The DECnet/OSlI for OpenVMS Version 5.5 |nplenentation

1 Abstract

The DECnet/OSI for OpenVMS version 5.5 product inplenents a functiona
Digital Network Architecture Phase V networking product on the OpenVMS
system This new software product ensures that all existing OpenVMS
application prograns utilizing published interfaces to DECnet-VAX Phase
|V operate without nodification over the new DEChet product. The conponents
of DECnet/ OSlI for OpenVMS version 5.5 include the new interprocess
comuni cation interface. The design goals and inplenentation strategy
were redefined for network nmanagenent, the session control layer, and the
transport |ayer. The configuration utility was structured into severa
files that are easy to read.

The DECnet Phase V networking software presented the DECnet-VAX devel opnent
teamwith a major challenge. Although the Digital Network Architecture
(DNA) has al ways corresponded to the |ower |ayers of open systens

i nterconnection (OSI), the Phase V architecture has substantial differences
from Phase IV in many | ayers. For exanple, the session control |ayer now
contains a global nane service.[1]

DECnet Phase V al so added new network managenent requirenments for al

| ayers. I n npost cases, the existing Phase IV code could not be adapted

to the new architecture; it had to be redesigned and rewitten. This
presented the engineers with the opportunity to restructure and inprove
the ol der pieces of code that have been continually nodified and enhanced
since the first rel ease of DECnet-VAX. Due to the large installed custoner
base, however, it also presented a huge conpatibility problem W could
not sinmply drop the old in favor of the new, we needed to ensure that the
custoners' DECnet-VAX applications woul d continue to be supported.

Thi s paper gives an overvi ew of the design of the base conponents in

the new DECnet/ OSI for OpenVMS version 5.5 product. It then presents
details about the internals of the network managenent, session control

and transport layers. Finally, the new configuration tool designed for
DECnet/ OSI for OpenVMs version 5.5 is discussed. Unless otherwi se noted in
this paper, the term DECnet/OSI for OpenVMS refers to version 5.5 of the
product .

2 High-level Design

Nurmer ous goals were identified during the design phase of the base
conmponents for the DECnet/COSI for OpenVMsS software. Forenpst anong these
goals was to conformto the DNA Phase V architecture and to support image-

| evel compatibility for existing Phase |V applications. Care was al so taken

in the design to allow the product to be extensible to accommbdate the
ongoi ng work with industry standards.

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 1

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

Desi gn Overvi ew

The queue 1/ O request ($Q O application programmng interfaces (APlIs) for
the VAX OSI transport service and DECnet-VAX are al ready defined and wi dely
used by network applications. To ensure that existing applications would
continue to work, these interfaces were nodified in a conpatible fashion.
As a result, not all of the capabilities of Phase V could be added to the
existing APIs. A new APl, the interprocess comunication interface ($IPC)
was devel oped to support all the functions defined in the Phase V session
control layer. In addition, the $IPC interface was designed to allow for
future capabilities.

The $Q O and $IPC interfaces interpret the application's requests and
comuni cate themto the DNA session control |ayer through a kernel node
systeminterface called session services. In the initial release of DECnet
/OSI for QOpenVMS, the VAX OSI transport service joined its $Q O interface
to the stack at the network |ayer. The first followon release will fully
support this API. It will be rewitten to interface directly to the conmon
0S| transport nodul e.

DECnet/ OSI for OpenVMs inplenments each |ayer of the Phase V architecture
in separate nodul es. These nodul es require a well-defined interface to
comuni cate. This is supplied by the new interrupt-driven VAX comruni cation
interface. This interface defines the rules used by cooperating VAX

comuni cation nmodul es to exchange i nformation. The upper VAX communi cation
nodul es consune a set of services, and the | ower nodul es provide services.
The | ower VAX conmuni cati on nmodul es define the explicit nessages and
commands that are passed between the nodules. This definition is then
referred to as the |ower layer's VAX communi cation interface. For exanple,
the transport |ayer provides a service to the session control |ayer.
Transport is the lower nmodule, and session is the upper. The rules for how
the interface works are defined by the VAX conmunication interface itself,
but the commands and services supplied by the transport |ayer are defined
by that layer. As a result, the interface between the session and transport
layers is referred to as the transport VAX comuni cation interface.

To comply with the new Enterprise Managenent Architecture (EMA), each of

t he nodul es supplies one or nore nanageable entities to network managenent.
This is acconplished by the EMA agent (EMAA) managenent facility. EMAA
supplies both an entity interface to the individual nodul es and an EMAA
interface to the network. This interface is discussed further in the

Net wor k Managenent section.

| mpl ement ati on of the Modul es

Each DECnet/OSlI for OpenVMS base conmponent is inplenmented in one of three
ways. The nost prominent nethod is through OpenVMS executive | oadabl e

i mmges. These | oadable images are all placed in the SYS$LOADABLE | MAGES
systemdirectory during installation and | oaded as part of the NET$STARTUP
procedure, which the OpenVMsS systemruns during a system boot.

2 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

The two $Q O interfaces nust operate within the OpenVMS |/ O subsystem
As a result, they are both coded as device drivers and | oaded during
NET$STARTUP by the SYSGEN utility. Once started, they can create a VAX
comuni cation interface port to the appropriate nodules to process their
network requests.

Figure 1 shows the conponents of the DECnet/OSI for OpenVMsS product and
their logical relationship to each other

The third way a conponent can be inplenented is as a standard OpenVMS i nage
or shareabl e image. These images include NET$ACP. EXE, which is started as

a system process by NET$STARTUP, and NCL.EXE, which is the utility that
supplies the network control |anguage (NCL) interface to users. O her

i mges, such as NET$M RROR. EXE, are started by the network software in

a separate process when a network request is received for the application.

| mpl ement ati on of the Base | nmage

The base image, SYS$SNETWORK_SERVI CES. EXE, has been present on all OpenVMS
systens since version 5.4. The OpenVMS system | oads this executive inage
early in the boot cycle. The default file shipped with OpenVMS is a stub
that sinply sets a systemcell during initialization to indicate that the
ol der Phase |V code is |oaded. This systemcell can then be interrogated
t hrough an OpenVMsS system service or froma Digital Command Language (DCL)
conmand |ine to determ ne which version of the DECnet software is |oaded.

When the DECnet/OSI for OpenVMS product is installed, the base inmmge is
replaced with the Phase V version. The new i nage sets the systemcell to

i ndicate that Phase V is | oaded. It provides a host of conmon services,

i ncluding EMAA, to the renmmining system conponents. It also contains the
code used to inplenent the Phase V node agent required by EMA on each node.
Each of the renmi ni ng DECnet/ OSI for OpenVMsS conponents makes use of the
base i mage by vectoring through a systemcell to the desired function

Network |tem Lists

The DECnet/OSI for OpenVMS nodul es pass | arge amounts of data between

t hensel ves. This exchange requires an efficient nmeans to encode and nove
the data. Conversions are expensive operations; therefore a decision was
made to use the sane structure for all the interfaces within the base
conponents. The structure chosen, a network itemlist, is a sinple length
/tag/val ue arrangenment in which the tags are defined in a cormbpn area

bet ween sharing nodul es. Network itemlists are very easily extended as
new functions are added to the software. Since they contain no absolute
addresses, they are al so position independent. This has the advantage of
making it easy to copy or nobve them when necessary.

Network item|lists are used between all VAX conmuni cati on nodul es, by

EMAA, and by the session services interface. They are al so presented to
user-written applications through the $IPC interface, thus allow ng the
interface to be expanded as nore protocols and standards are inplenmented in
t he DECnet networK.

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 3

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

3 Network Managenent

This section discusses the DECnet/OSlI for OpenVMS network nanagenent design
and networ k managenent functions inplenmented in Phase V.

Net wor k Managenent Design

The key to Phase V network managenent design is the EMA Entity Mdel, which
defines the standard managenent structure, syntax, and interface to be

used by each nanageabl e object. The DECnet/ OSI for OpenVMS EMA framework

is built on this nodel and defines the conponents required for a system
manager to perform actions on nmanaged objects, both locally and across a
network. The EMA framework consists of the foll owi ng conponents.

o A director interface, through which user commands called directives are
i ssued

o A nmanagenent protocol nodule that carries directives to the node where
the object to be managed resides

0 An agent that decodes the directive into specific actions and passes
that information to the managed obj ect

o An entity, the object to be managed

For a full understandi ng of the DECnet/OSlI for OpenVMS network nmanagenent
i mpl ementation, the reader should first understand the EMA nodel. Details
on the EMA nodel can be found in the paper on managenent architecture in
this issue.[2]

In the DECnet/OSlI for OpenVMS network managenent design, the conponents
and their division of function generally foll ow the EMA franmework. There
are, however, a few exceptions. Figure 2 shows the DECnet/OSI for OpenVMS
conmponents that inplenment the EMA nodel and ot her Phase V managenent
functions.

The NCL utility provides the EMA director function. The NCL i mage processes
user comrands i nto nanagenent directives. It also displays the responses
that are returned.

The common managenent information protocol (CMP) requester library

routi nes provide part of the management protocol nodul e functions. These
i ncl ude encodi ng a nanagenent directive into CMP, transmitting it to the
desi gnat ed node, and receiving the response. The CM P requester routines
are inplenented as part of NCL, not as a separate nmanagement protoco
nodul e.

A CMP listener server process, CM..EXE, provides the remai nder of the
managenment protocol nodule function. It receives a managenent directive and
passes it to the agent. When the agent returns a response, CM. transmts
the response to the originating node.

4 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

The DECnet/OSlI for OpenVMS EMA agent, EMAA, accepts nmanagenent directives
fromCM., dispatches themto the requested entity, and returns responses to
CM.. EMAA al so extends this concept by actually perform ng the managenent
directives in some cases.

Entities are not strictly a part of network managenment. They do, however,
recei ve managenent directives from EMAA in DECnet/OSlI for OpenVMS. They
nmust be able to carry out the directives and return the results of the
operation to EMAA

I n DECnet Phase V, an event is the occurrence of an architecturally defined
normal or abnormal condition. Events detected by entities are posted to

an event dispatcher, which passes themto a local or renpte event sink.

If renote, a CM P event protocol is used. In DECnhet/COSlI for OpenVMs, the
event dispatcher inmage, NET$EVENT_DI SPATCHER. EXE, inpl enents the event

di spat chi ng and event sink functions.

The data dictionary is a binary conpilation of architecturally defined
codes for all known Phase V namnagenent entities, the nanageable attributes
of each entity, and the actions that can be perfornmed. It al so contains

i nformati on necessary to encode this information into Abstract Syntax

Not ati on Nunber 1 (ASN. 1), required for the CMP protocol

Finally, there is the maintenance operations protocol (MOP). Although MOP
is not an EMA conponent, it is a conponent of DNA. It perfornms |owleve
net wor k operations such as down-1line |oading and up-Iine dunping.

Net wor k Managenent | npl enentation

The npbst visible differences between DECnet Phase |V and DECnet Phase V
ari se from adherence to the EMA architecture. This section di scusses the
repl acenent functions inplenmented in Phase V.

The NCL Utility The network control program has been replaced in Phase V
with the NCL utility. NCL provides a highly structured managenment syntax
that maps directly to the EMA specifications for each conpliant entity.
In an NCL conmmand, the hierarchy of entities fromthe node entity to the
subentity bei ng nmanaged nmust be specified. For exanple, the follow ng
command shows the |ocal area network (LAN) address attribute of a routing
circuit adjacency entity.

NCL> Show Node DEC:. zko.Ilium -
Routing Circuit |lan-0 Adjacency -
rt g$0002 LAN Address

The command contains the node entity nane, DEC..zko.Illium the nodule
entity within the node, routing; the nane of the circuit subentity of

routing, lan-0; the nane of the adjacency subentity of circuit, rtg$0002;
and finally the attribute nane.

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 5

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

To i ssue managenent conmands from a DECnet/ OGSl for OpenVMsS system a user
i nvokes the NCL utility. NCL parses commands into fragnments call ed tokens,
containing ASCI|l strings. It uses the data dictionary to translate these

i nt o managenent codes for directives, entities, and attributes. NCL then

constructs a network itemlist fromthis information and invokes the CMP
requester send function.

CM P requester functions are inplenmented as a set of library routines that
are linked with the NCL utility. Underneath this caller interface, the CMP
routi nes establish a connection over DNA session control to the destination
node's CM P listener. The directive is then encoded into a CM P nessage and
passed to the destination.

NCL now posts the first CM P requester receive call. Mre than one receive
call may be needed to obtain all the response data. As soon as a partial
response is available, the receive function decodes the CM P nessages into
network itemlists and passes them back to NCL. NCL translates these into
di spl ayabl e text and val ues and directs the output to the user's term nal
or alog file. If the partial response is not conplete, NCL then |Ioops and
i ssues another call to the CMP requester receive function.

The CM P requester functions are optinmized for the | ocal node case. If the
destination node is specified as "0" (the |Iocal node), the CMP requester
functions interface directly to the EMAA interface, skipping the CMP
encodi ng, decoding, and the round trip across the network.

The CM P Listener The CMP listener is inplemented as a server process,
simlar to the Phase |V network managenent |istener. When an incom ng
connection request for CM. is received, a process is created to run the

CM. inmage. The CM. image utilizes the DNA session control interface to
accept the connection and receive the CMP encoded directive. It then uses
the data dictionary to decode the nessage into a network itemlist. EMAA is
then i nvoked to process the directive and return any required response from
the entity. Once CM. has received all portions of the response from EMAA
encoded theminto CMP, and transmtted them back to the requesting node,
the CML i mage term nates.

EMAA, the EMA Agent The managenent structure inposed by EMA contains

common directives that nmust be supported by all entities. A design goal

for EMAA was to provide a common managenent facility with support for
comon operations such as show or set. EMAA can perform these functions
agai nst an entity's managenent data structures, thereby freeing each

entity fromseparately inplenenting themand sinplifying the entity's code
requi renents. This approach was successfully inplenmented, though at the
cost of a nore conpl ex agent inplenentation and a set of registration nmacro
i nstructions colloquially known as the "nmacros fromhell."

The above interface between EMAA and the entities is known as the ful
interface. Not all devel opnent groups' coding entities were interested
in this approach; thus, EMAA al so provides a basic interface. An entity
speci fies which interface to use during its initialization when it
registers with EMAA. For an entity that uses the basic interface, EMAA

6 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

sinply passes the directive information to the designated entity and
expects response data returned.

The choice of interface nust be made by the nodul e-level entity. If the
entity uses the full interface, it nust register its nanagenent structure,
including all subentities and attributes, with EMAA. For these entities,
EMAA processes the network itemlist passed by CM.. It creates a data
structure for each subentity instance, specifying the attributes, any

val ues supplied, and the actions to be performed. EMAA passes this to the
designated entity, which uses tables set up during initialization to cal
the appropriate action routine for the directive. By default, these action
routines are set up as call backs into EMAA itself, thereby allowi ng EMAA to
performthe task. Wth either the basic or the full interface, a separate
response is required for each subentity instance specified by a directive.
EMAA calls CML iteratively through a coroutine call to pass response data
back to CM.

The Event Dispatcher Phase |V event |ogging allowed events to be sent to a

sink on one node. In Phase V, the event dispatcher supports nultiple sinks

that can be | ocal or on any number of renote nodes. Event filtering can be

applied on the outbound streanms of events, filtering events before they are
transmitted to a sink. This provides a nechanismto direct different types

of events to different sinks.

An event sink is the destination for an event nessage. A node can have
nmul tipl e sinks, each accepting events from any nunber of renopte nodes.
Event filtering can be applied to the inbound streams of events at the
event sink. An event nessage that passes is sent to the sink, which uses
the data dictionary to format it into ASCII character strings. It is then
output to the sink client, which my be a console, printer, or file.

An optim zation is used when an event is generated on a node and the
destination sink is on the sanme node. In this case, the event bypasses the
out bound stream and is queued directly to the event sink. The DECnet/ OSI
for OpenVMS product, in the default configuration for a |ocal node, defines
one outbound streamdirected to a sink on the |ocal node and defines the
consol e as the sink client.

An event relay provides conpatibility with Phase |V nodes. This inportant
function permits a Phase V event sink to | og nessages from Phase |V or
Phase V DECnet systens. Event relay is a session control application that
listens for DECnet Phase IV event nessages. It encapsul ates each Phase
IV event nessage in a Phase V event nessage and posts it to the event

di spat cher, using the sane service that other DECnet/CSI for OpenVMsS
entities use to post events.

Mai nt enance Operations Protocol The

NET$MOP process is the DECnet/OSI for OpenVMS inplenentation of the DNA

mai nt enance operations protocol. MOP uses the services of the |local and

wi de area data |link device drivers to performlow | evel network operations.
MOP can down-line |load an operating systeminmage to a VMsScluster satellite
node and respond to renote requests froma network device to down-1line

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 7

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

| oad or up-line dunp an inmage. MOP al so supports managenent directives

that allow a system nmanager to | oad or boot a renote device, nonitor
systemidentification nessages, performdata |ink |oopback tests, or open a
termnal 1/O comunications channel to a device's consol e program

The primary design goal of the MOP inplenentation was to respond quickly
and with | ow system overhead to renpte requests from devices to down-

line load an image. In sonme network configurations, a power failure

and restoration can cause hundreds of devices to request a down-line

| oad at the sanme tine. The Phase |V inplenentation was known to have
difficulty handling this, so the new inplenentation of MOP was designed for
nmul tithreaded operation. This neans there is only one MOP process per node,
and it processes multiple concurrent operations by creating a separate
thread for each nanagenent directive, programrequest, or dunp request
recei ved. Moreover, all managenent data required to service MOP requests
is contained in MOP-specific managenent data structures, designed to be
searched qui ckly. When a request is received, MOP can pronptly ascertain
whet her the required information to service the request is avail able and
make a response.

4 Session Control |nplenentation

The design of the DECnet/OSI for OpenVMS session control |ayer is based on
goal s defined by both the session control architecture and the DECnet user
comunity. These goal s include

o Conpatibility. The DECnet-VAX product has a |arge custonmer base with
maj or i nvestments in DNA applications. The session control |ayer
supports these applications without requiring a relink of the object
code.

o Performance. Transmit and receive operations across the network mnust
be as efficient as possible. Mninmal overhead is introduced by the
session control layer in making each transport protocol available to
applications.

0 Extensible. The session control |layer design allows for future additions
to the architecture

o0 New features. The session control |ayer takes full advantage of the new
nam ng and addressing capabilities of Phase V DNA

o |Inproved managenent. The session control |ayer conplies with EMA,
allowing it to be managed from anywhere throughout the network.

8 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

Sessi on Control Design

The session control layer is divided into several |ogical conponents,

$Q O, IPC, NETACP, commpn services, and network managenent. $Q O and

$1 PC provide the APIs required to communi cate across the network. $Q O is
fully conpatible with all Phase |V DECnet-VAX applications; however, it
does not allow access to the full set of features available in DECnet/ CSl
for OpenVMS. These new features, and any future additions, are available
only through the new $IPC interface.

The two APIs are consuners of session control services provided by the
comon services conponent. This conponent provides all the network
functions defined in Phase V to the APIs above it. In order to do this,
t he commmon servi ces conponent nakes use of both the NET$ACP and network
managenent portions of the session control |ayer.

Figure 3 shows the session |ayer conmponents and their relationships to each
ot her.

Sessi on Control APls

DECnet Phase IV restricted node nanes to six characters in length. In
DECnet - VAX the $Q O interface was the only means by which an application
could make calls to the session control layer. This interface al so enforced
the six-character name linmt. Wth the advent of Phase V, this restriction
no longer applies. It is possible for a node running Phase V to be
unreachabl e by a Phase |V-style six-character node name. As a consequence,
the $Q O interface was extended to allow full name representations of a
node.

The $IPC interface is a newinterface that incorporates all the functions
of the $Q O interface, along with extensions nmade to the session contro
architecture. This itemlist-driven interface provides a cleaner, nore
extensible interface and allows for easy conversion of $Q O applications.
The $Q O interface uses a network control block (NCB) and a network
function block (NFB) to hold data. This data is easily mapped to itens

in anetwork itemlist. Also, the function codes used by $Q O can be easily
mapped to $I PC function codes. As new requirenments arise, supported itens
can be added to the |list without inpacting the existing val ues.

The $IPC interface also supplies sonme new features not available in $Q O
Phase V DNA uses the Digital Distributed Name Service (DECdns) to store

i nformati on about nodes and applications in a global nanespace. Once an
application declares itself in the gl obal namespace, $IPC enabl es session
control to nmaintain its address attribute. This address attribute contains
all the informati on necessary to define where the application resides on
the network. $IPC can then be used by the client side of an application

to connect to a server through a single global name, instead of using a
node nane and application name pair. This enables the client side of an
application to communicate with its server wi thout knowi ng where the server
currently resides.

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 9

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

$I PC supports a new neans of accessing a node by its address. In Phase

IV, addresses were limted to 63 areas with 1,023 nodes in each area. The
address of each node could be represented with a 16-bit integer. The $Q O
interface supports a form of node nane in which the 16-bit address is
converted into the ASCI| representation of the decimal equivalent. This

is not sufficient to address all Phase V nodes, so a new function called
"connect - by-address tower" is available through $I PC. The address tower is
di scussed further in the Commopn Services Conponent section

Yet another feature of $IPCis the ability to translate a node's address
into the nane of the node as registered in the gl obal namespace. |In Phase
IV the address-to-nanme translation was a managenent function. Furthernore,
the translation was local to the node on which it was perforned.

Session Control Network Managenent

The session control |ayer makes use of the full EMAA entity interface to
support all entities defined by the session control architecture. These

i nclude the session control entity itself, as well as the application
transport service, port, and tower nmintenance subentities. Each of these
entities contains tiners, flags, and other control information used by the
session control layer during its operation. They also contain counters for
the events generated by the session control |ayer.

The application subentity is of special interest. This entity is the

equi val ent of the Phase |V object database. It allows the system manager
to register an application with session control to nmake it available for

i ncom ng connections. This entity is also used to control the operation

of the application and select the types of connections that can be sent or
received by it.

Common Servi ces Conponent

The common services conponent is the hub for session control. It is
responsi ble for performng tasks that are not specific to the $IPC or $Q O
i nterfaces. These tasks include managi ng transport connections on behal f

of session control users, nmapping froma DECdns object nanme to addresses,
sel ecting conmuni cati on protocols supported by both the local and renpote
end systens, maintaining the protocol and address information corresponding
to Il ocal objects in the nanmespace, and activating (or creating) processes
to service incom ng connect requests.

The NET$ACP process is used to provide the compn services conmponent with
process context. The NET$ACP inmmge itself is nothing nore than a set of
gueues and an idle | oop. Wien the session control layer is |oaded, it
creates user-node and kernel -node tasks. A queue is assigned for each
task, and the NET$ACP process attaches to the task when it is started.

When the session conponent needs to execute in the context of a process
and not on the interrupt stack, it builds a work queue entry, queues it
to the appropriate task queue, and wakes up the NET$ACP. The NET$ACP fi nds
the address of the desired routine in the work queue entry and executes it.
This routine can be | ocated anywhere that is addressable by the process,

10 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

but it is usually contained within the session control |oadabl e inage.
The conmmon servi ces conponent nakes use of the NETSACP for reading files,
creating network processes, and naking calls to the DECdns clerk. It

al so nakes use of the process for functions that require | arge anounts of
nmenory. By performing these tasks in the NET$ACP process, session contro
is able to use process virtual menmory even though it is inplenented as an
executive | oadabl e i nage.

The tower set data structure plays a key role in session control. A tower
set consists of one or nore towers. Each tower represents a protocol stack
and is conposed of three or nore floors, as shown in Figure 4. The | owest
floors in the tower correspond to the DNA routing, transport, and session
control layers; they are used to identify protocol and associ ated address
information to be used at that |ayer. Wen viewed as a whole, the tower
set descri bes a conbination of protocols supported on a node. The session
control layer on every DECnet/COSI for OpenVMs system not only uses this
informati on to conmunicate with renote nodes, but is also responsible for
building a tower set to represent that local system Once built, this tower
set is placed in the nanespace as the attribute for the node.

The session control interfaces allow the user to specify a node in many
ways. A node can be specified as a Phase |V-style node nane, a Phase |V-
styl e address, a DECdns full nane, or a tower set. The three forns of
nanme representations are mapped to the correspondi ng tower set by making
calls to the DECdns clerk to obtain the node's tower set attribute. Once
the tower set is in hand, it can be used to conmunicate with the session
control layer on the renote node.

The tower set for a renote node and the tower set for the |ocal node

are used in conjunction to deternmine if both nodes support a common
tower. If a conmon tower is found, session control attenpts to establish
a connection to the renote node using that tower. |If the connection
fails, the conparison continues. If another matching tower is found, the
connection attenpt is repeated. This continues until the connection is
established or the tower sets are exhausted.

Use of DECdns

The session control |ayer uses DECdns objects for all gl obal nam ng. These
objects are used in two different ways: they can represent a node or a

gl obal application. A node object is a global representation of a node in

a DECdns nanespace. Each node object contains attributes that identify the
| ocation of a node. Forenpbst in this Ilist of attributes is the DNA$Towers
attribute. The DNA$Towers attri bute contains the tower set for the node and
is witten automatically by the session control |ayer when DECnet/ COSI for
OpenVMS is configured and started. Once created, this attribute is updated
by session control to reflect the current supported towers for the node.

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 11

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

When the session control |ayer builds the tower set for the DECdns node
object, it creates a tower for each comnbi nati on of supported protocols

and network addresses on the node. If the node supports two transports

and three network addresses, the tower set is generated with six towers.

It always places the CML application protocol floor on top of the session
control floor. The address information for the session control floor is
then set to address the CM. application. The transport address infornmation
is set to address DNA session control, and the routing information of each
tower in the set is set to one of the supported network addresses for the
node.

The node obj ect DNA$Towers attribute contains data that conpletely

descri bes the node. Since session control supports node addresses and Phase
| V-styl e node nanmes, soft links are created in the nanespace to map from a
Phase V network service access point (NSAP) or a Phase |V-style node nane
(node synonym) to the node object. These |links can then be used by the
session control |ayer as alternate paths to the node object.

An application object is a global representation of an application. The
DNA$Towers attribute of this object contains a set of address towers used
to address the application. The routing and transport floors for each tower
in this set are used in the sane manner as for the node object. The address
information in the session floor, however, addresses the application, not
CML. Once set, the information in this tower set is not maintained unless
the application issues a register object call through the $IPC interface.

If this is done, session control maintains the tower in the same manner as
it does for the node object.

5 Transport |nplenentation

The DECnet/OSI for OpenVMS product supports two transport protocols:

the open systens interconnection transport protocol (OSI TP) and the
network service protocol (NSP). Each transport protocol, or group of

| ogically associated protocols, is bundled as a separate but equival ent
VAX commruni cati on nodul e. This approach acconplishes nmany goals. The nore
not abl e ones i ncl ude

o |Isolating each nodule as a pure transport engi ne

o Defining and enforcing a conmon transport user interface to al
transports

o Providing extensible constructs for future transport protocols, i.e.
providing a set of transport service libraries

o Elimnating previous duplication in adjacent |ayers (session and network
routing | ayers)

0 Providing backward conpatibility with existing Phase |V transport
protocol engi nes (NETDRI VER/ NSP and VAX OSI transport service)

12 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

Transport Layer Design

A transport VAX communi cation nodul e has two conponents, a protocol engine
and the transport service libraries. The service |libraries are common

code between nodul es and are linked together with each engine to form an
executive | oadable i mage. The three el ements of DECnet/COSI for OpenVMsS
transport, the NSP protocol engine, the OSI protocol engine, and the
transport service libraries, are linked into two i mages. Figure 5 shows
the rel ationship of these el enents.

The specific functions provided by a transport engi ne depend on the
protocol. The generic role of NSP and the OSI transport |layer is to provide
a reliable, sequential, connection-oriented service for use by a session
control layer. The design provides a commn transport interface to both NSP
and the OSI transport |ayer. This enables NSP and OSI transport (class

4) to be used interchangeably as a DNA transport. As future transport
protocol s are devel oped, they can be easily added into this design

The DECnet/OSI for OpenVMS transport design places common functions in

the service libraries for use by any protocol engine that needs them

Any functions that are not specific to a protocol are performed in

these libraries. Separating these functions enables new protocols to be

i mpl emented nore quickly and all ows operating-systemspecific details to be
hi dden from the engi nes.

The NSP transport VAX conmmuni cati on nodul e operates only in the DNA stack
and supports only DNA session control. Due to an essentially unchanged wire
protocol, NSP is conpletely conpatible with Phase |V inplenentations.

The OSI transport VAX conmuni cati on nodul e inplenments the Internationa
Organi zation for Standardization (1SO 8073 classes 0, 2, and 4 protocols.
It can operate on a pure OSI stack in a multivendor environment. The OS
transport is also conpletely conpatible with the Phase IV VAX OSI transport
service inplenmentation and operates on the DNA stack supporting DNA session
control

Transport Engi nes The transport VAX comuni cati on nodul es provide a

transport connection (logical link) service to the session |layer. The
connecti on managenment is designed to ensure that data on each |ogical |ink
i s handl ed i ndependently from data on other logical |inks. Data bel ongi ng

to different transport connections is never mxed, nor does a bl ockage of
data flow on one connection prevent data from bei ng handl ed on anot her

The transport VAX conmuni cati on nodul es are state table driven. Each
transport engine uses a state/event matrix to determ ne the address of

an appropriate action routine to execute for any state/event conbi nation.
As a transport connection changes state, it keeps a histogramof state

transitions and events processed.

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 13

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

Service Libraries The follow ng functions are commopn to many protocols and
are inplenented in the service libraries.

o Transfer of normal data and expedited data fromtransmit buffers to
receive buffers

o Fragnentation of |arge nessages into snmaller nessages for transm ssion
and the reconstruction of the conplete nessage fromthe received
fragnents

o Detection and recovery fromloss, duplication, corruption, and
m sordering i ntroduced by | ower |ayers

The key transport service library is the data transfer library. This
library gives a transport engine the capability to performdata
segnent ati on and reassenbly. Segmentation is the process of breaking a

| arge user data nessage into nmultiple, snmaller nmessages (segnments) for
transm ssion. Reassenbly is the process of reconstructing a conplete

user data message fromthe received segnents. To use the data transfer
library, a protocol engine must provide a set of action routines. These
action routines hold the protocol-specific logic to be applied to the data
handl i ng process.

Net wor k Servi ces Phase V provides two types of network services:
connectionl ess (CLNS) and connection-oriented (CONS). CLNS offers a
datagram facility, in which each nmessage is routed to its destination

i ndependently of any other. CONS establishes |ogical connections in the
network | ayer over which transport nmessages are then transmtted.

Transport running over CLNS has a flexible interface. It opens an
association with the CLNS |ayer and is then able to solicit the CLNS | ayer
to enter a transport protocol data unit (TPDU) into the network. Wen

admi ssion is granted, transport sends as many TPDUs as possible at that
time. Incom ng TPDUs are posted to transport as they are received by the
CLNS | ayer. Both NSP and OSI transports run over the CLNS | ayer.

Transport running over CONS has a nore rigid interface. Once a network
connection is established with the CONS | ayer, each transport request

has to be conpleted by the CONS | ayer. Thus transport, when runni ng over
CONS, is not able to transmit all its TPDUs at once. Each transmit nust

be conpl eted back to transport before the next can comrence. Also, if
transport is to receive incomng TPDUs, a read nmust be posted to the CONS

| ayer. The OSI transport runs over the CONS | ayer, but the NSP protocol was
desi gned specifically for CLNS and does not operate over CONS.

Di fferences between Phase |V and Phase V Transport Protocol Engines

Fl ow control policy is an inmportant difference between the VAX OS

transport service and the DECnet/COSI for OpenVMs inpl enentation. The VAX
0S| transport service inplenments a pessimistic policy that never allocates
credit representing resources it does not have. The OSI transport protocol
on the other hand, inplenents a nore optim stic policy that takes advantage
of buffering available in the pipeline and the variance in data flow on

14 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

different transport connections. It makes the assunption that transport
connections do not consune all allocated credit at the same tine. O her
enhancenents to the OSI transport protocol include conformance to EMA
net wor k managenent, conpliance with the nost recent |SO specifications,
and participation in DECnet/COSlI for OpenVMs VMscl uster Ali as.

The two main differences between the Phase |V and Phase V NSP

i mpl ement ati ons are conformance to the EMA managenent nodel, and, once
again, flow control. In Phase IV, NSP does not request flow contro

and uses an XON XOFF nmechanism This results in large fluctuations in

t hroughput. Phase V NSP has been enhanced to request segnent flow control
Thi s mechani sm enabl es each side of a transport to determ ne when it can
send data segnents. Due to this difference in flow control policy, Phase V
NSP t hr oughput converges to a maxi mum val ue.

Future Direction of Transports

The DECnet/OSI for OpenVMS transport design provides a comon transport
user interface to all transports and places common functions in the
transport service libraries. This approach provides extensibility; it
allows future transports to be easily incorporated as they enmerge in the
i ndustry. This conmon interface can al so be used to provide an APl that
interfaces directly to a transport. DECnet/OSlI for OpenVMS engi neering is
currently looking at providing such an API.

6 Configuration

Design on the new configuration tools was started by collecting user
conments about the Phase IV tools and desirable features for the new

tool. This data was collected from customer comruni cati on at DECUS, through
internal notes files, and through internet news groups.

The first goal agreed upon was to create configuration files that are

easy to read; inexperienced Phase V network managers nay be required

to read and understand these files. Next, the tool nust be structured.

The configuration is divided into several files with recognizable file
nanmes rather than one potentially unnanageabl e one. Each file contains the
initialization conmands needed to initialize one network entity. Finally,
the configuration tool should be extensible. New commands, entities, or
other information can easily be added to the configuration

Configuration Design

The main configuration tool is a DCL command procedure (NET$CONFI GURE. COM .
Thi s procedure generates NCL script files, which are executed during
network start-up, to initialize the network. In general, each script file
initializes one entity within DECnet/OSI for OpenVMS. It is possible,

however, for scripts to contain information for nunmerous entities. For
exanple, the NSP transport initialization script contains commands to
create an instance of the session control transport service provider
entity, which enables the session layer to use the protocol. The procedure

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 15

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

can extract information about the configuration by using the NET$CONVERT
DATABASE utility to translate an existing Phase IV configuration contained
in the Phase IV pernanent databases. Alternatively, it can pronpt the user
for the informati on needed to all ow basic operation of the node.

The first time NET$CONFI GURE i s executed, all the questions, except for
the node's full name and its Phase |V address, have default choices. If
the defaults are chosen, the node operates properly once the network has
started. \When appropriate, NET$CONFI GURE al so calls other configuration
tools to configure the DECdns client and the Digital Distributed Tine
Service (DECdts), and to perform various network transition functions.

Once the initial configuration has been perfornmed, custom zation of
conponents is avail abl e. Subsequent execution of the NET$CONFI GURE
procedure will present the user with a nmenu that allows specific
subsections of the configuration to be done, for exanple, adding or

del eting MOP clients or session control applications, changi ng the nane
of the node, or controlling the use of comruni cati ons devi ces.

General help is available while running NET$CONFI GURE. |f the user does
not understand any individual query, responding with a "?" (question mark)
provi des a brief explanation.

The scripts created by NET$CONFI GURE are conputed. A checksumis conputed
by NET$CONFI GURE for each script file, and it is stored in a database al ong
with the answers entered for all other configuration questions. This allows
t he NET$CONFI GURE procedure to detect whether a script has been nodified by
an outside source. If this condition is detected, NET$CONFI GURE warns t he
user that user-specific changes made to the particular script nmay be | ost.

If a user has nodified the NCL scripts,

NET$CONFI GURE cannot guarantee that the information will be retained after
future executions of the procedure. An attenpt is nmade to nmintain the
changes across new versions. In all cases, previous scripts are renaned
before the new scripts are generated. This allows the user to verify that
custoni zed change was transferred to the new script. If not, the saved
version can be used to nmanually replace the change.

Node Confi gurati on NET$CONFI GURE asks only one question that is directly
related to the node entity. It asks for the node's DECdns full nane and
sets the node's nane. Since the namespace nicknanme is a required conponent
of the full name answer, it also allows the procedure to determ ne the
nanespace i n which to configure DECdns.

The node synonym default is generated by using the first six characters of
the |l ast sinple nane of the node's full name. |f the user entered the ful
name, USN:. Norfol k. Destroyer. Spruance. DD125, the synonym default would be

DD125. The user is free to change this information as |Iong as the response
is a legal Phase |IV-style nane. If present, the transition tools nake use
of this synonym when the node is registered in the DECdns nanespace.

16 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

Dat a Li nk/ Routing The NET$CONFI GURE procedure contains a table of al

valid data |ink devices supported by DECnet/CSI for OpenVMs. Wen the data
link/routing configuration nmodule is called, the systemconfiguration is
scanned. Any valid devices found on the systemare presented to the user
for addition to the configuration. The only exceptions are asynchronous
data |ink devices. The user nust specifically request asynchronous support
for these devices to be configured.

Configuration is mandatory for broadcast data |link nedia since these
devi ces are shareabl e and users other than DECnet/ OSlI for OpenVMS nmay
request the device. For synchronous devices, the user has the choice

to configure the device for use by DECnet/OSI for OpenVMS. |If a device
is configured, a choice between the Digital data comruni cati ons nessage
protocol (DDCMP) or high-level data |link control (HDLC) as data link
protocol nust al so be nmde

Each data |link device configured requires a nane for the device and a

name for the corresponding routing circuit. The defaults for these nanes
are generated by using the protocol name, e.g., carrier sense multiple
access-col lision detection (CSVMA-CD), HDLC, or DDCMP, along with a unit
nunber. The user nay override the default with any valid sinple name. This
allows the user to set the data Iink and routing circuit nanmes to be nore
descriptive in their environnent; for exanple,

HDLC_SYNC _TO BOSTON for a data |link and

CONNECTI ON_TO_BOSTON_DR500 for a routing circuit.

Transport/ Sessi on Control NET$CONFI GURE supports the NSP and OS

transports. The procedure configures both transports by default, but allows
the user to select only one. Comrands are generated in the start-up scripts
to initialize both the transports and the session control transport service
provi der entity instances, which allow the session control |ayer to use

t hem

If OSI transport is configured, default tenplates are created to allow the
installation verification procedures for the OSI applications to operate
successfully. The user also has the option of creating specific connection
option tenplates for use with OSI applications.

All default session control applications, e.g., file access |istener

(FAL), nmmil, or phone, are configured in the sane way as they are with

t he DECnet - VAX Phase |V configuration tool. The user has the option to

all ow access to each application through a default account or not. The only
queries made by the configuration tool are about the creation of the user
account for the application.

DECdt s Configuration The DECdts configuration is perforned by a call to the
DTSS$CONFI GURE procedure. DTSS$CONFI GURE pronpts the user to choose between

uni versal coordinated time (UTC) or local tine, which is UTC plus or ninus
the tine-zone differential factor (TDF). If local tinme is chosen, then
the procedure pronpts for the continent and time zone on that continent to
use. This information is needed to conpute the TDF. The DTSS$CONFI GURE

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 17

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

tool creates its own NCL scripts. These scripts are not nmintained by
NET$CONFI GURE, and no checksuns are conputed or stored for them

Configuration To configure DECdns, the network software nust be in
operation so that the DECdns software may use it. The NET$CONFI GURE
procedure attenpts to start the network once it has created the necessary
scripts. Once the network has been started, the NET$CONFI GURE procedure
cal | s DNS$CONFI GURE, passing it the node full name that was entered by the
user. The full nane contains the namespace ni cknanme that the user wi shes
to use. DNS$CONFI GURE t hen uses the DECdns advertiser to listen on the
broadcast nmedia for a nanme server that is advertising the same nanespace
nicknanme. If a match is made, DECdns creates an initialization NCL script
with the needed instructions to configure the DECdns clerk at the next
system boot. It then tells the advertiser to configure against the sane
nanmespace.

I f the nanmespace ni cknane cannot be matched, the user is given
alternatives. First, a list of the current nanespaces advertised on the
broadcast nedia, along with the LOCAL: nanespace is offered. LOCAL: is a
special case used in lieu of the standard client-server configuration. The
LOCAL namespace nmakes use of the client cache to store a small nunber of
nodes | ocally.

If a choice is not made fromthe list, the user is queried to see if an
attenpt should be nmade to configure to a nane server that may be | ocated on
a data link other than the broadcast nedia. If yes, then a valid address
must be provided to the DNS$CONFI GURE tool so that it may connect to the
nane server on the renote node

If no options are chosen at this point, a final choice of creating a

nanme server on the local node is presented. Since DECnet/CSI for OpenVMsS
nmust configure the DECdns clerk, if the answer is still no, the procedure
returns to the original list of known nanespaces and starts again.

Transition Tools Once DECdns is configured, the transition tools are used
to create the correct nanmespace directory configuration. |If a new nanmespace
has been created and sel ected for use, the tools populate the directories
with the node information fromthe Phase |V DECnet database found on the
system Mst often, the tools sinply register the node with the DECdns nane
server along with the node synonymthat was provided by the user during the
node configuration portion of NET$CONFI GURE

The transition tools also assist the user when renani ng the node or
changi ng from one nanespace to another. They copy subdirectory infornmation
fromthe node's old DECdns directory to the new directory structure on the
new nanmespace or within the same namespace, if the user only changed the
node' s nane.

18 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

7 Sunmmary

The DECnet/OSI for OpenVMS version 5.5 product inplenents all |ayers of

the DNA Phase V architecture. This extends the OpenVMsS systemto a new
degree of network access by supplying standard OSI protocols. The product
al so protects the large investnent in network software that OpenVMS users
currently hold. This is done by fully supporting the extensive sel ection of
applications avail able for Phase |V DECnet-VAX. In addition, the design

of DECnet/OSlI for OpenVMS is structured in a way that will ease the

i ntroduction of new standards as they cone avail abl e.

8 Acknow edgnents

Throughout the course of this project, many people have helped in the
design, inplenmentation, and docunentation of the product. W would Iike

to thank all those people for all their help. W would also |ike to extend
a special thanks to all nenbers of the bobsled team Wthout them this
product woul d never have conme to be.

9 References

1. J. Harper, "Overview of Digital's Open Networking," Digital Technica
Journal, vol. 5, no. 1 (Wnter 1993, this issue).

2. M Sylor, F. Dolan, and D. Shurtleff, "Network Managenent," Digita
Techni cal Journal, vol. 5 no. 1 (Wnter 1993, this issue).

10 Biographies

Lawrence Yetto Larry Yetto is currently a project and technical |eader for
the DECnet/OSI for OpenVMS Group. He joined Digital in 1981 and has held
various positions in software engi neering on devel opnent projects for VMS
journaling, VMs utilities, and DECnet-VAX Phase |IV. He also worked in the
Project Services Center, Minich, and was the project |eader for the OpenVMS
version 5.0 field test. Prior to joining Digital, Larry worked as a systens
programer at Burroughs Corporation. He earned a B.A. in both math and
conmputer science fromthe State University of New York at Potsdam

Dorothy Noren M Il brandt Dotsie MIIbrandt is a principal software engi neer
and a co-project |eader for Conmon Network Managenent. Currently she is
devel opi ng management conponents that will work across all the DECnet/CSl
platfornms: OpenVMS, OSF/ 1, and ULTRI X. Dotsie was the project |eader for
the MOP conponent and the trace facility and has worked on OSI transport
and configuration software. Prior to this work, she was a project |eader
and m crocode devel oper for DSB32 and KMV11l synchronous comruni cations
controllers in the CSS Network Systenms G oup.

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 19

The DECnet/OSI for OpenVMS Version 5.5 | nplenentation

Yani ck Pouffary A principal software engineer, Yanick Pouffary is currently
the transport technical |eader in the DECnhet/COSlI for OpenVMsS Group. She
was the principal designer and devel oper of OSI transport and NSP transport
protocol engines. Prior to this work, she devel oped the presentation |ayer
for the VIX20, a videotext terminal. Before joining Digital in 1985, Yanick
wor ked for the CODEX Corporation on a statistical nultiplexer. Yanick
earned a B.S. in computer science fromthe University of Nice, France,

and an MS. in conmputer science fromthe State University of New York at

St ony Brook.

Daniel J. Ryan Jr. A principal software engineer in the DECnhet/CSI

for OpenVMS Group, Dan Ryan was responsible for the configuration and
installation portion of the DECnet/OSI for OpenVMS product. Recently he
was the team | eader for the transport devel opnent effort. Currently he
is investigating DECnet/OSI and TCP/IP integration as well as DECnet/ CSl
critical problens. Dan has 14 years of experience in data comrunications
and has been with Digital since 1983. He was previously enpl oyed as

a systens programrer and was a free-lance consultant on conputer

conmuni cati on sol utions.

David J. Sullivan David Sullivan is a senior software engi neer and was
the technical |eader of the node agent and event di spatcher conponents
for the DECnet/OSlI for OpenVMS product. David al so worked as an individual
contributor on the design and inplenmentation of the session control |ayer.
He is currently working on a devel opnent effort to allow the DECnet/ OSI
product to run on Digital's AXP platforns. After joining Digital in 1987,
he worked in the VAX/ RPC Group where he was responsible for witing tests
for the pidgin conpiler. David holds a B.S.C.S. (1988) from Merri mack

Col | ege.

DECUS, DECnet-VAX, DECnet/OSI for OpenVMS, Digital, DNA, and VMScluster are
trademar ks of Digital Equi pment Corporation.

20 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

Copyright 1992 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

