus allowing the
interface to be expanded as more protocols and standards are implemented in
the DECnet network.

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 3

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

3 Network Management

This section discusses the DECnet/OSI for OpenVMS network management design
and network management functions implemented in Phase V.

Network Management Design

The key to Phase V network management design is the EMA Entity Model, which
defines the standard management structure, syntax, and interface to be
used by each manageable object. The DECnet/OSI for OpenVMS EMA framework
is built on this model and defines the components required for a system
manager to perform actions on managed objects, both locally and across a
network. The EMA framework consists of the following components.

o A director interface, through which user commands called directives are
 issued

o A management protocol module that carries directives to the node where
 the object to be managed resides

o An agent that decodes the directive into specific actions and passes
 that information to the managed object

o An entity, the object to be managed

For a full understanding of the DECnet/OSI for OpenVMS network management
implementation, the reader should first understand the EMA model. Details
on the EMA model can be found in the paper on management architecture in
this issue.[2]

In the DECnet/OSI for OpenVMS network management design, the components
and their division of function generally follow the EMA framework. There
are, however, a few exceptions. Figure 2 shows the DECnet/OSI for OpenVMS
components that implement the EMA model and other Phase V management
functions.

The NCL utility provides the EMA director function. The NCL image processes
user commands into management directives. It also displays the responses
that are returned.

The common management information protocol (CMIP) requester library
routines provide part of the management protocol module functions. These
include encoding a management directive into CMIP, transmitting it to the
designated node, and receiving the response. The CMIP requester routines
are implemented as part of NCL, not as a separate management protocol
module.

A CMIP listener server process, CML.EXE, provides the remainder of the
management protocol module function. It receives a management directive and
passes it to the agent. When the agent returns a response, CML transmits
the response to the originating node.

4 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

The DECnet/OSI for OpenVMS EMA agent, EMAA, accepts management directives
from CML, dispatches them to the requested entity, and returns responses to
CML. EMAA also extends this concept by actually performing the management
directives in some cases.

Entities are not strictly a part of network management. They do, however,
receive management directives from EMAA in DECnet/OSI for OpenVMS. They
must be able to carry out the directives and return the results of the
operation to EMAA.

In DECnet Phase V, an event is the occurrence of an architecturally defined
normal or abnormal condition. Events detected by entities are posted to
an event dispatcher, which passes them to a local or remote event sink.
If remote, a CMIP event protocol is used. In DECnet/OSI for OpenVMS, the
event dispatcher image, NET$EVENT_DISPATCHER.EXE, implements the event
dispatching and event sink functions.

The data dictionary is a binary compilation of architecturally defined
codes for all known Phase V management entities, the manageable attributes
of each entity, and the actions that can be performed. It also contains
information necessary to encode this information into Abstract Syntax
Notation Number 1 (ASN.1), required for the CMIP protocol.

Finally, there is the maintenance operations protocol (MOP). Although MOP
is not an EMA component, it is a component of DNA. It performs low-level
network operations such as down-line loading and up-line dumping.

Network Management Implementation

The most visible differences between DECnet Phase IV and DECnet Phase V
arise from adherence to the EMA architecture. This section discusses the
replacement functions implemented in Phase V.

The NCL Utility The network control program has been replaced in Phase V
with the NCL utility. NCL provides a highly structured management syntax
that maps directly to the EMA specifications for each compliant entity.
In an NCL command, the hierarchy of entities from the node entity to the
subentity being managed must be specified. For example, the following
command shows the local area network (LAN) address attribute of a routing
circuit adjacency entity.

NCL> Show Node DEC:.zko.Ilium -
Routing Circuit lan-0 Adjacency -
rtg$0002 LAN Address

The command contains the node entity name, DEC:.zko.Ilium; the module
entity within the node, routing; the name of the circuit subentity of

routing, lan-0; the name of the adjacency subentity of circuit, rtg$0002;
and finally the attribute name.

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 5

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

To issue management commands from a DECnet/OSI for OpenVMS system, a user
invokes the NCL utility. NCL parses commands into fragments called tokens,
containing ASCII strings. It uses the data dictionary to translate these
into management codes for directives, entities, and attributes. NCL then
constructs a network item list from this information and invokes the CMIP
requester send function.

CMIP requester functions are implemented as a set of library routines that
are linked with the NCL utility. Underneath this caller interface, the CMIP
routines establish a connection over DNA session control to the destination
node's CMIP listener. The directive is then encoded into a CMIP message and
passed to the destination.

NCL now posts the first CMIP requester receive call. More than one receive
call may be needed to obtain all the response data. As soon as a partial
response is available, the receive function decodes the CMIP messages into
network item lists and passes them back to NCL. NCL translates these into
displayable text and values and directs the output to the user's terminal
or a log file. If the partial response is not complete, NCL then loops and
issues another call to the CMIP requester receive function.

The CMIP requester functions are optimized for the local node case. If the
destination node is specified as "0" (the local node), the CMIP requester
functions interface directly to the EMAA interface, skipping the CMIP
encoding, decoding, and the round trip across the network.

The CMIP Listener The CMIP listener is implemented as a server process,
similar to the Phase IV network management listener. When an incoming
connection request for CML is received, a process is created to run the
CML image. The CML image utilizes the DNA session control interface to
accept the connection and receive the CMIP encoded directive. It then uses
the data dictionary to decode the message into a network item list. EMAA is
then invoked to process the directive and return any required response from
the entity. Once CML has received all portions of the response from EMAA,
encoded them into CMIP, and transmitted them back to the requesting node,
the CML image terminates.

EMAA, the EMA Agent The management structure imposed by EMA contains
common directives that must be supported by all entities. A design goal
for EMAA was to provide a common management facility with support for
common operations such as show or set. EMAA can perform these functions
against an entity's management data structures, thereby freeing each
entity from separately implementing them and simplifying the entity's code
requirements. This approach was successfully implemented, though at the
cost of a more complex agent implementation and a set of registration macro
instructions colloquially known as the "macros from hell."

The above interface between EMAA and the entities is known as the full
interface. Not all development groups' coding entities were interested
in this approach; thus, EMAA also provides a basic interface. An entity
specifies which interface to use during its initialization when it
registers with EMAA. For an entity that uses the basic interface, EMAA

6 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

simply passes the directive information to the designated entity and
expects response data returned.

The choice of interface must be made by the module-level entity. If the
entity uses the full interface, it must register its management structure,
including all subentities and attributes, with EMAA. For these entities,
EMAA processes the network item list passed by CML. It creates a data
structure for each subentity instance, specifying the attributes, any
values supplied, and the actions to be performed. EMAA passes this to the
designated entity, which uses tables set up during initialization to call
the appropriate action routine for the directive. By default, these action
routines are set up as callbacks into EMAA itself, thereby allowing EMAA to
perform the task. With either the basic or the full interface, a separate
response is required for each subentity instance specified by a directive.
EMAA calls CML iteratively through a coroutine call to pass response data
back to CML.

The Event Dispatcher Phase IV event logging allowed events to be sent to a
sink on one node. In Phase V, the event dispatcher supports multiple sinks
that can be local or on any number of remote nodes. Event filtering can be
applied on the outbound streams of events, filtering events before they are
transmitted to a sink. This provides a mechanism to direct different types
of events to different sinks.

An event sink is the destination for an event message. A node can have
multiple sinks, each accepting events from any number of remote nodes.
Event filtering can be applied to the inbound streams of events at the
event sink. An event message that passes is sent to the sink, which uses
the data dictionary to format it into ASCII character strings. It is then
output to the sink client, which may be a console, printer, or file.

An optimization is used when an event is generated on a node and the
destination sink is on the same node. In this case, the event bypasses the
outbound stream and is queued directly to the event sink. The DECnet/OSI
for OpenVMS product, in the default configuration for a local node, defines
one outbound stream directed to a sink on the local node and defines the
console as the sink client.

An event relay provides compatibility with Phase IV nodes. This important
function permits a Phase V event sink to log messages from Phase IV or
Phase V DECnet systems. Event relay is a session control application that
listens for DECnet Phase IV event messages. It encapsulates each Phase
IV event message in a Phase V event message and posts it to the event
dispatcher, using the same service that other DECnet/OSI for OpenVMS
entities use to post events.

Maintenance Operations Protocol The

NET$MOP process is the DECnet/OSI for OpenVMS implementation of the DNA
maintenance operations protocol. MOP uses the services of the local and
wide area data link device drivers to perform low-level network operations.
MOP can down-line load an operating system image to a VMScluster satellite
node and respond to remote requests from a network device to down-line

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 7

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

load or up-line dump an image. MOP also supports management directives
that allow a system manager to load or boot a remote device, monitor
system identification messages, perform data link loopback tests, or open a
terminal I/O communications channel to a device's console program.

The primary design goal of the MOP implementation was to respond quickly
and with low system overhead to remote requests from devices to down-
line load an image. In some network configurations, a power failure
and restoration can cause hundreds of devices to request a down-line
load at the same time. The Phase IV implementation was known to have
difficulty handling this, so the new implementation of MOP was designed for
multithreaded operation. This means there is only one MOP process per node,
and it processes multiple concurrent operations by creating a separate
thread for each management directive, program request, or dump request
received. Moreover, all management data required to service MOP requests
is contained in MOP-specific management data structures, designed to be
searched quickly. When a request is received, MOP can promptly ascertain
whether the required information to service the request is available and
make a response.

4 Session Control Implementation

The design of the DECnet/OSI for OpenVMS session control layer is based on
goals defined by both the session control architecture and the DECnet user
community. These goals include

o Compatibility. The DECnet-VAX product has a large customer base with
 major investments in DNA applications. The session control layer
 supports these applications without requiring a relink of the object
 code.

o Performance. Transmit and receive operations across the network must
 be as efficient as possible. Minimal overhead is introduced by the
 session control layer in making each transport protocol available to
 applications.

o Extensible. The session control layer design allows for future additions
 to the architecture.

o New features. The session control layer takes full advantage of the new
 naming and addressing capabilities of Phase V DNA.

o Improved management. The session control layer complies with EMA,
 allowing it to be managed from anywhere throughout the network.

8 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

Session Control Design

The session control layer is divided into several logical components,
$QIO, IPC, NETACP, common services, and network management. $QIO and
$IPC provide the APIs required to communicate across the network. $QIO is
fully compatible with all Phase IV DECnet-VAX applications; however, it
does not allow access to the full set of features available in DECnet/OSI
for OpenVMS. These new features, and any future additions, are available
only through the new $IPC interface.

The two APIs are consumers of session control services provided by the
common services component. This component provides all the network
functions defined in Phase V to the APIs above it. In order to do this,
the common services component makes use of both the NET$ACP and network
management portions of the session control layer.

Figure 3 shows the session layer components and their relationships to each
other.

Session Control APIs

DECnet Phase IV restricted node names to six characters in length. In
DECnet-VAX the $QIO interface was the only means by which an application
could make calls to the session control layer. This interface also enforced
the six-character name limit. With the advent of Phase V, this restriction
no longer applies. It is possible for a node running Phase V to be
unreachable by a Phase IV-style six-character node name. As a consequence,
the $QIO interface was extended to allow full name representations of a
node.

The $IPC interface is a new interface that incorporates all the functions
of the $QIO interface, along with extensions made to the session control
architecture. This item-list-driven interface provides a cleaner, more
extensible interface and allows for easy conversion of $QIO applications.
The $QIO interface uses a network control block (NCB) and a network
function block (NFB) to hold data. This data is easily mapped to items
in a network item list. Also, the function codes used by $QIO can be easily
mapped to $IPC function codes. As new requirements arise, supported items
can be added to the list without impacting the existing values.

The $IPC interface also supplies some new features not available in $QIO.
Phase V DNA uses the Digital Distributed Name Service (DECdns) to store
information about nodes and applications in a global namespace. Once an
application declares itself in the global namespace, $IPC enables session
control to maintain its address attribute. This address attribute contains
all the information necessary to define where the application resides on
the network. $IPC can then be used by the client side of an application

to connect to a server through a single global name, instead of using a
node name and application name pair. This enables the client side of an
application to communicate with its server without knowing where the server
currently resides.

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 9

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

$IPC supports a new means of accessing a node by its address. In Phase
IV, addresses were limited to 63 areas with 1,023 nodes in each area. The
address of each node could be represented with a 16-bit integer. The $QIO
interface supports a form of node name in which the 16-bit address is
converted into the ASCII representation of the decimal equivalent. This
is not sufficient to address all Phase V nodes, so a new function called
"connect-by-address tower" is available through $IPC. The address tower is
discussed further in the Common Services Component section.

Yet another feature of $IPC is the ability to translate a node's address
into the name of the node as registered in the global namespace. In Phase
IV the address-to-name translation was a management function. Furthermore,
the translation was local to the node on which it was performed.

Session Control Network Management

The session control layer makes use of the full EMAA entity interface to
support all entities defined by the session control architecture. These
include the session control entity itself, as well as the application,
transport service, port, and tower maintenance subentities. Each of these
entities contains timers, flags, and other control information used by the
session control layer during its operation. They also contain counters for
the events generated by the session control layer.

The application subentity is of special interest. This entity is the
equivalent of the Phase IV object database. It allows the system manager
to register an application with session control to make it available for
incoming connections. This entity is also used to control the operation
of the application and select the types of connections that can be sent or
received by it.

Common Services Component

The common services component is the hub for session control. It is
responsible for performing tasks that are not specific to the $IPC or $QIO
interfaces. These tasks include managing transport connections on behalf
of session control users, mapping from a DECdns object name to addresses,
selecting communication protocols supported by both the local and remote
end systems, maintaining the protocol and address information corresponding
to local objects in the namespace, and activating (or creating) processes
to service incoming connect requests.

The NET$ACP process is used to provide the common services component with
process context. The NET$ACP image itself is nothing more than a set of
queues and an idle loop. When the session control layer is loaded, it
creates user-mode and kernel-mode tasks. A queue is assigned for each
task, and the NET$ACP process attaches to the task when it is started.

When the session component needs to execute in the context of a process
and not on the interrupt stack, it builds a work queue entry, queues it
to the appropriate task queue, and wakes up the NET$ACP. The NET$ACP finds
the address of the desired routine in the work queue entry and executes it.
This routine can be located anywhere that is addressable by the process,

10 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

but it is usually contained within the session control loadable image.
The common services component makes use of the NET$ACP for reading files,
creating network processes, and making calls to the DECdns clerk. It
also makes use of the process for functions that require large amounts of
memory. By performing these tasks in the NET$ACP process, session control
is able to use process virtual memory even though it is implemented as an
executive loadable image.

The tower set data structure plays a key role in session control. A tower
set consists of one or more towers. Each tower represents a protocol stack
and is composed of three or more floors, as shown in Figure 4. The lowest
floors in the tower correspond to the DNA routing, transport, and session
control layers; they are used to identify protocol and associated address
information to be used at that layer. When viewed as a whole, the tower
set describes a combination of protocols supported on a node. The session
control layer on every DECnet/OSI for OpenVMS system not only uses this
information to communicate with remote nodes, but is also responsible for
building a tower set to represent that local system. Once built, this tower
set is placed in the namespace as the attribute for the node.

The session control interfaces allow the user to specify a node in many
ways. A node can be specified as a Phase IV-style node name, a Phase IV-
style address, a DECdns full name, or a tower set. The three forms of
name representations are mapped to the corresponding tower set by making
calls to the DECdns clerk to obtain the node's tower set attribute. Once
the tower set is in hand, it can be used to communicate with the session
control layer on the remote node.

The tower set for a remote node and the tower set for the local node
are used in conjunction to determine if both nodes support a common
tower. If a common tower is found, session control attempts to establish
a connection to the remote node using that tower. If the connection
fails, the comparison continues. If another matching tower is found, the
connection attempt is repeated. This continues until the connection is
established or the tower sets are exhausted.

Use of DECdns

The session control layer uses DECdns objects for all global naming. These
objects are used in two different ways: they can represent a node or a
global application. A node object is a global representation of a node in
a DECdns namespace. Each node object contains attributes that identify the
location of a node. Foremost in this list of attributes is the DNA$Towers
attribute. The DNA$Towers attribute contains the tower set for the node and
is written automatically by the session control layer when DECnet/OSI for
OpenVMS is configured and started. Once created, this attribute is updated
by session control to reflect the current supported towers for the node.

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 11

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

When the session control layer builds the tower set for the DECdns node
object, it creates a tower for each combination of supported protocols
and network addresses on the node. If the node supports two transports
and three network addresses, the tower set is generated with six towers.
It always places the CML application protocol floor on top of the session
control floor. The address information for the session control floor is
then set to address the CML application. The transport address information
is set to address DNA session control, and the routing information of each
tower in the set is set to one of the supported network addresses for the
node.

The node object DNA$Towers attribute contains data that completely
describes the node. Since session control supports node addresses and Phase
IV-style node names, soft links are created in the namespace to map from a
Phase V network service access point (NSAP) or a Phase IV-style node name
(node synonym) to the node object. These links can then be used by the
session control layer as alternate paths to the node object.

An application object is a global representation of an application. The
DNA$Towers attribute of this object contains a set of address towers used
to address the application. The routing and transport floors for each tower
in this set are used in the same manner as for the node object. The address
information in the session floor, however, addresses the application, not
CML. Once set, the information in this tower set is not maintained unless
the application issues a register object call through the $IPC interface.
If this is done, session control maintains the tower in the same manner as
it does for the node object.

5 Transport Implementation

The DECnet/OSI for OpenVMS product supports two transport protocols:
the open systems interconnection transport protocol (OSI TP) and the
network service protocol (NSP). Each transport protocol, or group of
logically associated protocols, is bundled as a separate but equivalent
VAX communication module. This approach accomplishes many goals. The more
notable ones include

o Isolating each module as a pure transport engine

o Defining and enforcing a common transport user interface to all
 transports

o Providing extensible constructs for future transport protocols, i.e.,
 providing a set of transport service libraries

o Eliminating previous duplication in adjacent layers (session and network
 routing layers)

o Providing backward compatibility with existing Phase IV transport
 protocol engines (NETDRIVER/NSP and VAX OSI transport service)

12 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

Transport Layer Design

A transport VAX communication module has two components, a protocol engine
and the transport service libraries. The service libraries are common
code between modules and are linked together with each engine to form an
executive loadable image. The three elements of DECnet/OSI for OpenVMS
transport, the NSP protocol engine, the OSI protocol engine, and the
transport service libraries, are linked into two images. Figure 5 shows
the relationship of these elements.

The specific functions provided by a transport engine depend on the
protocol. The generic role of NSP and the OSI transport layer is to provide
a reliable, sequential, connection-oriented service for use by a session
control layer. The design provides a common transport interface to both NSP
and the OSI transport layer. This enables NSP and OSI transport (class
4) to be used interchangeably as a DNA transport. As future transport
protocols are developed, they can be easily added into this design.

The DECnet/OSI for OpenVMS transport design places common functions in
the service libraries for use by any protocol engine that needs them.
Any functions that are not specific to a protocol are performed in
these libraries. Separating these functions enables new protocols to be
implemented more quickly and allows operating-system-specific details to be
hidden from the engines.

The NSP transport VAX communication module operates only in the DNA stack
and supports only DNA session control. Due to an essentially unchanged wire
protocol, NSP is completely compatible with Phase IV implementations.

The OSI transport VAX communication module implements the International
Organization for Standardization (ISO) 8073 classes 0, 2, and 4 protocols.
It can operate on a pure OSI stack in a multivendor environment. The OSI
transport is also completely compatible with the Phase IV VAX OSI transport
service implementation and operates on the DNA stack supporting DNA session
control.

Transport Engines The transport VAX communication modules provide a
transport connection (logical link) service to the session layer. The
connection management is designed to ensure that data on each logical link
is handled independently from data on other logical links. Data belonging
to different transport connections is never mixed, nor does a blockage of
data flow on one connection prevent data from being handled on another.

The transport VAX communication modules are state table driven. Each
transport engine uses a state/event matrix to determine the address of
an appropriate action routine to execute for any state/event combination.
As a transport connection changes state, it keeps a histogram of state

transitions and events processed.

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 13

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

Service Libraries The following functions are common to many protocols and
are implemented in the service libraries.

o Transfer of normal data and expedited data from transmit buffers to
 receive buffers

o Fragmentation of large messages into smaller messages for transmission
 and the reconstruction of the complete message from the received
 fragments

o Detection and recovery from loss, duplication, corruption, and
 misordering introduced by lower layers

The key transport service library is the data transfer library. This
library gives a transport engine the capability to perform data
segmentation and reassembly. Segmentation is the process of breaking a
large user data message into multiple, smaller messages (segments) for
transmission. Reassembly is the process of reconstructing a complete
user data message from the received segments. To use the data transfer
library, a protocol engine must provide a set of action routines. These
action routines hold the protocol-specific logic to be applied to the data
handling process.

Network Services Phase V provides two types of network services:
connectionless (CLNS) and connection-oriented (CONS). CLNS offers a
datagram facility, in which each message is routed to its destination
independently of any other. CONS establishes logical connections in the
network layer over which transport messages are then transmitted.

Transport running over CLNS has a flexible interface. It opens an
association with the CLNS layer and is then able to solicit the CLNS layer
to enter a transport protocol data unit (TPDU) into the network. When
admission is granted, transport sends as many TPDUs as possible at that
time. Incoming TPDUs are posted to transport as they are received by the
CLNS layer. Both NSP and OSI transports run over the CLNS layer.

Transport running over CONS has a more rigid interface. Once a network
connection is established with the CONS layer, each transport request
has to be completed by the CONS layer. Thus transport, when running over
CONS, is not able to transmit all its TPDUs at once. Each transmit must
be completed back to transport before the next can commence. Also, if
transport is to receive incoming TPDUs, a read must be posted to the CONS
layer. The OSI transport runs over the CONS layer, but the NSP protocol was
designed specifically for CLNS and does not operate over CONS.

Differences between Phase IV and Phase V Transport Protocol Engines

Flow control policy is an important difference between the VAX OSI
transport service and the DECnet/OSI for OpenVMS implementation. The VAX
OSI transport service implements a pessimistic policy that never allocates
credit representing resources it does not have. The OSI transport protocol,
on the other hand, implements a more optimistic policy that takes advantage
of buffering available in the pipeline and the variance in data flow on

14 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

different transport connections. It makes the assumption that transport
connections do not consume all allocated credit at the same time. Other
enhancements to the OSI transport protocol include conformance to EMA
network management, compliance with the most recent ISO specifications,
and participation in DECnet/OSI for OpenVMS VMScluster Alias.

The two main differences between the Phase IV and Phase V NSP
implementations are conformance to the EMA management model, and, once
again, flow control. In Phase IV, NSP does not request flow control
and uses an XON/XOFF mechanism. This results in large fluctuations in
throughput. Phase V NSP has been enhanced to request segment flow control.
This mechanism enables each side of a transport to determine when it can
send data segments. Due to this difference in flow control policy, Phase V
NSP throughput converges to a maximum value.

Future Direction of Transports

The DECnet/OSI for OpenVMS transport design provides a common transport
user interface to all transports and places common functions in the
transport service libraries. This approach provides extensibility; it
allows future transports to be easily incorporated as they emerge in the
industry. This common interface can also be used to provide an API that
interfaces directly to a transport. DECnet/OSI for OpenVMS engineering is
currently looking at providing such an API.

6 Configuration

Design on the new configuration tools was started by collecting user
comments about the Phase IV tools and desirable features for the new
tool. This data was collected from customer communication at DECUS, through
internal notes files, and through internet news groups.

The first goal agreed upon was to create configuration files that are
easy to read; inexperienced Phase V network managers may be required
to read and understand these files. Next, the tool must be structured.
The configuration is divided into several files with recognizable file
names rather than one potentially unmanageable one. Each file contains the
initialization commands needed to initialize one network entity. Finally,
the configuration tool should be extensible. New commands, entities, or
other information can easily be added to the configuration.

Configuration Design

The main configuration tool is a DCL command procedure (NET$CONFIGURE.COM).
This procedure generates NCL script files, which are executed during
network start-up, to initialize the network. In general, each script file
initializes one entity within DECnet/OSI for OpenVMS. It is possible,

however, for scripts to contain information for numerous entities. For
example, the NSP transport initialization script contains commands to
create an instance of the session control transport service provider
entity, which enables the session layer to use the protocol. The procedure

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 15

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

can extract information about the configuration by using the NET$CONVERT_
DATABASE utility to translate an existing Phase IV configuration contained
in the Phase IV permanent databases. Alternatively, it can prompt the user
for the information needed to allow basic operation of the node.

The first time NET$CONFIGURE is executed, all the questions, except for
the node's full name and its Phase IV address, have default choices. If
the defaults are chosen, the node operates properly once the network has
started. When appropriate, NET$CONFIGURE also calls other configuration
tools to configure the DECdns client and the Digital Distributed Time
Service (DECdts), and to perform various network transition functions.

Once the initial configuration has been performed, customization of
components is available. Subsequent execution of the NET$CONFIGURE
procedure will present the user with a menu that allows specific
subsections of the configuration to be done, for example, adding or
deleting MOP clients or session control applications, changing the name
of the node, or controlling the use of communications devices.

General help is available while running NET$CONFIGURE. If the user does
not understand any individual query, responding with a "?" (question mark)
provides a brief explanation.

The scripts created by NET$CONFIGURE are computed. A checksum is computed
by NET$CONFIGURE for each script file, and it is stored in a database along
with the answers entered for all other configuration questions. This allows
the NET$CONFIGURE procedure to detect whether a script has been modified by
an outside source. If this condition is detected, NET$CONFIGURE warns the
user that user-specific changes made to the particular script may be lost.

If a user has modified the NCL scripts,
NET$CONFIGURE cannot guarantee that the information will be retained after
future executions of the procedure. An attempt is made to maintain the
changes across new versions. In all cases, previous scripts are renamed
before the new scripts are generated. This allows the user to verify that
customized change was transferred to the new script. If not, the saved
version can be used to manually replace the change.

Node Configuration NET$CONFIGURE asks only one question that is directly
related to the node entity. It asks for the node's DECdns full name and
sets the node's name. Since the namespace nickname is a required component
of the full name answer, it also allows the procedure to determine the
namespace in which to configure DECdns.

The node synonym default is generated by using the first six characters of
the last simple name of the node's full name. If the user entered the full
name, USN:.Norfolk.Destroyer.Spruance.DD125, the synonym default would be

DD125. The user is free to change this information as long as the response
is a legal Phase IV-style name. If present, the transition tools make use
of this synonym when the node is registered in the DECdns namespace.

16 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

Data Link/Routing The NET$CONFIGURE procedure contains a table of all
valid data link devices supported by DECnet/OSI for OpenVMS. When the data
link/routing configuration module is called, the system configuration is
scanned. Any valid devices found on the system are presented to the user
for addition to the configuration. The only exceptions are asynchronous
data link devices. The user must specifically request asynchronous support
for these devices to be configured.

Configuration is mandatory for broadcast data link media since these
devices are shareable and users other than DECnet/OSI for OpenVMS may
request the device. For synchronous devices, the user has the choice
to configure the device for use by DECnet/OSI for OpenVMS. If a device
is configured, a choice between the Digital data communications message
protocol (DDCMP) or high-level data link control (HDLC) as data link
protocol must also be made.

Each data link device configured requires a name for the device and a
name for the corresponding routing circuit. The defaults for these names
are generated by using the protocol name, e.g., carrier sense multiple
access-collision detection (CSMA-CD), HDLC, or DDCMP, along with a unit
number. The user may override the default with any valid simple name. This
allows the user to set the data link and routing circuit names to be more
descriptive in their environment; for example,
HDLC_SYNC_TO_BOSTON for a data link and
CONNECTION_TO_BOSTON_DR500 for a routing circuit.

Transport/Session Control NET$CONFIGURE supports the NSP and OSI
transports. The procedure configures both transports by default, but allows
the user to select only one. Commands are generated in the start-up scripts
to initialize both the transports and the session control transport service
provider entity instances, which allow the session control layer to use
them.

If OSI transport is configured, default templates are created to allow the
installation verification procedures for the OSI applications to operate
successfully. The user also has the option of creating specific connection
option templates for use with OSI applications.

All default session control applications, e.g., file access listener
(FAL), mail, or phone, are configured in the same way as they are with
the DECnet-VAX Phase IV configuration tool. The user has the option to
allow access to each application through a default account or not. The only
queries made by the configuration tool are about the creation of the user
account for the application.

DECdts Configuration The DECdts configuration is performed by a call to the
DTSS$CONFIGURE procedure. DTSS$CONFIGURE prompts the user to choose between

universal coordinated time (UTC) or local time, which is UTC plus or minus
the time-zone differential factor (TDF). If local time is chosen, then
the procedure prompts for the continent and time zone on that continent to
use. This information is needed to compute the TDF. The DTSS$CONFIGURE

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 17

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

tool creates its own NCL scripts. These scripts are not maintained by
NET$CONFIGURE, and no checksums are computed or stored for them.

Configuration To configure DECdns, the network software must be in
operation so that the DECdns software may use it. The NET$CONFIGURE
procedure attempts to start the network once it has created the necessary
scripts. Once the network has been started, the NET$CONFIGURE procedure
calls DNS$CONFIGURE, passing it the node full name that was entered by the
user. The full name contains the namespace nickname that the user wishes
to use. DNS$CONFIGURE then uses the DECdns advertiser to listen on the
broadcast media for a name server that is advertising the same namespace
nickname. If a match is made, DECdns creates an initialization NCL script
with the needed instructions to configure the DECdns clerk at the next
system boot. It then tells the advertiser to configure against the same
namespace.

If the namespace nickname cannot be matched, the user is given
alternatives. First, a list of the current namespaces advertised on the
broadcast media, along with the LOCAL: namespace is offered. LOCAL: is a
special case used in lieu of the standard client-server configuration. The
LOCAL namespace makes use of the client cache to store a small number of
nodes locally.

If a choice is not made from the list, the user is queried to see if an
attempt should be made to configure to a name server that may be located on
a data link other than the broadcast media. If yes, then a valid address
must be provided to the DNS$CONFIGURE tool so that it may connect to the
name server on the remote node.

If no options are chosen at this point, a final choice of creating a
name server on the local node is presented. Since DECnet/OSI for OpenVMS
must configure the DECdns clerk, if the answer is still no, the procedure
returns to the original list of known namespaces and starts again.

Transition Tools Once DECdns is configured, the transition tools are used
to create the correct namespace directory configuration. If a new namespace
has been created and selected for use, the tools populate the directories
with the node information from the Phase IV DECnet database found on the
system. Most often, the tools simply register the node with the DECdns name
server along with the node synonym that was provided by the user during the
node configuration portion of NET$CONFIGURE.

The transition tools also assist the user when renaming the node or
changing from one namespace to another. They copy subdirectory information
from the node's old DECdns directory to the new directory structure on the
new namespace or within the same namespace, if the user only changed the
node's name.

18 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

7 Summary

The DECnet/OSI for OpenVMS version 5.5 product implements all layers of
the DNA Phase V architecture. This extends the OpenVMS system to a new
degree of network access by supplying standard OSI protocols. The product
also protects the large investment in network software that OpenVMS users
currently hold. This is done by fully supporting the extensive selection of
applications available for Phase IV DECnet-VAX. In addition, the design
of DECnet/OSI for OpenVMS is structured in a way that will ease the
introduction of new standards as they come available.

8 Acknowledgments

Throughout the course of this project, many people have helped in the
design, implementation, and documentation of the product. We would like
to thank all those people for all their help. We would also like to extend
a special thanks to all members of the bobsled team. Without them, this
product would never have come to be.

9 References

1. J. Harper, "Overview of Digital's Open Networking," Digital Technical
 Journal, vol. 5, no. 1 (Winter 1993, this issue).

2. M. Sylor, F. Dolan, and D. Shurtleff, "Network Management," Digital
 Technical Journal, vol. 5 no. 1 (Winter 1993, this issue).

10 Biographies

Lawrence Yetto Larry Yetto is currently a project and technical leader for
the DECnet/OSI for OpenVMS Group. He joined Digital in 1981 and has held
various positions in software engineering on development projects for VMS
journaling, VMS utilities, and DECnet-VAX Phase IV. He also worked in the
Project Services Center, Munich, and was the project leader for the OpenVMS
version 5.0 field test. Prior to joining Digital, Larry worked as a systems
programmer at Burroughs Corporation. He earned a B.A. in both math and
computer science from the State University of New York at Potsdam.

Dorothy Noren Millbrandt Dotsie Millbrandt is a principal software engineer
and a co-project leader for Common Network Management. Currently she is
developing management components that will work across all the DECnet/OSI
platforms: OpenVMS, OSF/1, and ULTRIX. Dotsie was the project leader for
the MOP component and the trace facility and has worked on OSI transport
and configuration software. Prior to this work, she was a project leader
and microcode developer for DSB32 and KMV11 synchronous communications
controllers in the CSS Network Systems Group.

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 19

 The DECnet/OSI for OpenVMS Version 5.5 Implementation

Yanick Pouffary A principal software engineer, Yanick Pouffary is currently
the transport technical leader in the DECnet/OSI for OpenVMS Group. She
was the principal designer and developer of OSI transport and NSP transport
protocol engines. Prior to this work, she developed the presentation layer
for the VTX20, a videotext terminal. Before joining Digital in 1985, Yanick
worked for the CODEX Corporation on a statistical multiplexer. Yanick
earned a B.S. in computer science from the University of Nice, France,
and an M.S. in computer science from the State University of New York at
Stony Brook.

Daniel J. Ryan Jr. A principal software engineer in the DECnet/OSI
for OpenVMS Group, Dan Ryan was responsible for the configuration and
installation portion of the DECnet/OSI for OpenVMS product. Recently he
was the team leader for the transport development effort. Currently he
is investigating DECnet/OSI and TCP/IP integration as well as DECnet/OSI
critical problems. Dan has 14 years of experience in data communications
and has been with Digital since 1983. He was previously employed as
a systems programmer and was a free-lance consultant on computer
communication solutions.

David J. Sullivan David Sullivan is a senior software engineer and was
the technical leader of the node agent and event dispatcher components
for the DECnet/OSI for OpenVMS product. David also worked as an individual
contributor on the design and implementation of the session control layer.
He is currently working on a development effort to allow the DECnet/OSI
product to run on Digital's AXP platforms. After joining Digital in 1987,
he worked in the VAX/RPC Group where he was responsible for writing tests
for the pidgin compiler. David holds a B.S.C.S. (1988) from Merrimack
College.

DECUS, DECnet-VAX, DECnet/OSI for OpenVMS, Digital, DNA, and VMScluster are
trademarks of Digital Equipment Corporation.

20 Digital Technical Journal Vol. 5 No. 1, Winter 1993
===
Copyright 1992 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

