An | npl enentation of the OSI Upper Layers and Applications

1 Abstract

Above the transport |ayer, the open systenms interconnection (OSI)

basi c reference nodel describes several application standards supported
by a commn upper |ayer protocol stack. Digital's high-perfornmance

i mpl enmentation of the upper |ayers of the protocol stack concentrates on
maxi m zi ng data throughput while mninimzing connection establishnment del ay.
An additional benefit derived fromthe inplenentation is that, for nornmal
dat a exchanges, the delivery delay is also mnimzed. The inplenentation
features of Digital's two OSI applications-file transfer, access, and
managenment (FTAM and virtual terminal (VT)-include the use of conmon
code to facilitate portability and efficient buffer managenment to inprove
per f or mance.

The open systens interconnection (OSlI) basic reference nodel defined in

the International Organization for Standardization standard | SO 7498-

1 specifies a |layered protocol nodel consisting of seven |ayers.[1]

By convention, the first four |ayers-physical, data |link, network, and
transport-are referred to as the |ower |ayers.[2] These |ayers provide

a basic comruni cation service by reliably transferring unstructured

user data through one or nore networks. The renmining | ayers-session
presentation, and application-build on the lower |ayers to provide services
that structure data exchanges and nmaintain information in data exchanges to
support distributed applications. These three |l ayers are known coll ectively
as the upper |ayers.

This paper first gives an overview of the OSI upper |ayers and of two
application standards-file transfer, access, and managenent (FTAM and
virtual termnal (VT). The discussion that follows concentrates on the
features of Digital's inplenentation of the upper |ayers and the two
applications, with enphasis on novel inplenmentation approaches.

2 Sunmary of OSI Upper Layer Standards

The application-independent parts of the OSI upper layers are defined in
the foll owi ng standards:

o |1SO 8326 and | SO 8327-Sessi on Connection Oriented Service and Protoco

o |1SO 8822 and | SO 8823-Presentati on Connection Oiented Service and
Pr ot oco

0 |1SO 8824-Abstract Syntax Notation One (ASN. 1)

o |SO 8825-Basi c Encodi ng Rul es (BER)
o |1SO 8649 and | SO 8650- Associ ati on Control Service El enment (ACSE)

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 1

An | npl enentation of the OSI Upper Layers and Applications

This section gives an overview of the services defined in these standards.
The |l ater sections File Transfer, Access, and Managenent |nplenentation and
Virtual Term nal |nplenmentation discuss two application-specific standards.

Sessi on Layer

The transport |ayer service facilitates the exchange of unstructured

bytes (i.e., octets) of data. However, exchanges between conponents of

a distributed application are often structured. The function of the session
| ayer is to standardi ze sonme of the conmon exchanges by supplying services
that add structure to the transport |ayer exchanges.

The session-connection-oriented service has the three phases typical of
all connection-oriented services: connection establishnent, data transfer
and connection release. Al structuring of the data exchanges occurs in
the data transfer phase and is acconplished by using either tokens or
synchroni zati on. Hence, the connection establishnment and rel ease phases
are not discussed further in this paper

Tokens are used to control which peer session user of a session connection
is permtted to invoke a particular service or group of services. The
session | ayer also provides services to exchange tokens between peer
session users. There are four types of tokens.

1. Data, for controlling half-duplex data exchanges

2. Release, for controlling which session user can initiate the rel ease of
a session connection

3. Synchroni ze-mnor, for controlling the issuing of the ninor
synchroni zati on service

4. Major/Activity, for controlling the issuing of major synchronization and
activity services

For exanpl e, when the data token has been negotiated on a session
connection, session data can be sent only by the end that currently has

t he token. Exchanging the data token between the session users provides a
hal f - dupl ex data service

The data transfer phase provi des synchronization by all ow ng session users
to insert major and nminor synchronization points into the data being
transmitted. Optionally, each direction of flow can have its own set of
synchroni zati on points.

Figure 1 illustrates a data exchange structured as a single dialog unit.
A dialog unit begins at a mmjor synchronization point and term nates

either at a new major synchronization point or by the release of the
sessi on connection. Further structure is possible within the dialog unit by
i nserting mnor synchronization points.

2 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

An | npl enentation of the OSI Upper Layers and Applications

The session synchroni zation services allow applications to insert

synchroni zation points into their data exchanges. These points are
application specific. The session service also provides a resynchronization
service to allow a session user to request its peer to resynchronize to an
earlier synchronization point, for exanple, to a previous point in a file
transfer.

Activities provide an additional structuring service. An activity
represents a |logical piece of work. At any nmonent in tine, there is at
nost one activity per session connection. However, several activities can
exist during the lifetime of a session connection, and an activity can
span sessi on connections. The synchronization services can be used with
activities services.

Presentation Layer

Di fferent conmputer architectures and conpilers use different interna
representations (i.e., concrete syntax) for data values. Therefore,
conversi on between representations is necessary when conmuni cati ng between
dissimlar architectures. The intent of the presentation layer is to allow
communi cating peers to negotiate the data representation to be used on a
presentati on connection.

The presentation standards, |1SO 8822 and | SO 8823, distingui sh between
abstract syntax and transfer syntax. Abstract syntax is the definition of
a data type independent of its representation. Typically, data types are
defined using the ASN. 1 standard, |SO 8824, which was devel oped for this
purpose. ASN. 1 has a nunber of primtive data types, including | NTEGER
REAL, and BOOLEAN, as well as a collection of constructed data types,

i ncluding SET and SEQUENCE OF. These prinmitive and constructed data types
can be used to define the abstract syntax of conplex data types such as
application protocol data units.

A transfer syntax is the external comrunication representation of an
abstract syntax. Values fromthe abstract syntax are encoded according

to the rules defined in the transfer syntax. A common way to define a
transfer syntax is in terms of encoding rules. For exanple, these rules may
i ndicate how an 1 | NTEGER value is represented or how to encode a SEQUENCE
OF data type. A widely used transfer syntax is the basic encoding rules
speci fication, |SO 8825.

An abstract syntax can be encoded using different transfer syntaxes, of
which there are many. The role of the presentation layer is to negotiate
the set of abstract syntaxes to be used on a particular presentation
connection and to select a conpatible transfer syntax for each of these
abstract syntaxes. This process ensures that both peers agree on the data
representation to be used in data exchanges.

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 3

An | npl enentation of the OSI Upper Layers and Applications

Application Layer

The application | ayer supports distributed interactive processing, that is,
the comruni cati on aspects of distributed applications such as FTAM (defi ned
by | SO 8571), directory service (defined by |1SO 9594), and VT (defined by

| SO 9040 and | SO 9041). Unlike for the session and presentation |ayers,
nunmer ous application |ayer protocols and services exist-at |east as many as
there are distributed applications.

The application |ayer structure specified in | SO 9545 defi nes a node

for conbining these protocols in the sane system The functions for a
particul ar application are grouped together to form an application service
el ement (ASE). FTAM VT, and directory service are exanples of ASEs and
are the basic building blocks of the application |ayer. One or nore ASEs
are conbined to forman application entity (AE). An AE represents a set

of conmuni cation resources and can be thought of as a program on a disk.
An invocation of an AE (i.e., execution of the program can contain one or
nore instances of an ASE with one or nore application associations, i.e.
application layer connections. The AE specification also defines the rules
for interaction between ASEs operating over the same association as well as
i nteracti ons between associ ati ons.

An ASE required by all applications is called the association contro
service element (ACSE). The ACSE, defined by |ISO 8649 and | SO 8650, is
the service and protocol required to establish an application association
Therefore, an AE always contains at |east the ACSE

An application association is mapped onto a presentation connection; no
ot her application association can share this presentation connection. In
this way, applications gain access to the presentation and session data
phase servi ces.

3 New OSI Upper Layer |nplenentation

Digital's inplenentation of the OSI upper |ayers, nanmely OSAK, includes
sessi on, presentation, and ACSE services. Users of OSAK can thus establish
application associations and use session and presentation services during
the data transfer phase.

Ai s
In 1988, when Digital decided to produce a new version of OSAK, three
ai s were considered paramunt: high performnce, nmaintainability, and

portability.

Per f ormance Hi gh performance of the OSI upper layers is essential to
produci ng conpetitive OSI products. Because all OSI applications use

t hese upper |ayers, the performance of OSAK affects these applications.
Therefore, OSAK ains to maxim ze data throughput and to m ninm ze connection
establishnent delays. This inproved performance is achieved by maxim zing
the use of the comunication pipe and mnimzing the |ocal processing

requi renents. The process involves

4 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

An | npl enentation of the OSI Upper Layers and Applications

Amal gamat i ng upper |ayer state tables. The services provided by

the presentation and session |layers are simlar. Also, connection
establishnment and release in the ACSE is basically the same as in

the other two upper |ayers. Therefore, the three state tables can

be conbined into a single state table, thus inproving performance by
reduci ng the overhead. This amal gamation elininates the need to nmanage
links between state tables, requires all predicates to be tested in only
one place, and generates only one state transition or action per inbound
event .

Treating the presentation service P-DATA as a special case. The
presentation service P-DATA is the nost frequently used service, and
hence, its performance has the greatest inpact on data throughput. By
fast-laning the processing of the P-DATA service, the normal overheads
associated with the conbined state table processing are avoi ded.

Good buffer managenent. The new application programing interface (API)
to OSAK enables efficient use of buffers. We elimnated all copying

of user data within OSAK by taking advantage of user buffers. On an

out bound service, an OSAK user is requested to | eave space at the start
of the user data. If there is sufficient space, we add the OSI upper

| ayer protocol control information (PCl) to the user buffer. This buffer
is then sent to the transport provider. O herwi se, we allocate an OSAK-
speci fic buffer using a user-supplied nmenory allocation routine.

Bef ore receiving an inbound service, the user nust pass at | east

one user buffer to OSAK. This buffer is used to receive the inbound
transport event (both user data and upper layer PCl). The upper |ayer
PCl is decoded before the user buffers are returned. In addition to
bei ng extrenely efficient, this approach has the advantage of allow ng
OSAK users to exert inbound flow control; if OSAK is not given any
buffers, no transport events will be received. Al so, this buffering
schene sinplifies resource managenent in OSAK. As OSAK does not have
any of its own resources, they all conme from OCSAK users. One OSAK user
cannot interfere with the operation of another OSAK user by consum ng
al |l OSAK resources.

Parsi ng only the upper |ayer headers. The presentation | ayer standards
nodel the mappi ng between concrete (internal) and transfer (external)
representation of data values. In particular, the presentation state
tabl es contain predicates to verify that all user data is froma current
presentation context. Since the best place for encodi ng and decodi ng

is in the application itself, OSAK does not inplenent these predicates.
Rat her, OSAK assunes that its users have correctly encoded their own
protocol and will detect any probl ens when decodi ng.

Tradi ng nenory for performance. All encodi ng and decodi ng of upper |ayer

PCl is done with in-line code. Mdre conpact coding is possible using
subroutines but at the cost of perfornmance.

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 5

An | npl enentation of the OSI Upper Layers and Applications

6. Mninmzing paraneter checking. Mdst paraneters are pointers to user
buffers. To check the validity of all pointers is tinme-consum ng and,
consequently, costly. Therefore, OSAK assunmes that the pointers do
i ndeed point to the user's nmenory.

Mai ntai nability The code for the new version of OSAK is easier to maintain
than the previous code. As stated earlier in this section, a nmjor step
in inproving the naintainability was the use of amal ganmated state tables.
A single state table elimnates |inks between tables, reduces the anount
of mai ntenance required, and thus sinplifies the code. In addition, using
a single table makes it easier to serialize events. Wth nmultiple state
tabl es, an inbound transport event can trigger a conflicting state change
in the session state table at the sane tinme a user request is changing
the presentation state table. Using a single state table for a particular
connection ensures that only one event (i.e., either a user or a transport
event) is active in the state table at any given tine.

The state tables are witten in M4 macroprocessor notation. Thus, the OSAK
state table definition is simlar to an OSI protocol specification; this

i nproves readability. Macros are al so used extensively to handl e conmon
buffer mani pul ati on and the encode and decode functions. Although macros
are preferred over subroutines to inprove performance, nacros can be
converted, at the expense of slower performance, should a nore conpact
versi on of OSAK be required.

Portability The new version of OSAK is designed to facilitate portability
of applications using both the OSAK APl and OSAK itself. The new OSAK AP
is designed to be comon across all platforms and thus assists porting
applications between platforns. The only major difference between the
versions for the ULTRI X and the OpenVMS operating systenms is the way events
are signaled. The ULTRI X i npl enentati on supports both a polling nodel and
an event-driven or blocking nodel. Wth the polling nodel, the OSAK user
repeatedly calls OSAK routines to test for conpletion of an event; the
routi nes used are osak_collect_pb() or osak _get_event(). |In the blocking
nodel , the OSAK user blocks awaiting the event, with the osak_sel ect()
routine.

These three routines are avail able to OpenVMS applications. In addition,
the OpenVMS inpl enentation supports event notification by asynchronous
system traps (ASTs).

Al so, the OSAK APl is simlar to XAP, the X/ Open APl to the OSI upper

| ayers. To support OSAK on multiple platforms, as far as possible, OSAK
code is comon to all platforns. The main differences are the interface to
the transport |ayer and the OpenVMs support for ASTs. Over 90 percent of
the code is conmon to the ULTRI X and t he OpenVMS versi ons.

6 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

An | npl enentation of the OSI Upper Layers and Applications

Per f or mrance Measurenments

Two performance netrics, throughput and connection establishnent del ay,
were nmeasured between two DECstation 3100 workstations connected by a
lightly | oaded Ethernet comruni cati ons network. The DECstati on nachi nes
were running ULTRI X V4.2 with DECnet-ULTRI X V5.1. OSAK accessed OSI
transport through the X/ Open transport interface (XTI) in nonbl ocking node.

For throughput neasurenents, two prograns were used: an initiator and a
responder. The initiator

1. Establishes an association.

2. Reads the systemtine.

3. Transmits 2,000 buffers of data as quickly as possible. These user
buffers contain sufficient space for the upper |ayer headers. Wen
a send request fails due to flow control, the sender waits using the
ULTRI X system call select(2) until the flow control is renoved. The
sender then collects the user buffers with the osak_collect_pb()

routi ne before continuing with the send | oop

4. Reads the systemtinme and calculates the tine required to transnmt the
2,000 buffers.

5. Rel eases the association

The responder

1. Accepts an association request

2. Loops, waiting for a transport event using the ULTRI X system cal
select(2), and then collects the data using the osak_get_event()
routine until all 2,000 buffers have been received

3. Responds to the request to rel ease the association

Tabl e 1 records the throughput neasurenments for various buffer sizes
ranging from 10 to 16,000 (16K) octets per buffer

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 7

An | npl enentation of the OSI Upper Layers and Applications

Tabl e 1: Throughput Measurenents for Digital's OSI Upper Layer
| mpl enent ati on

Buf f er Thr oughput Nunmber of Send Requests Flow Controlled
Si ze (Kil ooctets
(Cctets) /'s)
10 6. 60 2
100 56. 80 4
512 216. 00 35
1,024 266. 60 794
2,048 372.60 862
4,096 453. 70 1,151
6, 000 507. 00 1,217
8,124 528. 80 596
8, 125 507. 10 651
10, 000 527. 20 751
13, 000 522. 20 1,101
_16, 000 505. 27 1,279

The data presented in Table 1 indicates that for small buffers, the

t hroughput is poor. This |low performance is due to the system associ ated
Wi th processing a send request, independent of the anpunt of data to be
transmtted. However, the throughput rapidly inproves until the buffer

si ze reaches 4K octets. Fromthis size on, the throughput neasurenent is
al nost flat at between 507K and 528K octets per second. The variation is
due to fragnentation in the | ower |ayers. The nunmber of send requests
flow controlled represents the nunber of tinmes a send request was

del ayed because of flow control by the transport service in the course
of transmitting the 2,000 buffers.

We profiled the initiator and the responder. For buffers ranging in size
from1l0 to 16K octets, the initiator spent nore than 90 percent of the tine
in transport. For the responder, the percent of tinme spent in transport

vari ed between 60 percent for 10-octet buffers and 92 percent for 8K-octet
buffers. The remaining time was spent primarily in select(2), waiting

for and processing the next inbound event. Also, for the small buffers,

a significant amount of tine is consuned by initializing the user paraneter
bl ock before returning it to the user

We al so used the throughput programto measure the connection establishnent
time. The programread the systemtine before and after the association
establ i shnent phase; the average connection establishnment tinme was 0.08
seconds. In addition, tests on the new OpenVMs i npl enentation indicate that
t hroughput inproved two to three fold as conpared to the OSAK code in the
previ ously existing OpenVMS inpl enent ati ons.

8 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

An | npl enentation of the OSI Upper Layers and Applications

Both the throughput and profile data indicate that the transport
performance dom nates the performnce of OSAK. Therefore, OSAK has net its
desi gn goal of reducing the overhead of the OSI upper layers to a very |ow
| evel . Meeting this goal was necessary because poor OSAK perfornmance woul d
i mpact all OSlI applications supported by OSAK. While further reductions in
over head are possible, such savings would be at the expense of OSI upper

| ayer functionality.

4 File Transfer, Access, and Managenent |nplenentation

This section presents a summary of the | SO FTAM standard and details of
Digital's inplenentation of this standard.

Summary of the | SO FTAM St andard

| SO 8571 File Transfer, Access, and Managenent (FTAM is a five-part
standard consisting of a general introduction, a definition of the virtua
file store, the file service, the file protocol definitions, and the
protocol inplenmentation conformnce statenment proforma. The FTAM st andard
defines an ASE for transferring files and defines a franework for file
access and fil e managenent.

Initiator and Responder FTAM service and protocol actions are based on a
client-server model. In the FTAM standard, the client is referred to as the
initiator, and the server is referred to as the responder

The initiator is responsible for starting file service activity and
controls the protocol actions that take place during the dialog (or FTAM
associ ation) between two FTAM applications. For exanple, the initiator has
to request that an FTAM associ ati on be established, that a file be opened
on a renpte system and that a file be read froma renpte system

The responder passively reacts to the requests of the peer initiator. The
responder is responsible for managing the virtual file store and nmappi ng
any virtual file attributes into local file attributes.

Virtual File Store Many architectures and inplenentations of file systens
exi st, and storing and accessing data can differ fromone systemto

anot her. Therefore, a mechanismis needed to describe files and their
attri butes independent of any particular architecture or inplenentation
The nechanismused in the FTAMis called the virtual file store. The FTAM
virtual file store nodel consists of file attributes, activity attributes,
file access structure, and docunent types.

File attributes describe the properties of the file, which include the size
and the date of creation. FTAMfile attributes also define the types of
actions that can be perforned on a file. Read access or create access are

exanpl es of file actions.

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 9

An | npl enentation of the OSI Upper Layers and Applications

Activity attributes are properties of the file, which are in effect for
only the duration of the FTAM associ ati on. Exanples of activity attributes
are current access request, current initiator identity, and current
concurrency control. Current access request conveys the access contro
applied to the file, e.g., read or wite access. Current initiator identity
conveys the name of the initiator accessing the virtual file store.

Current concurrency control conveys the status of the |ocks applied by

the initiator.

The FTAMfil e access structure is hierarchical and produces an ordered
tree that consists of one or nore nodes. This file access structure is
defined in ASN.1 and can be used to convey the structure of a wi de variety
of files.

In the FTAMvirtual file store nodel, docunent types specify the semantics
of a file's contents. The FTAM st andard defines four docunment types.

o FTAM 1, unstructured text files

o FTAM 2, sequential text files

o FTAM 3, unstructured binary files
o FTAM 4, sequential binary files

The virtual file store nodel provides a franework for defining many
different file types, including those not supported by the standardized
docunent types. The U.S. National Institute of Standards and Technol ogi es
(NI'ST) has used the virtual file store nodel to define docunent types to
support various file types, such as indexed files.

FTAM Fil e Service The FTAMfile service is a functional base for renote
file operations. Functionality defined by the FTAMfile service is broken
down into subsets of related services. The subsets of functionality are
called functional units. Functional units are used by the FTAM protocol to
convey a user's requirements. For exanple, the standard defines the read
functional unit, which allows an inplenmentation to read whole files, and
the file access unit, which allows an inplenentation to access records in
the file.

In addition, the FTAM standard defines the follow ng classes of files
service: transfer, managenent, transfer and managenent, access, and
unconstrai ned. Each service class is conposed of a set of functional units.
For exanple, an FTAM i npl ementation that supports the transfer service
class will be able to either read or wite files.

New FTAM St andard Work Modifications to the FTAM standard are i n progress

in the SO The nost inportant nodification is the file store managenent
addendum which specifies howwild cards, file directories, and references
(links) to files are to be handled in an OSI environment. The addendum al so
speci fies how to mani pul ate groups of files. In the current version of the
standard, only one file can be selected at a tine.

10 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

An | npl enentation of the OSI Upper Layers and Applications

Digital's FTAM I npl enent ati on

Digital's FTAM products, available for the OpenVMS and ULTRI X operating
systens, support FTAM applications in both the role of initiator and the
role of responder. The initiator applications allow users to copy, delete,
renanme, list, and append files. In the OpenVMS version, the initiator
applications are integrated into the Digital Command Language (DCL) so
that the user can continue to use the COPY, DELETE, DI RECTORY, and RENAME
commands. Where the FTAM service and protocol is used to support these
commands, the additional qualifier /APPLI CATION=FTAMis required. In

the ULTRI X version, the same functionality is provided using the set

of conmands ocp, orm ols, ocat, and omv. These commands have the sane
semantics as the corresponding ULTRI X commands cp, rm |s, cat, and nv,
respectively, and are simlar to the set of DECnet file transfer utilities
of dcp, drm dls, and dcat. (Note that the set does not include dnmv.)

The responder applications allow users to create, read, wite, delete,
and renane files. File access, i.e., the location of specific records
inafile, is also supported by the responder applications. The OpenVMS
responder application supports file |ocking and recoverable file transfer

Digital's initiator and responder applications support the followi ng FTAM
docunent types:

o FTAM1
o FTAM 2
o FTAM3

o NBS-9, FTAMfile directory

Programmatic Interface The FTAM APl is comon across all platforms and
shares a "l ook and feel" with the OSAK API. The FTAM APl all ows access
to all FTAM services and paraneters through the use of a single paraneter
bl ock and five library calls.

o osif_assign_port()

o osif_deassign_port()

o osif_getevent()

o osif_send()

o osif_give_buffers()

The FTAM APl can be used to create either initiator or responder
applications.

Protocol Gateways Digital's FTAM products support two protocol gateways: an
FTAMfile transfer protocol (FTAM FTP) gateway is available on the ULTRI X
version, and an FTAM data access protocol (FTAM DAP) gateway is avail abl e
on the OpenVMs version. The FTAM FTP gat eway supports bidirectional

protocol translation. Files on internet hosts can be accessed through the

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 11

An | npl enentation of the OSI Upper Layers and Applications

gateway using FTAM files on OSI hosts can be accessed through the gateway
by using FTP.

| npl ement ation Features Portability, maintainability, and performance were
the major goals of the FTAM i npl enentation. To achi eve these goals we

1. Created a conmon code base. The code is inplenmented using the C
programm ng | anguage. The FTAM protocol nachine and the initiator
and responder application prograns are inplenmented such that a | arge
anount of the code can be used across nultiple platfornms. These nodul es
are referred to as common code nodul es. Any system specific code,
whi ch represents 90 percent of the code, is placed in systemspecific
nodul es. All other npdules are common to both the ULTRI X and the OpenVMsS
ver si ons.

2. Hd interface dependencies from FTAM To aid in the porting of code to
different platfornms, the FTAM i npl enentati on nakes no direct calls to
system specific interfaces.

3. Provided good buffer nmanagenent. The FTAM i npl enmentati on uses the sane
buf f er managenent nodel as OSAK, described earlier in the section New
OSlI Upper Layer |nplenmentation

5 Virtual Term nal |nplenmentation

Digital also inplenmented the OSI virtual ternminal application standards.
Details of the standards and features of the inplenentation follow

Summary of the VT Standards

| SO 9040 and | SO 9041 are the two international standards that define the
OSl virtual terminal. SO 9040 is concerned primarily with specifying a
model for a virtual term nal basic class service; |SO 9041 defines the

protocol to be used.

OSl virtual termnals are divided into five classes, based on
functionality.[3]

1. Basic-data consisting of rectangular arrays of characters

2. Fornms-data consisting of characters arranged in fields of variable size
and shape, with the mani pul ation of content controllable for each field

3. Text-data representing docunent structures as covered by the Ofice
Docunment Architecture standards (| SO 8613 series)

4. |l mge-data representing i mages conposed of arrays of dots, i.e., pixels

5. Graphics-data representing conputer graphics elenents, such as |ines and
circles

12 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

An | npl enentation of the OSI Upper Layers and Applications

To date, nobst of the work within the | SO has concentrated on the basic
termnal class, i.e., basic class virtual termnal (BCVT). An OSI virtua
term nal inplenentation provides a nechanismthat allows a user to

i nteractively access another OSI system when not directly connected to

it. Since a variety of systems and term nals exist that are not necessarily
conpatible with each other, the |1SO VT protocol provides a neans by which
dissimlar termnals and systens may interact.

An exanple of a dissimlar termnal and systeminteracting by neans of a
VT woul d be the action of deleting a typed character. Sone systens expect
the term nal user to enter the <delete> character as an indication of the
intent to delete, whereas other systens nay expect the user to enter a
<backspace> character. VT resolves these differences by translating the

| ocal action into a virtual action. The action in our exanple becones the
virtual actions of decrenmenting the current cursor position and erasing the
character at the current location. A cooperating inplenmentation would then
transl ate these virtual actions into an appropriate |ocal action.

The VT protocol is very powerful in the respect that the protocol
definition provides many options and features that allow the support of
conplex term nal nodels. During association establishnent, cooperating

i mpl ement ati ons agree on the subset of the protocol and the terni nal node
to be used. The protocol subset and ternminal nodel are referred to as the
profile. In addition, VT provides two nodes of operation: asynchronous (A-
node), which may be thought of as full-duplex operation, and synchronous
(S-node), which may be thought of as hal f-dupl ex operation.

The | SO base standards define two basic profiles, one for each node.

Addi tional profiles have al so been defined (or are being prepared) by the
regi onal OSI workshops. Currently, the OpenVMs and ULTRI X i npl enent ati ons
of the VT protocol both support the follow ng profiles:

1. TELNET-1988, which mimcs the basic functionality found in the
transm ssion control protocol/internet protocol teletype network (TCP/IP
TELNET) envi ronment

2. Transparent, which allows the sending and receiving of uninterpreted
dat a

3. A-node-default, which provides basic A-node functionality

Digital's VT Inplenmentation

Digital's VT inplenentation provides both initiator and responder
capabilities. In addition to describing the features of the inplenentation,

this section conpares the VT protocol with other network term na
protocol s.

Initiator and Responder The VT inplenmentation for both the ULTRI X and the
OpenVMS systens provides the capability to act as either an initiator

(a terminal inplementation) or a responder (a host inplenmentation). The
initiator is responsible for establishing an association with the responder
based on information provided by the user, such as the desired profile. The

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 13

An | npl enentation of the OSI Upper Layers and Applications

responder is responsible for accepting the peer association request and for
creating an interactive context for the renote peer user.

On the OpenVMS system the VT protocol initiator is invoked by the DCL
command SET HOST/ VTP; on the ULTRI X system the VT protocol initiator is
i nvoked using the ol ogi n conmand.

| mpl ement ati on Features The VT inplenmentation uses the OSAK interface
outlined earlier in the paper. The goals of the VT inplenmentation were
to provide a highly portable, very efficient, and easily extensible code.

To achi eve the goal of portability, the inplenentation was divided into
two maj or conponents: interface to the OSI environment and the non-0OS
interfaces (e.g., to termnals). The OSI conponent is conpletely portable
to multiple platforms. The non-COSI conponent is platformspecific and
must be rewitten for each unique platform The interface between these
conmponents consi sts of six basic functions, which nust be supported on al
pl at f orns.

o Attach/detach-to attach and detach the non-GS|I environnent

0 Open/close-to open or close a specific connection into the non-0S
envi ronnent

0 Read/wite-to read or wite data between the OSI and the non-GCS
envi ronnent s

Because each function is sinple and clearly defined, the amunt of

pl atform specific code required for inplenmentation is mininmal. For exanple,
the read function on the ULTRI X i npl enentation is only 10 |ines of code.
The inplementation is therefore highly extensible to different platforns.

Performance of the VT protocol inplenentation is enhanced by using
preal | ocated buffer pools. This approach to buffer managenent elininates
the overhead of dynamically allocating buffers.

Qur VT protocol inplenmentation not only inplenents the | SO VT protocol but
al so provides a gateway to and fromother term nal protocol environnents.
We provide gateways to TELNET and to the Local Area Transport (LAT) on

both the OpenVMS and the ULTRI X versions. In addition, we have a VI/comand
term nal (VIT/CTERM) gateway on the ULTRI X version.

Conparison of the VI Protocol with Ot her Network Term nal Protocols Mst
conparisons with network ternminal protocols deal with echo response tineg,
that is, howlong it takes for a character to echo to a display after
bei ng typed at the keyboard. VT, |like TELNET and CTERM can operate in two
di fferent echo nodes: renote, where the echo is achieved by nmeans of the

renote host; and | ocal, where the echo is acconplished through the |oca
host. A number of factors contribute to response tinme in a renote echo
situation, including protocol overhead and |ine speed. TELNET has little
protocol overhead; in fact, for nobst situations, transferring normal data
requi res no additional overhead. VT protocol overhead is approximtely 30
to 1 for a typical A-nmode profile, that is, 30 octets are required to carry

14 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

An | npl enentation of the OSI Upper Layers and Applications

1 octet of user data. VT overhead may seem excessive when conpared with
TELNET. However, the VT protocol provides many additional capabilities that
TELNET does not, such as the ability to accurately nodel different term na
environnents. Additionally, the 30 octets of overhead does not increase
significantly when |arger anobunts of user data are transferred.

The |l argest gains for the VT are in the area of S-node profiles. S-node
profiles enable nost character echoing to be done locally. By using an
appropriate S-nmode profile, the VT inplenmentation can provide sophisticated
| ocal term nal operations. Thus, it is possible to edit an entire screen

of text and then to transnit it all at once to the renmpte host. The

ability to process |arge anounts of term nal input as batch jobs has many
advant ages, including reduced network bandw dth requirenments, reduced

CPU requirenents of the renote host (since the renote host is no | onger

i nvolved in character echo), and increased user satisfaction (since users
experience no network del ays for character echo).

6 Sunmmary

Goal s comon to the OSAK, FTAM and VT protocol projects included good
performance and portability of inplenentation. Performance is especially

i mportant for OSAK, because it supports all other OSI applications.
Maxi m zi ng the use of comon code and reduci ng system dependencies in

the three projects significantly reduced the engineering effort to port

an inplenmentation fromone platformto another. This savings in human
resources i s necessary, given the growing set of hardware and operating

pl atforns supported by Digital. Equally inportant is the integration of

0S|I applications with their non-0OSlI counterparts, for exanple, the ocp and
ol ogin functions and the protocol gateways.

7 Acknow edgnents

The authors would like to thank their coll eagues for review ng previous
drafts of this paper. In particular, we would like to thank Chris Gunner
and Nick Emery, who were instrunmental in revising the OSAK API, and the
OSAK team who converted the advanced devel opnent code into the product.

8 References

1. J. Harper, "Overview of Digital's Open Networking," Digital Technica
Journal, vol. 5, no. 1 (Wnter 1993, this issue).

2. L. Yetto. et al., "The DECnet/OSlI for OpenVMS Version 5.5

| mpl ementation,” Digital Technical Journal, vol. 5, no. 1 (Wnter 1993,
this issue).

3. P. Lawrence and C. Makenson, "Cuide to |ISO Virtual Terninal Standards,"”
I nformati on Technol ogy Standards Unit (UK), Departnent of Trade and
I ndustry (March 1988).

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 15

An | npl enentation of the OSI Upper Layers and Applications

9 General References

I nformati on Processing Systens, Open Systens |nterconnection, Part 1: Basic
Ref erence Model (International Organization for Standardization, reference
no. |1SO 7498-1, 1984).

I nformati on Technol ogy, Open Systens |Interconnection: Connection Oriented
Session Service Definition (International Organization for Standardization,
reference no. |SO 8326, 1987).

I nformati on Technol ogy, Open Systens |nterconnection: Connection
Oriented Session Protocol Definition (International Organization for
St andardi zati on, reference no. |SO 8327, 1987).

I nformati on Processing Systens, Open Systens |Interconnection, File
Transfer, Access, and Managenment: Part 1, CGeneral Introduction; Part 2,
Virtual File Store; Part 3, File Service Definition; Part 4, File Protocol
Specification; and Part 5, Protocol |nplenentation Confornance Statenent
Proforma (I nternational Organization for Standardi zation, reference no. |SO
8571, 1988).

I nformati on Processing Systens, Open Systens |nterconnection: Service
Definition for the Association Control Service Element (lInternationa
Organi zation for Standardization, reference no. |SO 8649, 1988).

I nformati on Processing Systens, Open Systens |nterconnection: Protoco
Specification for the Association Control Service Elenent (Internationa
Organi zation for Standardization, reference no. |SO 8650, 1988).

I nformati on Processing Systens, Open Systens |nterconnection: Connection
Oriented Presentation Service Definition (International Organization for
St andardi zati on, reference no. |SO 8822, 1988).

I nformati on Processing Systens, Open Systens |nterconnection: Connection
Oriented Presentation Protocol Specification (International Organization
for Standardi zation, reference no. |SO 8823, 1988).

I nformati on Processing Systens, Open Systens |nterconnection: Specification
of Abstract Syntax Notation One (ASN. 1) (International Organization for
St andardi zati on, reference no. |SO 8824, 1987).

I nformati on Processing Systens, Open Systens |nterconnection: Specification
of Basic Encoding Rules for Abstract Syntax Notation One (ASN. 1)
(International Organization for Standardization, reference no. |SO 8825,
1987).

I nformati on Technol ogy, Open Systems |nterconnection: Virtual Term nal

Basic Class Service (International Organization for Standardization,
reference no. |SO 9040, 1990).

I nformati on Technol ogy, Open Systems |nterconnection: Virtual Term nal
Basic Class Protocol (International Organization for Standardization,
reference no. |1SO 9041, 1990).

16 Digital Technical Journal Vol. 5 No. 1, Wnter 1993

An | npl enentation of the OSI Upper Layers and Applications

Informati on Processing Systens, Open Systens |nterconnection: Application
Layer Structure (International Organization for Standardization, reference
no. |SO 9545, 1989).

10 Biographies

David C. Robi nson David Robinson is a principal software engi neer in

Net wor k Engi neeri ng Europe. He was the architect for the OSI upper |ayers
and designed and prototyped Digital's inproved upper |ayer inplenentation
He cane to Digital in 1988 fromthe General Electric Co. (GEC) in

Chel nsford, Essex, U. K., where he devel oped a renote procedure call and

a distributed conputing environment. Dave holds a B.Sc. (Eng) in conputing
science (1982) and a Ph.D. in managenent of very large distributed
conmputing systens (1988), both fromthe Inperial College in London.

Larwence N. Friedman Principal engineer

Lawrence Friedman is a technical |eader in the OSI Applications G oup

He joined Digital in 1989 and is the project |leader for ULTRI X FTAM V1.0
and V1.1. In addition to his project responsibilities, Larry is Digital's
representative to the National Institute of Standards and Technol ogi es
(NI'ST) FTAM SI G and editor of the NIST FTAM SI G Phase 2 and Phase 3
docunents from 1990 to 1992. He is currently the editor for the FTAMFile
St ore Managenent International Standard Profile. Larry holds a B. A (1978)
in music from Boston University.

Scott A Wattum Seni or software engi neer Scott Wattumis a nenber of the
OSlI Applications Engineering Group. He is responsible for the design and
devel opnent of OpenVMs Virtual Ternminal V1.0 and is involved in the ULTRI X
and OSF/ 1 porting efforts. Previously, Scott worked at the Col orado Springs
Cust oner Support Center and provi ded network support, specializing in

0S|I protocols and applications. Prior to joining Digital in 1987, he was
enpl oyed by the University of Alaska Conputer Network in various software
positions. He received a B.A. (1985) in theatre fromthe University of

Al aska, Fairbanks.

11 Trademarks

The following are trademarks of Digital Equi prment Corporation: DECstation
DECnet, Digital, OpenVMs, and ULTRI X

X/ Open is a trademark of X/ Open Conpany Limted.

Digital Technical Journal Vol. 5 No. 1, Wnter 1993 17

Copyright 1992 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

