
UNICODE: A UNIVERSAL CHARACTER CODE

By Jürgen Bettels and F. Avery Bishop

ABSTRACT

A universal character encoding is required to produce software
that can be localized for any language or that can process and
communicate data in any language. The Unicode standard is the
product of a joint effort of information technology companies and
individual experts; its encoding has been accepted by ISO as the
international standard ISO/IEC 10646. Unicode defines 16-bit
codes for the characters of most scripts used in the world's
languages. Encoding for some missing scripts will be added over
time. The Unicode standard defines a set of rules that help
implementors build text-processing and rendering engines. For
Digital, Unicode represents a strategic direction in
internationalization technology. Many software-producing
companies have also announced future support for Unicode.

INTRODUCTION

A universal character encoding -- the Unicode standard -- has
been developed to produce international software and to process
and render data in most of the world's languages. In this paper,
we present the background of the development of this standard
among vendors and by the International Organization for
Standardization (ISO). We describe the character encoding's
design goals and principles. We also discuss the issues an
application handles when processing Unicode text. We conclude
with a description of some approaches that can be taken to
support Unicode and a discussion of Microsoft's implementation.
Microsoft's decision to use Unicode as the native text encoding
in its Windows NT (New Technology) operating system is of
particular significance for the success of Unicode.

BACKGROUND

In the 1980s, software markets grew throughout the world, and the
need for a means to represent text in many languages became
apparent. The complexity of writing software to represent text
hindered the development of global software.

The obstacles to writing international software were the
following.

 1. Stateful encoding. The character represented by a
 particular value in a text stream depended on values
 earlier in the stream, for example, the escape sequences
 of the ISO/IEC 2022 standard.[1]

 2. Variable-length encoding. The character width varied from
 one to four bytes, making it impossible to know how many

 characters were in a string of a known number of bytes,
 without first parsing the string.

 3. Overloaded character codes and font systems. Character
 codes tended to encode glyph variants such as ligatures;
 font architectures often included characters to enable
 display of characters from various languages simply by
 varying the font.

In the 1980s, character code experts from around the world began
work on two initially parallel projects to eliminate these
obstacles. In 1984, the ISO started work on a universal character
encoding. This effort placed heavy emphasis on compatibility
with existing standards. The ISO/IEC committee published a Draft
International Standard (DIS) in spring 1991.[2] By that time, the
work on Unicode (described in the next section) was also nearing
completion, and many experts were alarmed by the potential for
confusion from two competing standards. Several of the ISO
national bodies therefore opposed adoption of the DIS and asked
that ISO and Unicode work together to design a universal
character code standard.

The Origins of Unicode

In some sense Unicode is an offshoot of the ISO/IEC 10646 work.
Peter Fenwick, one of the early conveners of the ISO working
group responsible for 10646, developed a proposal called
"Alternative B," based on a 16-bit code with no restriction on
the use of control octets. He presented his ideas to Joseph
Becker of Xerox, who had also been working in this area.[3]

In early 1988, Becker met with other experts in linguistics and
international software design from Apple Computer (notably Lee
Collins and Mark Davis) to design a new character encoding. As
one of the original designers, Becker gave this code the name
Unicode, to signify the three important elements of its design
philosophy:

 1. Universal. The code was to cover all major modern written
 languages.

 2. Unique. Each character was to have exactly one encoding.

 3. Uniform. Each character was to be represented by a fixed
 width in bits.

The Unicode design effort was eventually joined by other vendors,
and in 1991 it was incorporated as a nonprofit consortium to
design, promote, and maintain the Unicode standard. Today member
companies include Aldus, Apple Computer, Borland, Digital,
Hewlett-Packard, International Business Machines, Lotus,
Microsoft, NeXT, Novell, The Research Libraries Group, Sun
Microsystems, Symantec, Taligent, Unisys, WordPerfect, and Xerox.

Version 1.0, volume 1 of the 16-bit Unicode standard was
published in October 1991, followed by volume 2 in June
1992.[4,5]

It was sometimes necessary to sacrifice the three design
principles outlined above to meet conflicting needs, such as
compatibility with existing character code standards.
Nevertheless, the Unicode designers have made much progress
toward solving the problems faced in the past decade by designers
of international software.

The Merger of 10646 and Unicode

Urged by public pressure from user groups such as IBM's SHARE, as
well as by industry representatives from Digital,
Hewlett-Packard, IBM, and Xerox, the ISO 10646 and Unicode design
groups met in August 1991; together they began to create a single
universal character encoding. Both groups compromised to create a
draft standard that is often referred to as Unicode/10646. This
draft standard was accepted as an international character code
standard by the votes of the ISO/IEC national bodies in the
spring of 1992.[6]

As a result of the merger with ISO 10646, the Unicode standard
now includes an errata insert called Unicode 1.0.1 in both
volumes of version 1.0 to reflect the changes to character codes
in Unicode 1.0.[7] The Unicode Consortium has also committed to
publish a technical report called Unicode 1.1 that will align the
Unicode standard completely with the ISO/IEC 10646 two-octet
compaction form (the 16-bit form) also called UCS-2.

Relationship between Unicode and ISO/IEC 10646

Unicode is a 16-bit code, and ISO/IEC 10646 defines a two-octet
(UCS-2) and a four-octet (UCS-4) encoding form. The repertoire
and code values of UCS-2, also called the base multilingual plane
(BMP), are identical to Unicode 1.1. No characters are currently
encoded beyond the BMP; the UCS-4 codes defined are the two UCS-2
octets padded with two zero octets. Although UCS-2 and Unicode
are very close in definition, certain differences remain.

By its scope, ISO/IEC 10646 is limited to the coding aspects of
the standards. Unicode includes additional specifications that
help aspects of implementation. Unicode defines the semantics of
characters more explicitly than 10646 does. For example, it
defines the default display order of a stream of bidirectional
text. (Hebrew text with numbers or embedded text in Latin script
is described in the section Display of Bidirectional Strings.)
Unicode also provides tables of character attributes and
conversion to other character sets.

In contrast with the Unicode standard, ISO 10646 defines the
following three compliance levels of support of combining

characters:

 o Level 1. Combining characters are not allowed
 (recognized) by the software.

 o Level 2. This level is intended to avoid duplicate coded
 representations of text for some scripts, e.g., Latin,
 Greek, and Hiragana.

 o Level 3. All combining characters are allowed.

Therefore, Unicode 1.1 can be considered a superset of UCS-2,
level 3.

Throughout the remainder of this paper, we refer to this jointly
developed standard as Unicode. Where differences exist between
ISO 10646 and Unicode standards, we describe the Unicode
functionality. We also point out the fact that Unicode and ISO
sometimes use different terms to denote the same concept. When
identifying characters, we use the hexadecimal code
identification and the ISO character names.

GENERAL DESIGN OF UNICODE

This section discusses the design goals of Unicode and its
adherence to or variance from the principles of universality,
uniqueness, and uniformity.

Design Goals and Principles

The fundamental design goal of Unicode is to create a unique
encoding for the characters of all scripts used by living
languages. In addition, the intention is to encode scripts of
historic languages and symbols or other characters whose use
justifies encoding.

An important design principle is to encode each character with
equal width, i.e., with the same number of bits. The Unicode
designers deliberately resisted any calls for variable-length or
stateful encodings. Preserving the simplicity and uniformity of
the encoding was considered more important than considerations of
optimization for storage requirements.

A Unicode character is therefore a 16-bit entity, and the
complete code space of over 65,000 code positions is available to
encode characters. A text encoded in Unicode consists of a
stream of 16-bit Unicode characters without any other embedded
controls. Such a text is sometimes referred to as Unicode plain
text. The section Processing Unicode Text discusses these
concepts in more detail.

Another departure from the traditional design of code sets is

Unicode's inclusion of combining characters, i.e., characters
that are rendered above, below, or otherwise in close association
with the preceding character in the text stream. Examples are
the accents used in the Latin scripts, as well as the vowel marks
of the Arabic script. Combining characters are allowed to
combine with any other character, so it is possible to create new
text elements out of such combinations.[8] This technique can be
used in bibliographic applications, or by linguists to create a
script for a language that does not yet have a written
representation, or to transliterate one language using the script
of another. An example in recent times is the conversion of some
Central Asian writing systems from the Arabic to the Latin
script, following Turkey's example in the 1920s (Kazakhstan).

An additional design principle is to avoid duplication of
characters. Any character that is nearly identical in shape
across languages and is used in an equivalent way in these
languages is assigned a single code position. This principle led
to the unification of the ideographs used in the Chinese,
Japanese, and Korean written languages. This so-called CJK
unification was achieved with the cooperation of official
representatives from the countries involved.

The principle of uniqueness was also applied to decide that
certain characters should not be encoded separately. In general,
the principle states that Unicode encodes characters and not
glyphs or glyph variations. A character in Unicode represents an
abstract concept rather than the manifestation as a particular
form or glyph. As shown in Figure 1, the glyphs of many fonts
that render the Latin character A all correspond to the same
abstract character "a."

[Figure 1 (Abstract Latin Letter "a" and Style Variants) is not
available in ASCII format.]

Another example is the Arabic presentation form. An Arabic
character may be written in up to four different shapes. Figure 2
shows an Arabic character written in its isolated form, and at
the beginning, in the middle, and at the end of a word. According
to the design principle of encoding abstract characters, these
presentation variants are all represented by one Unicode
character.[9]

[Figure 2 (Isolated, Final, Initial, and Middle Forms of the
Arabic Character Sheen) is not available in ASCII format.]

Since much existing text data is encoded using historic character
set standards, a means was provided to ensure the integrity of
characters upon conversion to Unicode. Great care was taken to
create a Unicode character corresponding to each character in
existing standards. Characters identical in shape appearing in
different standards are identified and mapped to a single Unicode
character. For characters appearing twice in the same standard, a
compatibility zone was created. These characters are encoded as

required to make round-trip conversion possible between other
standards and Unicode. The Unicode Consortium has agreed to
create mapping tables for this purpose.

Text Elements and Combining Characters

When a computer application processes a text document, it
typically breaks down text into smaller elements that correspond
to the smallest unit of data for that process. These units are
called text elements. The composition of a text element is
dependent on the particular process it undergoes. The Arabic
ligature lam-alef is a text element for the rendering process but
not for other character operations, such as sorting.

In addition, the same process applied to the same string of text
requires different text elements depending on the language
associated with the string. Figure 3 shows sorting applied to the
string "ch." If this string is part of English text, the text
elements for the process of sorting are "c" and "h." In Spanish
text, however, the text element for sorting is ch because ch is
sorted as if it were a single character.

Figure 3 Text Elements and Collation

 Spanish English

 curra charm

 chasquido current

 dano digit

For other text-processing operations, text elements might
constitute units smaller than those traditionally called
characters. Examples are the accents and diacritical marks of the
Latin script. These small text elements interact graphically with
a noncombining character called a base character. The acute
accent interacts with the base character A to form the character
A acute. If a given font does not have the character A acute, but
it does have A and acute accent as separate glyphs, the character
A acute has to be divided into smaller units for the rendering
process.

In Thai script, vowels and consonants combine graphically so that
the vowel mark can be either before, above, below, or after a
consonant, thus forming one display unit. This unit becomes the
text element for purposes of rendering. For a process such as
advance to next character, however, the individual vowels and
consonants are the natural units of operation and are therefore
the text elements.

There is no simple relationship between text elements and code
elements. As we have shown, this relationship varies both with
the language of the text and with the operation to be performed
by the application. In earlier encoding systems such as ASCII or
others with a strong relationship to a language, this problem was
not apparent. When designing a universal character code, the
Unicode designers acknowledged the issue and analyzed which
character elements have to be encoded as code elements to
represent the scripts of Unicode across multiple languages.
Rather than burden the character code with the complexity of
encoding a rich set of text elements, the Unicode Technical
Committee decided that the mapping of code elements to more
complex text elements should be performed at the application
level.

Code Space Structure

The Unicode code space is the full 16-bit space, allowing for
65,536 different character codes. As shown in Figure 4,
approximately 50 percent of this space is allocated. This code
space is logically divided into four different regions or zones.

[Figure 4 (Code Space Allocation for Scripts) is not available
in ASCII format.]

The A-zone, or alphabetic zone, contains the alphabetic scripts.
The first 256 positions in the A-zone are occupied by the ISO
8859-1, or 8-bit ANSI codes, in such a way that an 8-bit ASCII
code maps to the corresponding 16-bit Unicode character through
padding it with one null byte. The positions corresponding to the
32 ASCII control codes 0 to 31 are empty, as well as the
positions 0x0080 to 0x009F.

The characters of other alphabetic scripts occupy code space in
the range from 0x0000 to 0x2000. Not all of the space is
currently occupied, leaving room to encode more alphabetic
scripts.

The remainder of the A-zone up to 0x4000 is allocated for general
symbols and the phonetic (i.e., nonideographic) characters in use
in the Chinese, Japanese, and Korean languages.

The second zone up to 0xA000 is the ideograph, or I-zone, which
contains the unified Han characters. Currently about 21,000
positions have been filled, leaving virtually no room for
expansion in the I-zone.

The third zone, or O-zone, is a currently unallocated space of
16K. Although several uses for this space have been proposed, its
most natural use seems to be for more ideographic characters.
However, even 16K can hold only a subset of the ideographic
characters.

The fourth zone, the restricted or R-zone, has some space
reserved for user-defined characters. It also contains the area
of codes that are defined for compatibility with other standards
and are not allocated elsewhere.

PROCESSING UNICODE TEXT

The simplest form of Unicode text is often called plain Unicode.
It is a text stream of pure Unicode characters without additional
formatting or attribute data embedded in the text stream. In
this section, we discuss the issues any application faces when
processing such text. Processing in this context applies to the
steps such as parsing, analyzing, and transforming that an
application performs to execute its required task. In most cases,
the text processing can be divided into a number of primitive
processing operations that are typically offered as a toolkit
service on a system. In describing Unicode text processing, we
discuss some of these primitives.

Code Conversion

One of the goals of Unicode is to make it possible to write
applications that are capable of handling the text of many
writing systems. Such an application would typically apply a
model that uses Unicode as its native process code. The
application could then be written in terms of text operations on
Unicode data, which does not vary across the different writing
systems.

Today, and for some time to come, however, the data that the
application has to process is typically encoded in some code
other than Unicode. A frequent operation to be performed is
therefore the conversion from the code (file code) in which data
is presented to Unicode and back.

One of the design goals of Unicode was to allow compatibility
with existing data through round-trip conversion without loss of
information. It was not a goal to be able to convert the codes of
other character sets to Unicode by simply adding an offset. This
would violate the principle of uniqueness, since many characters
are duplicated in the various character sets. Most existing
character sets therefore have to be mapped through a table
lookup. These mapping tables are currently being collected by the
Unicode Consortium and will be made available to the public.

It was, however, decided that the 8-bit ASCII, or ISO 8859-1
character set, was to be mapped into the first 256 positions of
Unicode. Other character sets (or subsets), such as the Thai
standard TIS 620-2529, could also be mapped directly, since
character uniqueness was preserved. Also, one of the blocks of
Korean syllables is a direct mapping from the Korean standard KSC
5601.

Some character sets contain characters that cannot be assigned
code values under the Unicode design rules. Often these
characters are different shapes of encoded characters, and
encoding them would violate the principle of uniqueness. To allow
round-trip conversion for these characters, a special code area,
the compatibility zone, was set aside in the R-zone to encode
them and to allow interoperation with Unicode. For example, the
wide forms of the Latin letters in the Japanese JIS 208 standard
were invented to simplify rendering on monospacing terminals and
printers.

Character Transformations

A frequently used operation in text processing is the
transformation of one character into another character. For
example, Latin lowercase characters are often transformed into
uppercase characters to execute a case-insensitive search. In
most traditional character sets, this operation would translate
one code value to another. Thus, the output string of the
operation would have the same number of code values as the input
string, and both strings would have the same length. This
assumption is no longer true in the case of Unicode strings.

Consider the Unicode characters, Latin small letter a + combining
grave accent, i.e., a string of two Unicode characters. If this
string were part of a French text (in France), transforming a to
A would result in one Unicode character, Latin capital letter A.
If the same string were part of a French Canadian text, the
accent would be retained on the uppercase character. We can
therefore make two observations: (1) The string resulting from a
character transformation may contain a different number of
characters than the original string and (2) The result depends on
other attributes of the string, in this case the language/region
attribute.

Another important character transformation operation is a
normalization transformation. This operation transforms a string
into either the most uncomposed or the most precomposed form of
Unicode characters. As an example, we consider the different
spellings of the combination:

 `
 Ü

 Latin capital letter U
 with diaeresis and grave accent

This letter has been encoded in precomposed form in the
Additional Extended Latin part of Unicode. There are two
additional spellings possible to encode the same character shape:

 Ü + `

 Latin capital letter U with diaeresis
 + combining grave accent

 and

 U + .. + `

 Latin capital letter U
 + combining diaeresis
 + combining grave accent

The most uncomposed and the most precomposed forms of these
spellings can be considered normalized forms. When processing
Unicode text, an application would typically transform the
character strings into either of these two forms for further
processing.

Note that the spellings:

 Ù + ..

 Latin capital letter U
 with grave accent
 + combining diaeresis

 and

 U + ` + ..

 Latin capital letter U
 + combining grave accent
 + combining diaeresis

would result in a different character:

[Note: The resulting character is not readable in ASCII formatted
text. The character should be Latin capital U with a grave accent
above it and a diaeresis above that.]

This result is due to the rule that diacritical marks, which
stack, must be ordered from the base character outwards.

Byte Ordering

Traditional character set encodings, which are conformant to ISO
2022 and the C language multibyte model, consider characters to
be a stream of bytes, including cases in which a character
consists of more than one byte. Unicode characters are 16-bit
entities; the standard does not make any explicit statement about
the order in which the two bytes of the 16-bit characters are
transmitted when the data is serialized as a stream of bytes.

The ordering of bytes becomes an issue when machines with
different internal byte-order architecture communicate. The two
possible byte orders are often called little endian and big
endian. In a little-endian machine, a 16-bit word is addressed as
two consecutive bytes, with the low-order byte being the first
byte; in a big-endian machine, the high-order byte is first.
Today all computers based on the Intel 80x86 chips, as well as
Digital's VAX and Alpha AXP systems, implement a little-endian
architecture, whereas machines built on Motorola's 680xx, as
well as the reduced instruction set computers (RISC) of Sun,
Hewlett-Packard, and IBM, implement a big-endian architecture. In
blind interchange between systems of possibly different byte
order, Unicode-encoded text may be read incorrectly. To avoid
such a situation, Unicode has implemented a byte-order mark that
behaves as a signature. As shown in Figure 5, the byte-order mark
has the code value 0xFEFF. It is defined as a zero-width,
no-break space character with no semantic meaning other than
byte-order mark.

[Figure 5 (Byte-order Mark) is not available in ASCII format.]

The code value corresponding to the byte-inverted form of this
character, namely 0xFFFE, is an illegal Unicode value. If the
byte-order mark is inserted into a serialized data stream and is
read by a machine with a different byte-order architecture, it
appears as 0xFFFE. This fact signals to the application that the
bytes of the data stream have been read in reverse order from
that in which they were written and should be inverted.
Applications are encouraged to use the byte-order mark as the
first character of any data written to a storage medium or
transmitted over a network.

Display of Bidirectional Strings

To facilitate internal text processing, a Unicode-compliant
application always stores characters in logical order, that is,
in the order a human being would type or write them. This causes
complications in rendering when text normally displayed right to
left (RL) is mixed with text displayed left to right (LR). Hebrew
or Arabic is written right to left, but may contain characters
written left to right, if either language is mixed with Latin
characters. Numerals or punctuation mixed with Hebrew or Arabic
can be written in either order.

The Default Bidirectional Algorithm

Unicode defines a default algorithm for displaying such text
based on the direction attributes of characters. We outline the
algorithm in this paper; for details, see both volumes of the
Unicode standard.[4,5] (It is important to consult the second
volume because it contains corrections to the algorithm given in
the first volume.)

All printing characters are classified as strongly LR, weakly LR,
strongly RL, weakly RL, or neutral. In addition, Unicode defines
the concept of a global direction associated with a block of
text. A block is approximately equivalent to a paragraph. The
first task of the rendering software is to determine the global
direction, which becomes the default. Embedded strings of
characters from other scripts are rendered according to their
direction attribute. Neutral characters take on the attribute of
surrounding characters and are rendered accordingly.

Directionality Control

Although the default algorithm gives correct rendering in most
realistic cases, extra information occasionally is needed to
indicate the correct rendering order. Therefore, Unicode includes
a number of implicit and explicit formatting codes to allow for
the embedding of bidirectional text:

 Left-to-right mark (LRM)
 Right-to-left mark (RLM)
 Right-to-left embedding (RLE)
 Left-to-right embedding (LRE)
 Left-to-right override (LRO)
 Right-to-left override (RLO)
 Pop directional formatting (PDF)

It must be pointed out that the directional codes are to be
interpreted only in the case of horizontal text and ignored for
any operation other than bidirectional processing. In particular,
they must not be included in compare string operations.

The LRM and RLM characters are nondisplayable characters with
strong directionality attributes. Since characters with weak or
neutral directionality take their rendition directionality from
the surrounding characters, LRM and RLM are used to influence the
directionality of neighboring characters.

The RLE and LRE embedding characters and the LRO and RLO override
characters introduce substrings with respect to directionality.
The override characters enforce a directionality and are used to
enforce rendering of, for instance, Latin letters or numbers from
right to left. Substrings can be nested, and conforming
applications must support 15 levels of nesting. Each RLE, LRE,
LRO, or RLO character introduces a new sublevel, and the next
following PDF character returns to the previous level. The
directionality of the uppermost level is implicit or determined
by the application.

Only correct resolution of directionality nesting gives the
correct result. In general it cannot be assumed that a string of
text that is inserted into other bidirectional text will have the
correct directionality attributes without special processing.
This may result in the removal of directional codes in the text
or in the addition of further controls. As shown in Figure 6,

particular care needs to be taken for cut-and-paste operations of
bidirectional text.

[Figure 6 (Cut and Paste of Bidirectional Text) is not available
in ASCII format.]

Transmission over 8-bit Channels

Existing communication systems often require that data adheres to
the rules of ISO/IEC 2022, which reserve the 8-bit code values
between 0x00 and 0x1F (the C0 space), between 0x80 and 0x9F (the
C1 space), and the code position DELETE.[1] Since Unicode uses
these values to encode characters, direct transmission of Unicode
data over such transmission systems is not possible.

The Unicode designers, in collaboration with ISO, have therefore
proposed an algorithm that transforms Unicode characters so that
the C0 and C1 characters and DELETE are avoided. This algorithm,
the UCS transformation format (UTF), is part of the ISO 10646
standard as an informative annex. It is expected that it will be
included in the revised Unicode standard.

The transformation algorithm has been conceived in such a way
that the characters corresponding to the 7-bit ASCII codes and
the C1 codes are represented by one byte (see Figure 4). Code
positions 0x00A0 through 0x4015 (which include the remainder of
the extended Latin alphabet) are represented by two bytes each,
and three bytes each are used for the remaining code values.

Originally, UTF had been proposed for use in data transmission
and to avoid the problem that embedded zero bytes represent for
C language character strings in the char data type. Subsequently,
it has been proposed to use UTF in historical operating systems
(e.g., UNIX) to store Unicode-encoded system resources such as
file names.[10]

Modifications of UTF have therefore been proposed to address
other special requirements such as preservation of the slash (/)
character.[11] It remains to be seen which of these various
transformation methods will be widely adopted.

Handling of Combining Characters

In some of the operations discussed above, we have indicated that
the presence of combining characters requires processing Unicode
text differently from text encoded in a character set without
combining characters. Normalization or transformation of the
characters into a normalized form is usually a first helpful step
for further processing. For example, to prepare a text for a
comparison operation, one may wish to decompose any precomposed
characters. In this way, multiple-pass comparison and sorting
algorithms, which typically pass through a level that ignores
diacritical marks, can be applied almost unchanged.[12]

For simple comparison operations, the application must decide on
a policy of what constitutes equality of two strings. If the
string contains characters with a single diacritical mark, it can
choose either strong matching, which requires the diacritical
marks in both strings, or weak matching, which ignores
diacritical marks. If the text includes characters with more than
one diacritical mark for a medium-strong match, the presence of
certain marks might be required but not of others. Strong
matching is required for the Greek word for micromaterial
mikroüliká and the Greek diminuitive form of small mikroúlika.
Without the diacritical marks, the words would be identical.

Unicode requires that combining characters follow the base
character. This solution was chosen over the alternatives of (1)
precede and (2) precede and follow, for various reasons.[13]
Text-editing operations must take into account the presence and
ordering of diacritical marks. A user-friendly application should
be consistent in its choice of text element on which operations
such as next character or delete character operate. This choice
should feel natural to the user. For example, in Latin, Greek,
and Cyrillic, the expectation would be that accented characters
are the unit of operation, whereas in Devanagari and Thai, where
several combining characters and a base character combine into a
cell, the natural unit is the individual character.

IMPLEMENTATION ISSUES

In this section we describe some of the approaches that can be
taken to support Unicode. As a concrete example, we describe how
the Microsoft Windows NT operating system uses Unicode as the
native text encoding and maintains compatibility with existing
applications based on a different encoding.

General Considerations in Adding Unicode Support

Informal discussions with vendors planning to support Unicode
indicate that the following data types and data access are being
considered when using the C programming language.

 1. A new data type would be designated for Unicode only. It
 would be directly accessible by the application, e.g.,
 typedef unsigned short UNICHAR.

 The Unicode-only data type has the advantage of being
 unencumbered with preconceptions about semantics or
 usage. Also, since the application knows that the
 contents are in Unicode, it can write code-set-dependent
 applications.

 The major disadvantage is that the data type would vary
 from one vendor or platform to another and would

 therefore have no standard string-processing libraries.

 2. An existing data type, such as wchar_t in C would be
 used. (Note that the char data type is appropriate only
 if char is defined as 16 bits, or if the string is given
 some further structure to define its length by means
 other than null termination. Similar issues may exist in
 other languages.)

 The use of an existing data type has the advantage of
 being widely known and implemented; however, it also has
 the disadvantage of preexisting assumptions about
 behavior and/or semantics.

 3. An opaque object would be used. Since the data in these
 objects is not visible to the calling program, it can
 only be processed by routines or by invoking its member
 functions (e.g., in C++).

 Use of an opaque object has the advantage of hiding much
 of the complexity inherent in the world's writing systems
 from the application writer. It has the disadvantages
 common to object-oriented systems, such as the need for
 software engineers to learn a new programming paradigm
 and a set of class libraries for the Unicode objects.

How Windows NT Implements Unicode

The Windows NT design team started with several goals to make an
operating system that would preserve the investment of customers
and developers. These goals affected their decisions regarding
the data types and migration strategies described in the previous
section.

The goals related to text processing were to

 1. Provide backward compatibility

a) Support existing MS-DOS and 16-bit MS Windows
 applications, including those based on 8-bit and
 double-byte character set (DBCS) code pages.

b) Support the DOS file allocation table file system.

 2. Provide worldwide character support in

 a) File names

 b) File contents

 c) User names

As described later in this section, these conflicting goals were

met under a single Windows NT architecture, if not simultaneously
in the same application and file system, then by clever
segregation of Windows NT into multitasking subsystems. These
goals also affect the way Microsoft recommends developers migrate
their existing applications to Windows NT.

The Basic Approach. Microsoft's overall approach is close to
that of using a standard data type that accesses data mainly
through string-processing functions. In addition, Microsoft
defined a special set of symbols and macros for application
developers who wish to continue to develop applications based on
DOS (e.g., to sell to those with 286 and 386SX systems), while
they migrate their products to run as native Win32 applications
on Windows NT. The developer can then compile the application
with or without the compiler switch -DUNICODE to produce an
object module compiled for a native Windows NT or a DOS operating
environment, respectively.

Dual-path Data Types. To select the appropriate compilation
path, Microsoft provides C language header files that
conditionally define data types, macros, and function names for
either Unicode or traditional 8-bit (and DBCS) support, depending
on whether or not the symbol UNICODE has been defined. An example
of a data type that illustrates this approach is TCHAR. If
UNICODE is defined, TCHAR is equivalent to wchar_t. Otherwise,
it is the same as char. The application writer is asked to
convert all instances of char to TCHAR to implement the dual
development strategy.

String-handling Functions. Similarly, the macro TEXT is defined
to indicate that string constants are wide string constants when
UNICODE is defined, or ordinary string constants otherwise.
Application writers should surround all instances of a string or
character constant with this macro. Thus, "Filename" becomes
TEXT("Filename"), and 'Z' becomes TEXT('Z'). The compiler treats
these as a wide string or character constant if UNICODE is
defined, and as a standard char based string or character
otherwise.

Finally, there are symbol names for each of the various
string-processing functions. For example, if UNICODE is defined,
the function symbol name _tcscmp is replaced by wcscmp by the C
preprocessor, indicating that the wide character function of that
name is to be called. Otherwise, _tcscmp is replaced with the
standard C library function strcmp. Details of this procedure
can be found in Win32 Application Programming
Interface.[14]

Procedures for Developing/Migrating Applications in the Dual
Path. In his paper on "Program Migration to Unicode," Asmus
Freytag of Microsoft explains the steps used to convert an
existing application to work in Unicode and retain the ability to
compile it as a DOS or 16-bit Windows application.[15] The basic

idea is to remove the assumptions about how a string is
represented or processed. All references to string-related
objects (e.g., char data types), string constants, and
string-processing functions are replaced with their dual-path
equivalents. The following steps are then taken.

 1. Replace all instances of char with TCHAR, char* with
 LPSTR, etc. (For a complete listing, see "Program
 Migration to Unicode.")[15]

 2. Replace all instances of string or character constants
 with the equivalent using the TEXT macro.[16] For
 example,

 char filemessage[] = "Filename";
 char yeschar = 'Y';

 becomes

 TCHAR filemessage[] = TEXT("Filename");
 TCHAR yeschar = TEXT('Y');

 3. Replace standard char based string-processing functions
 with the Win32 functions. (See page 221 of Win32
 Application Programming Interface, for a complete
 listing.)[14]

 4. Normalize string-length computations using sizeof() where
 appropriate. For example, direct computation using
 address arithmetic should take the form: string_length =
 (last_address -- first_address)*sizeof(TCHAR);

 5. Mark all files with the byte-order mark.[17]

 6. Make other, more substantial changes.

Most character-code-dependent processing should be taken care of
by step 3, assuming the developer has used standard functions.
If the source code makes assumptions about the encoding, it will
have to be replaced with a neutral function call. For example,
the well-known uppercasing sequence

char_upper = char_lower + 'a' -- 'A';

implicitly assumes the language and the uppercasing rules are
English. These must be replaced with a function call that
accesses the Windows NT Natural Language Services.

SUMMARY

A universal character encoding -- the Unicode standard -- has
been developed to produce international software and to process
and render data in most of the world's languages. The standard,
often referred to as Unicode/10646, was jointly developed by
vendors and individual experts and by the International
Organization for Standardization and International
Electrotechnical Commission (ISO/IEC). Unicode breaks the
(incorrect) principle that one character equals one byte equals
one glyph. It stipulates the use of text elements that are
dependent on the particular text operation. A number of software
vendors are now moving to support Unicode. Microsoft's
implementation supports Unicode as the native text encoding in
its Windows NT operating system. At the same time, it maintains
compatibility with existing applications based on 8-bit encoding.

ACKNOWLEDGMENTS

The authors would like to express their thanks to Asmus Freytag
of Microsoft Corporation and Masami Hasegawa (ISO/IEC 10646
editor) for their efforts in reviewing this paper.

REFERENCES AND NOTES

1. Information Processing -- ISO 7-bit
 and 8-bit Coded Character Sets -- Code Extension Techniques,
 International Standard, ISO 2022:1986 (Geneva: International
 Organization for Standardization, 1986).

2. Information Technology -- Multiple-Octet Coded Character
 Set, Draft International Standard, ISO/IEC DIS 10646:1990
 (Geneva: International Organization for
 Standardization/International Electrotechnical Commission,
 1990).

3. J. Becker, "Multilingual Word Processing," Scientific
 American, vol. 251 (July 1984): 96-107.

4. The Unicode Standard, Version 1.0, Volume 1 (Reading, MA:
 Addison-Wesley Publishing Company, 1991).

5. The Unicode Standard, Version 1.0, Volume 2 (Reading, MA:
 Addison-Wesley Publishing Company, 1992).

6. Information Technology -- Universal Multiple-Octet Coded
 Character Set (UCS), Draft International Standard, ISO/IEC
 DIS 10646-1.2:1991 (Geneva: International Organization for
 Standardization/International Electrotechnical Commission,
 1991).

7. Unicode 1.0.1 Errata Insert for The Unicode Standard,
 Version 1.0, Volume 1 and Volume 2 (Reading, MA:

 Addison-Wesley Publishing Company, 1992).

8. ISO/IEC 10646 restricts the use of combining characters. See
 the definitions of level 2 and level 3 in the section
 Relationship between Unicode and ISO/IEC 10646.

9. Some of the presentation variants are encoded for
 compatibility with existing standards. For a discussion, see
 the section Code Conversion.

10. R. Pike and K. Thompson, "Hello World," Usenix Conference,
 1993.

11. File System Safe -- UCS Transformation Format (Reading:
 X/Open Company Limited, 1993).

12. A. LaBonté, "Multiscript Ordering for Unicode," Proceedings
 of the Fourth Unicode Implementors Workshop, Sulzbach
 (Unicode Inc., 1992).

13. Private communication, Joseph D. Becker, 1993.

14. Win32 Application Programming Interface (Redmond: Microsoft
 Press, 1992).

15. A. Freytag, "Program Migration to Unicode,"
 Proceedings of the Second Unicode Implementors Workshop,
 Merrimack (Unicode Inc., 1992).

16. String constants in source code should be avoided in all
 cases. They violate one of the fundamental design rules of
 software internationalization, i.e., that objects dependent
 on language and/or culture should be isolated into easily
 accessible modules for the purpose of localization.

17. Unicode defined the code value 0xFEFF to have the semantic
 byte-order mark (BOM) and encourages software developers to
 place it as the first character in a Unicode file. (For
 details, see the section Byte Ordering.)

TRADEMARKS

Alpha AXP, Digital, and VAX are trademarks of Digital Equipment
Corporation.

Hewlett-Packard is a trademark of Hewlett-Packard Corporation.

IBM is a registered trademark of International Business Machines
Corporation.

Intel is a trademark of Intel Corporation.

Microsoft, MS-DOS, and MS Windows are registered trademarks and

Win32 and Windows NT are trademarks of Microsoft Corporation.

Motorola is a registered trademark of Motorola, Inc.

Unicode is a trademark of Unicode Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

WordPerfect is a trademark of WordPerfect Corporation.

X/Open is a trademark of X/Open Company Limited.

BIOGRAPHIES

Jürgen Bettels Jürgen Bettels is an internationalization
architect and the standards manager for the International Systems
Engineering Group. Since 1986, he has worked on many
internationalization architectures starting with DECwindows. He
participated in the Unicode consortium, ECMA, and X/Open on
internationalization. He contributed to the ISO/IEC WG2/SC2,
whose work merged Unicode and ISO 10646 into a single universal
character encoding. Prior to joining Digital, he was a physicist
at the European particle laboratory, CERN. Jürgen has the degree
of Diplom Physiker (physicist) from the University of Aachen.

F. Avery Bishop Avery Bishop is the program manager for Windows
NT/Alpha internationalization. Prior to this position, he worked
in ISE as Digital's representative to the Unicode consortium and
the ANSI X3L2 technical advisory group on character encoding. He
worked with ISO/IEC WG2/SC2, Unicode, and others in Digital to
merge Unicode and ISO 10646 into a single universal character
encoding. Prior to that, he managed projects at DECwest and
worked as the product management manager for ISE in Japan. Avery
has a Ph.D. in electrical engineering from the University of
Utah.

===
Copyright 1993 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

