The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

1 Abstract

The DECNI S 500/ 600 hi gh-performance multi protocol bridge/router and
gateway are described. The issues affecting the design of routers with

this class of performance are outlined, along with a description of the
architecture and inplenentation. The system descri bed uses a distributed
forwardi ng algorithmand a distributed buffer managenent al gorithm executed
on plug-in linecards to achi eve scal abl e performance. An overvi ew of the
currently available linecards is provided, along with performance results
achi eved during systemtest.

The DEC Network Integration Server 500 and 600 (DECNI' S 500/ 600) products
are general - purpose comruni cati ons servers integrating nultiprotoco
routing, bridging, and gateway functions over an evolving set of |oca
and wi de area interfaces. The product famly is designed to be flexible,
of fering a wide range of performance and functionality.

The basic system consists of a Futurebus+ based backpl ane, a managenent
processor card (MPC), and a packet random access nenory (PRAM card with

a centralized address recognition engine (ARE) for forwarding routed and
bridged traffic. Network interface cards or linecards are added to provide
network attachnment. The DECNI S 500 provides two linecard slots, and the
DECNI S 600 provides seven linecard slots. The applications run fromloca
menory on the MPC and linecards. PRAMis used to buffer packets in transit
or destined to the system itself.

The system was devel oped around distributed forwarding on the |inecards
to maxi m ze performance. Software provides forwarding on the linecard

for internet protocol (IP), DECnet, and open systens interconnection
(Osl) traffic using integrated IS-1S (internediate systemto internediate
system) routing, along with bridging functionality for other traffic. The
managenment processor controls the system including |oading and dunpi ng
of the linecards, adm nistering the routing and bridgi ng dat abases,
generating routing and bridging control traffic, and network managemnent.
X. 25 functionality, both for routing data and as an X 25 gateway, and
routing for AppleTalk and | PX are supported on the nanagenent processor
Per f ormance nmeasurenents on a system configured with 14 Ethernets have
denmonstrated a forwardi ng perfornmance of 80,000 packets per second as a
router or a bridge.

Thi s paper discusses the issues involved in the design of a fast bridge
/router. It presents the processing considerations that | ed us to design
the distributed forwarding systemused in the DECNI S 500/ 600 products. The
paper then details the hardware and software design and concludes with a

per f or mance summary.

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 1

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

2 Fast Bridge/ Router Design |ssues

There are a nunber of conflicting constraints on the design of a bridge
/router. It must sinultaneously forward packets, participate in the process
of maintaining a global view of the network topology, and at all tinmes be
responsi ve to network managenent. This requires a sophisticated hardware
and/ or software design capable of striking the correct bal ance between the
demands i nposed by these constraints.

The need to nake optinmum use of the transni ssion technol ogy is enphasized
by the high link tariffs in Europe and the throughput demands of nopdern

hi gh- perf ormance conputing equi pnent. Therefore, the router designer

nmust find methods of forwarding packets in the m ni mum nunber of CPU
instructions in order to use nmodern transm ssion technol ogy to best
advantage. In addition to high performance, |ow systemlatency is required.
The applications that run across networks are often held up pending the
transfer of data. As CPU performance increases, the effects of network
delay play an increasingly significant role in determ ning the overal
application performnce.

Anot her aspect of forwarding that requires attention is data integrity.
Many protocols used in the | ocal area network (LAN) have no data protection
ot her than that provided by the data |ink checksum Thus careful attention
nmust be paid to the design of the data paths to nininze the periods when
the data is unprotected. The normal technique in bridging is to | eave the
checksumintact frominput to output. However, nore advanced techni ques are
needed, as this sinple approach is not possible when translating between
dissimlar LAN types.

Two particul ar operations that constrain the performance of the forwarding
process are packet parsing and address |ookup. In a multiprotocol router

a variety of address formats need to be validated and | ooked up in the
forwardi ng table. The nost powerful address format in popular use is the
OSI NSAP (network service access point), but this is the npst conplex to
parse, with up to 20 octets to be anal yzed as a | ongest-match sequence
extracted frompadding fields. In a bridge, supporting the rapid |earning
of nedia access control (MAC) addresses is another requirenment. To provide
consi stently high performance, these processes benefit from hardware
assi st ance.

Al t hough the purpose of the network is the transni ssion of data packets,
the nost critical packets are the network control packets. These packets
are used to determine topological information and to conmunicate it to

the other network conponents. |If a data packet is lost, the transport
service retransmits the packet at a snmall inconvenience to the application.
However, if an excessive nunber of network control packets are |ost,

t he apparent topol ogy, and hence the apparent optinmum paths, frequently

change, leading to the formation of routing | oops and the generation of
further control packets describing the new paths. This increased traffic
exacerbates the network congestion. Taken to the extrenme, a positive

2 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

feedback | oop occurs, in which the only traffic flowing is nmessages trying
to bring the network back to stability.

As a result, two requirenments are placed on the router. First, the router
nmust be able to identify and process the network control packets under

all overload conditions, even at the expense of data traffic. Second, the
router nust be able to process these packets quickly enough to enable the
network to converge on a consistent view of the network topol ogy.

As networks grow to global scale, the possibility enmerges that an
underperform ng router in one part of the world could cause incorrect
network operation in a different geographical region. A bridge/router

nmust therefore be designed to process all network control traffic, and

not export its local congestion problens to other parts of the network: a
"good citizenship" constraint. To achieve this, the router needs to provide
processing and filtering of the received traffic at line rates, in order to
extract the network control traffic fromthe data traffic under worst-case
conditions. In some cases, careful software design can acconplish this;
however, as |line speeds increase, hardware support may be required. Once
the control traffic has been extracted, adequate processing power nust

be provided to ensure that the network converges quickly. This requires a
suitabl e task scheduling schene.

Anot her requirenment of a bridge/router is that it renmain manageabl e under
all circunstances. If the router is being overl oaded by a mal functi oning
node in the network, the only way to relieve the situation is to shut down
the circuit causing the overload. To do this, it nmust be able to extract
and process the network managenent packets despite the overload situation.
Cobb and Gerberg give nore information on routing issues.[1]

3 Architecture

To address the requirenments of a high-performance nultiprotocol bridge
/router with the technology currently available, we split the functiona
requirenents into two sets: those best handled in a distributed fashion and
t hose best handled centrally.

The data link and forwarding functions represent the highest processing

| oad and operate in sufficiently | ocal context that they can be distributed
to a processor associated with a line or a group of |lines. The processing
requi renents associated with these functions scale linearly with both |ine
speed and nunber of lines attached to the system Sonme aspects of these
per-line functions, such as link initialization and processing of exception
packets, require information that is available only centrally or need a
sophi sti cated processing environnment. However, these nmay be decoupl ed from
the critical processing path and noved to the central processing function

In contrast to the |lower-|level functions, the managenent of the system
and the calculation of the forwardi ng database are best handled as a
centralized function, since these processes operate in the context of the
bri dge/router as a whole. The processor workload is proportional to the

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 3

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

size of the network and not the speed of the links. Network protocols are
designed to reduce the anobunt of this type of processing, both to mnimze
control traffic bandwidth and to pernmit the construction of relatively
sinmple | owperformance routers in sonme parts of the network.

These processing considerations |led us to design the DECNI S 500/ 600 as

a set of per-line forwarding processors, comrunicating on a peer-to-

peer basis to forward the normal packets that conprise the ngjority of
the network traffic, plus a central managenent processor. Although this
processor behaves, in essence, |like a normal nonoprocessing bridge/router
its involvenent in forwarding is limted to unusual types of packet.

Having split the functionality between the peer-to-peer forwarding
processors and the nanagenent processor, we designed a buffer and contro
systemto efficiently couple these processors together. The DECNI S 500
/600 products use a central PRAM of 256-byte buffers, shared anong the
linecards. Omership of buffers is passed fromone |linecard to another

by a swap, which exchanges a full buffer for an enpty one. This algorithm
i nproved both the fairness of buffer allocation and the performance of the
buf fer ownership transfer mechanism Fractional buffers much snaller than
t he maxi mum packet sizes were used, even though this nmakes the system nore
conplicated. The consequential econony of menory, however, made this an
attractive proposition.

Anal ysis of the forwarding function indicated that to achieve the |evels
of performance we required, we would need hardware assi stance in parsing
and | ooki ng up network addresses. Consi derations of econony of hardware
cost, board area, and bus bandwidth I ed us to a single ARE shared anong
all linecards. This address parser has sufficient performance to support
a DECNI'S 600 server fully populated with |inecards that support each link
with a bandwi dth of up to 2 X 10 negabits per second. Above this speed,

| ocal address caches are required.

Di stributed Forwarding

In understanding the distributed forwardi ng process used on the DECN S

500/ 600, it is convenient to first consider the forwarding of routing
packets, and then to extend this description to the processing of other
packet types. In the routing forwardi ng process, as shown in Figure 1, the
i ncom ng packets are nade up of three conponents: the data |ink header, the
routi ng header, and the packet body.

The receive process (RXP) term nates the data link layer, stripping the
data |ink header fromthe packet. The routing header is parsed and copied

i nto PRAM unnodi fied. Any required changes are made when the packet is
subsequently transnitted. The information needed for this is placed in a
data structure called a packet descriptor, which is witten into space |eft

at the front of the first packet buffer. The packet body is copied into the
packet buffer, continuing in other packet buffers if required.

4 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

The destination network address is copied to the ARE, which is also

gi ven instructions on which address type needs to be parsed. The RXP is
now free to start processing another incom ng packet. Wen the address

| ookup process has conpleted, the RXP is able to read fromthe ARE the
forwardi ng paranmeters needed to conplete the processing of the packet.
These paraneters contain information about the output port and channe

to use, the destination data |link address for the next hop, and any
translation informati on. The RXP conbines this information with sone

i nformati on saved from parsing the packet to build the packet descriptor in
PRAM

The RXP builds a set of ring vectors for the packet, one for each buffer
used. Each ring vector contains a pointer to the PRAM buffer used, plus
sonme additional information used to decide on which queue the buffer should
be stored and to determine its relative inportance to the system During
congestion, this information is used by the linecards to discard the |east

i mportant packets first. These ring vectors are then exchanged with the
transmit process (TXP) on the output |inecard, which queues themready for
transm ssion. Before the TXP starts to process a packet for transm ssion

it reads the descriptor fromthe first PRAM buffer. Fromthe information in
the descriptor, the TXP is able to build the data |link header, deterni ne
the routing header translation requirenents, and | ocate a nunber of fields
in the header (such as the OSI segnentation and quality of service fields)
wi t hout having to reparse the header. The TXP builds the data |ink header,
reads the routing header from PRAM nakes the appropriate nodifications,
and then conpl etes the packet by reading the packet body from PRAM

Since the transmt packet construction follows the packet transn ssion
order byte for byte, inplenentations can be built w thout further

i ntermedi ate transm ssion buffering. Linecards need only provide sufficient
transmt buffering to cover the local latency requirenments. In one

i nstance, a linecard has significantly less than a full packet buffer

This small buffering requirement inplies reduced system | atency and nakes
avail abl e a nunber of different inplenentation styles.

If the RXP discovers a faulty packet, a packet with an option that requires
system context to process, or a packet that is addressed to this system
(including certain multicast packets), it queues that packet to the
management processor in exactly the sane way that it would have queued

a packet for transm ssion by a TXP. The MPC contains a full-function
nonoprocessor router that is able to handl e these exception cases.
Simlarly, the MPC sends packets by presenting themto the appropriate

TXP in exactly the same format as a receiver.

The bridge forwardi ng process operates in a fashion simlar to the routing
forwardi ng process, except that the data |ink header is preserved from
i nput port to output port, and only the data |ink header is parsed.

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 5

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

Buf fer System

The design of an efficient buffer transfer schene is an inportant aspect
of a high-performance nultiprocessor router. W solved this problem by
using a set of single witer/single reader rings, with one ring associ ated
wi th each pair-w se exchange of buffers that can take place in the system
Thus each TXP has associated with it one ring for each of the RXPs in the
system (including its own), plus one for the managenment processor. Wen
an RXP has a buffer to swap, it reads the next transfer location inits
ring corresponding to the destination TXP. If it finds a free buffer, it
exchanges that buffer with the one to be sent, keeping the free buffer as
a replacenent. The transferred information consists of a pointer to the
buffer, its ownership status, and sone information to indicate the type
of information in the buffer. This structure is known as a ring vector. A
single-bit semaphore is used to indicate transfer of ownership of a ring
vector.

The buffer transfer scheme schematic shown in Figure 2 illustrates how this
wor ks. Each transmit port (TXa or TXb) has a ring dedicated to each of the
receivers in the system (RXa and RXb). RXa swaps ring vectors to the "a
rings on TXa and TXb, and RXb swaps ring vectors to the "b" rings on TXa
and TXb.

During buffer transfer, the TXP runs a scavenge process, scanning all its
rings for new buffers, queuing these buffers in the transnmt queues (TXQs)
specified by the ring vector, and replacing the entries in the ring from
the local free list. The buffer type information enables the transmt
linecard to quickly determ ne the inportance of the buffer. Thus if the
linecard runs short of buffers due to congestion, it is able to discard

| ess inmportant packets in preference to those packets required to preserve
the stability of the network.

Through judicious optim zation of the ring vector encodi ngs, we were able
to condense this ring swap transaction into a single |ongwrd read foll owed
by a single longword wite for each buffer swap, for all unicast traffic.
For multicast traffic, a second | ongword was required. To reduce the anmount
of bus traffic and the processor tinme associated with the scavenge process,
the random access nenory (RAM that holds the rings is physically | ocated
on the transmt linecard. Hardware is used to watch the rings for activity
and report this to the TXP

Anal ysis of the traffic patterns indicated that consi derabl e economes in
PRAM coul d be nmade if we fragnmented | ong packets over a number of buffers.
We achi eved a satisfactory conproni se between the processing overhead
associated with buffer managenent and menory efficiency through the use

of 256-byte buffers. Wth this buffer size, a large fraction of the packets
are contained within a single buffer. When a linecard is driven into

out put congestion, it is no longer certain that a conplete set of packet
buffers will be swapped. W therefore had to introduce a sinple protocol to
ensure that a packet was queued for transm ssion only if it had been fully
transferred to the transmtting linecard. To cope with dissimlar swap and
scavenge process speeds, we had to stage the transfer of buffers. Thus,

6 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

the TXPs collect a conplete set of buffers froman RXP before queuing the
packet for transmission; this process is called binning. In this way, a
partial transfer due to congestion or a slow receiver does not block the
progress of other ports in the system

Bri dgi ng needs a nechanismto support the distribution of flooded and
nmul ti cast packets to nultiple output ports. In sonme distributed systens,
this function is handled by replicating the packet via a copy process.

In other systens, the packet is handled by a central nulticast service.
The use of a central nulticaster gives rise to synchronization issues
when a destination address noves fromthe unknown to the | earned state.
Replication by the linecards is not practical in this architecture since
the linecards do not hold a | ocal copy of the buffer after it has been
copied to PRAM We therefore use a systemin which nulticast buffers

are loaned to all the transmit linecards. A "scoreboard" of outstanding
loans is used to record the state of each multicast buffer. Wen a buffer
is returned fromall its borrowers, it is added to the nulticast free
gueue and made avail able for reuse. The | oan process and the return
process are simlar to the normal swap and scavenge process, but the ring
vector is extended slightly to include the information needed for rapid
der ef erenci ng.

Centralized Resources

Three central resources are used in the DECNI'S 500/ 600 products: MPC,

PRAM and ARE. Centralizing these resources reduced both the cost and the
conplexity of the system There are two ways of building a distributed
processing router. In one nethod, the router consists of a federation of
full-function routers, each a separate network node. An alternative nethod
is to enploy a partially centralized design in which only one processor

is the router in the traditional sense. The central processor is the

focus for network nanagenent, cal culating the forwarding table and being

a central repository for the context of the router, and the periphera
processors undertake the majority of the forwarding work. An anal ysis of
the cost and conplexity both froma system and a network perspective |ed
us to choose the |atter approach. Thus the MPC provides all the software
functionality necessary to bind the collection of forwarding agents | ocated
on the linecards together to forma router. To the rest of the network,
the system appears indistinguishable froma traditionally designed router
The processing capability and menory requirenments of the MPC are those
associated with a typical nedium performance nultiprotocol bridge/router

We had a choice of three locations for the PRAM distributed anong the
receiving linecards, distributed anong the transmitting |linecards, or

| ocated centrally. Locating the buffering at the receiver would have
meant providing the maxi mumrequired transnmitter buffering for each
transmitter at every receiver. Locating the |long-term packet buffering

at the transmtters would have nmeant staging the processing of the packets
by storing themat the receiver until the transmt port was determn ned

and then transferring themto the appropriate transnmitting linecard. This
woul d have increased the systemlatency, the receiver conplexity, and its

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 7

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

wor kl oad. An analysis of the bus traffic indicated that for a router of
this class, there would be adequate bus bandwi dth to support the use of a
centrally located, single shared packet buffer nenory. Wth this approach
however, every packet crosses the bus twice, rather than once as in the

ot her approaches. Neverthel ess, we chose to base the system around a single
packet nenory, and win the consequential economies in both |inecard cost
and board area.

An anal ysis of the processing power needed to parse and | ook up a network
address led us to conclude that the Iinecards would need sone form of
assistance if the processing power associated with each line was to be
constrained to a reasonably cost-effective level. This assistance is
provi ded by the ARE. Sone advanced devel opnent work on the design of

har dwar e search engi nes showed that it was possible to design a single
address parser powerful enough to be shared anbng all the linecards. This
sear ch engi ne was adapt abl e enough to parse the conplex structure of an
OSI NSAP, with its two right-justified padded fields and its |ongest-

mat ch semantics. In addition, the engine was able to cope with the

ot her routing protocol address formats and the | earning requirements of
bridging. By centralizing the forwardi ng database, we al so avoi ded the
processi ng and bus overhead associ ated with nmintaining several distributed
forwardi ng databases and reduced the cost and board area requirenents of
the |inecards.

The bus bandwi dth and | ookup rate needed to support multiple fiber
distributed data interface (FDDI) |inecards would place an excessive burden
on the system For FDDI, therefore, we equip the central | ookup engine with
a linecard-resi dent address cache.

4 DECN S 500/ 600 Hardware Design

There are three primary systens in the DECNI S 500/ 600, the backpl ane,
together with its interface circuitry, the systemcore functions contai ned
in the MPC and the PRAM and the various linecards. In this section, we
descri be the hardware design of each of these.

Backpl ane and I nterface Logic

The DECNI S 500/ 600 backpl anes are based on the Futurebus+ standard using
2.1-volt (V) term nated backpl ane transceiver |logic (BTL).[2,3] Although
all current cards use 32-bit data and address paths, the DECNI S 600
backpl ane has been designed to support 64-bit operation as well

Common to all current nodul es except the PRAM card, the basic backpl ane
interface consists of two applications specific integrated circuits
(ASICs), BTL transceivers, and a selection of local nmenory and registers,
as shown in Figure 3. The two ASICs are a controller and a data-path

device. The controller requests the bus via central arbitration, controls
the transceivers, and runs the parallel protocol state machines for
backpl ane access. The data-path device provides two 16-bit processor
interfaces (ports T and R), nultiple direct nenory access (DMA) channel s

8 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

for each processor port with byte packing, unpacking, frame check sequence
(FCS) and checksum support, and backpl ane address decode | ogic.

On t he backpl ane, four DMA channels are provi ded per processor port.

Two channel s offer full-duplex data paths, and the other two are double
buffered, configurable to operate in either direction, and optim zed

for bulk data transfer. DMA wite transfers occur automatically when

a block fills. Simlarly, DMA prefetch reads occur automatically on
suitably configured enpty bl ocks. The doubl e-buffered channel s all ow bus
transactions to happen in parallel with processor access to the other

bl ock. Al data transfers between the processor and the DMA channel are
done under direct control of the processors, with the processors reading
or witing every byte of data to or fromthe DVA streams. This direct
control arrangenent nmakes the design of the hardware sinpler, avoiding
the need for ASIC DVA support on the processor buses. Mre inportant, the
use of processor read and wite cycles nmakes the behavi or of the system
deternministic and ensures that the processor has the correct context at the
conpletion of all operations, regardl ess of the outcone.

The data-path ASIC al so provi des command/ status registers (CSRs) and a

| ocal bus containing the control interface for the second ASIC, ring vector
menory (RVMEM), the geographi cal address, boot read-only nenory (ROM, and
nonvol atil e battery-backed RAM (BBRAM for error reporting. The RVMEM and
some of the registers are accessible fromthe backplane. Al resources can
be accessed fromeither processor port. The device arbitrates internally
for shared resources and has several other features designed to assist with
efficient data transfers, e.g., a summary register of wite activity to the
RVMEM

The data-path device can be driven froma single processor port (port T)
for use in sinpler, Iowspeed linecards. In addition, the architecture
supports two data-path devices (prinmary and secondary) served by a commn
controller connected to the | ocal bus of the primary device. Each data-path
devi ce adopts a different node identifier in the backplane address space.

Dedi cated |ines on the backpl ane are provided for power status, tenperature
sensi ng, and ot her systemrequirenents.

Processor and Menory Modul es

The MPC has two processors, a mmin processor and a uni processor version

of the conmon backpl ane interface. The main processor, a VAX devi ce,

is in overall command of the system and provides all the managenent and
forwardi ng services found in a nonoprocessor router. The 16-bit, processor-
based backpl ane interface frees the nmain processor fromtinme-critica
backpl ane- associ at ed t asks.

A bl ock diagram of the nenory nodule is shown in Figure 4. Separate dynamc
RAM (DRAM arrays are used for data buffering and the forwardi ng dat abase
associated with the ARE. Ring structures in static nenory are used to all ow
the linecards to post requests and read responses fromthe ARE, which is
based on the TRIE systemoriginally devel oped for text retrieval.[4,5]

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 9

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

An ASI C was devel oped for the ARE, it was extended to include sonme of the
ot her nmodul e control logic, e.g., PRAMrefresh control and the synchronous
portion of the Futurebus+ backplane interface.

Networ k I nterface Cards-Linecards

The DECNI' S 500/ 600 products currently offer synchronous comrunicati ons,
Et hernet, and FDDI adapters, all using variants of the standard backpl ane
i nterface.

Two synchronous conmuni cati on adapters are available: a two-1ine device
operating at up to 2.048 negabits per second, and a higher fan-out device
supporting up to eight lines at a reduced line rate of 128 kil obits per
second. All lines are full duplex with nodem control. The | ower-speed
adapter uses a uniprocessor architecture to drive three industry-standard
serial communi cations controllers (SCCs). The data and cl ocks for the
channels, along with an extra channel for multiplexed nmodem control

are connected to a renpote distribution panel using a 2-neter unbilica
cord. Panels are available to support eight lines using the RS232, ElIA422,
or V.35 electrical interface. A four-line multistandard variant allows

m xed el ectrical interfaces froma single adapter at a reduced fan-out.
The mul ti standard panel uses a 50-pin cable common to other conmunication
products from Digital

The two-1ine device uses a four-processor interface as shown in Figures

3 and 5. The SCC is an ASIC device designed specifically for the data-
flow style of processing adopted in the systemarchitecture. It is closely
coupled to the data-path ASIC and processors for optinmal throughput. The
har dwar e desi gn has m ni mal dependency between the transmit and receive
tasks, recognizing the limted coupling required by acknow edged data |ink
protocol s such as high-level data |ink control (HDLC). State information is
exchanged between processors using a small dual-ported RAMin the SCC. In
additi on, each SCC and associ ated processors operate as a separate entity,
resulting in consistent performnce when forwardi ng both on and off the
nmodul e. Two 50-pin nultistandard i nterfaces (EIA422 and V.35 only) are
provi ded on the nodul e handl e.

Several Ethernet adapters are available. A single-port thick-w re adapter
uses a dual -processor architecture (primary Rand T ports in Figure 3),
along with a discrete inplenentation, to interface the Ethernet and its
associ ated buffer (tank) menory. This design was reengi neered to put

the tank nmenory interface (TM) into an ASIC, resulting in a dual-port
(ful'l inplenmentation of the interface shown in Figure 3 plus two Ethernet
interfaces) adapter derivative. This adapter is available in two variants
supporting thick-wire, and ThinWre w ring schenes.

As shown in Figure 6, the FDDI adapter (DEC

FDDI control ler 621) is a two-card option designed to cope with the high
filtering and forwarding rates associated with FDDI. The hardware i ncl udes
a filtering engine closely coupled to the FDDI chip set, a synchronous
i nt erconnect between the two cards, and a nultichannel DMA engi ne for data
transfer through the device. The DMA engi ne mai ntains tank nmenory under

10 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

reduced instruction set conputing (Rl SC) processor control, and can be set
up and nonitored with mniml processor overhead. Data is transferred to or
frombuffers in PRAMto the tank nenory, where conpl ete packets are kept in
contiguous address space. A second DVMA channel transfers conplete packets
in a single burst to or fromthe buffer nenory on the line interface card.

Traffic processi ng between buffer nmenory and the ring is done in hardware.
A third DVA path is used to prefetch and then burst transfer packet header
informati on fromtank nmenmory into the RI SC processor subsystem for packet
processi ng. The DMA engi ne, which includes tank nmenory arbitration, can
queue multiple commands and operate all DMA channels in parallel. The 32-
bit RI SC subsystem provides the |inecard processing, comrunicating with
the bus interface processor using dual-ported RAM Modul ar connectivity is
of fered for different physical media. The nodul e al so supports dual -attach
and optical - bypass options.

5 DECN S 500/ 600 Software Design

This section describes the software design of the DECNI S 500/ 600. The
structure of the managenent processor software is first described. The
structure of the linecard receiver and transmitter is then discussed,
foll owed by details on how we expanded the design to forward multicast
packets.

Managenment Processor Software

The DECNI' S 500/ 600 MPC software structure, as shown in Figure 7, consists
of a full-function bridge/router and X. 25 gateway, together with the
software necessary to adapt it to the DECNI'S 500/ 600 environnent. The
control code nodul e, which includes the routing, bridging, network
managenment, and X. 25 nodul es, is an extended version of Digital's WANrouter
500 software. These extensions were necessary to provide configuration

i nformati on and forwarding table updates to the DECNI S 500/ 600 environnment
nodul e. This nodul e hides the distributed forwarding functionality from
the control nodule. In this way, the control nodule is provided with an

i dentical environnent on both the McroServer and DECNI S 500/ 600 pl atfornms.

The maj or conponent of the DECNI'S 500/ 600 environment nodul e contains the
data link initialization code, the code to control the |inecards, and the
code to transformthe forwarding table updates into the data structures
used by the ARE. A second conponent of the environment nodul e contains the
swap and scavenge functions necessary to conmunicate with the |inecards.
Because of the real-time constraints associated with swap and scavenge,
this function is split between the nanagenent processor on the MPC and an
assi st processor.

The control code nodul e was designed as a full-function router, thus we

are able to introduce new functionality to the platformin stages. |f

a new protocol type is to be included, it can be initially executed in

t he managenent processor with the linecards providing a fram ng or data
link service. At a later point, the forwardi ng conponents can be noved to

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 11

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

the linecards to provide enhanced performance. The managenment processor
software is described in nore detail elsewhere in this issue.[1]

Li necard Reception

The linecard receiving processes are shown in Figure 8. The receiver runs
four processes: the nmain receive process (RXP), the receive buffer system
ARE process (RXBA), the receive buffer system descriptor process (RXBD)
and the swap process.

The main receive process, RXP, polls the |ine comruni cations controller
until a packet starts to become available. The RXP then takes a pointer to
a free PRAM buffer fromthe free queue and parses the data |ink header and
the routing header, copying the packet into the buffer byte-by-byte as it
does the parse. Fromthe data |ink header, the RXP is able to determ ne
whet her the packet should be routed or bridged. Once this distinction

has been nmade, the routing destination address or the destination MAC
address is also copied to the ARE, together with sonme information to tel
the ARE whi ch dat abase to search. The ARE provi des hardware assi stance to
the bridge | earning process. To prevent this hardware from i nadvertently

| earning an incorrect address, the ARE is not allowed to start a MAC
address | ookup until the RXP has conpletely received the packet and has
ensured that the checksum was correct. This restriction does not apply

to routing addresses, which may be | ooked up before the packet has been
conpl etely received, thus reducing | atency.

In the case of a routing packet, the data |ink header is discarded; only
the routing header and the packet body are written to the buffer in PRAM
The source MAC address or, in the case of a multichannel card, the channe
on which the packet was received is stored for |ater use. A nunber of other

protocol -specific itens are stored as well. All this information is used
later to build the descriptor. The buffer pointer is stored on the pre-
address queue until it can be reconciled with the result of the address

| ookup. In the case of an acknow edged data |ink such as HDLC, the receiver
exports the | atest acknow edgnent status to the transnit process.

The receive buffer system ARE process, RXBA, polls the ARE for the result
of the address | ookup and stores the result in an internal data structure
associated with its correspondi ng packet. The buffer pointer and the buffer
poi nters for any other buffers used to store the remainder of a |ong packet
are then noved onto the RX-bin queue. Since the RXP and RXBA processes,

the ARE search engine, and the |ink transni ssion process are asynchronous,
the systemis designed to have a nunber of pending ARE results, which are
conpleted at an indeternminate tine. This neans that the reconciliation

of | ookup results and buffers nay happen before or after the whol e packet
has been received. Because of the possibility of an error in the packet,

no further action can be taken until the whol e packet has actually been

received and all its buffers have been noved to the the queue | abel ed
RX- bi n.

12 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

If this staging process were not used, we would need to provide a conpl ex
abort mechani smto purge erroneous packets fromthe swap, scavenge, and
transmt processes. Under |oad, the rate at which we poll the ARE has

been engi neered to be exactly once per |ookup request. A poll failure wll
i ncrease the backlog in the pre-address queue, which should not grow above
two packets. This algorithm mnimnm zes the Futurebus+ bandw dth expended in
unsuccessful ARE poll operations. Wen the receiver is idle, the poll rate
i ncreases and the outstandi ng packets are quickly processed to clear the
backl og.

The receive buffer system descriptor process, RXBD, wites the packet
descriptor onto the front of the first PRAM buffer of the packet. The
descriptors are protocol specific, requiring a callback into the protoco
code to construct them After the descriptor has been witten, the

buffer pointers are passed to the source queue, ready for transfer to the
destination linecard by the swap process. The buffer is then swapped with
the destination linecard as described in the section Buffer System and the
resultant free buffer is added to the free queue.

As an exanple of the information contained in a descriptor, Figure 9 shows
an OSI packet buffer together with its descriptor as it is witten into
PRAM The descriptor starts with a type identifier to indicate that it

is an OSI packet. This is followed by a flags field and then a packet

I ength indicator. The ARE flags indicate whet her packet translation to
DECnet Phase IV is required. The destination port is the linecard to

whi ch the buffer nust be passed for transm ssion. The next hop physica
address is the MAC address of the next destination (end systemor router)
to which the packet nust be sent if the output circuit is a LAN; otherw se,
it is the physical or virtual channel on a nmultiplexed output circuit.

The segmentation offset information is used to | ocate the segnmentation
information in the packet in case the output circuit is required to segnent
the packet when the circuit conmes to transmit the packet. This is followed
by the byte value and position of the quality of service (Q0S) option, the
field used to carry the DEChit congestion state indicator

The transmitter requires easy access to these fields since their nodified
state has to be reflected in the checksumfield, near the front of the
routi ng header. The source |linecard nunber, reason, and |ast hop fields
are needed by the managenent processor in the event that the receiving
linecard is unable to conplete the parsing operation for any reason. This
information is also necessary in the generation of redirect packets (which
are generated by the managenent processor after normal transm ssion by the
destination |inecard).

Li necard Transm ssi on

The linecard transnmitter function consists of five processes: the scavenge

rings process, the scavenge bins process, the transmt buffers system
sel ect process (TXBS), the main transnit process (TXP), and the TXB rel ease
process. These are shown in Figure 10.

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 13

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

The scavenge rings process scans the swap rings for new buffers to be
queued for transm ssion, replacing themwith free buffers. Buffers are
gqueued in reassenbly bins (one per destination ring) so that only conplete
packets are queued in the hol ding queues. The process tries to replenish
the destination rings fromthe port-specific return queues, but failing
this it uses the free list. The primary use of the port-specific return
queues is in multicasting (see the section Linecard Milticasting).

The scavenge bins process scans the reassenbly bins for conpl ete packets
and transfers themto the hol ding queues. Since different protocols have
different traffic characteristics, the packets are queued by protocol type.

The TXBS process dequeues the packets fromthese hol di ng queues round-robin
by protocol type. This prevents protocols with an effective congestion
control algorithmfrom being pushed into congestion backoff by protoco
types with no effective congestion control. It also allows both bridged

and routed protocols to nake progress despite overload. The scavenge bins
and TXBS processes between them execute the DECbit congestion control and
packet aging functions. By assuming that queuing tine in the receiver is
mnimal, we are able to sinplify the algorithnms by executing themin the
transmt path. New al gorithnms had to be designed to execute these functions
in this architecture.

The TXP process transmits the packet selected by TXBS. TXP reads in

the descriptor, prepending the data |link header and transmitting the

nodi fied routing header. When transmitting a protocol that uses explicit
acknow edgrments, like HDLC, the transmitted packet is transferred to

t he pendi ng acknow edgnent queue to wait for acknow edgnent fromthe

renote end. Before transmitting each packet, the transmitter checks the
current acknow edgnent state indicated by the receiver. |f necessary, the
transmitter either noves acknow edged packets fromthe pendi ng acknow edged
gueue to the packet release queue, or, if it receives an indication that
retransm ssion is required, noves them back to the transmit packet queue.

The TXB rel ease process takes packets fromthe prerel ease queue and
separates theminto a series of queues used by the swap process. Sinple
uni cast packets have their buffers returned to the transmitter free pool
The mul ticast packets have their buffers placed on the port-specific queue
for the source linecard, ready for return to their originating receiver.
Packets intended for return to the managenent processor are al so queued
separately.

Li necard Mul ticasting
A bridge multicast or flooded buffer nust be transmitted by a nunber of

linecards. This is achieved by swapping a special type of ring vector
i ndicating that the buffer is only on loan to the transmtting |inecard

and nust be returned to its owner upon conpletion. In addition to the
normal packet type, fragnmentation, and buffer identification informtion
the ring vector contains local referencing information indicating where
it is stored on the nmulticast heap. The receiver keeps a record of which
nmul ti cast buffers are on loan to which transnmitters. The scavenge process

14 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

notes in which ring it found the ring vector. After transm ssion, the TXB
rel ease process places the ring vector on the correspondi ng port-specific
return queue. These ring vectors are then preferentially returned to their
owner via the swap process. As the receiver gets these buffers back, it
checks them of f agai nst a scoreboard of issued buffers. Wien a buffer is
received fromall destination linecards to which it was |oaned, the buffer
is moved back on the free list. For this to work successfully, some buffers
nmust be set aside specifically for use by the multicast process.

6 Debuggi ng the System

Ext ensi ve simul ati on was performed during system devel opment. A node

based on VHDL (a hardware description | anguage used for sinulation and

| ogic synthesis) was built to sinulate the queues, processes, bus accesses,
and bus latency for the fast forwardi ng paths. Mdels were devel oped for
the different styles of linecards, and nany different traffic scenarios
(packet size, packet type, packet rates) were sinulated to verify the
original thinking and architectural assunptions. In addition, simulation
was perforned on the software to neasure code correctness and execution
times. Gate arrays and nmodul es were both functionally sinmulated and tining
verified; anal og nodeling techniques were used to verify signal integrity
of the backpl ane and sel ected etches.

The linecard processors used have a serial port and masked ROM enbedded

in the device. The internal ROM was progranmed with a sinple boot and
consol e procedure. Provisions for a debug console via a ribbon cable to

t he nmodul e were devel oped, allowing a ternminal connection to be nade from
t he managenent processor to any linecard processor. Each processor on

a nodule is software selectable fromthe console, which allows linited
access functions to peek and poke nmenory maps, set break points, and step
t hrough the code. The system was enhanced by devel opi ng a breakout box and
wor kst ation environnent that could connect to nultiple linecards, offering
mul tiple windows to different nodules in parallel. The code executed under
this regime ran at full speed. The environnment allowed renpte access, which
proved useful between the two nmain nodul e devel opnent sites in England and
I rel and when probl ens required cl ose cooperation between the two groups.

7 Performance

Per f ormance neasurenents have been made on the DECNI S 500/ 600 products
for DECnet Phase |V, DECnet Phase V (CSlI), IP, and bridged traffic. For
a detailed description of the neasurenment nethodol ogy and a conpari son
bet ween the performance of the DECNIS 500/ 600 and conpeting bridge/routers,
the reader is referred to i ndependent test results conpiled by Bradner.|[6]

A sunmary of the LAN perfornmance neasured by Bradner and the WAN
performance neasured by ourselves is shown in Tables 1, 2, and 3. Table

1 shows the Ethernet-to-Ethernet forwarding throughput for mninumsized
packets. These neasurenents show the mexi mum forwardi ng performance with no
packet |oss. The use of a no-loss figure for conparison between different

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 15

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

designs is inportant because this represents the nmaxi mumthroughput usable
by a network application. If the applications attenpt to run at nore than
the loss-free rate, the packet |oss causes the transport protocols to back
off to the | oss-free operating point. The Ethernet-to-Ethernet figures

i ndicate the near linear scalability of performance with nunber of I|ines.
Et hernet forwardi ng performances of this magnitude are well in excess of
those required to operate on any practical LAN. The correctness software
ensures the reception of any routing packets for a significant period after
these rates are exceeded.

Tabl e_1: 64-byte_Ethernet-to-Ethernet_ Packet_ Throughput

Pr ot ocol Nurber of Ports
1 4 6
Bridge 13, 950 48, 211 80, 045
I P 13, 362 51, 960 79, 452
DECnet 9, 330 34, 164 53, 746
(03] 6, 652 25, 891 38, 837

Tabl e_2: FDDI -t o- FDDI _Thr oughput

Packet Size
64 Byte 2048 Byte
Thr oughput 16% 76%
Maxi mum pps 56, 869 4,352
Bandwi dt h 85.5 Mu/s

Not e: _pps_=_packets_per_second

Tabl e_3: _WAN-t o- WAN_Per f ormance_for_Routed_Traffic

Measured Percentage Line Utilization

NPDU DECnet DECnet Phase V I P

Si ze Phase 1V (Csl)

46 96% 95% 93%
128 99% 99% 98%
512 100% 100% 100%
1450 100% 100% 100%

Not e: _NPDU = networ k_packet _data_unit

Measurenments al so indicated that the unidirectional and bidirectional
forwardi ng performances are substantially the sane, which is not the case
for all router designs. This is of nobre than academ c significance. Poorly
desi gned Et hernet subsystens do not provide adequate transmit processing

16 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

power under conditions of receive overload. Such subsystens suffer from

a condition known as "live-lock." In this condition, the receiver uses up
all the processing cycles, thus preventing the transmtter fromattenpting
the transmi ssion that would force a collision on the Ethernet and thereby
restore fair operation.

The FDDI forwardi ng performance is shown in Table 2. These neasurenents
were al so taken at the zero-1loss operating point and indicate industry-
| eadi ng performance results.

The performance of the WANcontroller 622 running at 2 negabits per second
is shown in Table 3. These neasurenents were taken using HDLC (with
acknow edgnents) as the data link, with a packet overhead of +19 octets
for Phase IV and +6 octets for OSI and |IP. These results indicate that the
lines were running close to saturation.

8 Acknow edgnents

The DECNI S 500/ 600 project has involved a great nunber of people |ocated
around the world. The authors wish to recogni ze everyone's contribution
to the | argest project undertaken by the Readi ng and Gal way network

engi neering groups. Special thanks are extended to M ck Seaman for his

| eader shi p and gui dance throughout the advanced devel opnent and early

i mpl ement ati on phases of this project.

9 References

1. G Cobb and E. CGerberg, "Digital's Multiprotocol Routing Software
Design," Digital Technical Journal, vol. 5 no. 1 (Wnter 1993) in
press.

2. Futurebus+ Logical Layer Specification, |EEE Standard 896. 1-1991 (New
York: The Institute of Electrical and El ectronics Engi neers, 1992).

3. Futurebus+ Physical Layer and Profile Specifications, |EEE Standard
896. 2-1991 (New York: The Institute of Electrical and El ectronics
Engi neers, 1992).

4. E. Fredkin, "TRIE Menory," Communi cations of the ACM vol. 3 (1960):
490- 499.

5. D. Knuth, The Art of Conputer Programr ng, Sorting and Searching vol. 3
(Readi ng, MA: Addi son Wesley Publishing Co., Inc., 1973): 481-490.

6. S. Bradner, "Testing the Devices," Proceedings of Fall Interop 1992

Avail able on the Internet by anonynmous FTP from hsdndev. harvard. edu in

/ pub/ ndtl.

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 17

The DECNI' S 500/ 600 Multiprotocol Bridge/ Router and Gat eway

10 Biographies

David L.A. Brash David Brash, a consultant engineer, joined Digital's

Net wor ks Engi neering Group in 1985 to | ead the hardware devel opnent of the
M croServer comuni cations server (DEMSA). As the technical |eader for the
DECNI' S 500/ 600 hardware platfornms, David contributed to the architecture,
backpl ane specification, nodul e and ASI C desi gns and nonitored overal
correctness. He was an active nenber of the | EEE Futurebus+ worki ng group.
He is currently leading a group supporting Al pha design w ns in Europe.
David received a B.Sc. in Electrical and El ectronic Engineering fromthe
University of Strathclyde, G asgow, in 1978.

Stewart F. Bryant A consulting engineer with Networks and Comruni cations in
Readi ng, Engl and, Stewart Bryant worked on the advanced devel opnent program
t hat devel oped the DECNI'S 600 architecture. During the |ast six nonths

of the program he was its technical |eader, focusing on inplenentation
issues. Prior to this work, Stewart was the hardware and firnware architect
for the McroServer hardware platform He earned a Ph.D. in physics from

I mperial College in 1978. He is a nmenber of the Institute of Electrica

Engi neers and has been a Chartered Engi neer since 1985.

DEC, DECnet, DECN S 500/600, Digital, RS232, ThinWre, and VAX are
trademar ks of Digital Equi pnment Corporation

AppleTalk is a registered trademark of Apple Conputer Inc.

18 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

Copyright 1992 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

