

 CASE Integration Using ACA Services

1 Abstract

 Digital uses the object-oriented software Application Control Architecture
(ACA) Services to address the problems associated with data access,
interapplication communication, and work flow in a distributed, multivendor
CASE environment. The modeling of applications, data, and operations in
ACA Services provides the foundation on which to build a CASE environment.
ACA Services enables the seamless integration of CASE applications ranging
from compilers to analysis and design tools. ACA Services is Digital's
implementation of the Object Management Group's (OMG) Common Object Request
Broker Architecture (CORBA) specification.

2 Introduction

Based on work accomplished in many computer-aided software engineering
(CASE) projects, this paper describes how Digital's object-oriented
Application Control Architecture (ACA) Services can be used to construct
a CASE environment. The paper begins with an overview of the types of
CASE environments currently available. It describes the object-oriented
technique of modeling applications, data, and operations and then proceeds
to discuss design and implementation problems that might be encountered
during the integration process. The paper concludes with a discussion of
environment management.

3 CASE Environment Description

Today's CASE environments are required to operate in network environments
that consist of geographically distributed hardware manufactured by
multiple vendors. In such environments, access to data, metadata, and the
functions that operate on this data must be as seamless as possible. This
can be accomplished only when well-architected protocols exist for the
exchange of information and control. These protocols need not be defined
at the level of network packets, but rather as operations that have well-
defined, platform-independent interfaces to predictable behaviors.

In addition to utilizing the various applications, environments deal with
how applications are organized or grouped within a project and how work
flows between applications and within the environment as a whole. These
concepts are discussed later in the paper as are the different styles of
integration that an application can employ.

Data integration, i.e., information sharing, is vital to any CASE
environment because it reduces the amount of information users must enter.
However, data integration must be accompanied by a mechanism that allows

control to pass from one application to another. This mechanism, commonly
called control integration, provides a means by which the appropriate

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 1

 CASE Integration Using ACA Services

application can be started and requested to perform an operation on a piece
of information. Control integration is also used to exchange information
between cooperating applications, regardless of their geographic locations.
These two integration mechanisms used in tandem can solve many of the
problems presented by a distributed, multivendor CASE environment.

ACA Services is Digital's implementation of the Object Management Group's
(OMG) Common Object Request Broker Architecture (CORBA) specification.
ACA Services is designed to solve problems associated with application
interaction and remote data access in distributed, multivendor environments
such as the CASE environments just described. This support includes the
remote invocation of applications and components without the need for
multiple logins or the use of terminal emulators. The encapsulation
features of ACA Services allow the use of applications not designed for
distributed environments. ACA Services can also be configured, in a way
transparent to the application, for use on a local host.

The central focus of a CASE environment is on how easily functions such
as compiling, building, and diagramming can be performed. The functions
available form the foundation on which the environment is constructed.
Therefore, the first step in the design of a CASE environment is to
determine what functions to offer. The applications currently available
to support these functions may be integrated using one of two paradigms:
application-oriented or data-oriented.

Application-oriented Paradigm

CASE environments that follow the application-oriented paradigm focus
on standalone applications used to develop software such as editors,
compilers, and version managers. Application-oriented environments normally
comprise a collection of applications that support the necessary functions.
In application-oriented environments, integration tends to be focused on
direct communication between two different applications. In this paradigm,
the requesting application knows which class of application can be used
to satisfy a particular request. Environments that present an application-
oriented paradigm to the user require the user to have knowledge of the
applications that can be used to perform specific tasks.

As the level of task complexity increases, it becomes increasingly
important to build environments that utilize a paradigm focused on the
data associated with the task being done and not on the applications used
to perform the task. The realization of this problem has brought about the
existence of data-centered environments.

Data-oriented Paradigm

CASE environments that use a data-oriented are centered around the data

associated with the task the user is performing. To accomplish a task in
such environments, operations are performed on a data object. Using the
object being addressed, the operation, and preferences supplied by the
user, the environment determines which application will be used to perform
the requested operation. Thus, the requesting application requires no

2 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 CASE Integration Using ACA Services

knowledge about which application implements an operation. This paradigm is
extremely useful in CASE environments because of the diversity of objects
and range of applications available to perform certain operations.

The application and the data paradigms can coexist in a single CASE
environment, and in fact, tightly integrated CASE environments exploit the
strengths of each paradigm. A text editor can be used to illustrate this
point. Typically, when the contents of a source file need to be modified,
an edit operation is sent to the object representing the file. However, a
debugger may also use the same editor to display source code. The operation
to position the cursor on a particular line is sent directly to the text
editor application, rather than to a data object such as the line. An
environment with such a split focus avoids the expense and complexity of
presenting a complete object-oriented interface to the environment and
results in the existence of both application- and data-oriented paradigms.

Regardless of which paradigms and applications a CASE environment uses, the
primary focus of the environment is on the objects and on the operations
that are defined on those objects. Therefore, after determining what
functions to offer, the second step in designing a CASE environment is
to understand how applications, data, and operations are modeled using an
object-oriented approach, in particular the one provided by ACA Services.

4 CASE Integration in Object-oriented Terms

Describing environments using object-oriented techniques can simplify the
design of an environment. Techniques such as abstraction and polymorphism
can be used to describe the objects that comprise the environment, the
operations that can be performed on those objects, and any relationships
that exist between objects. Furthermore, using these techniques makes
it possible to describe an environment as a set of classes and services
for each class. ACA Services performs the role of the method dispatcher,
matching an object and an operation with the function in an application
that can implement that operation. To realize the benefits of this approach
requires constructing models for the applications, data, and operations
that will be present in the environment.

Modeling Applications and Application Relationships

Applications that are integrated into an environment can provide various
functions or services to other members of the environment. The number of
services an application provides depends not only on the capabilities of
the application but also on the way it is modeled. These services are
standalone pieces that can be plugged into a system to perform specific
functions. An application can define a single operation whose sole function
is to start the application; an application can export the entry points of
its callable interface; or an application can define sets of operations for

each type of object it manipulates. In support of application modeling, ACA
Services provides the concepts of application classes, methods, and method
servers. Figure 1 illustrates the relationships among the various pieces of
information used to model an application in ACA Services.[1]

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 3

 CASE Integration Using ACA Services

In ACA Services, the definition of an application is divided into two
pieces: interface and implementation. The interface definition is concerned
with the publicly visible aspects of the application. These include class
definitions for the objects that the application manipulates, a class
definition for the application itself, and definitions of operations that
the application supports. The operations, which represent the functions
provided by the application, are modeled as messages on the application
class definition. These messages define a consistent interface to various
implementations of the operations. Placement of the application class
definition affects the behaviors this definition inherits. This is
sometimes called classification. The classification of each component of an
application depends on whether a component contains a superset or a subset
of the functions contained in the components of other applications in the
environment.

Once the application's components have been classified, the integrator
must determine how the application will make its capabilities available to
the environment: as an operating system script, as a callable interface,
or as an executable image. The implementation definition represents the
actual implementation of the application. An application may be comprised
of a number of executable files and shared libraries. Typically, only
the executable file used to start the application is modeled as a method
server. If the functions of the application are provided through a shared
library or image, only the shared library is modeled as a method server.

The implementation of the functions or services exported to the environment
are modeled as methods. Methods describe the callable interfaces or
operating system scripts that implement a particular operation and are
associated with only one method server.[2] During the method selection
process, the messages defined for the application and the objects it
manipulates are mapped onto one or more methods.

Modeling Data and Data Relationships

Data modeling is another significant aspect of creating CASE environments,
especially environments that utilize a data-oriented paradigm. Identifying
the data objects that the application uses is a key element in the process
of integrating that application. The list of data objects should include
those objects for which the application provides a service, as well as
those objects on which the application makes requests. The variety and
quantity of data objects can vary from application to application and
depends on an application's capabilities and the paradigm utilized. To
support the modeling of data objects, ACA Services uses the concept of
data classes. Note that, rather than provide instance management for data
objects, ACA Services provides a means to represent the data classes used
by an application as metadata.

Because environments that utilize a data-oriented paradigm may contain many
data classes, ACA Services organizes the data classes into an inheritance
hierarchy. This hierarchy allows responsibilities, such as operations and
attributes, to be inherited by other data classes. Data classes found in an

4 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 CASE Integration Using ACA Services

ACA Services inheritance hierarchy are related to one another through an
"is-kind-of" relationship. A class that has an "is-kind-of" relationship
with one or more superclasses must support all operations defined on
the superclasses from which it inherits.[3] A subclass is not limited to
those operations and attributes defined by a superclass but may have other
operations, as well as refinements to inherited operations and attributes.

Modeling Operations

As mentioned previously, operations are modeled as messages in the CASE
environment. The name of the message describes the type of operation.
Some messages are data oriented, i.e., Edit, Reserve, and Copy, whereas
other messages are application oriented, i.e., ExecuteCommand and
TerminateServer. Messages provide a consistent abstraction of the functions
provided by applications. This abstraction allows the details of how a
function is implemented to be hidden from the requesting application. Since
ACA Services supports more than one implementation for a single message, it
also provides a means to hide various implementations.

The developer should anticipate different implementations of a message
within the environment and be aware that a message may apply to a variety
of classes. The developer must consider how the operation on an object
might be used by various applications and in future environments.[4] In
this way, adding new types of objects to an environment requires only minor
changes, if any, to applications that are already integrated.

Operation Interactions. The semantics of a message dictates which
particular interaction model is to be used. ACA Services can be used to
construct a number of different interaction models: synchronous request,
asynchronous request, and request/reply, as shown in Figure 2. The
synchronous request interaction model, shown in Figure 2(a), is useful when
serial operations originate from a single source. This model blocks the
execution of the client application during a request. Control is returned
to the client application only after the server application receives and
executes the request and outputs data, if any.

The asynchronous request interaction model, shown in Figure 2(b), is useful
in situations where the client can process other work until the server
application completes the request. This model is especially beneficial when
the requested operation takes a considerable amount of time to complete
or if the server is busy with other requests. Execution of the client
application is blocked only for the amount of time required to deliver the
request. Client execution resumes once the request has been delivered. Upon
completing the processing of the request, the server application notifies
the client application of the completion and returns any output data.

The request/reply interaction model, shown in Figure 2(c), is most

appropriate for requests whose implementations cannot perform the
operations required to obtain the necessary output data. Gateway and
message-forwarding applications are examples of applications for which
this type of interaction model is best suited. In this model, the message
that represents the request cannot have any output arguments and must

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 5

 CASE Integration Using ACA Services

pass an application handle to itself. The server application uses the
application handle to return any output information to the requester by
sending a message that represents the reply. In a request/reply model,
a single reply message should be defined for returning information, thus
reducing the number of messages an application must support.

Message Arguments. A message argument for passing the object being
manipulated need not be defined. ACA Services automatically passes the
object to which the message was sent to the method. Each method routine can
access the object through a structure containing context information for
the current invocation.

The arguments of a message should not be designed around a specific
instance of an application, nor should they imply how an object is
physically stored. To help meet these design criteria, all references
to an object should be passed as instance handles. In this way, the
application that receives the instance reference can use it directly
for subsequent operations on that object. In addition, when defining the
message arguments, developers should consider other applications that could
be instances of a particular class and possibly used as replacements.

However, all instances of an application do not have the same set of
capabilities. To support the various capabilities, the developer may
have to define additional arguments to represent bit masks and flags.
An argument list or an item list can be used to pass information about
different data types or quantities. The message design should not require
implementation-specific information for proper application operation;
this design implies that reasonable defaults accommodate any unspecified
information. In cases where proper operation of an application requires
implementation-specific information, the most suitable design is to use the
context object as a place to store the default values. With such a design,
the application no longer needs to use hard-coded default values and can be
customized for the environment.

5 Integration Frameworks

A number of issues must be resolved in the construction of a CASE
environment before the first line of code can be written. Many of these
issues center around the modeling of objects in the environment. As
discussed in the previous section, abstraction is used to hide much of
the actual implementation of the operations on objects from the requesting
application. However, additional context may be required for further
operations. If the application is using an application-oriented paradigm,
most operations are directed to an application class that provides the
service. In cases where a data-oriented paradigm is used, the application
typically directs operations to the data class of which the object is an
instance.

6 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 CASE Integration Using ACA Services

Besides the application and data objects found in the environment, the
designer must also take into consideration the other components of the
CASE environment itself. Figure 3 shows the major components of a CASE
environment: activities, applications, application and data interfaces,
work flow management, and handle management. Each component represents
a particular aspect of the overall environment. The components are
introduced in this section and described in detail elsewhere in the paper,
as indicated.

Activities provide the basic work structure for a particular task within
an environment. Each activity comprises one or more applications and a
number of data objects, forming a single composite object. Applications
within an activity operate through the application interfaces. The section
Application Integration describes the principles of an activity and
includes a discussion of the sharing of applications within and among other
activities.

Application interfaces, illustrated in Figure 3 as arrows connecting
the various applications, form the primitives by which integration is
accomplished. Some of the more general concepts for application interfaces
were discussed in the section Modeling Operations; these concepts are
described in detail in the section Styles of Application Interfacing.

Finally, the section Environment Management addresses how to manage the
flow of work within the environment. This section describes the management
of instance and application handles, the use of storage classes as a means
to provide data transformations, and the management of events within
the environment. To better understand each of these topics requires the
following basic information about various aspects of the environment.

Adding New Implementations

Updates to the environment may include adding new application classes,
data classes that the new application supports, method definitions for the
application, and possibly a method server definition. As described earlier
in the paper, ACA Services uses data and application classes to represent
the different classifications of data and application objects found in an
environment. Storage classes represent the classifications of storage and
how objects are referenced in the environment. Each class, i.e., data,
application, and storage, contains a list of messages that represent the
operations that can be performed on the class.

Digital's CASE environment, COHESION, was designed to present a data-
oriented perspective to the user. An initial level of integration was
achieved by utilizing this same data-oriented approach to application
integration. Implementation of a data-oriented approach required that
method maps for messages on data classes contain an indirect reference

to an abstract application class.[5] Figure 4 illustrates this concept by
showing two different messages: the Edit message, which uses an indirect
method reference, and the Browse message, which uses a direct method
reference. An indirect method reference has two parts separated by the
character '@': first, the name of the message to be sent; and second,

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 7

 CASE Integration Using ACA Services

the name of the class on which to send the message. Although not commonly
done, an indirect method reference allows the original message to be mapped
to another message on a different class, given that both messages have
arguments of the same type, direction, and order. Both messages must also
return the same type of object.

On encountering an indirect method reference, ACA Services first looks at
tables in the context object for an attribute that matches the reference.
If such an attribute is found, ACA Services uses the attribute value to
determine the class and message that should be checked next. Thus, users
can provide a mapping to their preferred application for the operation.
If no matching attribute is found, ACA Services uses the message and class
specified in the indirect method reference as the next place to check.

The approach used in COHESION has many advantages over specifying either
a direct reference to a method or an indirect reference to a specific
application class. This approach does not limit the user's ability to
specify application preferences associated with using direct references
to methods, nor does it burden the installation of the application with
determining all the data classes that will need to be updated (as required
with indirect references to a specific application class). In addition,
the approach allows the application developer to do the least amount of
work and still provide the maximum level of support for user preferences in
applications.

Using ACA Services, the application developer must create an application
class definition for each CASE application to be added. Consequently,
the class hierarchy contains both abstract and instance classes. The
application class is required to contain all the messages defined on its
superclass, plus any additional messages that the application supports. The
method map of each message on an application class should contain a direct
reference to the method that implements the operation. Although better than
the other alternatives, the COHESION approach has no default implementation
unless one is explicitly specified in a context object. To overcome this
problem, an entry for each message defined on the abstract application
class must be created in one of the context objects. The values for these
entries point to the corresponding message on the class of application used
as the default implementation.

Common Classes

Common classes for a CASE environment provide CASE application developers
with a description about how an application fits into the environment, the
behaviors the application must support, and the messages that result in
those behaviors. The notion of plug-and-play in the environment is achieved
through the use of common classes. An implementation that adheres to the
description of a particular class of applications can be easily switched

with another implementation that adheres to the same application class
semantics.

8 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 CASE Integration Using ACA Services

Programs like COHESION are working toward a set of common classes for CASE
environments. The set currently defined contains classes for many types
of data and applications found in CASE environments focused on the coding
and testing phases of the software development process. A graphical view
of the data portion of the hierarchy is shown in Figure 5. The hierarchy
is partially based on the hierarchy found in ATIS, a standard for tool
integration, and utilizes the strength of the ATIS data model.[6] (Shaded
boxes indicate the classes that are specific to ATIS.) Encompassing the
ATIS model, the hierarchy presents a uniform data model for the integration
of data throughout the CASE environment. The set of classes, although not
exhaustive, serves as a basis on which a CASE environment can be built.
Extensions of the hierarchy will occur as new classes of applications
and their associated data objects are integrated into the environment by
independent software vendors, customers, and other CASE vendors.

Most data classes are subclasses of the data class SOURCE_FILE, because
the initial data class implementation was targeted at a CASE environment
consisting of editors, compilers, builders, and analyzers. Additional data
classes for both file and nonfile objects will be added when applications
that provide and manipulate these objects are integrated into the
environment. A number of data classes represent composite objects such
as tests and activities. These data classes are used to hide how the object
is physically stored in the environment. Classes that represent composite
objects have attributes with values that are actually other objects. For
example, the test data class typically has attributes that represent the
result of a test run, an operating system script or program used to perform
the test, and a benchmark against which a test run is compared. Each of
these attributes may have as a value a reference to the file object that
contains the actual data.

The portion of the hierarchy that is used to specify application classes
contains only abstract application classes, as shown in Figure 6. These
classes provide structure, but more important, they define the operations
that are inherited by any application that is an instance of a class.
Abstract classes are provided for a number of the applications found in
CASE environments that deal with the coding and testing functions. The
hierarchy does not contain any classes that represent particular instances
of an application. Such application classes exist only when applications
are installed in the environment.

Consistent Integration Interface

Many CASE vendors are building products for a number of different
environments, including electronic publishing, office automation, computer-
aided design, and computer-aided manufacturing, in addition to CASE.
Therefore, vendors must decide how to integrate these applications into
the various environments. Until now, most integration was accomplished by

linking one application with another, which resulted in tightly coupled
applications. However, such applications tend to be unable to operate
independently, without the other member. Also, each coupled member tends to
have its own application programming interface (API). Integration performed

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 9

 CASE Integration Using ACA Services

in this manner results in an application that must maintain code to support
multiple APIs, if the application is to work in a number of environments.
Such support can increase the maintenance cost and the time and effort
required to integrate with other implementations of applications and
environments. Other by-products of this approach are an increased image
size and a need to rerelease software when a dependent application changes.
The degree to which rerelease occurs varies with the platform and operating
system.

ACA Services can be used to minimize the number of interfaces that an
application must maintain without removing functionality; a common API
provides the interface to all potential functionality. The ACA Services
API, along with a set of common classes, allows the same level of
interaction between applications that can be accomplished through a private
API, without the negative side effects previously described. Through
the use of common classes, an application can integrate with multiple
implementations of another application without requiring a separate effort
for each. On platforms where dynamic loading of libraries or shareable
images are supported, applications can use ACA Services to locate the
appropriate library, find the proper entry point, and transfer control to
the appropriate routine. ACA Services also provides a transparent mechanism
for encapsulating applications that have no callable interfaces. Use of
this mechanism extends the number of applications that can be integrated
and removes the need to develop operating system-specific code to start
applications.

6 Styles of Application Interfacing

Creating an interface to an application that is to be integrated is
different from integrating an application into an environment. Application
interfacing deals with the public interface or interfaces that the
application provides to another application. In turn, these interfaces
provide the primitives that can be used in the integration of applications.

Application interfaces can be created in various ways, with differing
levels of effort. Software developers can design new applications to
utilize all the capabilities of ACA Services. Existing applications can
also take advantage of the full capability of ACA Services, if the source
code to the application is available and if the application can be easily
adapted to use an event-driven model. However, even if the source code
to an application is not available, applications can still be integrated
into the environment using ACA Services. If the application has a callable
interface, a server can be written that receives messages and calls the
appropriate API routines. If the application does not have a callable
interface, the application can be integrated by encapsulation through the
use of an operating system script. The remainder of this section describes
how to use each of these techniques to create an interface through which

the application can be integrated into a CASE environment.

10 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 CASE Integration Using ACA Services

Application Modifications

An existing application can easily be adapted to use ACA Services, if
the source code to the application is available. With minimal changes,
an application that utilizes an event-driven design, like that used by
most window-based applications, can operate as an application server.
The actual modifications required to provide ACA Services support differ
across applications, but for most window-based applications the changes
are similar. As an illustration of this style of integration, consider an
editor.

Most editors are implemented as event-driven applications, which allows
easy integration because the structure of the code requires no major
changes. To register the current executing instance of the application
with ACA Services, a call to the ACAS_RegisterServer routine must be
added to the application's initialization routine. During the process
of run-time registration, ACA Services registers various information
about the application, including the identifier of the process in which
the application is executing, the owner of the process, and the class-
and instance-unique identifiers for the application. As part of the
registration, an application can specify an abstract name by which it
can be located and the routines to be called when an ACA Services event
arrives, e.g., when the server is instructed to shut down or when a session
ends.

Once registered with ACA Services, the application must enter its event
dispatching loop. Because many applications have existing event dispatching
mechanisms, ACA Services has been designed for easy integration with most
mechanisms. ACA Services provides this support by allowing the application
to define a routine called the event notifier, which is called at signal
level each time an ACA Services event occurs. The event notifier routine
places an event on the applications work queue for the ACA Services event.
Upon encountering the event, the application's event dispatcher routine
calls the ACAS_Dispatch routine to allow ACA Services to dispatch the
appropriate method or management routine for the event. A description of
how ACA Services dispatches operation requests follows.

Application Servers

When the application to be integrated does not have a user interface but
provides a callable interface, integration is best accomplished by creating
an application server. Considered a form of encapsulation, an application
server provides a consistent programming interface to the application. An
application server provides jacket routines that use the application's
callable interface, hiding the actual details of this interface. This
technique is also used to create applications that have a clean separation
of presentation and functions.

Applications that implement persistent data stores, such as databases,
code managers, and repositories, are prime candidates for this style of
integration. By using an application server to access persistent data
stores, a requesting application need not know how the data store is

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 11

 CASE Integration Using ACA Services

implemented and which implementation is to be used. This technique promotes
the reuse of existing functions contained in the environment regardless
of the actual implementation of the function. Digital's Code Management
System (DEC/CMS) and CDD/Repository software are examples of applications
that have been integrated using the application server technique. Figure
7 illustrates the typical structure of the various components involved in
this style of integration.

As shown in Figure 7, the integration process involves the following
steps. (1) An invoke from the client application of the message "Reserve"
on the object "foo.c" goes through the resolution code and (2) out the
transport to the server application. This may result in starting the server
application, if no server was available to service the request. (3) The
server application's main routine calls the event dispatcher and waits for
work to arrive, when the server is started. (4) When the "Reserve" message
arrives on the transport, the transport notifies the server application,
(5) causing the event dispatcher to dispatch the "Reserve" message by
calling the method dispatcher routine. (6) The method dispatcher routine
calls the appropriate method interface routine. (7) The method interface
routine does any work required to call the appropriate callable interface
routine. (8) When the callable interface routine returns control to the
method interface routine, the routine can perform any work necessary before
(9) returning control to the method dispatcher routine. (10) The method
dispatcher routine then puts any arguments to be returned in the proper
format and sends this information to the transport, which actually sends
the information back to the client application.

Using the DEC/CMS application server as an example, the software developer
must create a main routine to (1) perform any setup required to use the
callable interface and (2) register the existence of the server with ACA
Services. Registration includes specifying the method dispatcher routine,
which is generated by ACA Services, so that the appropriate method routine
will be dispatched for the message received.

A method routine exists for each operation that the server is capable
of performing. The set of method routines is analogous to the operating
system script for compilation used to explain application encapsulation
later in this section. Because the DEC/CMS application server is not an
operating system script, message arguments are passed into the method
routine directly. As mentioned earlier in the section CASE Integration
in Object-oriented Terms, the object on which the current operation is
to be performed is available to the method routine through the use of
the invocation context structure. Information about the object, such as
its class, name, and generation, can be obtained by calling the ACAS_
ParseInstanceHandle routine. The class of the object can then be used to
determine if the object is an element under version control, a collection,
or a group.

12 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 CASE Integration Using ACA Services

The name of the object and its generation are contained in the reference
data field of the instance handle that represents the object. Because
each different code management system has its own representation of
generation, it was necessary to create a canonical format to represent
all implementations. Therefore, the method must convert the canonical
generation representation to a format that is native to the implementation,
i.e., DEC/CMS specific. In addition, any method that returns a reference
to a versioned object must convert the native generation representation to
its canonical format. Table 1 shows how an object reference can be mapped
between its canonical and DEC/CMS-specific formats.

Once the necessary information about the object has been retrieved and
converted to a format native to the implementation, the method can call to
the appropriate callable interface routine, possibly based on the object's
data class. Once the call completes, the method must convert any objects to
be returned into a canonical format, at which point the method can return
the status of the operation and output arguments.

Application Encapsulation

Encapsulation, the simplest integration technique, is appropriate for
applications that do not have a callable interface or in cases where no
source code is available. Compilers are an ideal candidate for this style
of integration, because they perform synchronous operations. Encapsulation
of compilers provides a consistent programming interface to any compiler
that is integrated into the environment, regardless of the qualifiers
used to specify particular compilation options. This technique can also
be used to provide a generic compile command that is platform independent.
Encapsulation of a compiler is best accomplished through the use of an
operating system script. Figure 8 illustrates an example of an encapsulated
compiler.

The purpose of an operating system script for compilation is to convert the
generic compilation qualifiers, which are passed as message arguments,
into the compiler-specific options. The /DEBUG and /NOOPT qualifiers
shown in Figure 8 are examples of generic compilation qualifiers. Many
operating system scripting languages limit the number of parameters that
can be passed on the command line. The compilation scripts avoid these
limitations by passing the name of the file to be compiled as the only
command line parameter, as shown in the command @SYS$LIBRARY:COMPILE.COM
%INSTANCE() in Figure 8. ACA convenience commands, such as APPL/CONT
GET ARGUMENT, are used to retrieve and set the values of the message
arguments in the operating system script. When all the switch values are
gathered, the operating system script converts the generic values into
specific qualifiers. Finally, the actual command line is constructed and
executed. This same technique can also be used to encapsulate linkers and
any other types of applications where no source code or callable interface

is available. When applications provide a callable interface, even tighter
integration can be achieved by creating an application server.

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 13

 CASE Integration Using ACA Services

7 Application Integration

Integration of applications goes beyond the interfaces that applications
present to the environment; it concerns how applications interact with
one another. Integration also takes into account the policies used in
an environment to allow a collection of applications to be grouped into
a single composite object. This section discusses concepts such as an
activity, locating an application within an activity, context sharing,
and the sharing of applications across multiple activities.

Activity Participation

Since more than one activity may be active at any given time, an activity
must be able to locate the other applications participating in the
activity. Data-oriented environments provide a means to loosely couple
the various data and application objects into a single composite object.
The COHESION integrated environment refers to this composite object as
an activity. The implementation of an activity differs depending upon the
environment: ATIS uses a persistent process; file system-based environments
generally use a directory hierarchy; and environments built on a private
data store can use a data file. In the COHESION environment, an activity is
represented as an ACA Services context object that contains attributes that
reference a directory hierarchy. The context object is used to set up the
execution environment in which a set of applications will operate and to
locate other applications that are executing within the activity.

Locating Activity Applications

The ability to locate an application that is executing in an activity
allows for reuse of the application by other applications executing in
that same activity. Such locating provides for better utilization of
applications and reduces the amount of context that must be propagated from
one application to another. To locate an application within an activity,
an application must have registered its presence in the activity. When
registering with ACA Services, the application must specify the activity
name as the value of the attribute ACAS_SERVER_REGISTRY. The application
must also register itself with the event manager to allow centralized
management of the activity and to participate in the flow of work within
the activity.

CASE applications determine if they are executing within an activity by
checking for the existence of the environment variable ACTIVITY_NAME. If
this environment variable exists, its value is the activity identifier. To
allow an activity to extend beyond a single host and to support different
activities with the same name, the activity is identified by a unique
identifier.

14 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 CASE Integration Using ACA Services

Sharing within Activities

Applications executing within an activity operate in a common context.
ACA Services provides a set of mechanisms that can be used to provide this
common context. The environment variable ACTIVITY_NAME is defined each time
a method server is started in the COHESION environment. The method server
definition specifies as the value of the start-up environment attribute,
the names of the context tables and attributes that are to be defined as
environment variables upon start-up.

Another way of providing a common context across an activity is to
propagate context object tables and attributes as implicit arguments to
method servers. Specifying this information as implicit arguments instructs
ACA Services to propagate these attributes to the context object of the
method server servicing the request.

The context object can also be used directly to create a common context
across an activity, i.e., by holding information that needs to be shared.
This information can include references to directories, preferences of
applications, and default values.

Sharing between Activities

Reusing applications that are active within an activity reduces the overall
system resources required to perform the activity. However, a problem
occurs when two or more activities are active at the same time and require
the same application. With the addition of windowed interfaces and the
need to utilize other services, application sizes have greatly increased.
Consequently, it is often impractical to expect a separate instance of an
application to be associated with each activity that is active.

In order for an application to be shared between multiple activities, the
application needs a means by which to determine if a request is part of
an ongoing dialog with another application or is the beginning of a new
dialog. These dialogs, called "sessions," represent a conversation between
a pair of applications. Each time a client application makes a request to
a new application server, a session is established and an identifier is
associated with the session. ACA Services passes the session identifier to
the server application.

The management of sessions can be accomplished by using the session ID
as a lookup key into a list of structures that represent the active
sessions. When the server application locates the structure associated
with the session identifier, the application can establish the appropriate
context for that session. In the example of DEC/CMS application server,
the structure would contain the handle to the library associated with the
session.

ACA Services also notifies an application server when a session is to be
terminated between a client and a server application. When notified, the
application server determines the appropriate course of action. Using the
CMS example, the server releases any cached information it has kept about

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 15

 CASE Integration Using ACA Services

the session, closes the specific CMS library, and then frees the library
data block.

8 Environment Management

After defining application interfaces and integrating applications into
an activity, CASE environment developers must focus on the management of
the environment as a whole. This includes the management of references
to applications and data, the transformation of object references into
platform-specific formats, and the flow of work within the environment.

Handle Management

In the CASE environment, objects are the targets of all operations. Sending
a message to an object requires understanding how to create and manage
references to the object. Since ACA Services does not manage instances of
objects, it uses references to instances of objects. These references take
the form of instance and application handles, which reference data and
application objects, respectively. Proper management of these handles leads
to more efficient use of application objects, thus reducing the amount
of network resources and memory consumed by the application. Appropriate
handle management can also enhance performance and guarantee predictable
behavior.

Instance Handles

The creation of an object reference is performed by calling the ACAS_
CreateInstanceHandle routine. ACA Services (1) creates an instance handle
from the information passed as arguments to the routine, (2) allocates
memory to the handle and manages this memory, and (3) sends a message to a
storage class, if one was specified.

To avoid creating numerous copies of an instance handle, each with its own
memory, a cache of objects should be used. This is especially true in CASE
environments that use the data-oriented paradigm. Each object structure
contains pointers to both the previous and the next object structure in the
queue. The structure also contains values for the location and reference
data fields that were passed as arguments to the ACAS_CreateInstanceHandle
routine and, thus, allows for the unique identification of an object in
the cache across multiple hosts. In addition to the location and reference
data, the structure contains a pointer to the instance handle returned from
the call to the ACAS_CreateInstanceHandle routine. Reuse of the instance
handle saves the time required to create the handle, including any overhead
associated with using storage classes. Reuse also reduces the total amount
of memory required. However, instance handles are not the only handles that
require management; application handles need to be managed as well.

16 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 CASE Integration Using ACA Services

Application Handles

Application handles are references to application objects. Each application
handle can represent one or more method servers. A method server can
generate a handle by calling the ACAS_CreateApplicationHandle routine,
or the ACAS_InvokeMethod routine can return an application handle as an
output argument. As with instance handles, application handles can be
passed as arguments to a message. Management of application handles is
similar to the management of instance handles. Each entry in the cache
of application handles contains the location of the application and the
name of the class of application. The entry also contains a pointer to the
application handle and a count of the number of outstanding references to
the handle. Freeing an application handle results in the termination of
all sessions between the client and any method servers referenced by the
handle; it also releases all memory associated with the handle.

Each instance handle should be associated with a corresponding application
handle. This association allows the application handle to be reused when
sending additional requests to the application concerning the data object.
An application handle associated with a cache entry can be used to make the
request. Failure to find the application in the cache could indicate that
the appropriate invocation flag should be used to obtain an application
when calling the ACAS_InvokeMethod routine.

As described, proper handle management can result in better performance,
better resource utilization, and predictable behavior within the
environment. However, handle management does not deal with how to create an
object reference that, when presented to an application on a remote host,
is in a format native to that platform. For this capability, we must turn
to storage classes.

Data Transformations Using Storage Classes

Distributed CASE environments, whether homogeneous or heterogeneous, must
concern themselves with the representation of object references that are
shared among different applications. File specifications exemplify this
problem. Given multiple hosts, it is unlikely that two hosts have the
same path to a specified file, even if both hosts are of the same platform
type. Consider the scenario in which Application A sends the Edit message
to the file object $PROJ4:[PROJECT.SRC]SORT.C, resulting in a request
of Application B to edit the contents of the file. The problem becomes
complicated if Application B is executing on a different platform type than
Application A.

To solve the problem, the environment can utilize the functionality
provided by ACA Services storage classes. Storage classes provide a
mechanism for translating an object's reference data from one file system

representation to another. A solution to the scenario described involves
implementing a set of methods that would be executed when the object
reference uses a storage class.

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 17

 CASE Integration Using ACA Services

The SC_COHESION storage class is a CASE-specific storage class, which is
a refinement of the SC_FILE storage class provided by ACA Services. As a
refinement, SC_COHESION inherits all the messages defined on its parent
storage class, including the messages SetInstance and GetInstance. The
methods for these two messages provide an implementation for mapping
file system specifications from platform-specific formats to platform-
independent formats and back again. The storage class methods do this by
utilizing device and directory information, called directory mappings,
found in the context object.

The directory mappings stored in the context object provide a means to
associate a physically shared directory path with a network path name.
The network path name is a platform-independent name that, when presented
to a remote platform, can be mapped into a format native to the platform
receiving the request. A network path name and its mapping are stored as an
attribute-value pair in the PATHNAME_REGISTRY table of a context object.

The directory mapping functionality allows references to file objects to
be passed between applications on different hosts in a way independent
of the platform. This same scheme can also be used to convert object
references in object identifiers, such as ATIS element IDs for use with
the CDD/Repository software. In the implementation for the file system,
the method associated with the SetInstance message must determine the
data class of the object reference, as well as transform the reference
data into its network format. The determination can be made in a number of
ways, the most common of which is to base the class on the extension of the
file. Although not the most accurate method of determining the class, this
approach does meet the needs of many files.

Work Flow Management

ACA Services manages the various instances of executing applications but
does not understand the concept of an activity. Therefore, managing the
applications within the activity requires the use of an application that
understands this concept. The event manager, which acts as a central
registry of active applications and their associated activities, can
provide a simple form of work flow management within the environment.
However, the event manager is used only in a limited capacity in the
COHESION integrated environment. In COHESION, the event manager is
notified each time an application is started or stopped in an activity.
The application provides an application handle to itself, which is used by
the event manager to notify the application of events of interest. The use
of the event manager removes the need for an application to forward certain
messages, as a result of an event in the environment, to all applications
with which it has been communicating. Removing the need to forward messages
reduces both the chances of loops forming in a set of applications and any
communication deadlocks between applications.

18 Digital Technical Journal Vol. 5 No. 2, Spring 1993

 CASE Integration Using ACA Services

Events and Triggers

On registration, an application can express interest in being notified
about particular events. Events are categorized into two classes:
system events and application events. System events affect the overall
operation of the environment. These events include shutdown and
changes in activities. All applications in the COHESION environment are
notified of the system events for activity shutdown, iconification, and
deiconification. Application events occur when the state of an object
in the environment changes. File modification or completion of a build
step are typical examples of application events. Other applications in an
activity can use these events for synchronization or as notifications that
cause a change in behavior. Such notifications have traditionally been
called triggers.

For example, in a simple build system such as the make utility, events can
create a work flow that would automatically compile and link an application
when one module changes. If the build process completes successfully,
the work flow automatically starts the debugger to debug the newly built
executable file. If the build fails, the work flow loads the faulty module
into a program editor and positions the cursor to the line where the error
occurred.

9 Summary

ACA Services can be used to resolve many problems encountered in a
distributed, multivendor environment. The object-oriented approach provided
by ACA Services can aid in the construction of a CASE environment that
promotes the plug-and-play concept across a number of different platforms
and network transports. ACA Services provides a means of developing client-
server applications and of abstracting the network dependencies away from
the developer. This feature, together with the use of storage classes and
data marshaling, can help to exchange information in a heterogeneous
environment. At the same time, ACA Services can provide a consistent
programming interface to all components in the system. The dynamic nature
of ACA Services allows new components to be added to the environment
without the need to rebuild the entire environment. The flexibility of
ACA Services allows its use to construct a CASE environment regardless of
the integration paradigm used and while supporting a number of interaction
models. ACA Services provides the infrastructure necessary to integrate
the large number of existing applications into distributed, heterogeneous
environments.

10 Acknowledgments

The author wishes to thank Jackie Kasputy, Chip Nylander, and Gayn Winters
for their invaluable insights and contributions on distributed, multivendor

CASE environments.

 Digital Technical Journal Vol. 5 No. 2, Spring 1993 19

 CASE Integration Using ACA Services

11 References

1. E. Yourdon, Modern Structured Analysis (Englewood Cliffs, NJ: Yourdon
 Press, 1989).

2. DEC ACA Services System Integrator and Programmer's Guide (Maynard, MA:
 Digital Equipment Corporation, Order No. AA-PQKMA-TE, 1992).

3. G. Booch, Object Oriented Design with Applications (Redwood City, CA:
 Benjamin/Cummings Publishing Company, 1991).

4. R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-Oriented
 Software (Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990).

5. DEC ACA Services Reference Manual (Maynard, MA: Digital Equipment
 Corporation, Order No. AA-PQKLA-TE, 1992).

6. J. Liu, "Future Direction for Evolution of IRDS Services Interface,"
 X3H4/92-161, Proposed specification submitted to ANSI X3H4 and ISO IRDS,
 1992.

12 Trademarks

The following are trademarks of Digital Equipment Corporation:
CDD/Repository, COHESION, and Digital.

13 Biography

 Paul B. Patrick, Sr. Paul Patrick is a principal software engineer in
the ACA Services Group. He leads Digital's implementation of the Object
Management Group's Common Object Request Broker Architecture. Previously,
Paul helped design COHESION, an integrated CASE environment based on the
DECset architecture. He also contributed to the development of IPSE,
an integrated project support environment based on the CDD/Repository
software, and designed and implemented the MicroVAX 2000 synchronous
controller diagnostic. Prior to joining Digital, Paul held positions at
GenRad Inc. and Norand Corp.

20 Digital Technical Journal Vol. 5 No. 2, Spring 1993
===
Copyright 1993 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

