

 Software Motion Pictures

1 Abstract

 Software motion pictures is a method of generating digital video on
general-purpose desktop computers without using special decompression
hardware. The compression algorithm is designed for rapid decompression
in software and generates deterministic data rates for use from CD-ROM and
network connections. The decompression part offers device independence and
integrates well with existing window systems and application programming
interfaces. Software motion pictures features a portable, low-cost solution
to digital video playback.

2 Introduction

The necessary initial investment is one of the major obstacles in making
video a generic data type, like graphics and text, in general-purpose
computer systems. The ability to display video usually requires some
combination of specialized frame buffer, decompression hardware, and a
high-speed network.

A software-only method of generating a video display provides an attractive
way of solving the problems of cost and general access but poses
challenging questions in terms of efficiency. Although several digital
video standards either exist or have been proposed, their computational
complexity exceeds the power of most current desktop systems.[1] In
addition, a compression algorithm alone does not address the integration
with existing window system hardware and software.

Software motion pictures (SMP) is both a video compression algorithm and a
complete software implementation of that algorithm. SMP was specifically
designed to address all the issues concerning integration with desktop
systems. A typical application of SMP on a low-end workstation is to play
back color digital video at a resolution of 320 by 240 pixels with a coded
data rate of 1.1 megabits per second. On a DECstation 5000 Model 240 HX
workstation, this task uses less than 25 percent of the overall machine
resources.

Together with suitable audio support (audio support is beyond the scope of
this paper), software motion pictures provides portable, low-cost digital
video playback.

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 1

 Software Motion Pictures

3 The SMP Product

Digital supplies SMP in several forms. The most complete version of SMP
comes with the XMedia toolkit. This toolkit is primarily designed for
developers of multimedia applications who include the SMP functionality
inside their own applications. Figure 1 shows the user controls as
displayed on a workstation screen. SMP players are also available on
Digital's freeware compact disc (CD) for use with Alpha AXP workstations
running the DEC OSF/1 AXP operating system. In addition, SMP playback is
included with several Digital products such as the video help utility on
the SPIN (sound picture information networks) application, as well as other
vendors' products, such as the MediaImpact multimedia authoring system.[2]

 NOTE

 Figure 1 (User Controls as Displayed on the Workstation Screen) is
 unavailable.

In the XMedia toolkit, access to the SMP functions is possible through
X applications, command line utilities, and C language libraries. The
applications and utilities support simple editing operations, frame
capture, compression, and other functions. Most of these features are
intended for use by producers of simple file formats called SMP clips.

To facilitate flexible but simple access to entire films of SMP frames,
SMP defines SMP clips. Rather than publishing that file format directly,
all applications and widgets are accessed through an encapsulating library.
This method allows future releases to have application-transparent changes
to the underlying file structure and completely different ways to store and
obtain SMP frames.

An example of the latter is the storage of SMP clips directly in a
relational database system in which no files exist, such as SQL Multimedia.
The video data is stored directly in database records, and the client
receives the data through the standard remote database access protocols. At
the receiving client, the SMP clip library is used to generate a virtual
SMP clip for the application program by substituting a new read function.

The SMP product also contains image converters that translate to and
from the popular PBMPLUS family of image formats, allowing import and
export to about 70 different image formats, including the Digital Document
Interchange Format (DDIF). This allows the use of almost any image format
as input for creation of SMP clips.

4 Historical Background and Requirements

In 1989 Digital's Distributed Multimedia Group experimented briefly with

an algorithm called color cell compression (CCC) that had been described
in 1986 by Campbell et al.[3] CCC is a coding method that is optimized for
rapid decompression of color images in software. We built a demonstrator
that rapidly displayed CCC-coded images in a loop to create a motion video

2 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 Software Motion Pictures

effect. The demonstrator then served as our study vehicle to create a
usable product for digital video playback.

Performing digital video entirely in software would stress the systems
at all levels (I/O, processor, and graphics), so we needed to establish
upper bounds for what we could hope to achieve with our desktop systems and
workstations.

From the user's perspective, large sizes and high frame rates are
desirable. These features need to be balanced with the limitations of
real hardware. We modeled the data path through which digital video would
have to flow in the system and measured the available resources on the
slowest system we would use, a DECstation 2100. This workstation has a
12.5-megahertz (MHz) MIPS R2000 processor and a simple, 8-bit color frame
buffer.

By merging this measurement with user feedback concerning the smallest
acceptable image size and frame rate, we set our performance goal to play
back movies of size 240 by 320 on the slowest DECstation processor with
an 8-bit display at 15 frames per second. Smaller viewing sizes are almost
invisible on a typical high-resolution workstation screen.

We settled for a frame rate of 15 frames per second. This rate is
reasonably smooth: to the human eye, it appears as motion rather than
separate images. It can be generated easily from 30-frame source material,
such as standard video used in North America and Japan, by taking every
other frame. Consequently, on the DECstation 2100 we would have at most
Thus, we must average no more than (approximately) ten machine instructions
to decode and render each pixel to the screen.

In order to set our target for compression efficiency, we looked at the
volume of data and possible distribution methods. CD-ROM looked promising,
and this data rate was also chosen by the Motion Picture Experts Group
(MPEG)-1 standard.[4] Hence our coded data rate goal was to maintain a
coded data rate for this size and frame rate that would allow playback
from a CD-ROM. To achieve this goal, we limited the coded data rate for
the video component to 135 to 142 kilobytes per second for video, leaving
8 to 15 kilobytes per second for audio. In addition, we had to limit
fluctuations of the coded data rate to allow sensible use of bandwidth
reservation protocols for playback over a network without complex buffering
schemes.

More interesting were the issues that became apparent when we attempted to
use the prototype for real applications. The digital video material had to
be usable on a wide range of display types, and due to its large volume,
keeping specialized versions for different displays was prohibitive. We
would have to adapt the rendition of the coded material to the device-

dependent color capabilities of the target display at run time.

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 3

 Software Motion Pictures

Our design center used 8-bit color-mapped displays. These were (and still
are) the most common color displays, and the demonstrator was based
on them. Integration of the video into applications in a multitasking
environment necessitated that computational as well as color resources
were available for use by other applications. The system would have to
perform cooperative sharing of the scarce color resources on displays with
limited color capabilities.

From the perspective of portability, we needed to conform to existing X11
interfaces, without any hidden back doors into the window system. The X
Window System affords no direct way of writing into the frame buffer.
Rather, the MITSHM extension is used to write an image into a shared
memory segment, and then the X server must copy it into the frame buffer.
This method would impact our already strained CPU budget for the codec
operation. We would need to decompress video in our code and have the X
server perform a copy operation of the decompressed video to the screen,
again using the main CPU. Quick measurements showed that the copy alone
would use approximately 50 percent of the CPU budget for an 8-bit frame
buffer, and another 5 to 10 percent would be used by reading the coded data
from I/O devices.

With approximately five clock cycles per pixel yet to be rendered, it
became clear why none of the standard video algorithms was of any use for
such a task. We went back to the original CCC algorithm and started the
development of software motion pictures.

5 Comparison with Other Video Algorithms

Today (early 1993), a number of digital video compression algorithms are in
use. All of them are guarded closely as proprietary and therefore closed,
and only one algorithm predates the development of SMP. Although we could
not build on experiences with these for our work, we believe the internal
working on most of them is similar to SMP with some additions.

A popular method for video compression is frame differencing. Rather
than each frame being encoded separately, only those parts of the images
that have changed relative to a preceding (or future) frame are encoded
(together with the information that the other blocks did not change).
This method works well for some input material, for example, in video
conferences where the camera does not move. The method fails, however,
on almost all other video material.

To enable frame differencing on a wider range of input scenes, a method
known as motion estimation is used by some algorithms. The encoder for an
image sequence performs a search for blocks that have moved between frames
and encodes the motion. This search step is computationally very expensive
and usually defeats real-time encoding, even for special-purpose hardware.

4 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 Software Motion Pictures

One of the earliest algorithms was digital video interactive (DVI) from
Intel/IBM. It comes in two variations, real-time video (RTV) and production
level video (PLV). RTV uses an unknown block encoding scheme and frame
differencing. PLV adds motion estimation to this. RTV is comparable to SMP
in compression efficiency, computationally more expensive, and much worse
in image quality. PLV cannot be done in software and requires special-
purpose supercomputers for compression. Compression efficiency of PLV is
about twice as good as SMP, and image quality is somewhat better. The more
recent INDEO video boards from Intel use RTV.

In 1992 Apple introduced QuickTime, which contains several video
compression codecs. The initial RoadPizza (RP) video codec uses simple
frame differencing and a block encoding similar to CCC, but without the
color quantization step. (This is a guess based on the visual appearance
and performance characteristics.) Compression efficiency of RP is three
times worse than SMP, and image quality is comparable on 24-bit displays
and much worse than SMP on 8-bit displays. Performance is difficult to
compare since SMP does not yet run on Macintosh computers.

The newer Compact Video (CV) codec introduced in QuickTime version 1.5 is
similar to CCC with frame differencing and has compression efficiency much
closer to SMP. Image quality on 8-bit displays is still lower than SMP, and
compression times are almost unusable (i.e., long).

The newest entry into the market for software video codecs is the video 1
codec in Microsoft's Video for Windows product. Very little is known about
it, but it seems to be close to CCC with frame differencing. Finally, Sun
Microsystems has included CCC with frame differencing in their upcoming
version of the XIL imaging library.

Three well-known standards for image and video compression have been
established by the Joint Photographic Experts Group (JPEG) and the Motion
Picture Experts Group (MPEG) committees of the International Organization
for Standardization (ISO) and by the Comité Consultatif Internationale de
Télégraphique et Téléphonique (CCITT). These standards are computationally
too expensive to be performed in software in all but the most powerful
workstations today.

6 The Algorithm

The SMP algorithm is a pixel-based, lossy compression algorithm, designed
for minimum CPU loading. It features acceptable image quality, medium
compression ratios, and a totally predictable coded data rate. No entropy-
based or computationally expensive transform-based coding techniques
are used. The downside of this approach is a limited image quality and
compression ratio; however, for a wide range of applications, SMP quality
is sufficient.

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 5

 Software Motion Pictures

Block Truncation Coding

In 1978, the method referred to as block truncation coding (BTC) was
independently reported in the United States by Mitchell, Delp, and Carlton
and in Japan by Kishimoto, Mitsuya, and Hoshida.[3,5,6,7].

BTC is a gray-scale image compression technique. The image is first
segmented into 4 by 4 blocks. For each block, the 16-pixel average is found
and used as a threshold. Each pixel is then assigned to a high or a low
group in relation to this threshold. An example of the first stage in the
coding process is shown in Figure 2a, in which the sample mean is 101. Each
pixel in the block is thus truncated to 1 bit, based on this threshold (see
Figure 2b).

More intuitively, the bit mask represents the shape of things in the block,
and the average luminance and contrast of the block contents are preserved.
With this coding method, for blocks of 4 by 4 pixels and 8-bit gray values,
a 16-bit mask and two 8-bit values encode the 16 pixels in 32 bits for a
rate of 2.0 bits per pixel.

Color Cell Compression

Lema and Mitchell first extended BTC to color by employing a luminance-
chrominance space.[8] However, the direction taken by Campbell et al. was
computationally faster for decode.[3] In this approach, a luminance value
is computed for each pixel. As in the BTC algorithm, the sample mean of the
luminance in each 4 by 4 block is used to segment pixels into low and high
groups based on luminance values only. The 24-bit color values assigned to
the low and high groups are found by independently solving for the 8-bit
red, green, and blue values. This allows each block to be represented by a
16-bit mask and two 24-bit color values, for a coding rate of 4 bits per
pixel.

The 24-bit values are mapped to a set of 256 8-bit color index values by
means of a histogram-based palette selection scheme known as the median
cut algorithm.[9] Thus every block can be represented by two 8-bit color
indices and the 16-bit mask, yielding 2 bits per pixel; however, each image
frame must also send the table of 256 24-bit color values.

Software Motion Pictures Compression

With our goal of 320 by 240 image resolution playback at 15 frames per
second, straight CCC coding would have resulted in a data stream of more
than 292 kilobytes per second, which is well beyond the capabilities of
standard CD-ROM drives. Thus SMP needed to improve the compression ratio of
CCC approximately twofold.

Given that we could not apply any of the more expensive compression
techniques, we looked for computationally cheap data-reduction techniques.
Since most of these techniques negatively impact image quality, we needed a
visual test bed to judge the impact of each change.

6 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 Software Motion Pictures

We computed the images off-line for a short sequence, frame by frame,
and then preloaded the images into the workstation memory. The player
program then moved the images to the frame buffer in a loop, allowing
us to view the results as they would be seen in the final version. The
use of this technique provided two advantages. First, we could discover
motion artifacts that were invisible in any individual frame. Second, we
could judge the covering aspects of motion, which tends to brush over some
defects that look objectionable in a still frame.

At first, interframe or frame difference coding looked like a reasonable
technique for achieving better compression results without sacrificing
image quality, but this was highly dependent on the nature of the input
material. Due to the low CPU budget, we could not use any of the more
elaborate motion compensation algorithms, so even slight movements in
the input video material largely defeated frame differencing. Typically,
we achieved only 10 percent better compression with interframe coding,
while introducing considerable complexity to the compression and decoding
operations. As a result, we dropped interframe coding and made SMP a pure
intraframe method, simplifying editing operations and random access to
digitized material. At the same time, this opened up use of SMP for still
image applications.

To reach our final compression ratio goal of approximately 1 bit per
pixel, we settled for a combination of two subsampling techniques. Similar
techniques have been independently described by Pins, who conducted
an exhaustive search and evaluation of compression techniques.[10] His
findings served as a check on our experiments.

Blocks with a low ratio of foreground-to-background luminance (a metric
that can be interpreted as contrast) are represented in SMP by a single
color and no mask. This reduces the coded representation to a single byte
compared to four bytes in CCC, which amounts to a fourfold subsampling
of such blocks. No chrominance information enters into this decision. It
is surprising, but even very marked chrominance differences in foreground
/background pairs are readily accepted by the human eye.

With the introduction of a second kind of block, additional encoding
information was necessary to distinguish normal (structured) CCC blocks
from the subsampled (flat) blocks. In the SMP encoding, this is handled by
a bitmap with one bit flagging each block.

Because the adaptive subsampling alone did not yield enough data reduction
for our compression goal, we added fixed subsampling for the structured
blocks. The horizontal resolution of the structured blocks in SMP is halved
relative to CCC by horizontally averaging two neighboring pixels, which
reduces the number of bits in the mask from 16 to 8. This reduction leads
to blurred vertical edges but looks reasonable for natural video images.

Fixed subsampling allowed the encoding of structured blocks with 3 bytes
instead of 4 bytes.

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 7

 Software Motion Pictures

We reapplied these ideas to the original gray-scale block truncation
algorithm. We added a variation to the format that does not use a color
look-up table but interprets the foreground and background colors directly
as luminance values. Images compressed in this format code gray-scale input
material more compactly (there is no need to transmit the leading color
look-up table as in CCC); they also do not suffer from the quantization
band effects inherent in the color quantization used in the CCC algorithm.

We varied the ratio of flat to structured blocks to effect a trade-off
between image quality and compression ratio; however, the range of useful
settings is relatively small. If too few structured blocks are allocated,
the image essentially is scaled down fourfold, which makes the image look
very blocky. If too many structured blocks are allocated, regions of the
image that have little detail are encoded with unnecessary overhead. Over
the wide range of images we tested, allocating between 30 percent and 50
percent of structured blocks worked best, yielding a bit rate of 0.9 to
1.0 bits per pixel. For color images, the overhead of the color table (768
bytes) must be added.

7 Decompression

The most challenging part of the design of the SMP system, given the
performance requirements, is the decompression step. Efficient rendering
techniques of block-truncation coding are well known for certain classes
of output devices.[3] SMP improves on the implementations described in
the literature by complementing the raw algorithm with efficient, device-
independent rendering engines.[3,5,8,10,11] To maximize code efficiency,
a separate decompression routine is used for each display situation,
rather than using conditionals in a more generic routine. The current
implementation can render to 1-, 8-, and 24-bit displays.

Decompression of BTC involves filling 4 by 4 blocks of pixels with two
colors under a mask. Because the size and alignment of the blocks is
known, a very fast, fully unrolled code sequence can be used. Changes of
brightness and contrast of the image can be rapidly adapted to different
viewing conditions by manipulating the entries of the colormap of the SMP
encoding. Most of the work lies in adaptation of the color content of the
decompressed data to the device characteristics of the frame buffer.

For displays with full-color capabilities (24-bit true color), the
process is straightforward. The main problem is performing the copy of the
decompressed video to the screen. Since 24-bit data is usually allocated
in 32-bit words, the amount of data to copy is four times the 8-bit case.
Typically, SMP spends 90 percent of the CPU time in the screen copy on
24-bit systems.

The more common and interesting case is to decompress to an 8-bit color

representation. Given that SMP is an 8-bit, color-indexed format, it would
seem straightforward to download the SMP frame color table to the window
system color table and fill the image with the pixel indices directly.
This method is impractical for two reasons. First, most window systems

8 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 Software Motion Pictures

(including X11) do not allow reservation of all 256 colors in the hardware
color tables. Typically, applications and window managers use a few of
the entries for system colors and cursors. Quantizing down to a smaller
number of colors (such as 240) could overcome this drawback to a certain
degree; however, it would make the SMP-coded material dependent on the
device characteristics of a particular window system.

The second and much more problematic aspect is that the SMP frames in a
sequence usually have different color tables. Consequently, each frame
requires a change of color table that causes a kaleidoscopic effect for the
windows of other applications on the screen. In fact, flashing cannot be
eliminated within the SMP window itself.

Neither X11 nor other popular window systems such as Microsoft Windows
allow reload of the color table and the content of an image at the same
time. Therefore, regardless of whether the color table or image contents is
modified first, a flashing color effect takes place in the SMP window.
It may seem that the update would have to be done in a single screen
refresh time as opposed to simultaneously. This is true but irrelevant.
Most window systems do not allow for such fine-grain synchronization; and
for performance reasons, it was unrealistic to expect to be able to update
the image in a single, vertical blanking period.

Alternative suggestions to avoid this problem have been proposed in the
literature. One suggestion is to use a single color table for the entire
sequence of frames.[10,11] This method is computationally expensive
and fails for long sequences and editing operations. Another proposes
quantization to less than half of the available colors or partial updates
of the color map and use of plane masks.[11] This alternative is not
particularly portable between different window systems, and the use of
plane masks can have a disastrous impact on performance for some frame-
buffer implementations such as the CX adapter in the DECstation product
line.

Neither of these methods addresses the issue of monochrome displays or the
use of multiple simultaneous SMP movies on a single display. (This effect
can be witnessed in Sun Microsystems' recent addition of CCC coding to
their XIL library.) To keep device influence out of the compressed material
and to enable the use of SMP on a wide range of devices and window systems,
a generic decoupling step was added between the colors in the SMP frame and
the device colors used for rendition on the screen.

A well-known technique for matching color images to devices with a limited
color resolution is dithering. Dithering trades spatial resolution for
an apparent increase in color and luminance resolution of the display
device. The decrease in spatial resolution is less of an issue for SMP
images because of their inherently limited spatial resolution capability.

Thus the only challenge was the computational cost of performing dithering
in real time.

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 9

 Software Motion Pictures

Fortunately, we found a dithering algorithm that allowed both good quality
and high speed.[12] It reduces quantization and mapping to a few table
look-up operations, which have a trivial hardware implementation (random
access memory) and a reasonable software implementation with a few adds,
shifts, and loads.

The general software implementation of the dithering algorithm takes 12
instructions in the MIPS instruction set to map a single pixel to its
output representation. For SMP decoding, two different colors at most
are in each 4 by 4 block. With this distribution, the cost of dithering
is spread over the 16 pixels in each block.

Another optimization used heavily in the 8-bit decoder is to manipulate
4 pixels simultaneously with a single machine instruction. This technique
increases performance for decompressing and dithering to 3.2 instructions
per pixel in the MIPS instruction set, including all loop overhead,
decoding of the encoded data stream, and adjusting contrast and brightness
of the image (2.7 instructions per pixel for gray-scale). This efficiency
is achieved by careful merging of the decoding, decompression, and
dithering phases into a single block of code and avoiding intermediate
results written to memory. The cost of the 1-bit and 24-bit decoders is the
same or lower (3.2 and 2.9 instructions per pixel, respectively).

8 Compression

The SMP compressor takes an input image, a desired coded image size, and an
output buffer as arguments. It operates in five phases:

o Input scaling (optional)

o Block truncation (luminance)

o Flat block selection

o Color quantization (color SMP only)

o Encoding and output writing

Although the initial scaling is not strictly part of the SMP algorithm, it
is necessary for different input sources. Fast scaling is offered as part
of both the library and the command-line SMP compressors. Instead of simple
subsampling, true averaging is used to ensure maximum input image quality.

The block truncation phase makes two passes through each 4 by 4 block of
the input. The first pass calculates the luminance of each individual pixel
and sums them to find the average luminance of the entire block. The second
pass partitions the pixel pairs into the foreground and background sets and

calculates their respective luminance and chrominance averages.

The flat-block-selection phase uses the desired compression ratio to decide
how many blocks can be kept as structured blocks and how many need to
be converted to flat blocks. The luminance difference of the blocks is
calculated, and blocks in the low-contrast range are marked for transition

10 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 Software Motion Pictures

to flat blocks. Because the total average was calculated for each block
in the preceding phase, no additional calculations are needed for the
conversion of blocks, and the mask is thrown away. Colors are entered into
a search structure during this phase.

The color quantization phase uses a median cut algorithm, biased to ensure
good coverage of the color contents of the image rather than minimize the
overall quantization error. The bias method ensures that small, colored
objects are not lost due to large, smoothly shaded areas getting the lion's
share of the color allocations. These small objects often are the important
features in motion sequences and have a high visibility despite their small
size.

The final encoding phase builds the color table and matches the foreground
/background colors of the blocks to the best matches in the chosen color
table.

The gray-scale compression can be much faster because neither the
quantization nor the matching step need be performed. Also, only one-
third of the uncompressed video data is usually read in, making gray-
scale compression fast enough to enable real-time compression on faster
workstations and videoconferencing applications.

This speed is partly due to the 8-bit restriction in the mask of each
structured block. This restriction permits the algorithm to store all
intermediate results of the block truncation step in registers on typical
reduced instruction set computer (RISC) machines with 32 registers. The
entire gray-scale compression algorithm can be done on a MIPS R3000 with 8
machine instructions per input pixel on average, all overhead (except input
scaling) included.

Unfortunately, for color processing, SMP compression remains an off-line,
non-real-time process, albeit a reasonably fast one at 220 instructions
per pixel. A 25-MHz R3000 processor can process more than 40,000 frames in
24 hours (DECstation 5000 Model 200, 320 by 240 at 15 frames per second,
TX/PIP as frame grabber), equivalent to 45 minutes of compressed video
material per day. The more recent DEC 3000 AXP Model 500 workstation
improves this number threefold, so special-purpose hardware for compression
is unnecessary even for color SMP.

9 Portability

A crucial part of the SMP design for portability is the placement of the
original SMP codec on the client side of the X Window System. This allows
porting and use of SMP on other systems, without being at the mercy of a
particular system vendor for integration of the codec into their X server
or window system.

This placement is enabled by the efficiency of the SMP decompression
engine, which allows many spare cycles for performing the copy of the
decompressed, device-dependent video to the window system.

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 11

 Software Motion Pictures

Currently, SMP is offered as a product only on the DECstation family of
workstations, but it has been ported to a variety of platforms, including

o DEC AXP workstations running the DEC OSF/1 AXP operating system

o Alpha AXP systems running the OpenVMS operating system

o DECpc AXP personal computers running the Windows NT AXP operating system

o VAX systems running the VMS operating system

o Sun SparcStation

o IBM RS/6000 system

o HP/PA Precision system

o SCO UNIX/Intel

o Microsoft Windows version 3.1

Generally, porting the SMP system to another platform supporting the X
Window System requires the selection of two parameters (host byte order
and presence of the MITSHM extension) and then a compilation. The same
codec source is used on all the above machines; no assembly language or
machine-specific optimizations are used or needed.

The port to Microsoft Windows shows that the same base technology can
be used with other window systems, although parts specific to the window
system had to be rewritten. The codec code is essentially identical, but
the extreme shortage of registers in the 80x86 architecture and the lack of
reasonable handling of 32-bit pointers in C language under Windows warrant
a rewrite in assembly language on this platform. We do not expect this to
be an issue on Windows version 3.2, due to be released later in 1993.

10 Conclusion

Software motion pictures offers a cost-effective, totally portable way of
bringing digital video to the desktop without requiring special investments
for add-on hardware. Combined with audio facilities, SMP can be used to
bring a complete video playback to most desktop systems. The algorithm and
implementation were designed to be used from CD-ROMs as well as network
connections. SMP seamlessly integrates with the existing windowing system
software. Because of its potentially universal availability, SMP can serve
an important function as the lowest common denominator for digital video
across multiple platforms.

12 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 Software Motion Pictures

11 Acknowledgments

We would like to thank all the people who have contributed to making
software motion pictures a reality. Particular thanks go to Paul Tallett
for writing the original demonstrator and insisting on the importance
of a color version. He also implemented the VMS versions. Thanks also
to European External Research for making the initial research and
later product transition possible. Last but not least, thanks to Susan
Angebranndt and her engineering team for their help and confidence in this
work.

12 References

1. Special Issue on Digital Multimedia Systems, Communications of the ACM,
 vol. 34, no. 4 (April 1991).

2. L. Palmer and R. Palmer, "DECspin: A Networked Desktop Videoconferencing
 Application," Digital Technical Journal, vol. 5, no. 2 (Spring 1993,
 this issue): 65-76.

3. G. Campbell et al., "Two Bit/Pixel Full Color Encoding," SIGGRAPH'86
 Conference Proceedings, vol. 20, no. 4 (1986): 215-223.

4. D. LeGall, "MPEG: A Video Compression Standard for Multimedia
 Applications," Communications of the ACM, vol. 34, no. 4 (April 1991):
 47-58.

5. O. Mitchell, E. Delp, and S. Carlton, "Block Truncation Coding: A New
 Approach to Image Compression," Conference Record, IEEE International
 Conference Communications, vol. 1 (June 1978): 12B.1.1-12B.1.4.

6. T. Kishimoto, E. Mitsuya, and K. Hoshida, "A Method of Still Picture
 Coding by Using Statistical Properties" (in Japanese), Proceedings
 of the National Conference of the Institute of Electronics and
 Communications Engineers of Japan, no. 974 (March 1978).

7. E. Delp and O. Mitchell, "Image Compression Using Block Truncation
 Coding," IEEE Transactions on Communications, vol. COM-27 (1979): 1335-
 1342.

8. M. Lema and O. Mitchell, "Absolute Moment Block Truncation Coding and
 Its Application to Color Images," IEEE Transactions on Communications,
 vol. COM-32, no. 10 (1984): 1148-1157.

9. P. Heckbert, "Color Image Quantization for Frame Buffer Display,"
 Computer Graphics (AMC SIGGRAPH'82 Conference Proceedings), vol. 16,
 no. 3 (1982): 297-307.

10.M. Pins, "Analyse und Auswahl von Algorithmen zur Datenkompression unter
 besonderer Berücksichtigung von Bildern und Bildfolgen," Ph.D. thesis,
 University of Karlsrühe, 1990.

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 13

 Software Motion Pictures

11.B. Lamparter and W. Effelsberg, "Digitale Filmübertragung und
 Darstellung im X-Window-System," Lehrstuhl für Praktische Informatik
 IV, University of Mannheim, 1991.

12.R. Ulichney, "Video Rendering," Digital Technical Journal, vol. 5, no. 2
 (Spring 1993, this issue): 9-18.

13 Trademarks

The following are trademarks of Digital Equipment Corporation: Alpha AXP,
AXP, CX, DEC 3000 AXP, DEC OSF/1 AXP, DECpc, DECstation, Digital, OpenVMS
AXP, SQL Multimedia, VAX, and VMS.

Apple, Macintosh, and QuickDraw are registered trademarks and QuickTime is
a trademark of Apple Computer, Inc.

Display PostScript is a registered trademark of Adobe Systems Inc.

DVI and INDEO are registered trademarks and Intel is a trademark of Intel
Corporation.

HP is a registered trademark of Hewlett-Packard Company.

IBM is a registered trademark of International Business Machines
Corporation.

Microsoft is a registered trademark and Video for Windows, Windows, and
Windows NT are trademarks of Microsoft Corporation.

MIPS is a trademark of MIPS Computer Systems.

Motif, OSF, and OSF/1 are registered trademarks and Open Software
Foundation is a trademark of Open Software Foundation, Inc.

SCO is a trademark of Santa Cruz Operations, Inc.

Sun is a registered trademark and SPARCstation is a trademark of Sun
Microsystems, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

14 Biographies

Burkhard K. Neidecker-Lutz
Burkhard Neidecker-Lutz is a principal engineer in the Distributed
Multimedia Group of Digital's Campus-based Engineering Center in Karlsrühe.
He currently works on distributed multimedia services for broadband

networks. Burkhard contributed to the XMedia layered product. Prior to that
work he led the design of the NESTOR distributed learning system. He joined

14 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 Software Motion Pictures

Digital in 1988 after working for PCS computer systems. Burkhard earned an
M.S. in computer science from the University of Karlsrühe in 1987.

Robert Ulichney Robert Ulichney received his Ph.D. (1986) in electrical
engineering and computer science from the Massachusetts Institute of
Technology and his B.S. (1976) in physics and computer science from the
University of Dayton, Ohio. He is a consulting engineer in Alpha Personal
Systems, where he manages the Codecs and Algorithms group. Bob has nine
patents pending for his contributions to a variety of Digital products, is
the author of Digital Halftoning, published by The MIT Press, and serves as
a referee for several technical societies including IEEE.

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 15
===
Copyright 1993 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

