CASE Integration Using ACA Services

1 Abstract

Digital uses the object-oriented software Application Control Architecture
(ACA) Services to address the problens associated with data access,

i nterapplication conmunication, and work flow in a distributed, rultivendor
CASE environnment. The nodeling of applications, data, and operations in
ACA Services provides the foundation on which to build a CASE environnent.
ACA Services enabl es the seaml ess integration of CASE applications ranging
fromcompilers to analysis and design tools. ACA Services is Digital's

i mpl ementation of the Cbject Managenment Group's (OM5 Commopn Obj ect Request
Broker Architecture (CORBA) specification.

2 Introduction

Based on work acconplished in many conputer-ai ded software engi neering
(CASE) projects, this paper describes how Digital's object-oriented
Application Control Architecture (ACA) Services can be used to construct

a CASE environnment. The paper begins with an overview of the types of

CASE environments currently available. It describes the object-oriented
techni que of nodeling applications, data, and operations and then proceeds
to di scuss design and inplenentation problens that mnight be encountered
during the integration process. The paper concludes with a discussion of
envi ronnment managemnent .

3 CASE Environnment Description

Today's CASE environnents are required to operate in network environnents
t hat consi st of geographically distributed hardware manufactured by
mul ti pl e vendors. In such environnments, access to data, nmetadata, and the
functions that operate on this data nust be as seam ess as possible. This
can be acconplished only when well-architected protocols exist for the
exchange of information and control. These protocols need not be defined
at the level of network packets, but rather as operations that have well -
defined, platformindependent interfaces to predictabl e behaviors.

In addition to utilizing the various applications, environnents deal with
how applications are organi zed or grouped within a project and how work
fl ows between applications and within the environnent as a whol e. These
concepts are discussed later in the paper as are the different styles of
integration that an application can enpl oy.

Data integration, i.e., information sharing, is vital to any CASE
envi ronnent because it reduces the ampunt of information users must enter
However, data integration nmust be acconpanied by a nechanismthat allows

control to pass fromone application to another. This mechanism comonly
called control integration, provides a neans by which the appropriate

Digital Technical Journal Vol. 5 No. 2, Spring 1993 1

CASE Integration Using ACA Services

application can be started and requested to perform an operation on a piece
of information. Control integration is also used to exchange information
bet ween cooperating applications, regardl ess of their geographic | ocations.
These two integration nechani snms used in tandem can sol ve many of the

probl enms presented by a distributed, multivendor CASE environnent.

ACA Services is Digital's inplenentation of the Object Managenent G oup's
(OM5) Common Obj ect Request Broker Architecture (CORBA) specification

ACA Services is designed to solve problens associated with application
interaction and renote data access in distributed, nultivendor environments
such as the CASE environnents just described. This support includes the
renote invocation of applications and conponents wi thout the need for
multiple logins or the use of termnal enulators. The encapsul ation
features of ACA Services allow the use of applications not designed for

di stributed environments. ACA Services can also be configured, in a way
transparent to the application, for use on a | ocal host.

The central focus of a CASE environnent is on how easily functions such
as conpiling, building, and diagranm ng can be perforned. The functions
avail abl e formthe foundati on on which the environment is constructed.
Therefore, the first step in the design of a CASE environnment is to
deternmi ne what functions to offer. The applications currently avail able
to support these functions may be integrated using one of two paradi gns:
application-oriented or data-oriented.

Application-oriented Paradi gm

CASE environnments that follow the application-oriented paradi gm focus

on standal one applications used to devel op software such as editors,
conpi l ers, and version nmanagers. Application-oriented environnments normally
conprise a collection of applications that support the necessary functions.
In application-oriented environnents, integration tends to be focused on

di rect conmuni cati on between two different applications. In this paradi gm
the requesting application knows which class of application can be used

to satisfy a particular request. Environments that present an application-
oriented paradigmto the user require the user to have know edge of the
applications that can be used to perform specific tasks.

As the level of task conplexity increases, it becones increasingly

i mportant to build environments that utilize a paradi gm focused on the
data associated with the task being done and not on the applications used
to performthe task. The realization of this problem has brought about the
exi stence of data-centered environnents.

Dat a- ori ent ed Paradi gm

CASE environnments that use a data-oriented are centered around the data

associated with the task the user is perform ng. To acconplish a task in
such environnents, operations are perfornmed on a data object. Using the

obj ect being addressed, the operation, and preferences supplied by the
user, the environnent determ nes which application will be used to perform
the requested operation. Thus, the requesting application requires no

2 Digital Technical Journal Vol. 5 No. 2, Spring 1993

CASE Integration Using ACA Services

know edge about which application inplenments an operation. This paradigmis
extrenely useful in CASE environnents because of the diversity of objects
and range of applications available to performcertain operations.

The application and the data paradi gns can coexist in a single CASE
environnent, and in fact, tightly integrated CASE environnents exploit the
strengths of each paradigm A text editor can be used to illustrate this
poi nt. Typically, when the contents of a source file need to be nodified,
an edit operation is sent to the object representing the file. However, a
debugger nmay al so use the sane editor to display source code. The operation
to position the cursor on a particular line is sent directly to the text
editor application, rather than to a data object such as the line. An
environnent with such a split focus avoids the expense and conplexity of
presenting a conplete object-oriented interface to the environment and
results in the existence of both application- and data-oriented paradigns.

Regar dl ess of which paradi gns and applications a CASE environnent uses, the
primary focus of the environnent is on the objects and on the operations
that are defined on those objects. Therefore, after determ ning what
functions to offer, the second step in designing a CASE environnment is

to understand how applications, data, and operations are nodel ed using an
obj ect-oriented approach, in particular the one provided by ACA Services.

4 CASE Integration in Object-oriented Terms

Descri bi ng environments using object-oriented techniques can sinplify the
desi gn of an environnent. Techni ques such as abstraction and pol ynor phi sm
can be used to describe the objects that conprise the environnment, the
operations that can be performed on those objects, and any rel ationships
t hat exi st between objects. Furthernore, using these techniques nakes

it possible to describe an environnent as a set of classes and services
for each class. ACA Services perforns the role of the nethod dispatcher
mat chi ng an obj ect and an operation with the function in an application
that can inplenent that operation. To realize the benefits of this approach
requires constructing nodels for the applications, data, and operations
that will be present in the environnent.

Model i ng Applications and Application Rel ationships

Applications that are integrated into an environnent can provide various
functions or services to other menbers of the environment. The numnber of
services an application provides depends not only on the capabilities of
the application but also on the way it is nodel ed. These services are

st andal one pi eces that can be plugged into a systemto perform specific
functions. An application can define a single operation whose sole function
is to start the application; an application can export the entry points of
its callable interface; or an application can define sets of operations for

each type of object it manipulates. In support of application nodeling, ACA
Services provides the concepts of application classes, nethods, and nethod

servers. Figure 1 illustrates the relationships anong the various pieces of
i nformati on used to nodel an application in ACA Services.[1]

Digital Technical Journal Vol. 5 No. 2, Spring 1993 3

CASE Integration Using ACA Services

In ACA Services, the definition of an application is divided into two

pi eces: interface and inplenmentation. The interface definition is concerned
with the publicly visible aspects of the application. These include cl ass
definitions for the objects that the application manipul ates, a class
definition for the application itself, and definitions of operations that
the application supports. The operations, which represent the functions
provi ded by the application, are nodel ed as nessages on the application
class definition. These nessages define a consistent interface to various

i mpl ement ati ons of the operations. Placenent of the application class
definition affects the behaviors this definition inherits. This is
sonetinmes called classification. The classification of each conponent of an
application depends on whet her a conponent contains a superset or a subset
of the functions contained in the conponents of other applications in the
envi ronnent .

Once the application's conponents have been cl assified, the integrator
nmust determine how the application will nake its capabilities available to
the environnment: as an operating systemscript, as a callable interface,

or as an executable inmage. The inplenmentation definition represents the
actual inplenmentation of the application. An application nmay be conprised
of a nunber of executable files and shared |ibraries. Typically, only

the executable file used to start the application is nodel ed as a net hod
server. If the functions of the application are provided through a shared
library or inmage, only the shared library is nodeled as a nmethod server.

The inplenmentation of the functions or services exported to the environnment
are nodel ed as nethods. Methods describe the callable interfaces or
operating system scripts that inplenment a particular operation and are
associated with only one nmethod server.[2] During the nmethod sel ection
process, the nessages defined for the application and the objects it
mani pul ates are mapped onto one or nore nethods.

Model i ng Data and Data Rel ati onshi ps

Data nodeling i s another significant aspect of creating CASE environnents,
especially environnents that utilize a data-oriented paradigm Identifying
the data objects that the application uses is a key elenment in the process
of integrating that application. The list of data objects should include
those objects for which the application provides a service, as well as
those objects on which the application nakes requests. The variety and
quantity of data objects can vary from application to application and
depends on an application's capabilities and the paradigmutilized. To
support the nodeling of data objects, ACA Services uses the concept of
data classes. Note that, rather than provide instance managenent for data
obj ects, ACA Services provides a neans to represent the data cl asses used
by an application as netadata.

Because environnents that utilize a data-oriented paradi gm my contain nany
data cl asses, ACA Services organi zes the data classes into an inheritance
hi erarchy. This hierarchy allows responsibilities, such as operations and
attributes, to be inherited by other data classes. Data classes found in an

4 Digital Technical Journal Vol. 5 No. 2, Spring 1993

CASE Integration Using ACA Services

ACA Services inheritance hierarchy are related to one another through an
"is-kind-of" relationship. A class that has an "is-kind-of" relationship
with one or nore superclasses nmust support all operations defined on

the superclasses fromwhich it inherits.[3] A subclass is not linmted to
those operations and attributes defined by a superclass but nay have other
operations, as well as refinenents to inherited operations and attri butes.

Model i ng Operations

As nentioned previously, operations are nodel ed as nessages in the CASE
envi ronnent. The name of the nessage describes the type of operation

Some nessages are data oriented, i.e., Edit, Reserve, and Copy, whereas

ot her nmessages are application oriented, i.e., ExecuteComrand and
Term nat eServer. Messages provide a consistent abstraction of the functions
provi ded by applications. This abstraction allows the details of how a
function is inplemented to be hidden fromthe requesting application. Since
ACA Services supports nore than one inplenmentation for a single nessage, it
al so provides a neans to hide various inplenentations.

The devel oper should anticipate different inplenentations of a nessage
within the environnment and be aware that a nessage may apply to a variety
of classes. The devel oper nust consider how the operation on an object

nm ght be used by various applications and in future environnents.[4] In
this way, adding new types of objects to an environnment requires only ninor
changes, if any, to applications that are already integrated.

Operation Interactions. The semantics of a nessage dictates which
particular interaction nodel is to be used. ACA Services can be used to
construct a nunber of different interaction nodels: synchronous request,
asynchronous request, and request/reply, as shown in Figure 2. The
synchronous request interaction nodel, shown in Figure 2(a), is useful when
serial operations originate froma single source. This nodel bl ocks the
execution of the client application during a request. Control is returned
to the client application only after the server application receives and
executes the request and outputs data, if any.

The asynchronous request interaction nodel, shown in Figure 2(b), is usefu
in situations where the client can process other work until the server
application conpletes the request. This nodel is especially beneficial when
the requested operation takes a considerable amunt of time to conplete

or if the server is busy with other requests. Execution of the client
application is blocked only for the amount of tinme required to deliver the
request. Client execution resunes once the request has been delivered. Upon
conpl eting the processing of the request, the server application notifies
the client application of the conpletion and returns any output data.

The request/reply interaction nodel, shown in Figure 2(c), is npst

appropriate for requests whose inplenentations cannot performthe
operations required to obtain the necessary output data. Gateway and
nmessage- f orwardi ng applications are exanples of applications for which
this type of interaction nodel is best suited. In this nodel, the nessage
that represents the request cannot have any output argunents and nust

Digital Technical Journal Vol. 5 No. 2, Spring 1993 5

CASE Integration Using ACA Services

pass an application handle to itself. The server application uses the
application handle to return any output information to the requester by
sendi ng a nessage that represents the reply. In a request/reply nodel,

a single reply nmessage should be defined for returning information, thus
reduci ng the nunber of messages an application nust support.

Message Argunents. A nessage argument for passing the object being
mani pul ated need not be defined. ACA Services automatically passes the
object to which the nessage was sent to the method. Each nethod routine can
access the object through a structure containing context information for
the current invocation.

The argunents of a nmessage should not be designed around a specific

i nstance of an application, nor should they inply how an object is
physically stored. To help neet these design criteria, all references

to an object should be passed as instance handles. In this way, the
application that receives the instance reference can use it directly

for subsequent operations on that object. In addition, when defining the
nmessage argunents, devel opers shoul d consider other applications that could
be instances of a particular class and possibly used as repl acenents.

However, all instances of an application do not have the sane set of
capabilities. To support the various capabilities, the devel oper may

have to define additional argunents to represent bit masks and fl ags.

An argunent list or an itemlist can be used to pass information about
different data types or quantities. The message design should not require

i mpl enmentation-specific information for proper application operation;

this design inplies that reasonabl e defaults acconmpdate any unspecified
informati on. In cases where proper operation of an application requires

i mpl ement ation-specific information, the nost suitable design is to use the
context object as a place to store the default values. Wth such a design
the application no |longer needs to use hard-coded default val ues and can be
custom zed for the environment.

5 Integration Franmeworks

A nunber of issues nust be resolved in the construction of a CASE

envi ronnent before the first line of code can be witten. Many of these

i ssues center around the nodeling of objects in the environnent. As

di scussed in the previous section, abstraction is used to hide nmuch of
the actual inplenentation of the operations on objects fromthe requesting
application. However, additional context may be required for further
operations. |If the application is using an application-oriented paradi gm
nost operations are directed to an application class that provides the
service. |In cases where a data-oriented paradigmis used, the application
typically directs operations to the data class of which the object is an
i nst ance.

6 Digital Technical Journal Vol. 5 No. 2, Spring 1993

CASE Integration Using ACA Services

Besi des the application and data objects found in the environnent, the
desi gner nust al so take into consideration the other conponents of the
CASE environment itself. Figure 3 shows the mmjor conponents of a CASE
environnent: activities, applications, application and data interfaces,
wor k fl ow managenment, and handl e managenent. Each conponent represents

a particular aspect of the overall environment. The conponents are
introduced in this section and described in detail el sewhere in the paper
as indicated.

Activities provide the basic work structure for a particular task within
an environment. Each activity conprises one or nore applications and a
nunber of data objects, formng a single conposite object. Applications
within an activity operate through the application interfaces. The section
Application Integration describes the principles of an activity and

i ncludes a di scussion of the sharing of applications within and anpong ot her
activities.

Application interfaces, illustrated in Figure 3 as arrows connecting

the various applications, formthe primtives by which integration is
acconpl i shed. Sone of the nore general concepts for application interfaces
were discussed in the section Mdeling Operations; these concepts are
described in detail in the section Styles of Application Interfacing.

Finally, the section Environnent Managenent addresses how to nanage the
flow of work within the environnent. This section describes the nanagenent
of instance and application handles, the use of storage classes as a neans
to provide data transformati ons, and the nanagenent of events within

the environnment. To better understand each of these topics requires the
foll owi ng basic information about various aspects of the environnent.

Addi ng New | npl enent ati ons

Updates to the environment may include addi ng new application cl asses,
data cl asses that the new application supports, nmethod definitions for the
application, and possibly a nethod server definition. As described earlier
in the paper, ACA Services uses data and application classes to represent
the different classifications of data and application objects found in an
environnent. Storage classes represent the classifications of storage and
how obj ects are referenced in the environnment. Each class, i.e., data,
application, and storage, contains a |list of nessages that represent the
operations that can be performed on the class.

Digital's CASE environment, COHESI ON, was designed to present a data-
oriented perspective to the user. An initial |evel of integration was
achieved by utilizing this sanme data-oriented approach to application
integration. Inplenmentation of a data-oriented approach required that
met hod maps for nessages on data classes contain an indirect reference

to an abstract application class.[5] Figure 4 illustrates this concept by
showi ng two di fferent nessages: the Edit nessage, which uses an indirect
nmet hod reference, and the Browse message, which uses a direct nethod
reference. An indirect nethod reference has two parts separated by the
character '@: first, the nane of the nessage to be sent; and second,

Digital Technical Journal Vol. 5 No. 2, Spring 1993 7

CASE Integration Using ACA Services

the nane of the class on which to send the nessage. Although not commonly
done, an indirect nethod reference allows the original nessage to be mapped
to anot her nessage on a different class, given that both nessages have
argunents of the same type, direction, and order. Both nessages nust al so
return the sane type of object.

On encountering an indirect nethod reference, ACA Services first |ooks at
tables in the context object for an attribute that matches the reference.
If such an attribute is found, ACA Services uses the attribute value to
deternine the class and nessage that should be checked next. Thus, users
can provide a mapping to their preferred application for the operation.

If no matching attribute is found, ACA Services uses the nessage and cl ass
specified in the indirect method reference as the next place to check

The approach used in COHESI ON has nmany advantages over specifying either

a direct reference to a nethod or an indirect reference to a specific
application class. This approach does not limt the user's ability to

speci fy application preferences associated with using direct references

to nmethods, nor does it burden the installation of the application with
deternmining all the data classes that will need to be updated (as required
with indirect references to a specific application class). In addition,

t he approach allows the application developer to do the | east amunt of
work and still provide the maxi mnum | evel of support for user preferences in
applications.

Usi ng ACA Services, the application devel oper nmust create an application
class definition for each CASE application to be added. Consequently,

the class hierarchy contains both abstract and instance classes. The
application class is required to contain all the nessages defined on its
supercl ass, plus any additional nessages that the application supports. The
nmet hod map of each nessage on an application class should contain a direct
reference to the nethod that inplenents the operation. Although better than
the other alternatives, the COHESI ON approach has no default inplenentation
unl ess one is explicitly specified in a context object. To overcone this
problem an entry for each nmessage defined on the abstract application
class nmust be created in one of the context objects. The values for these
entries point to the correspondi ng nessage on the class of application used
as the default inplenentation.

Common Cl asses

Common cl asses for a CASE environnment provi de CASE application devel opers
with a description about how an application fits into the environnent, the
behavi ors the application nmust support, and the nessages that result in

t hose behavi ors. The notion of plug-and-play in the environnment is achieved
t hrough the use of common cl asses. An inplenentation that adheres to the
description of a particular class of applications can be easily swtched

wi th another inplementation that adheres to the sane application class
semanti cs.

8 Digital Technical Journal Vol. 5 No. 2, Spring 1993

CASE Integration Using ACA Services

Programs |i ke COHESI ON are working toward a set of common cl asses for CASE
environnents. The set currently defined contains classes for many types

of data and applications found in CASE environnments focused on the coding
and testing phases of the software devel opnent process. A graphical view
of the data portion of the hierarchy is shown in Figure 5. The hierarchy
is partially based on the hierarchy found in ATIS, a standard for too
integration, and utilizes the strength of the ATIS data nodel.[6] (Shaded
boxes indicate the classes that are specific to ATIS.) Enconpassing the
ATI'S nodel, the hierarchy presents a uniform data nodel for the integration
of data throughout the CASE environment. The set of classes, although not
exhaustive, serves as a basis on which a CASE environment can be built.

Ext ensi ons of the hierarchy will occur as new cl asses of applications

and their associated data objects are integrated into the environnment by

i ndependent software vendors, custoners, and other CASE vendors.

Most data cl asses are subcl asses of the data class SOURCE_FI LE, because
the initial data class inplenmentation was targeted at a CASE envi ronnent
consisting of editors, conpilers, builders, and analyzers. Additional data
classes for both file and nonfile objects will be added when applications

t hat provi de and mani pul ate these objects are integrated into the
environnent. A nunber of data classes represent conposite objects such

as tests and activities. These data classes are used to hide how the object
is physically stored in the environnment. Classes that represent conposite
obj ects have attributes with values that are actually other objects. For
exanple, the test data class typically has attributes that represent the
result of a test run, an operating system script or programused to perform
the test, and a benchmark agai nst which a test run is conpared. Each of
these attributes may have as a value a reference to the file object that
contai ns the actual data.

The portion of the hierarchy that is used to specify application classes
contains only abstract application classes, as shown in Figure 6. These

cl asses provide structure, but nore inportant, they define the operations
that are inherited by any application that is an instance of a class.
Abstract classes are provided for a nunmber of the applications found in
CASE environnments that deal with the coding and testing functions. The

hi erarchy does not contain any classes that represent particular instances
of an application. Such application classes exist only when applications
are installed in the environnent.

Consi stent Integration Interface

Many CASE vendors are building products for a nunmber of different

envi ronnents, including electronic publishing, office automation, conputer-
ai ded desi gn, and conputer-ai ded manufacturing, in addition to CASE
Therefore, vendors nust decide how to integrate these applications into
the various environments. Until now, npbst integration was acconplished by

i nking one application with another, which resulted in tightly coupled
applications. However, such applications tend to be unable to operate

i ndependently, without the other menber. Also, each coupl ed nenber tends to
have its own application programm ng interface (API). Integration perfornmed

Digital Technical Journal Vol. 5 No. 2, Spring 1993 9

CASE Integration Using ACA Services

in this manner results in an application that nust maintain code to support
multiple APIs, if the application is to work in a number of environnents.
Such support can increase the naintenance cost and the tine and effort
required to integrate with other inplenentations of applications and
environnents. O her by-products of this approach are an increased inmage
size and a need to rerel ease software when a dependent application changes.
The degree to which rerel ease occurs varies with the platform and operating
system

ACA Services can be used to mininize the nunber of interfaces that an
application nmust maintain without renoving functionality; a common API
provides the interface to all potential functionality. The ACA Services
APl , along with a set of conmon cl asses, allows the sane |evel of

i nteraction between applications that can be acconplished through a private
APl , without the negative side effects previously described. Through

the use of common cl asses, an application can integrate with multiple

i mpl enent ati ons of another application without requiring a separate effort
for each. On platforns where dynam c | oading of libraries or shareable

i mages are supported, applications can use ACA Services to |ocate the
appropriate library, find the proper entry point, and transfer control to
the appropriate routine. ACA Services also provides a transparent nechani sm
for encapsul ating applications that have no callable interfaces. Use of

t hi s mechani sm extends the nunber of applications that can be integrated
and renoves the need to devel op operating systemspecific code to start
applications.

6 Styles of Application Interfacing

Creating an interface to an application that is to be integrated is
different fromintegrating an application into an environnment. Application
interfacing deals with the public interface or interfaces that the
application provides to another application. In turn, these interfaces
provide the prinmtives that can be used in the integration of applications.

Application interfaces can be created in various ways, with differing

| evel s of effort. Software devel opers can design new applications to
utilize all the capabilities of ACA Services. Existing applications can

al so take advantage of the full capability of ACA Services, if the source
code to the application is available and if the application can be easily
adapted to use an event-driven nodel. However, even if the source code

to an application is not avail able, applications can still be integrated
into the environment using ACA Services. |f the application has a callable
interface, a server can be witten that receives nessages and calls the
appropriate APl routines. If the application does not have a call able
interface, the application can be integrated by encapsul ati on through the
use of an operating system script. The renmainder of this section describes
how to use each of these techniques to create an interface through which

the application can be integrated into a CASE envi ronment.

10 Digital Technical Journal Vol. 5 No. 2, Spring 1993

CASE Integration Using ACA Services

Application Mdifications

An existing application can easily be adapted to use ACA Services, if

the source code to the application is available. Wth m ni nal changes,

an application that utilizes an event-driven design, |ike that used by
nost wi ndow based applications, can operate as an application server.

The actual nodifications required to provide ACA Services support differ
across applications, but for nost w ndow based applications the changes
are simlar. As an illustration of this style of integration, consider an
editor.

Most editors are inplenmented as event-driven applications, which allows
easy integration because the structure of the code requires no mgjor
changes. To register the current executing instance of the application
with ACA Services, a call to the ACAS Regi sterServer routine nust be
added to the application's initialization routine. During the process
of run-tine registration, ACA Services registers various informtion
about the application, including the identifier of the process in which
the application is executing, the owner of the process, and the class-
and i nstance-unique identifiers for the application. As part of the
regi stration, an application can specify an abstract nane by which it
can be located and the routines to be called when an ACA Services event
arrives, e.g., when the server is instructed to shut down or when a session
ends.

Once registered with ACA Services, the application nust enter its event

di spat ching | oop. Because nmany applicati ons have existing event dispatching
mechani sms, ACA Services has been designed for easy integration wi th nost
mechani sms. ACA Services provides this support by allow ng the application
to define a routine called the event notifier, which is called at signa

| evel each tine an ACA Services event occurs. The event notifier routine
pl aces an event on the applications work queue for the ACA Services event.
Upon encountering the event, the application's event dispatcher routine
calls the ACAS Dispatch routine to allow ACA Services to dispatch the
appropriate nmethod or managenent routine for the event. A description of
how ACA Servi ces di spatches operation requests foll ows.

Application Servers

When the application to be integrated does not have a user interface but
provides a callable interface, integration is best acconplished by creating
an application server. Considered a form of encapsul ation, an application
server provides a consistent progranm ng interface to the application. An
application server provides jacket routines that use the application's
callable interface, hiding the actual details of this interface. This
technique is also used to create applications that have a cl ean separation
of presentation and functions.

Applications that inplenent persistent data stores, such as databases,
code nanagers, and repositories, are prime candidates for this style of
i ntegration. By using an application server to access persistent data
stores, a requesting application need not know how the data store is

Digital Technical Journal Vol. 5 No. 2, Spring 1993

11

CASE Integration Using ACA Services

i mpl enmented and which inplementation is to be used. This techni que pronotes
the reuse of existing functions contained in the environnent regardless

of the actual inplementation of the function. Digital's Code Managenent
System (DEC/ CMS) and CDD/ Repository software are exanples of applications
that have been integrated using the application server technique. Figure

7 illustrates the typical structure of the various conponents involved in
this style of integration

As shown in Figure 7, the integration process involves the follow ng

steps. (1) An invoke fromthe client application of the nessage "Reserve"
on the object "foo.c" goes through the resolution code and (2) out the
transport to the server application. This may result in starting the server
application, if no server was available to service the request. (3) The
server application's main routine calls the event dispatcher and waits for
work to arrive, when the server is started. (4) Wwen the "Reserve" nessage
arrives on the transport, the transport notifies the server application,
(5) causing the event dispatcher to dispatch the "Reserve" nessage by
calling the nmethod di spatcher routine. (6) The nethod dispatcher routine
calls the appropriate nethod interface routine. (7) The nmethod interface
routi ne does any work required to call the appropriate callable interface
routine. (8) When the callable interface routine returns control to the

met hod interface routine, the routine can perform any work necessary before
(9) returning control to the nmethod di spatcher routine. (10) The method

di spatcher routine then puts any argunments to be returned in the proper
format and sends this information to the transport, which actually sends
the information back to the client application

Usi ng the DEC/ CMS application server as an exanple, the software devel oper
nmust create a main routine to (1) performany setup required to use the
callable interface and (2) register the existence of the server with ACA
Services. Registration includes specifying the nethod dispatcher routine,
which is generated by ACA Services, so that the appropriate nmethod routine
wi |l be dispatched for the nessage received.

A net hod routine exists for each operation that the server is capable

of performing. The set of nethod routines is analogous to the operating
system script for conpilation used to explain application encapsul ation
later in this section. Because the DEC/ CMS application server is not an
operating system script, nessage argunents are passed into the method
routine directly. As nentioned earlier in the section CASE Integration
in Object-oriented Terms, the object on which the current operation is
to be perforned is available to the nmethod routine through the use of
the invocation context structure. Infornmation about the object, such as
its class, nane, and generation, can be obtained by calling the ACAS_
Par sel nst anceHandl e routine. The class of the object can then be used to
deternmine if the object is an el enment under version control, a collection
or a group.

12 Digital Technical Journal Vol. 5 No. 2, Spring 1993

CASE Integration Using ACA Services

The nane of the object and its generation are contained in the reference
data field of the instance handle that represents the object. Because

each different code managenent system has its own representation of
generation, it was necessary to create a canonical format to represent

all inplenentations. Therefore, the method nust convert the canonica
generation representation to a format that is native to the inplenentation
i.e., DEC/CMS specific. In addition, any nmethod that returns a reference
to a versioned object nust convert the native generation representation to
its canonical format. Table 1 shows how an object reference can be napped
between its canonical and DEC/ CMs-specific fornmats.

Once the necessary information about the object has been retrieved and
converted to a format native to the inplenentation, the nethod can call to
the appropriate callable interface routine, possibly based on the object's
data class. Once the call conpletes, the nethod nmust convert any objects to
be returned into a canonical format, at which point the method can return
the status of the operation and output argunents.

Appl i cation Encapsul ati on

Encapsul ation, the sinplest integration technique, is appropriate for
applications that do not have a callable interface or in cases where no
source code is available. Conmpilers are an ideal candidate for this style
of integration, because they perform synchronous operations. Encapsul ation
of conpilers provides a consistent programring interface to any conpiler
that is integrated into the environnent, regardless of the qualifiers

used to specify particular conpilation options. This techni que can al so

be used to provide a generic conmpile command that is platformindependent.
Encapsul ati on of a conpiler is best acconplished through the use of an
operating systemscript. Figure 8 illustrates an exanple of an encapsul at ed
conpi | er.

The purpose of an operating system script for conpilation is to convert the
generic conpilation qualifiers, which are passed as nessage argunents,
into the conpiler-specific options. The /DEBUG and / NOOPT qualifiers

shown in Figure 8 are exanples of generic conpilation qualifiers. Many
operating system scripting |anguages limt the nunber of paraneters that
can be passed on the command line. The conpilation scripts avoid these
limtations by passing the name of the file to be conpiled as the only
conmand |ine paraneter, as shown in the conmand @YS$LI BRARY: COVPI LE. COM
% NSTANCE() in Figure 8. ACA conveni ence conmands, such as APPL/ CONT

GET ARGUMENT, are used to retrieve and set the values of the nessage
argunments in the operating systemscript. Wien all the switch values are
gathered, the operating system script converts the generic values into
specific qualifiers. Finally, the actual conmand line is constructed and
executed. This same technique can al so be used to encapsul ate |inkers and
any ot her types of applications where no source code or callable interface

is avail abl e. When applications provide a callable interface, even tighter
i ntegration can be achieved by creating an application server.

Digital Technical Journal Vol. 5 No. 2, Spring 1993 13

CASE Integration Using ACA Services

7 Application Integration

Integration of applications goes beyond the interfaces that applications
present to the environment; it concerns how applications interact with
one another. Integration also takes into account the policies used in

an environment to allow a collection of applications to be grouped into
a single conposite object. This section discusses concepts such as an
activity, locating an application within an activity, context sharing,
and the sharing of applications across nultiple activities.

Activity Participation

Since nore than one activity may be active at any given tinme, an activity
nmust be able to locate the other applications participating in the
activity. Data-oriented environments provide a neans to |oosely couple

the various data and application objects into a single conposite object.
The COHESI ON i ntegrated environnent refers to this conposite object as

an activity. The inplenentation of an activity differs dependi ng upon the
environnent: ATIS uses a persistent process; file systembased environnents
generally use a directory hierarchy; and environnents built on a private
data store can use a data file. In the COHESI ON environnent, an activity is
represented as an ACA Services context object that contains attributes that
reference a directory hierarchy. The context object is used to set up the
execution environment in which a set of applications will operate and to

| ocate other applications that are executing within the activity.

Locating Activity Applications

The ability to locate an application that is executing in an activity
allows for reuse of the application by other applications executing in
that same activity. Such locating provides for better utilization of
applications and reduces the anopunt of context that nust be propagated from
one application to another. To |locate an application within an activity,
an application nmust have registered its presence in the activity. Wen
regi stering with ACA Services, the application nust specify the activity
nanme as the value of the attribute ACAS SERVER REGQ STRY. The application
nmust al so register itself with the event manager to allow centralized
managenment of the activity and to participate in the flow of work within
the activity.

CASE applications determine if they are executing within an activity by
checking for the existence of the environment variable ACTIVITY_NAME. |f
this environnent variable exists, its value is the activity identifier. To
allow an activity to extend beyond a single host and to support different
activities with the sane nanme, the activity is identified by a unique
identifier.

14 Digital Technical Journal Vol. 5 No. 2, Spring 1993

CASE Integration Using ACA Services

Sharing within Activities

Applications executing within an activity operate in a common context.

ACA Services provides a set of nechanisns that can be used to provide this
common context. The environment variable ACTIVITY_NAME is defined each tine
a nethod server is started in the COHESI ON environment. The met hod server
definition specifies as the value of the start-up environnent attribute,

t he nanes of the context tables and attributes that are to be defined as
envi ronnent vari abl es upon start-up

Anot her way of providing a conmon context across an activity is to
propagate context object tables and attributes as inplicit argunents to

nmet hod servers. Specifying this information as inplicit arguments instructs
ACA Services to propagate these attributes to the context object of the

nmet hod server servicing the request.

The context object can also be used directly to create a comopn cont ext
across an activity, i.e., by holding information that needs to be shared.
This information can include references to directories, preferences of
applications, and default val ues.

Sharing between Activities

Reusi ng applications that are active within an activity reduces the overal
system resources required to performthe activity. However, a problem
occurs when two or nmore activities are active at the sane tinme and require
the sane application. Wth the addition of wi ndowed interfaces and the
need to utilize other services, application sizes have greatly increased.
Consequently, it is often inpractical to expect a separate instance of an
application to be associated with each activity that is active.

In order for an application to be shared between multiple activities, the
application needs a neans by which to determine if a request is part of

an ongoi ng dialog with another application or is the beginning of a new

di al og. These dial ogs, called "sessions," represent a conversation between
a pair of applications. Each tinme a client application nakes a request to
a new application server, a session is established and an identifier is
associated with the session. ACA Services passes the session identifier to
the server application.

The managenent of sessions can be acconplished by using the session ID

as a | ookup key into a list of structures that represent the active
sessions. Wen the server application locates the structure associ ated
with the session identifier, the application can establish the appropriate
context for that session. In the exanple of DEC/ CMS application server,
the structure would contain the handle to the library associated with the
sessi on.

ACA Services also notifies an application server when a session is to be
term nated between a client and a server application. Wen notified, the
application server determ nes the appropriate course of action. Using the
CMs exanpl e, the server releases any cached information it has kept about

Digital Technical Journal Vol. 5 No. 2, Spring 1993 15

CASE Integration Using ACA Services

the session, closes the specific CM5 |ibrary, and then frees the library
dat a bl ock.

8 Environment Managenent

After defining application interfaces and integrating applications into
an activity, CASE environnment devel opers nmust focus on the nanagenent of
the environnment as a whole. This includes the managenent of references
to applications and data, the transformati on of object references into
platformspecific formats, and the flow of work within the environnment.

Handl e Managenent

In the CASE environnent, objects are the targets of all operations. Sending
a nessage to an object requires understanding how to create and manage
references to the object. Since ACA Services does not manage instances of
objects, it uses references to instances of objects. These references take
the form of instance and application handl es, which reference data and
application objects, respectively. Proper managenent of these handl es | eads
to nmore efficient use of application objects, thus reducing the anmount

of network resources and nmenory consurmed by the application. Appropriate
handl e managenent can al so enhance performance and guarantee predictable
behavi or .

| nst ance Handl es

The creation of an object reference is perfornmed by calling the ACAS_
Creat el nstanceHandl e routine. ACA Services (1) creates an instance handle
fromthe information passed as argunents to the routine, (2) allocates
menory to the handle and manages this nenory, and (3) sends a nessage to a
storage class, if one was specified.

To avoi d creating nunerous copies of an instance handle, each with its own
menory, a cache of objects should be used. This is especially true in CASE
environnents that use the data-oriented paradigm Each object structure
contains pointers to both the previous and the next object structure in the
gueue. The structure also contains values for the |ocation and reference
data fields that were passed as argunents to the ACAS_Createl nst anceHandl e
routi ne and, thus, allows for the unique identification of an object in

the cache across nmultiple hosts. In addition to the |location and reference
data, the structure contains a pointer to the instance handle returned from
the call to the ACAS CreatelnstanceHandl e routi ne. Reuse of the instance
handl e saves the tine required to create the handle, including any overhead
associated with using storage classes. Reuse also reduces the total anount
of menory required. However, instance handl es are not the only handl es that
requi re managenent; application handl es need to be managed as wel |

16 Digital Technical Journal Vol. 5 No. 2, Spring 1993

CASE Integration Using ACA Services

Appl i cation Handl es

Application handl es are references to application objects. Each application
handl e can represent one or nore nmethod servers. A nmethod server can
generate a handle by calling the ACAS CreateApplicationHandl e routi ne,

or the ACAS | nvokeMet hod routine can return an application handl e as an
out put argunment. As with instance handl es, application handl es can be
passed as argunents to a nessage. Managenent of application handles is
simlar to the managenent of instance handles. Each entry in the cache

of application handl es contains the | ocation of the application and the
nanme of the class of application. The entry also contains a pointer to the
application handle and a count of the number of outstanding references to
the handl e. Freeing an application handle results in the ternination of

all sessions between the client and any nmethod servers referenced by the
handle; it also releases all menory associated with the handl e.

Each instance handl e shoul d be associated with a correspondi ng application
handl e. This association allows the application handle to be reused when
sendi ng additional requests to the application concerning the data object.
An application handl e associated with a cache entry can be used to nake the
request. Failure to find the application in the cache could indicate that
the appropriate invocation flag should be used to obtain an application
when calling the ACAS | nvokeMet hod routi ne.

As descri bed, proper handl e managenent can result in better perfornmance,
better resource utilization, and predictable behavior within the

envi ronnent. However, handl e managenent does not deal with how to create an
obj ect reference that, when presented to an application on a renpte host,
isinaformt native to that platform For this capability, we nmust turn
to storage cl asses.

Data Transformations Using Storage Cl asses

Di stributed CASE environnments, whether honpbgeneous or heterogeneous, nust
concern thenselves with the representati on of object references that are
shared anong different applications. File specifications exenplify this
problem G ven nultiple hosts, it is unlikely that two hosts have the

same path to a specified file, even if both hosts are of the sanme platform
type. Consider the scenario in which Application A sends the Edit nessage
to the file object $PROJ4: [PROJECT. SRC] SORT. C, resulting in a request

of Application Bto edit the contents of the file. The probl em becones
conplicated if Application B is executing on a different platformtype than
Application A.

To solve the problem the environnent can utilize the functionality
provi ded by ACA Services storage classes. Storage classes provide a
mechani sm for translating an object's reference data fromone file system

representation to another. A solution to the scenario described involves
i mpl ementing a set of nmethods that woul d be executed when the object
ref erence uses a storage cl ass.

Digital Technical Journal Vol. 5 No. 2, Spring 1993 17

CASE Integration Using ACA Services

The SC_COHESI ON storage class is a CASE-specific storage class, which is
a refinement of the SC FILE storage class provided by ACA Services. As a
refinement, SC COHESION inherits all the nessages defined on its parent
storage class, including the nessages Setlnstance and Getlnstance. The
nmet hods for these two nessages provide an inplenentation for mapping
file system specifications fromplatformspecific formats to platform

i ndependent formats and back again. The storage class nmethods do this by
utilizing device and directory information, called directory mappings,
found in the context object.

The directory nmappings stored in the context object provide a neans to
associate a physically shared directory path with a network path nane.

The network path name is a platformindependent nane that, when presented
to a rempte platform can be mapped into a format native to the platform
receiving the request. A network path nane and its mapping are stored as an
attribute-value pair in the PATHNAVE REGQ STRY tabl e of a context object.

The directory mapping functionality allows references to file objects to
be passed between applications on different hosts in a way independent

of the platform This sane schenme can al so be used to convert object
references in object identifiers, such as ATIS elenment IDs for use with
the CDD/ Repository software. In the inplenentation for the file system
the nmethod associated with the Setlnstance nessage nust determine the

data class of the object reference, as well as transformthe reference
data into its network format. The determi nation can be made in a nunber of
ways, the nost common of which is to base the class on the extension of the
file. Although not the npbst accurate nethod of determ ning the class, this
approach does neet the needs of many files.

Wor k FI ow Managenent

ACA Servi ces manages the various instances of executing applications but
does not understand the concept of an activity. Therefore, managing the
applications within the activity requires the use of an application that
understands this concept. The event nmanager, which acts as a centra

regi stry of active applications and their associated activities, can
provide a sinple formof work flow managenment within the environment.
However, the event nmnager is used only in a limted capacity in the
COHESI ON i ntegrated environment. |In COHESION, the event manager is

notified each tinme an application is started or stopped in an activity.

The application provides an application handle to itself, which is used by
the event manager to notify the application of events of interest. The use
of the event manager renoves the need for an application to forward certain
nmessages, as a result of an event in the environnent, to all applications
with which it has been conmunicating. Renobving the need to forward nessages
reduces both the chances of |loops formng in a set of applications and any
comuni cati on deadl ocks between applicati ons.

18 Digital Technical Journal Vol. 5 No. 2, Spring 1993

CASE Integration Using ACA Services

Events and Triggers

On registration, an application can express interest in being notified
about particular events. Events are categorized into two cl asses:

system events and application events. System events affect the overal
operation of the environnent. These events include shutdown and

changes in activities. Al applications in the COHESI ON environnment are
notified of the systemevents for activity shutdown, iconification, and
dei conification. Application events occur when the state of an object

in the environment changes. File nodification or conpletion of a build
step are typical exanples of application events. Other applications in an
activity can use these events for synchronization or as notifications that
cause a change in behavior. Such notifications have traditionally been
called triggers.

For exanple, in a sinple build system such as the make utility, events can
create a work flow that would automatically conpile and link an application
when one nmodul e changes. If the build process conpletes successfully,

the work flow automatically starts the debugger to debug the newy built
executable file. If the build fails, the work flow | oads the faulty nodul e
into a program editor and positions the cursor to the line where the error
occurred.

9 Sunmmary

ACA Services can be used to resolve many probl ens encountered in a

di stributed, multivendor environnent. The object-oriented approach provided
by ACA Services can aid in the construction of a CASE environnent that
promotes the plug-and-play concept across a nunber of different platforns
and network transports. ACA Services provides a neans of devel oping client-
server applications and of abstracting the network dependenci es away from
the devel oper. This feature, together with the use of storage classes and
data marshaling, can help to exchange information in a heterogeneous
environnent. At the sane tinme, ACA Services can provide a consistent
programm ng interface to all components in the system The dynanic nature
of ACA Services allows new conponents to be added to the environnment

wi t hout the need to rebuild the entire environnent. The flexibility of

ACA Services allows its use to construct a CASE environnment regardl ess of
the integration paradigmused and while supporting a nunmber of interaction
nodel s. ACA Services provides the infrastructure necessary to integrate
the |l arge nunber of existing applications into distributed, heterogeneous
envi ronnents.

10 Acknow edgnents

The author wishes to thank Jackie Kasputy, Chip Nylander, and Gayn Wnters
for their invaluable insights and contributions on distributed, nultivendor

CASE environnents.

Digital Technical Journal Vol. 5 No. 2, Spring 1993 19

CASE Integration Using ACA Services

11 References

1. E. Yourdon, Mdern Structured Analysis (Englewood Cliffs, NJ: Yourdon
Press, 1989).

2. DEC ACA Services System |Integrator and Programmer's Gui de (Maynard, MA:
Di gital Equi pnent Corporation, O der No. AA-PQKMA-TE, 1992).

3. G Booch, Ohject Oriented Design with Applications (Redwod City, CA:
Benj am n/ Cummi ngs Publ i shi ng Conpany, 1991).

4, R Wrfs-Brock, B. WIlkerson, and L. Wener, Designing Object-Oriented
Software (Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990).

5. DEC ACA Services Reference Manual (Maynard, MA: Digital Equi pnment
Corporation, Oder No. AA-PKLA-TE, 1992).

6. J. Liu, "Future Direction for Evolution of |IRDS Services Interface,"
X3H4/ 92-161, Proposed specification submtted to ANSI X3H4 and | SO | RDS,
1992.

12 Trademar ks

The following are trademarks of Digital Equi pnent Corporation:
CDD/ Repository, COHESION, and Digital.

13 Bi ography

Paul B. Patrick, Sr. Paul Patrick is a principal software engineer in
the ACA Services Group. He leads Digital's inplenentation of the Object
Managenment Group's Conmon Obj ect Request Broker Architecture. Previously,
Paul hel ped design COHESI ON, an integrated CASE environnment based on the
DECset architecture. He also contributed to the devel opnent of |PSE,
an integrated project support environnment based on the CDD/ Repository
software, and designed and inplemented the M croVAX 2000 synchronous
controller diagnostic. Prior to joining Digital, Paul held positions at
GenRad I nc. and Norand Corp.

20 Digital Technical Journal Vol. 5 No. 2, Spring 1993

Copyright 1993 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

