

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

1 Abstract

 The combination of the Alpha AXP workstations, the DEC FDDIcontroller
/TURBOchannel network interface, the DEC OSF/1 AXP operating system, and
a streamlined implementation of the TCP/IP and UDP/IP delivers to user
applications almost the full FDDI bandwidth of 100 Mb/s. This combination
eliminates the network I/O bottleneck for distributed systems. The TCP
/IP implementation includes extensions to TCP such as support for large
transport windows for higher performance. This is particularly desirable
for higher-speed networks and/or large delay networks. The DEC
FDDIcontroller/TURBOchannel network interface delivers full bandwidth to
the system using DMA, and it supports the patented point-to-point, full-
duplex FDDI mode. Measurement results show UDP performance is comparable to
TCP. Unlike typical BSD-derived systems, the UDP receive throughput to user
applications is also maintained at high load.

We have seen significant increases in the bandwidth available for computer
communication networks in the recent past. Commercially available local
area networks (LANs) operate at 100 megabits per second (Mb/s), and
research networks are running at greater than 1 gigabit per second (Gb
/s). Processor speeds have also seen dramatic increases at the same time.
The ultimate throughput delivered to the user application, however, has not
increased as rapidly. This has led researchers to say that network I/O at
the end system is the next bottleneck.[1]

One reason that network I/O to the application has not scaled up as rapidly
as communication link bandwidth or CPU processing speeds is that memory
bandwidth has not scaled up as rapidly even though memory costs have fallen
dramatically. Network I/O involves operations that are memory intensive
due to data movement and error checking. Scaling up memory bandwidth, by
making memory either wider or faster, is expensive. The result has been
an increased focus on the design and implementation of higher-performance
network interfaces, the re-examination of the implementation of network
I/O, and the consideration of alternative network protocols to achieve
higher performance.[2,3,4].

This paper describes the work we did to remove the end system network I/O
bottleneck for current commercially available high-speed data links,
such as the fiber distributed data interface (FDDI).[5,6] We used the
conventional internet protocol suite of transmission control protocol
/internet protocol (TCP/IP) and the user datagram protocol/internet
protocol (UDP/IP) on Alpha AXP hardware and software platforms.[7,8,9]
The specific hardware platform was the DEC 3000 AXP Model 500 workstation
with the DEC

FDDIcontroller/TURBOchannel adapter (DEFTA). The software platform was the
DEC OSF/1 operating system version 1.2 using the TCP and UDP transport
protocols. The combination of the Alpha AXP workstations, the DEFTA

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 1

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

adapter, the DEC OSF/1 operating system, and a streamlined implementation
of the TCP/IP and UDP/IP delivers to user applications essentially the full
FDDI bandwidth of 100 Mb/s.

While the DEC FDDIcontroller/TURBOchannel network interface is lower cost
than previous FDDI controllers, it also delivers full bandwidth to the
system using direct memory access (DMA). In addition, it supports the
patented point-to-point, full-duplex FDDI mode. This allows a link to
be used with 100 Mb/s in each direction simultaneously, which increases
throughput in some cases and reduces latency compared to the standard FDDI
ring mode.

Incremental work for data movement and checksums has been optimized to
take advantage of the Alpha AXP workstation architecture, including
64-bit support, wider cache lines, and the coherence of cache blocks
with DMA. Included in the TCP/IP implementation are extensions to TCP
recently recommended by the Internet Engineering Task Force (IETF), such
as support for large transport windows for higher performance.[10] This is
particularly desirable for high-speed networks and/or large delay networks.

We feel that good overload behavior is also important. Workstations as well
as hosts acting as servers see substantial load due to network I/O. Typical
implementations of UDP/IP in systems based on the UNIX operating system
are prone to degradation in throughput delivered to the application as
the received load of traffic to the system increases beyond its capacity.
Even when transmitting UDP/IP packets from a peer transmitter with similar
capabilities, the receiver experiences considerable packet loss. In
some cases, systems reach receive "livelock," a situation in which a
station is only involved in processing interrupts for received packets
or only partially processing received packets without making forward
progress in delivering packets to the user application.[11] Changes to
the implementation of UDP/IP and algorithms incorporated in the DEFTA
device driver remove this type of congestion loss at the end system under
heavy receive load. These changes also eliminate unfairness in allocation
of processing resources, which results in starvation (e.g., starving the
transmit path of resources).

The next section of this paper discusses the characteristics of the Alpha
AXP workstations, the DEC OSF/1 operating system, and the two primary
transport protocols in the internet protocol suite, TCP and UDP. We provide
an overview of the implementation of network I/O in a typical UNIX system
using the Berkeley Software Distribution (BSD) to motivate several of the
implementation enhancements described in the paper.[12]

The section on Performance Enhancements and Measurements Results then
describes the specific implementation enhancements incorporated in the
DEC OSF/1 operating system version 1.2 to improve the performance of

TCP and UDP. This section also provides measurement results for TCP and
UDP with DEC 3000 AXP workstations running DEC OSF/1 version 1.2 in a
few different configurations. Also included are measurements with TCP
and UDP with Digital's patented full-duplex mode for FDDI, which can

2 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

potentially increase throughput and reduce latency in FDDI LANs with
point-to-point links (which can also be used in switched FDDI LANs). A
few implementation ideas currently under study are also presented in the
section on Experimental Work.

2 System Characteristics

The project to improve the implementation of Digital's TCP/IP and UDP
/IP (the internet protocol suite) networking was targeted on the DEC
3000 AXP Model 500 workstation, running the DEC OSF/1 operating system
version 1.2. Since we were interested in achieving the highest performance
possible on a commercially available data link, we chose FDDI, and used the
DEC FDDIcontroller/TURBOchannel adapter (DEFTA) to communicate between
the Alpha AXP workstations. In this section, we describe the features
of the workstations, relevant characteristics of FDDI, the internet
protocol suite, and the DEC OSF/1 operating system itself, relative to
the networking implementation. The architectural features of the Alpha AXP
workstations as well as the DEC FDDIcontroller/TURBOchannel adapter are
shown in Figure 1.

The Alpha AXP System

The Alpha AXP workstation, DEC 3000 AXP Model 500 was chosen for our
research. The system is built around Digital's 21064 64-bit, reduced
instruction set computer (RISC) microprocessor.

Digital's 21064 Microprocessor. The DECchip 21064 CPU chip is a RISC
microprocessor that is fully pipelined and capable of issuing two
instructions per clock cycle.[13,14] The DECchip 21064 microprocessor can
execute up to 400 million operations per second. The chip includes

o An 8-kb direct-mapped instruction cache with a 32-byte line size

o An 8-kb direct-mapped data cache with a 32-byte line size

o Two associated translation buffers

o A four-entry (32-byte-per-entry) write buffer

o A pipelined 64-bit integer execution unit with a 32-entry register file

o A pipelined floating-point unit with an additional 32 registers

The DEC 3000 AXP Model 500 Workstation. The DEC 3000 AXP Model 500
workstation is built around the DECchip 21064 microprocessor running
at 150 megahertz (MHz).[15] In addition to the on-chip caches, there is
an on-board second-level cache of 512 kilobytes (kB). Main memory can

be from 32 MB to 256 MB (1 GB with 16 MB dynamic random-access memories
[DRAMs]). The memory bus is 256 bits plus error-correcting code (ECC) wide
and has a bandwidth of 114 MB/s. Standard on the system is also a 10-Mb/s
Ethernet interface (LANCE). For connection to external peripherals there
is an on-board small computer systems interface (SCSI)-2 interface and six
TURBOchannel slots with a maximum I/O throughput of 100 MB/s. One of the
TURBOchannel slots is occupied by the graphics adapter.

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 3

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

The system uses the second-level cache to help minimize the performance
penalty of misses and write throughs in the two relatively smaller primary
caches in the DECchip 21064 processor. The second-level cache is a direct-
mapped, write-back cache with a block size of 32 bytes, chosen to match
the block size of the primary caches. The cache block allocation policy
allocates on both read misses and write misses. Hardware keeps the
cache coherent on DMAs; DMA reads probe the second-level cache, and DMA
writes update the second-level cache, while invalidating the primary data
cache. More details of the DEC 3000 AXP Model 500 AXP workstation may be
obtained from "The Design of the DEC 3000 AXP Systems, Two High-performance
Workstations."[15]

DEC OSF/1 Operating System

DEC OSF/1 operating system version 1.2 for Alpha AXP systems is an
implementation of the Open Software Foundation (OSF) OSF/1 version 1.0
and version 1.1 technology. The operating system is a 64-bit kernel
architecture based on Carnegie-Mellon University's Mach version 2.5
kernel. Components from 4.3 BSD are included, in addition to UNIX System
Laboratories System V interface compatibility.

Digital's version of OSF/1 offers both reliability and high performance.
The standard TCP/IP and UDP/IP networking software, interfaces, and
protocols remain the same to ensure full multivendor interoperability.
The software has been tuned and new enhancements have been added that
improve performance. The interfaces between the user application and the
internet protocols include both the BSD socket interface and the X/Open
Transport Interface.[12] The internet implementation conditionally conforms
to RFC 1122 and RFC 1123.[16,17] Some of the networking utilities included
are Telnet; file transfer protocol (FTP); the Berkeley "r" utilities
(rlogin, rcp, etc.); serial line internet protocol (SLIP) with optional
compression; Local Area Transport (LAT); screend, which is a filter for
controlling network access to systems when DEC OSF/1 is used as a gateway;
and prestoserve, a file system accelerator that uses nonvolatile RAM to
improve Network File System (NFS) server response time. The implementation
also provides a STREAMS interface, the transport layer interface, and
allows for STREAMS (SVID2) and sockets to coexist at the data link layer.
There is support for STREAMS drivers to socket protocol stacks and support
for BSD drivers to STREAMS protocol stacks via the data link provider
interface.

The OSF/1 Network Protocol Implementation

The overall performance of network I/O of a workstation depends on a
variety of components: the processor speed, the memory subsystem, the
host bus characteristics, the network interface and finally, and probably
the most important, software structuring of the network I/O functions. To

understand the ways in which each of these aspects influences performance,
it is helpful to understand the structuring of the software for network I/O
and the characteristics of the computer system (processor, memory, system
bus). We focus here on the structuring of the end system networking code

4 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

related to the internet protocol suite in the DEC OSF/1 operating system,
following the design of the networking code (4.3 BSD-Reno) in the Berkeley
UNIX distribution.[8,9,12]

A user process typically interfaces to the network through the socket
layer. The protocol modules for UDP, TCP (transport layers) and IP (network
layer) are below the socket layer in the kernel of the operating system.
Data is passed between user processes and the protocol modules through
socket buffers. On message transmission, the data is typically moved by the
host processor from user space to kernel memory for the protocol layers to
packetize and deliver to the data link device driver for transmission. The
boundary crossing from user to kernel memory space is usually needed in a
general-purpose operating system for protection purposes. Figure 2 shows
where the incremental overhead for packet processing, based on packet size,
occurs in a typical BSD 4.3 distribution.

The kernel memory is organized as buffers of various types. These are
called mbufs. They are the primary means for carrying data (and protocol
headers) through the protocol layers. The protocol modules organize the
data into a packet, compute its checksum, and pass the packet (which is
a set of mbufs chained together by pointers) to the data link driver for
transmission. From these kernel mbufs, the data has to be moved to the
buffers on the adapter across the system bus. Once the adapter has a copy
of the header and data, it may return an indication of transmit completion
to the host. This allows the device driver to release the kernel mbufs to
be reused by the higher layers for transmitting or for receiving packets
(if buffers are shared between transmit and receive).

While receiving packets, the adapter moves the received data into the
host's kernel mbufs using DMA. The adapter then interrupts the host
processor, indicating the reception of the packet. The data link driver
then executes a filter function to enable posting the packet to the
appropriate protocol processing queue. The data remains in the same kernel
mbufs during protocol processing. Buffer pointers are manipulated to pass
references to the data between the elements processing each of the protocol
layers. Finally, on identifying the user process of the received message,
the data is moved from the kernel mbufs to the user's address space.

Another important incremental operation performed in the host is that of
computing the checksum of the data on receive or transmit. Every byte of
the packet data has to be examined by the processor for errors, adding
overhead in both CPU processing and memory bandwidth. One desirable
characteristic of doing the checksum after the data is in memory is that it
provides end-to-end protection for the data between the two communicating
end systems. Because data movement and checksum operations are frequently
performed and exercise components of the system architecture (memory) that
are difficult to speed up significantly, we looked at these in detail as

candidates for optimization.

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 5

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

The Internet Protocol Suite: TCP/IP and UDP/IP

The protocols targeted for our efforts were TCP/IP and UDP/IP, part of what
is conventionally known as the internet protocol suite.[7,9]

TCP is a reliable, connection-oriented, end-to-end transport protocol
that provides flow-controlled data transfer. A TCP connection contains
a sequenced stream of data octets exchanged between two peers. TCP
achieves reliability through positive acknowledgment and retransmission.
It achieves flow control and promotes efficient movement of data through a
sliding window scheme. The sliding window scheme allows the transmission
of multiple packets while awaiting the receipt of an acknowledgment.
The number of bytes that can be transmitted prior to receiving an
acknowledgment is constrained by the offered window on the TCP connection.
The window indicates how much buffering the receiver has available for
the TCP connection (the receiver exercises the flow control). This window
size also reflects how much data a sender should be prepared to buffer if
retransmission of data is required. The size of the offered window can vary
over the life of a connection. As with BSD systems, DEC OSF/1 currently
maintains a one-to-one correspondence between window size and buffer size
allocated at the socket layer in the end systems for the TCP connection.
An erroneous choice of window size, such as one too small, or one leading
to nonbalanced sender and receiver buffer sizes, can result in unnecessary
blocking and subsequent inefficient use of available bandwidth.

TCP divides a stream of data into segments for transmission. The maximum
segment size (MSS) is negotiated at the time of connection establishment.
In the case of connections within the local network, TCP negotiates an
MSS based on the maximum transmission unit (MTU) size of the underlying
media. (For IP over FDDI the MTU is constrained to 4,352 octets based
on the recommendation in RFC 1390.[18]) TCP calculates the MSS to offer,
by subtracting from this MTU, the number of octets required for the most
common IP and TCP header sizes.

The implementation of TCP/IP in DEC OSF/1 follows the 4.3 BSD-Reno
implementation of TCP. Included is the use of dynamic round-trip time
measurements by TCP, which maintains a timer per connection and uses
adaptive time-outs for setting retransmission timers. The implementation
includes slow start for reacting to congestive loss and optimizations such
as header prediction and delayed acknowledgments important for network
performance.[19] DEC OSF/1 version 1.2 also includes recent extensions
to TCP for accommodating higher-speed networks.[10] TCP's performance
may depend upon the window size used by the two peer entities of the TCP
connection. The product of the transfer rate (bandwidth) and the round-trip
delay measures the window size that is needed to maximize throughput on a
connection.

In the TCP specification RFC 793, the TCP header contains a 16-bit window
size field which is the receive window size reported to the sender.[9]
Since the field is only 16 bits, the largest window size that is supported
is 64K bytes. Enhancing the original specification, RFC 1323 defines a
new TCP option, window scale, to allow for larger windows.[10] This option

6 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

contains a scale value that is used to increase the window size value found
in the TCP header.

The window scale option is often recommended to improve throughput for
networks with high bandwidth and/or large delays (networks with large
bandwidth-delay products). However, it also can lead to higher throughput
on LANs such as an FDDI token ring. Increased throughput was observed with
window sizes larger than 64K bytes on an FDDI network.

The TCP window scale extension maps the 16-bit window size field to a 32-
bit value. It then uses the TCP window scale option value to bit-shift
this value, resulting in a new maximum receive window size value. The
extension allows for windows of up to 1 gigabyte (GB). To facilitate
backward compatibility with existing implementations, both peers must
offer the window scale option to enable window scaling in either direction.
Window scale is automatically turned on if the receive socket buffer size
is greater than 64K bytes. A user program can set a larger socket buffer
size via the setsockopt() system call. Based on the socket buffer size,
the kernel implementation can determine the appropriate window scale
factor.

Similar to the choice of large window sizes, the use of large TCP segments,
i.e., those approaching the size of the negotiated MSS, could give better
performance than smaller segments. For a given amount of data, fewer
segments are needed (and therefore fewer packets). Hence the total cost
of protocol processing overhead at the end system is less than with smaller
segments.

The internet protocol suite also supports the user datagram protocol or
UDP. UDP performance is important because it is the underlying protocol
for network services such as the NFS. UDP is a connection-less, message-
oriented transport layer protocol that does not provide reliable delivery
or flow control. The receive socket buffer size for UDP limits the amount
of data that may be received and buffered before it is copied to the user's
address space. Since there is no flow control, the UDP receiver may have to
discard the packet if it receives a large burst of messages and there is no
socket buffer space.

If the receiver is fast enough to allow the user application to consume the
data, the loss rate is very low. However, most BSD-derived systems today
experience heavy packet loss for UDP even when the receiving processor
is the same speed as the transmitter. Furthermore, since UDP has no flow
control, there is no mechanism to assure that all transmitted data will
be received when the transmitter is faster than the receiver. We describe
our implementation of UDP to avoid this behavior, so that packet loss is
minimized.

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 7

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

Data Link Characteristics: FDDI

FDDI is a 100 Mb/s LAN standard that is being deployed commercially.
It uses a timed-token access method and allows up to 500 stations to be
connected with a total fiber length of 200 kilometers. It allows for both
synchronous and asynchronous traffic simultaneously and provides a bound
for the access time to the channel for both these classes of traffic.

The timed-token access method ensures that all stations on the ring agree
to a target token rotation time (TTRT) and limit their transmissions to
this target.[20] With asynchronous mode (the most widely used mode in the
industry at present), a node can transmit only if the actual token rotation
time (TRT) is less than the target.

The basic algorithm is that each station on the ring measures the time
since it last received the token. The time interval between two successive
receptions of the token is called the TRT. On a token arrival, if a station
wants to transmit, it computes a token holding time (THT) as: THT = TTRT
- TRT. The TTRT is agreed to by all the stations on the ring at the last
time that the ring was initialized (typically happens when stations enter
or leave the ring) and is the minimum of the requested values by the
stations on the ring. If THT is positive, the station can transmit for
this interval. At the end of transmission, the station releases the token.
If a station does not use the entire THT allowed, other stations on the
ring can use the remaining time by using the same algorithm.

A number of papers relating to FDDI have appeared in the literature, and
the reader is encouraged to refer to "Performance Analysis of FDDI Token
Ring Networks: Effect of Parameters and Guidelines for Setting TTRT," for
more details.[21]

8 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

Network Adapter Characteristics

The DEC FDDIcontroller/TURBOchannel adapter, DEFTA, is designed to be
a high-performance adapter capable of meeting the full FDDI bandwidth.
It provides DMA capability both in the receive and transmit directions.
It performs scatter-gather on transmit. The adapter has 1 MB of packet
buffering. By default, half the memory is used for receive buffering; one
fourth of the memory is allocated for transmit buffering; and the remaining
memory is allocated for miscellaneous functions, including buffering for
FDDI's station management (SMT). The memory itself is not partitioned,
and the adapter uses only as much memory as neccessary for the packets. It
avoids internal fragmentation and does not waste any memory.

The receive and transmit DMA operations are handled by state machines,
and no processor is involved in data movement. The DMA engine is based
on the model reported by Wenzel.[22] The main concept of this model is
that of circular queues addressed by producer and consumer indices. These
indices are used by the driver and the adapter for synchronization between
themselves; they indicate to each other the availability of buffers. For
example, for receiving packets into the kernel memory, the device driver
produces empty buffers. By writing the producer index, it indicates to the
adapter the address of the last buffer produced and placed in the circular
queue for receiving. The adapter consumes the empty buffer for receiving an
incoming packet and updates the consumer index to indicate to the driver
the last buffer that it has consumed in the circular queue. The adapter is
capable of full-duplex FDDI operation. Finally, FDDI's SMT processing is
performed by a processor on board the adapter, with the adapter's receive
and transmit state machines maintaining separate queues for SMT requests
and responses.

To obtain high performance, communication adapters also try to minimize
the amount of overhead involved in transferring the data. To improve
performance, the DEFTA FDDI port interface (interface between the hardware
and the operating system's device driver) makes efficient use of host
memory data structures, minimizes overhead I/O related to the port
interface, and minimizes interrupts to the host system.

The Port Architecture contains several unique features that optimize
adapter/host system performance. These features include the elimination
of much of the control and status information transferred between the host
and adapter; the organization of data in host memory in such a way as to
provide efficient access by the adapter and the host; and the use of an
interrupt mechanism, which eliminates unnecessary interrupts to the host.

The design also optimizes performance through careful organization of
data in host memory. Other than the data buffers, the only areas of host
memory that are shared by the host and the adapter are the queues of buffer

descriptors and the area in which the adapter writes the consumer indices.
The adapter only reads the buffer descriptors; it never writes to this area
of host memory. Thus the impact on host performance of the adapter writing
to an area in memory, which may be in cache memory, is eliminated. On the
other hand, the area in host memory where the adapter writes its consumer

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 9

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

indices is only written by the adapter and only read by the host. Both the
receive data consumer index and transmit data consumer index are written
to the same longword in host memory, thus possibly eliminating an extra
read by the host of information that is not in cache memory. Furthermore,
the producer and consumer indices are maintained in different sections of
memory (different cache lines) to avoid thrashing in the cache when the
host and the adapter access these indices.

The device driver is also designed to achieve high performance. It avoids
several of the problems associated with overload behavior observed in the
past.[23] We describe some of these enhancements in the next section.

3 Performance Enhancements and Measurements Results

We describe in this section the various performance enhancements included
in the DEC OSF/1 operating system version 1.2 for Alpha AXP systems. In
particular, we describe the optimizations for data movement and checksum
validation, the implementation details to provide good overload behavior
within the device driver, the TCP enhancements for high bandwidth-delay
product networks, and the UDP implementation enhancements.

We also present measurement results showing the effectiveness of the
enhancements. In most cases the measurement environment consisted of
two Alpha AXP workstations (DEC 3000 AXP Model 500) on a private FDDI
token ring, with a DEC FDDI concentrator. The tests run were similar to
the well-known ttcp test suite, with the primary change being the use
of the slightly more efficient send and receive system calls instead
of read and write system calls. We call this tool inett within Digital.
The throughputs obtained were at the user application level, measured
by sending at least 10,000 user messages of different sizes. With UDP,
these are sent as distinct messages. With TCP, algorithms used by TCP may
concatenate multiple messages into a single packet. Time was measured using
the system clock with system calls for resource usage. We also monitored
CPU utilization with these system calls, and made approximate (often only
for relative comparison) conclusions on the usage of resources with a
particular implementation alternative.

Optimizations for bcopy() and in_checksum() Routines

In TCP/UDP/IP protocol implementations, every byte of data generally must
pass through the bcopy() and in_checksum() routines, when there is no
assistance provided in the network interfaces. There are some exceptions:
the NFS implementations on DEC OSF/1 avoid the bcopy() on transmit by
passing a pointer to the buffer cache entry directly to the network device
driver, and UDP may be configured not to compute a checksum on the data.
Digital's implementations turn on the UDP checksum by default. Even with
the above exceptions, it is important that the bcopy() and in_checksum()

routines operate as efficiently as possible.

10 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

To write efficient Alpha AXP code for these routines, we used the following
guidelines:

o Operate on data in the largest units possible

o Try to maintain concurrent operation of as many independent processor
 units (CPU, memory reads, write buffers) as possible

o Keep to a minimum the number of scoreboarding delays that arise because
 the data is not yet available from the memory subsystem

o Wherever possible, try to make use of the Alpha AXP chip's capability
 for dual issue of instructions

For network I/O, the bcopy() routine is called to transfer data between
kernel mbuf data structures and user-supplied buffers to read()/write()
/send()/recv() calls.

The bcopy() routine was written in assembler. This routine always attempts
to transfer data in the largest units possible consistent with the
alignment of the supplied buffers. For the optimal case, this would be
one quadword (64 bits) at a time. The routine uses a simple load/store
/decrement count loop that iterates across the data buffer as

Several attempts were made to improve the performance of this simple loop.
One design involved unrolling the loop further to perform 64 bytes of
copying at a time, while reading ahead on the second cache line. Another
involved operating on four cache lines at once, based on concerns that a
second quadword read of a cache line may incur the same number of clock
delays as the first cache miss, if the second read is performed too soon
after the first read. However, neither of these approaches produced a copy
routine that was faster than the simple loop described above.

The TCP/UDP/IP suite defines a 16-bit one's complement checksum (in_
checksum()), which can be performed by adding up each 16-bit element and
adding in any carries. Messages must (optional for UDP) have the checksum
validated on transmission and reception.

As with bcopy(), performance can be improved by operating on the largest
units possible (i.e., quadwords). The Alpha AXP architecture does not
include a carry bit, so we have to check if a carry has occurred. Because
of the nature of the one's complement addition algorithm, it is not
necessary to add the carry in at each stage; we just accumulate the carries
and add them all in at the end. By operating on two cache lines at a time,
we may start the next computation while the carry computation is under way,
accumulate all the carries together, then add them all into the result
(with another check for carry) at the end of processing the two cache

lines. This results in four cycles per quadword with the addition of some
end-of-loop computation to process the accumulated carries. Interleaving
the checksum computation across two cache lines also allows for some dual-
issue effects that allow us to absorb the extra end-of-loop computation.

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 11

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

DEFTA Device Driver Enhancements

Preliminary measurements performed with the DEC FDDIcontroller/TURBOchannel
adapter (DEFTA) and the OSF/1 device driver combination on DEC 3000 AXP
Model 500 workstations indicated that we were able to receive the full
FDDI bandwidth and deliver these packets in memory to the data link
user. Although we show in this paper that the DEC OSF/1 for Alpha AXP
system is able to also deliver the data to the user application, we
ensure that the solutions provided by the driver are general enough to
perform well even on a significantly slower machine. When executing on
such a slow system, resources at the higher protocol layers (buffering,
processing) may be inadequate to receive packets arriving at the maximum
FDDI bandwidth, and the device driver has to deal with the overload. One
of the primary contributions of the DEFTA device driver is that it avoids
receive livelocks under very heavy receive load.

First, the queues associated with the different protocols are increased
to a much larger value (512) instead of the typical size of 50 entries.
This allows us to ride out transient overloads. Second, to manage extended
overload periods, the driver uses the capabilities in the adapter to
efficiently manage receive interrupts. The driver ensures that packets
are dropped in the adapter when the host is starved of resources to receive
subsequent packets. This minimizes wasted work by the host processor. The
device driver also tends to trade off memory for computing resources.
The driver allocates page-size mbufs (8K bytes) so that we minimize the
overhead of memory allocation, particularly for large messages.

For transmitting packets, the driver takes advantage of the DEFTA's ability
to gather data from different pieces of memory to be transmitted as a
single packet. Up to 255 mbufs in a chain (although typically the chain
is small, less than 5) may be transmitted as a packet. In the unusual case
that a chain of mbufs is even longer than 255, we copy the last set of
mbufs into a single large page-size mbuf, and then hand the packet to the
device for transmission. This enables applications to have considerable
flexibility, without resulting in extraneous data movement operations to
place data in contiguous memory locations.

In addition, the driver implements a policy to achieve transmit fairness.
Although the operating system's scheduling provides fairness at a higher
level, the policies within the driver allow for progress on transmits
even under very heavy receive overload. Although the Alpha AXP systems
are capable of receiving the full FDDI bandwidth, the enhanced transmit
fairness may still be a benefit under bursty receive loads during which
timely transmission is still desirable. In addition, as transmission links
become faster, this feature will be valuable.

Wherever possible, all secondary activities-excluding the transmit and

receive paths-have been implemented using threads. Scheduling secondary
activity at a lower priority does not impact the latency of transmit and
receive paths.

12 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

Improvements to the TCP/IP Protocol and Implementation

The initial TCP window size is set to a default or to the modified value
set by the application through socket options. TCP in BSD 4.3 performed a
rounding of the socket buffer, and hence the offered window size, to some
multiple of the maximum segment size (MSS). The implementation in BSD 4.3
performed a rounding down to the nearest multiple of the MSS. The MSS value
is adjusted, when it is greater than the page size, to a factor of the page
size.

When using a socket buffer size of 16K bytes, the rounding down to
a multiple of the MSS on FDDI results in the number of TCP segments
outstanding never exceeding three. Depending on the application message
size and influenced by one or more of both the silly window syndrome
avoidance algorithms and the delayed acknowledgment mechanism, throughput
penalties can be incurred.[16,24]

Our choice in this area was to perform a rounding up of the socket buffer,
and hence window size. This enabled existing applications to maintain
performance regardless of changes to the buffering performed by the
underlying protocol. For example, applications coded before the rounding of
the buffer was implemented may have specified a buffer size at some power
of 2. We believe it also allows better performance when interoperating with
other vendors' systems and provides behavior that is more consistent to the
user (they get at least as much buffering as they request).

A buffer size of 4K bytes has long been obsolete for TCP connections
over FDDI. Digital chose to increase this buffer to 16K bytes for ULTRIX
support of FDDI. With a socket buffer of 16K bytes, even when rounding
up is applied, the amount of data is limited to 17,248 octets per round-
trip time. We found that the throughput over FDDI is limited by the window
size. This is due to the effects of scheduling data packet processing and
acknowledgments (ACKs), the interactions with window flow control, and
FDDI's token access protocol (described below).[23, 25]

With memory costs decreasing considerably, we no longer consider the 16K
byte default to be an appropriate trade-off between memory and throughput.
Based on measurements for different values of the window size, we feel
that the default window size of 32K bytes is reasonable. Increasing the
window size from 16K bytes to 32K bytes results in an increase of the peak
throughput over FDDI from approximately 40 Mb/s to approximately 75 Mb/s.
However, increasing the window size beyond 32K bytes allowed us to increase
the throughput even further, which led us to the incorporation of the TCP
window scale extension.

Window Scale Extensions for TCP The implementation of TCP in DEC OSF/1
version 1.2 is based on the BSD 4.3 Reno distribution. In addition, we

incorporated the TCP window scale extensions based on the model proposed
in RFC 1323.[10] Our work followed the implementation placed in the public
domain by Thomas Skibo of the University of Illinois.

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 13

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

The TCP window scale extension maps the 16-bit window size to a 32-
bit value. The TCP window scale option occupies 3 bytes and contains
the type of option (window scale), the length of the option (3 bytes),
and the "shift-count." The window scale value is a power of 2 encoded
logarithmically. The shift-count is the number of bits that the receive
window value is right-shifted before transmission. For example, a window
shift-count of 3 and a window size of 16K would inform the sender that the
receive window size was 128K bytes. The shift-count value for window scale
is limited to 14. This allows for windows of (2[16] + 2[14]) = 2[30] = 1
GB. To facilitate backward compatibility with existing implementations,
both peers must offer the window scale option to enable window scaling in
either direction.

The window scale option is sent only at connection initialization time
in an <SYN> segment. Therefore the window scale value is fixed when
the connection is opened. Since the window scale option is negotiated
at initialization time, only a bit-shift to the window is added to the
established path processing and has little effect on the overall cost of
processing a segment.

Changes made to the OSF/1 TCP implementation for using the window scale
option include the addition of the send window shift-count field and
receive window shift-count field to the TCP control block. TCP processing
was modified: the receive window shift-count value was computed based on
the receive socket buffer size, and the window scale option is sent with
the receive window shift-count. A modification at connection initialization
time allows the received shift-count value to be stored in the send window
shift-count, if TCP receives an <SYN> segment containing a window scale
option. The receive window shift-count field is assigned to the window
scale option that is sent on the <SYN, ACK> <SYN, ACK> segment. When the
TCP enters established state for the connection, window scale is turned
on if both sides have sent <SYN> segments with window scale. For every
incoming segment, the window field in the TCP header is left-shifted by the
send window shift-count. For every outgoing segment, the window field in
the TCP header is right-shifted by the receive window shift-count.

Measurement Results with TCP with Alpha AXP Workstations We used the inett
tool to measure the throughput with TCP on the DEC OSF/1 operating system
between two DEC 3000 AXP Model 500 workstations on a private FDDI ring. We
observed that as the window size increased from 32K bytes to 150K bytes,
the throughput generally increased for message sizes greater than 3,072
bytes. For example, for a user message size of 8,192 bytes, the throughput
with a window size of 32K bytes was 72.6 Mb/s and increased to 78.3 Mb/s
for a window size of 64K bytes. The TCP throughput rose to 94.5 Mb/s for a
window size of 150K bytes. For window sizes beyond 150K bytes, we did not
see a substantial, consistent improvement in throughput between the two
user applications in this environment.

14 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

We believe that window scale is required to achieve higher throughputs-even
in a limited FDDI token ring of two stations - based on the interactions
that occur between the token holding time, the scheduling of activities in
the operating system, and the behavior of TCP. The default value for TTRT
is set to 8 milliseconds.[21] The end system is able to transmit packets at
essentially the full FDDI bandwidth of 100 Mb/s, thus potentially consuming
about 350 microseconds (including CPU and network interface times) to
transmit a maximum-sized FDDI TCP segment of 4,312 bytes. During the 8
milliseconds, the source is able to complete the entire protocol processing
of about 23 to 24 segments (approximately 100K bytes).

Further overlap of user data and protocol processing of packets can
occur while the data link is transmitting and the sink is generating
acknowledgments, if there is adequate socket buffer space in the source
system. Thus, with the additional window of approximately 20K bytes to 30K
bytes, the source system is able to pre-process enough segments and provide
them to the adapter. The adapter may begin transmitting when the token is
returned to the sender (after it receives a set of acknowledgments), while
the source CPU is processing the acknowledgments and packetizing additional
user data. With up to 150K bytes of socket buffer (and hence window), there
is maximal overlap in processing between the CPU, the adapter, and the FDDI
token ring, which results in higher throughput. This also explains why no
further increases in the window size resulted in any significant increase
in throughput.

Figure 3 shows the throughput with TCP between two DEC 3000 AXP Model
500 workstations on an isolated FDDI token ring for different message
sizes for socket buffer sizes of 32K, 64K, and 150K bytes. For 150K bytes
of socket buffer, the peak throughput achieved was 94.5 Mb/s. For all
message sizes, we believe that the CPU was not fully utilized. Application
message sizes that are slightly larger than the maximum transmission
unit size traditionally display some small throughput degradation due to
additional overhead incurred for segmentation and the subsequent extra
packet processing. We do not see this in Figure 3 because the CPU is not
saturated (e.g., approximately 60 percent utilized at message sizes of
8K bytes), and therefore the overhead for segmentation does not result in
lower throughput.

So too, application message sizes that are larger than the discrete memory
buffer sizes provided by the memory allocator should incur small amounts of
extra overhead due to the necessity of chaining such buffers. Figure 3 also
shows that the throughput degradation in this case is small.

Improvements to the UDP/IP Protocol Implementation and Measurement Results

UDP is a connection-less, message-oriented transport, with no assurances
of reliable delivery. It also does not provide flow control. Unlike TCP,

the UDP transmitter does not buffer user data. Therefore user messages
are transmitted directly as packets on the FDDI. When user messages are
larger than the MTU size of the data link (4,352 bytes), IP fragments the

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 15

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

data into multiple packets. To provide data integrity, UDP uses the one's
complement checksum for both data as well as the UDP header.

In our experience, the receive throughput to applications using UDP/IP
with BSD-derived systems is quite poor due to many reasons, including the
lack of flow control. Looking at the receive path of incoming data for UDP,
we see that packets (potentially fragments) of a UDP message generate a
high-priority interrupt on the receiver, and the packet is placed on the
network layer (IP) queue by the device driver. The priority is reduced,
and a new thread is executed that processes the packet at the IP layer.
Subsequently, fragments are reassembled and placed in the receiver's socket
buffer. There is a finite IP queue and also a finite amount of socket
buffer space. If space does not exist in either of these queues, packets
are dropped. Provided space exists, the user process is then woken up to
copy the data from the kernel to the user's space. If the receiver is fast
enough to allow the user application to consume the data, the loss rate
is low. However, as a result of the way processing is scheduled in UNIX-
like systems, receivers experience substantial loss. CPU and memory cycles
are consumed by UDP checksums, which we enable by default for OSF/1. This
overhead in addition to the overhead for data movement contributes to the
receiver's loss rate.

Table 1 shows the receive throughput and message loss rate with the
original UDP implementation of OSF/1 for different message sizes. We
modified the way in which processing is performed for UDP in the receiver
in DEC OSF/1 version 1.2. We reorder the processing steps for UDP to avoid
the detrimental effects of priority-driven scheduling, wasted work, and
the resulting excessive packet loss. Not only do we save CPU cycles in
processing, we also speed up the user application's ability to consume
data, particularly as we go to larger message sizes.
Table 1 gives the receive throughput and message loss rate with DEC
OSF/1 version 1.2 incorporating the changes in UDP processing we have
implemented.

16 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

Table 1: UDP Receive Characteristics with Peer Transmitter Transmitting at
_________Maximum_Rate__

 UDP Receive Before Changes UDP Receive
 After Changes

Message Size Throughput Message Loss Throughput Message
(bytes) (Mb/s) Rate (Mb/s) Loss
 Rate

128 0.086 98.8% 0.64 83.1%

512 0.354 98.5% 15.14 35.15%

1024 0.394 99.16% 23.77 46.86%

4096 9.5 90.26% 96.91 1.08%

8192 NA* NA* 97.01 0.56%

* NA: Benchmark did not finish because of significant packet loss in that
experiment.__

UDP throughput was measured between user applications transmitting and
receiving different size messages. Figure 4 shows the throughput at the
transmitter, which is over 96 Mb/s for all message sizes over 6,200 bytes
and achieves 97.56 Mb/s for the message size of 8K bytes used by NFS.
During these measurements, the transmitting CPU was still not saturated
and the FDDI link was perceived to be the bottleneck. Therefore, to stress
the source system further, we used two FDDI adapters in the system to
transmit to two different receivers on different rings. Figure 4 also
shows the aggregate transmit throughput of a single DEC 3000 AXP Model
500 workstation transmitting over two FDDI rings simultaneously to two
different sinks. The source system is capable of transmitting significantly
over the FDDI bandwidth of 100 Mb/s. For the typical NFS message size
of 8,192 bytes, the aggregate transmit throughput was over 149 Mb/s. The
throughput of the two streams for the different message sizes, indicates
that, for the most part, their individual throughputs were similar. This
showed that the resources in the transmitter were being divided fairly
between the two applications.

Measurements of TCP/IP and UDP/IP with FDDI Full-duplex Mode

Earlier we observed that the behavior of TCP in particular depended on
the characteristics of the timed-token nature of FDDI. One of the modes of

operation of FDDI that we believe will become popular with the deployment
of switches and the use of point-to-point FDDI is that of full-duplex
FDDI. Digital's full-duplex FDDI technology, which is being licensed to
other vendors, provides the ability to send and receive simultaneously,
resulting in significantly higher aggregate bandwidth to the station
(200 Mb/s). More important, we see this technology reducing latency for
point-to-point connections. There is no token rotating on the ring, and
the station does not await receipt of the token to begin transmission. A
station has no restrictions based on the token-holding time, and therefore
it is not constrained as to when it can transmit on the data link. The

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 17

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

DEC FDDIcontroller/TURBOchannel adapter (DEFTA) provides the capability
of full-duplex operation. We interconnected two DEC 3000 AXP Model 500
workstations on a point-to-point link using the DEFTAs and repeated several
of the measurements reported above.

One of the characteristics observed was that the maximum throughput with
TCP/IP between the two Alpha AXP workstations, even when using the default
32K bytes window size, reached 94.47 Mb/s. Figure 5 shows the behavior of
TCP throughput with full-duplex FDDI operation for different window sizes
of 32K, 64K, and 150K bytes (when window scale is used). The throughput is
relatively insensitive to the variation in the window size. For all these
measurements, however, we maintained the value of the maximum socket buffer
size to be 150K bytes. When using a smaller value of the maximum socket
buffer size (64K bytes), the throughput drops to 76 Mb/s (for a window size
of 32K bytes) as shown in Figure 5.

Although we removed one of the causes of limiting the throughput (token-
holding times), full-duplex operation still exhibits limitations due to
scheduling the ACK and data packet processing and the resulting lack
of parallelism in the different components in the overall pipe (the two
CPUs of the stations, the adapters, and the data link) with small socket
buffers. Increasing the maximum socket buffer allows for the parallelism
of the work involved to provide data to the protocol modules on the
transmitter.

Observing the UDP/IP throughput between the DEC 3000 AXP Model 500
workstations, we found a slight increase in the transmit throughput over
the normal FDDI mode. For example, the UDP transmit throughput for 8K
messages was 97.93 Mb/s as compared to 97.56 Mb/s using a single ring in
normal FDDI mode. This improvement is due to the absence of small delays
for token rotation through the stations as a result of using the full-
duplex FDDI mode.

4 Experimental Work

We have continued to work on further enhancing the implementation of TCP
and UDP for DEC OSF/1 for Alpha AXP. We describe some of the experimental
work in this section.

Experiments to Enhance the Transmit and Receive Paths for TCP/IP

The bcopy() and in_checksum() routine optimizations minimize the
incremental overhead for packet processing based on packet sizes. The
protocol processing routines (e.g., TCP and IP) also minimize the fixed
per-packet processing costs.

All TCP output goes through a single routine, tcp_output(), which often

follows the TCP pseudocode in RFC 793 very closely.[9] A significant
portion of its implementation is weighed down by code that is useful
only during connection start-up and shutdown, flow control, congestion,
retransmissions and persistence, processing out-of-band data, and so on.

18 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

Although the actual code that handles these cases is not executed every
time, the checks for these special cases are made on every pass through the
routine and can be a nontrivial overhead.

Rather than check each case separately, the TCP/IP code was modified to
maintain a bit mask. Each bit in the mask is associated with a special
condition (e.g., retransmit, congestion, connection shutdown, etc.). The
bit is set whenever the corresponding condition occurs (e.g., retransmit
time-out) and reset when the condition goes away. If the bit mask is 0,
the TCP/IP code executes straightline code with minimal tests or branches,
thus optimizing the common case. Otherwise, it simply calls the original
routine, tcp_output, to handle the special conditions. Since the conditions
occur rarely, setting and resetting the bits incurs less overhead than
performing the tests explicitly every time a packet is transmitted. Similar
ideas have been suggested by Van Jacobson.[26]

Additional efficiency is achieved by precomputing packet fields that are
common across all packets transmitted on a single connection. For example,
instead of computing the header checksum every time, it is partially
precomputed and incrementally updated with only the fields that differ
on a packet-by-packet basis.

Another example is the data link header computation. The original path
involved a common routine for all devices, which queues the packet to the
appropriate driver, incurs the overhead of multiplexing multiple protocols,
looking up address resolution protocol (ARP) tables, determining the data
link formats, and then building the header. For TCP, once the connection
is established, the data link header rarely changes for the duration of
the connection. Hence at connection setup time, the data link header is
prebuilt and remembered in the TCP protocol control block. When a packet
is transmitted, the data link header is prefixed to the IP header, and the
packet is directly queued to the appropriate interface driver. This avoids
the overhead associated with the common routine. Network topology changes
(e.g., link failures) may require the data link header to be changed. This
is handled through retransmission time-outs. Whenever a retransmit time-out
occurs, the prebuilt header is discarded and rebuilt the next time a packet
has to be sent.

Some parameters are passed from TCP to IP through fields in the mbufs.
Combining the layers eliminates the overhead of passing parameters and
validating them. Passing parameters is a nontrivial cost, since in the
original implementation, some data was passed as fields in the mbuf
structure. Because these were formatted in network byte order, building
and extracting them incurred overhead. Moreover, the IP layer does not
have to perform checks for special cases that are not applicable to the TCP
connection. For example, no fragmentation check is needed since the code
for TCP has already taken care to build a packet within the allowed size

limits.

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 19

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

In a similar fashion to the transmit path, a common-case fast path code was
implemented for the receive side. This mimics the most frequently executed
portions of the TCP/IP input routines, and relegates special cases and
errors to the original code. Special cases include fragmented packets,
presence of IP options, and noncontiguous packet headers. Combining
error checking across TCP and IP also eliminates additional overhead. For
example, length checks can be used to detect the presence of options that
can be passed to the original general case path.

These fast path optimizations were implemented in an experimental version
of the OSF/1 operating system. TCP measurements on the experimental version
of OSF/1 running on two systems communicating over a private FDDI ring
indicate that, when both the input and output fast path segments are
enabled on the two systems, throughput is improved for almost all message
sizes.

Experiments to Enhance UDP/IP Processing

An enhancement for UDP/IP processing with which we experimented was to
combine the data copying and checksum operations. This has been attempted
in the past.[27] The primary motivation is to reduce memory bandwidth
utilization and perform the checksums while the data is in the processor
during the data movement. To allow us to do this, we introduce a new UDP
protocol specific socket option that allows users to take advantage of this
optimization. When a user application posts a receive buffer after enabling
this socket option, we invoke a combined copy and checksum routine on
receiving a packet for that user. In the infrequent case when the checksum
fails, we restore the user I/O structure and zero the user buffer so that
inappropriate data is not left in a user's buffer. Preliminary performance
measurements indicate significant reduction in CPU utilization for UDP
receives when using this socket option.

Experiments to Eliminate the Data Copy from User to Kernel Space

As observed earlier, data movement operations add significant overhead on
the end system. One method to reduce the cost of data movement for a send
operation, prototyped on an experimental version of the OSF/1 operating
system, is to replace the data copy from user space to the kernel socket
buffer by a new virtual memory page remap function. Instead of copying
the data from physical pages in the user map to physical pages in the
kernel map, the physical pages associated with the user virtual address
range in the user map are remapped to kernel virtual addresses. The pages
associated with the new kernel virtual addresses are then masqueraded
through the network as mbufs. Preliminary results indicate that a virtual
memory mapping technique can be used on the OSF/1 operating system to
significantly reduce the overhead associated with the transmission of
messages.

20 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

The underlying design of the remap operation affects application semantics
and performance. The semantics of the application are affected by which
underlying page remap operation is selected. Performance may also be
affected by the implementation of the page map operation and how well
certain TCP/IP configuration variables are tuned to match the processor
architecture and the network adapter capabilities.

Two types of remap operations were prototyped: page steal and page borrow.
The page steal operation, as the name implies, steals the pages from the
user virtual address space and gives the pages to the kernel. The user
virtual addresses are then mapped to demand-zero pages on the next page
reference. In the page steal operation, the user ends up with demand zero
pages. On the other hand, in the borrow page operation, the same physical
pages are given back to the user. If the user accesses a page that the
kernel was still using, the user process either "sleeps," waiting for that
page to become available or (depending upon the implementation) receives
a copy of the page. For the page borrow operation, the user buffer size
must be greater than the socket buffer size, and the user buffer must be
referenced in a round-robin fashion to ensure that the application does not
sleep or receive copies of the page.

Both the page steal and the page borrow operations change the semantics
of the send() system calls, and some knowledge of these new semantics
of the send system calls needs to be reflected in the application. The
application's buffer allocation and usage is dependent upon how the
underlying remap operation is implemented. An important consideration is
the impact on the application programming interface. In particular, the
extent to which the semantics of the send system calls (e.g., alignment
requirements for the user message buffer) need to change to support the
remap operations is an area that is currently under study.

The page remap feature has not yet been incorporated in the DEC OSF/1
version 1.2 product. Inclusion of this feature in the product is expected
to reduce CPU utilization. While page remapping does reduce the cost of
processing a packet, the design issues outlined above impact applications.
To achieve performance benefits and application portability across multiple
heterogeneous open systems, future work continues in this area. In
addition, integrated hardware solutions to reduce the cost of the copy
operation are also under investigation.

The performance numbers presented in this paper did not include the
improvements described in this section on experimental work. We anticipate
that the overall performance would see substantial improvement with the
inclusion of these changes.

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 21

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

5 Conclusions

Increases in communication link speeds and the dramatic increases in
processor speeds have increased the potential for widespread use of
distributed computing. The typical throughput delivered to applications,
however, has not increased as dramatically. One of the primary causes has
been that network I/O is intensive on memory bandwidth, and the increases
in memory bandwidths have only been modest. We described in this paper an
effort using the new Alpha AXP workstations and the DEC OSF/1 operating
system for communication over FDDI to remove this I/O bottleneck from the
end system.

We described the characteristics of the DEC 3000 AXP Model 500 workstation
which uses Digital's Alpha AXP 64-bit RISC microprocessor. With the use
of wider access to memory and the use of multilevel caches, which are
coherent with DMA, the memory subsystem provides the needed bandwidth for
applications to achieve substantial throughput while performing network
I/O.

We described the implementation of the internet protocol suite, TCP
/IP and UDP/IP, on the DEC OSF/1 operating system. One of the primary
characteristics of the design is the need for data movement across the
kernel-user address space boundary. In addition, both TCP and UDP use
checksums for the data. Both these operations introduce increasing overhead
with the user message size and comprise a significant part of the total
processing cost. We described the optimizations performed to make these
operations efficient by taking advantage of the wider cache lines for the
systems and the use of 64-bit operations.

We incorporated several optimizations to the implementation of TCP in
the DEC OSF/1 operating system. One of the first was to increase the
default socket buffer size (and hence the window size) used by TCP from the
earlier, more conservative 4K bytes to 32K bytes. With this, the throughput
of a TCP connection over FDDI between two Alpha AXP workstations reached
76.6 Mb/s. By increasing the window size even further, we found that the
throughput increases essentially to the full FDDI bandwidth. To increase
the window size beyond 64K bytes requires the use of recent extensions to
TCP using the window scale option. The window scale option, which is set
up at the connection initialization time, allows the two end systems to
use much larger windows. We showed that, when using a window size of 150K
bytes, the peak throughput of the TCP connection increases to 94.5 Mb/s.

We also improved the performance of UDP through implementation
optimizations. Typical BSD-derived systems experience substantial loss
at the receiver when two peer systems communicate using UDP. Through simple
modifications in the processing for UDP and reordering the processing
steps, we improved the delivered throughput to the receiving application

substantially. The UDP receive throughput at the application achieved was
97.56 Mb/s for the typical NFS message size of 8K bytes. Even at this
throughput, we found that the CPU of the transmitter was not saturated.
When a transmitter was allowed to transmit over two different rings (thus

22 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

removing the communication link as the bottleneck) to two receivers, a
single Alpha AXP workstation (DEC 3000 AXP Model 500) is able to transmit
an aggregate throughput of more than 149 Mb/s for a message size of 8K
bytes.

We also described throughput measurements with the FDDI full-duplex mode
between two Alpha AXP workstations. With full-duplex mode there are no
latencies which are associated with token rotation, lost token recovery,
or limitations on the amount of data transmitted at a time as imposed by
the FDDI timed-token protocol. As a result, with full-duplex mode there
are performance improvements. With TCP, we achieve a throughput of 94.5
Mb/s even with the default socket buffer of 32K bytes. This is smaller
than the buffer size needed in token passing mode to achieve the same level
of throughput. Since the link becomes the bottleneck at this point, there
is no substantial increase in throughput achieved with the use of window
scaling when FDDI is being used in full-duplex mode. An increase in peak
transmit throughput with UDP is also seen when using FDDI in full-duplex
mode.

Finally, a few implementation ideas currently under study were presented.

6 Acknowledgments

This project could not have been successful without the help and support
of a number of other individuals. Craig Smelser, Steve Jenkins, and Kent
Ferson were extremely supportive of this project and ensured that the
important ideas were incorporated into the OSF V1.2 product. Tim Hoskins
helped tremendously by providing many hours of assistance in reviewing
ideas and the code before it went into the product. In addition, we thank
the engineers who ported DEC OSF/1 to Alpha AXP in order to provide a
stable base for our work. The DEFTA product development group led by Bruce
Thompson and Tom Cassa not only provided us with a nice adapter, but also
helped by giving us as many prototype adapters as we needed on very short
notice. We would like to thank Gary Lorenz in particular for his help with
the DEFTA adapters.

7 References

1. D. Clark and D. Tennenhouse, "Architectural Considerations for
 a New Generation of Protocols," Proceedings of the Symposium on
 Communications Architectures and Protocols, ACM SIGCOMM 1990, ACM
 Computer Communications Review, vol. 20, no. 4 (September 1990).

2. J. Lumley, "A High-Throughput Network Interface to a RISC Workstation,"
 Proceedings of the IEEE Workshop on the Architecture and Implementation
 of High Performance Communication Subsystems, Tucson, AZ (February 17-
 19, 1992).

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 23

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

3. P. Druschel and L. Peterson, "High-performance Cross-domain Data
 Transfer," Technical Report TR93-5, Department of Computer Science
 (Tucson, AZ: University of Arizona, March 1993).

4. G. Chesson, "XTP/PE Overview," Proceedings of the 13th Conference on
 Local Computer Networks, Minneapolis, MN (October 1988).

5. FDDI Media Access Control, American National Standard, ANSI X3.139-1987.

6. FDDI Physical Layer Protocol, American National Standard, ANSI X3.148-
 1988.

7. J. Postel, "User Datagram Protocol," RFC 768, SRI Network Information
 Center, Menlo Park, CA (August 1980).

8. J. Postel, "Internet Protocol," RFC 791, SRI Network Information Center,
 Menlo Park, CA (September 1981).

9. J. Postel, "Transmission Control Protocol," RFC 793, SRI Network
 Information Center, Menlo Park, CA (September 1981).

10.V. Jacobson, R. Braden, and D. Borman, "TCP Extensions for High
 Performance," RFC 1323, Internet Engineering Task Force (February 1991).

11.K. Ramakrishnan, "Performance Considerations in Designing Network
 Interfaces," IEEE Journal on Selected Areas in Communications, Special
 Issue on High Speed Computer/Network Interfaces, vol. 11, no. 2
 (February 1993).

12.S. Leffler, M. McKusick, M. Karels, and J. Quarterman, The Design
 and Implementation of the 4.3 BSD UNIX Operating System (Reading, MA:
 Addison-Wesley Publishing Company, May 1989).

13.R. Sites, ed., Alpha Architecture Reference Manual (Burlington, MA:
 Digital Press, 1992).

14.D. Dobberpuhl et al., "A 200-MHz 64-bit Dual-issue CMOS Microprocessor,"
 Digital Technical Journal, vol. 4, no. 4 (Special Issue 1992): 35-50.

15.T. Dutton, D. Eiref, H. Kurth, J. Reisert, and R. Stewart, "The Design
 of the DEC 3000 AXP Systems, Two High-performance Workstations," Digital
 Technical Journal, vol. 4, no. 4 (Special Issue 1992): 66-81.

16.R. Braden, "Requirements For Internet Hosts- Communication Layers," RFC
 1122, Internet Engineering Task Force (October 1989).

17.R. Braden, "Requirements For Internet Hosts-Application and Support,"

 RFC 1123, Internet Engineering Task Force (October 1989).

18.D. Katz, "Transmission of IP and ARP over FDDI Networks," RFC 1390,
 Internet Engineering Task Force (January 1993).

19.V. Jacobson, "Congestion Avoidance and Control," Proceedings of the
 Symposium on Communications Architectures and Protocols, ACM SIGCOMM
 1988, ACM Computer Communications Review, vol. 18, no. 4 (August 1988).

20.R. Grow, "A Timed Token Protocol for Local Area Networks," Presented at
 Electro/82, Token Access Protocols, Paper 17/3, May 1982.

24 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

21.R. Jain, "Performance Analysis of FDDI Token Ring Networks: Effect
 of Parameters and Guidelines for Setting TTRT," Proceedings of the
 Symposium on Communications Architectures and Protocols, ACM SIGCOMM
 1990, ACM Computer Communications Review, vol. 20, no. 4 (September
 1990).

22.M. Wenzel, "CSR Architecture (DMA Architecture)," IEEE P1212 Working
 Group Part III-A, Draft 1.3, May 15, 1990.

23.K. Ramakrishnan, "Scheduling Issues for Interfacing to High Speed
 Networks," Proceedings of Globecom '92 IEEE Global Telecommunications
 Conference, Session 18.04, Orlando, FL (December 6-9, 1992).

24.D. Clark, "Window and Acknowledgment Strategy in TCP," RFC 813, SRI
 Network Information Center, Menlo Park, CA (July 1982).

25.L. Zhang, S. Shenker, and D. D. Clark, "Observations on the Dynamics
 of a Congestion Control Algorithm: The Effects of Two-Way Traffic,"
 Proceedings of the Symposium on Communications Architectures and
 Protocols, ACM SIGCOMM 1991, ACM Computer Communication Review, vol.
 21, no. 4 (September 1991).

26.V. Jacobson, "Efficient Protocol Implementation," ACM SIGCOMM 1990
 Tutorial on Protocols for High-Speed Networks, Part B (September 1990).

27.C. Partridge and S. Pink, "A Faster UDP," Swedish Institute of Computer
 Science Technical Report, August 1991.

8 General References

E. Cooper, O. Menzilcioglu, R. Sansom, and F. Bitz, "Host Interface
Design for ATM LANs," Proceedings of the 16th Conference on Local Computer
Networks, Minneapolis, MN (October 1991).

B. Davie, "A Host-Network Interface Architecture for ATM," Proceedings of
the Symposium on Communications Architectures and Protocols, ACM SIGCOMM
1991, ACM Computer Communication Review, vol. 21, no. 4 (September 1991).

H. Kanakia and D. Cheriton, "The VMP Network Adapter Board (NAB): High
Performance Network Communication for Multiprocessors," Proceedings of the
Symposium on Communications Architectures and Protocols, ACM SIGCOMM 1988,
ACM Computer Communication Review, vol. 18, no. 4 (August 1988).

M. Nielsen, "TURBOchannel," Proceedings of 36th IEEE Computer Society
International Conference, COMPCON 1991, February 1991.

P. Steenkiste, "Analysis of the Nectar Communication Processor,"

Proceedings of the IEEE Workshop on the Architecture and Implementation
of High Performance Communication Subsystems, Tucson, AZ (February 17-19,
1992).

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 25

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

C. Traw, S. Brendan, and J. M. Smith, "A High-Performance Host Interface
for ATM Networks," Proceedings of the Symposium on Communications
Architectures and Protocols, ACM SIGCOMM 1991, ACM Computer Communication
Review, vol. 21, no. 4 (September 1991).

TURBOchannel Developer's Kit, Version 2 (Maynard, MA: Digital Equipment
Corporation, September 1990).

9 Biographies

Chran-Ham Chang Chran-Ham Chang is a principal software engineer in the
UNIX System Engineering Group and a member of the FAST TCP/IP project team.
Since joining Digital in 1987, Chran has contributed to the development
of various Ethernet and FDDI device drivers on both the ULTRIX and DEC OSF
/1 AXP systems. He was also involved in the ULTRIX network performance
analysis and tools design. Prior to this, Chran worked as a software
specialist in Taiwan for a distributor of Digital's products. He received
an M.S. in computer science from the New Jersey Institute of Technology.

Richard Flower Richard Flower works on system performance issues in
multiprocessors, networking, distributed systems, workstations, and memory
hierarchies. The need for accurate time-stamping events across multiple
systems led him to develop the QUIPU performance monitor. The use of this
monitor led to performance improvements in networking, drivers, and RPC.
Richard earned a B.S.E.E. from Stanford University (with great distinction)
and a Ph.D. in computer science from MIT. Prior to joining Digital, he was
a professor at the University of Illinois. Richard is a member of Phi Beta
Kappa and Tau Beta Pi.

John Forecast A software consultant engineer with the Networks Engineering
Advanced Development Group, John Forecast addresses network performance
issues associated with the transmission of audio and video data through
existing networks. John joined Digital in the United Kingdom in 1974 and
moved to the United States to help design DECnet-RSX Phase 2 products,
DECnet Phase IV, and DECnet implementations on ULTRIX and System V UNIX.
John also worked on file servers for VMS and a prototype public key
authentication system. He holds a B.A. from the University of Lancaster
and a Ph.D. from the University of Essex.

Heather Gray A principal engineer in the UNIX Software Group (USG), Heather
Gray is the technical leader for networking performance on the DEC OSF
/1 AXP product family. Heather's current focus is the development of IP
multicast on DEC OSF/1 AXP. She has been involved with the development of
Digital networking software (TCP/IP, DECnet, and OSI) since 1986. Prior
to joining USG, Heather was project leader for the Internet Portal V1.2
product. She came to Digital in 1984, after working on communication and
process control systems at Broken Hill Proprietary Co., Ltd. (BHP) in

Australia.

26 Digital Technical Journal Vol. 5 No. 1, Winter 1993

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

William R. Hawe A senior consulting engineer, Bill Hawe manages the LAN
Architecture Group. He is involved in designing architectures for new
networking technologies. Bill helped design the FDDI and extended LAN
architectures. While in the Corporate Research Group, he worked on the
Ethernet design with Xerox and Intel and analyzed the performance of new
communications technologies. Before joining Digital in 1980, Bill taught
electrical engineering and networking at the University of Massachusetts,
South Dartmouth, where he earned a B.S.E.E. and an M.S.E.E. He has
published numerous papers and holds several patents.

Ashok P. Nadkarni A principal software engineer in the Windows NT Systems
Group, Ashok Nadkarni is working on a port of native Novell NetWare to
Alpha AXP systems. Prior to this, he was a member of the NaC Advanced
Development Group. He has contributed to projects dealing with IP and OSI
protocol implementations, network performance improvement, a prototype of
the Digital distributed time service, and mobile networking. Ashok received
a B. Tech. (1983) in computer engineering from the Indian Institute
of Technology, Bombay, and an M.S. (1985) from Rensselaer Polytechnic
Institute. He joined Digital in 1985.

K.K. Ramakrishnan A consulting engineer in the Distributed Systems
Architecture and Performance Group, K.K. Ramakrishnan joined Digital in
1983 after completing his Ph.D. in computer science from the University of
Maryland. K.K.'s research interests include performance analysis and design
of algorithms for computer networks and distributed systems using queuing
network models. He has published more than 30 papers on load balancing,
congestion control and avoidance, algorithms for FDDI, distributed systems
performance, and issues relating to network I/O. K.K. is a member of the
IEEE and the ACM.

Uttam N. Shikarpur Uttam Shikarpur joined Digital in 1988 after receiving
an M.S. in computer and systems engineering from Rensselaer Polytechnic
Institute. Uttam is a senior engineer and a member of the UNIX Systems
Group working on network drivers and data link issues. His current project
involves writing a token ring driver for the DEC OSF/1 AXP operating
system. Prior to this work, he contributed to the common agent project.

Kathleen M. Wilde As a member of the Networks Engineering Architecture
Group, Kathleen Wilde focuses on integration of new TCP/IP networking
technologies into Digital's products. For the past two years, she has been
prototyping high-performance network features on the OSF/1 operating system
and coordinating the standards strategy for Digital's IETF participation.
Previously, Kathleen was the development manager of the ULTRIX Network
Group. Her responsibilities included product development of TCP/IP
enhancements, FDDI, SNMP, and diskless workstation support. She holds a
B.S. in computer science and mathematics from Union College.

The following are trademarks of Digital Equipment Corporation:

Alpha AXP, AXP, the AXP logo, Digital, DEC OSF/1, DEC FDDIcontroller,
DECchip 21064, DEC 3000 AXP, LAT, TURBOchannel, and ULTRIX.

 Digital Technical Journal Vol. 5 No. 1, Winter 1993 27

 High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

BSD is a trademark of the University of California at Berkeley.

NFS is a registered trademark of Sun Microsystems, Inc.

OSF and OSF/1 are registered trademarks of Open Software Foundation, Inc.

System V is a trademark of American Telephone and Telegraph Company.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X/Open is a trademark of X/Open Company Limited.

28 Digital Technical Journal Vol. 5 No. 1, Winter 1993
===
Copyright 1992 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

