UNI CODE: A UNI VERSAL CHARACTER CODE

By Jirgen Bettels and F. Avery Bishop

ABSTRACT

A universal character encoding is required to produce software
that can be localized for any | anguage or that can process and
comuni cate data in any | anguage. The Uni code standard is the
product of a joint effort of information technol ogy conpani es and
i ndi vi dual experts; its encoding has been accepted by |SO as the
i nternational standard | SO'| EC 10646. Uni code defines 16-bit
codes for the characters of npbst scripts used in the world's

| anguages. Encoding for some mssing scripts will be added over
time. The Unicode standard defines a set of rules that help

i mpl enmentors build text-processing and rendering engi nes. For
Digital, Unicode represents a strategic direction in

i nternationalization technol ogy. Many software-producing
conpani es have al so announced future support for Unicode.

| NTRODUCTI ON

A universal character encoding -- the Unicode standard -- has
been devel oped to produce international software and to process
and render data in nmost of the world's |anguages. In this paper

we present the background of the devel opnent of this standard
anong vendors and by the International Organization for
Standardi zation (1SO. We describe the character encoding's
desi gn goals and principles. W also discuss the issues an
application handl es when processing Uni code text. W concl ude
with a description of some approaches that can be taken to
support Uni code and a di scussion of Mcrosoft's inplenmentation
M crosoft's decision to use Unicode as the native text encodi ng
inits Wndows NT (New Technol ogy) operating systemis of
particul ar significance for the success of Unicode.

BACKGROUND

In the 1980s, software markets grew throughout the world, and the
need for a neans to represent text in nmany |anguages becane
apparent. The conplexity of witing software to represent text

hi ndered the devel opnent of gl obal software.

The obstacles to witing international software were the
fol | owi ng.

1. Stateful encoding. The character represented by a
particular value in a text stream depended on val ues
earlier in the stream for exanple, the escape sequences
of the 1SOIEC 2022 standard. [1]

2. Variable-length encoding. The character width varied from
one to four bytes, making it inpossible to know how many

characters were in a string of a known nunmber of bytes,
without first parsing the string.

3. Overl oaded character codes and font systems. Character
codes tended to encode gl yph variants such as |igatures;
font architectures often included characters to enable
di splay of characters from various |anguages sinply by
varying the font.

In the 1980s, character code experts from around the world began
work on two initially parallel projects to elimnate these
obstacles. In 1984, the |1SO started work on a universal character
encoding. This effort placed heavy enphasis on conpatibility

Wi th existing standards. The | SO I EC committee published a Draft
International Standard (DIS) in spring 1991.[2] By that tinme, the
wor k on Uni code (described in the next section) was al so nearing
conpl etion, and many experts were alarnmed by the potential for
confusion fromtwo conmpeting standards. Several of the |ISO

nati onal bodi es therefore opposed adoption of the DI'S and asked
that 1SO and Uni code work together to design a universa

character code standard.

The Origins of Unicode

In some sense Unicode is an of fshoot of the | SO |EC 10646 worKk.
Pet er Fenwi ck, one of the early conveners of the | SO working
group responsi ble for 10646, devel oped a proposal called
"Alternative B," based on a 16-bit code with no restriction on
the use of control octets. He presented his ideas to Joseph
Becker of Xerox, who had al so been working in this area.[3]

In early 1988, Becker nmet with other experts in |inguistics and
i nternational software design from Apple Conputer (notably Lee
Collins and Mark Davis) to design a new character encoding. As
one of the original designers, Becker gave this code the nane
Uni code, to signify the three inportant elenments of its design
phi | osophy:

1. Universal. The code was to cover all nmjor nodern witten
| anguages.

2. Unique. Each character was to have exactly one encodi ng.

3. Uniform Each character was to be represented by a fixed
width in bits.

The Uni code design effort was eventually joined by other vendors,
and in 1991 it was incorporated as a nonprofit consortiumto
design, pronote, and mmintain the Unicode standard. Today nenber
conpani es include Al dus, Apple Conputer, Borland, Digital

Hewl ett - Packard, |nternational Business Machines, Lotus,

M crosoft, NeXT, Novell, The Research Libraries G oup, Sun

M crosystens, Symantec, Taligent, Unisys, WrdPerfect, and Xerox.

Version 1.0, volune 1 of the 16-bit Uni code standard was
publ i shed in Cctober 1991, followed by volunme 2 in June
1992. [4, 5]

It was sonetinmes necessary to sacrifice the three design
principles outlined above to nmeet conflicting needs, such as
conpatibility with existing character code standards.
Neverthel ess, the Unicode designers have made much progress
toward solving the problens faced in the past decade by designers
of international software.

The Merger of 10646 and Uni code

Urged by public pressure fromuser groups such as IBM s SHARE, as
wel | as by industry representatives fromDigital

Hew ett - Packard, |IBM and Xerox, the | SO 10646 and Uni code design
groups net in August 1991; together they began to create a single
uni versal character encoding. Both groups conpronised to create a
draft standard that is often referred to as Uni code/ 10646. This
draft standard was accepted as an international character code
standard by the votes of the ISOIEC national bodies in the
spring of 1992. 6]

As a result of the nerger with | SO 10646, the Uni code standard
now i ncl udes an errata insert called Unicode 1.0.1 in both

vol unes of version 1.0 to reflect the changes to character codes
in Unicode 1.0.[7] The Unicode Consortium has also commtted to
publish a technical report called Unicode 1.1 that will align the
Uni code standard conpletely with the | SO | EC 10646 two-oct et
conpaction form (the 16-bit form also called UCS- 2.

Rel ati onshi p bet ween Uni code and | SO | EC 10646

Unicode is a 16-bit code, and | SO | EC 10646 defines a two-octet
(UCS-2) and a four-octet (UCS-4) encoding form The repertoire
and code values of UCS-2, also called the base nmultilingual plane
(BMP), are identical to Unicode 1.1. No characters are currently
encoded beyond the BMP; the UCS-4 codes defined are the two UCS-2
octets padded with two zero octets. Although UCS-2 and Uni code
are very close in definition, certain differences remain.

By its scope, ISOIEC 10646 is limted to the codi ng aspects of
t he standards. Unicode includes additional specifications that
hel p aspects of inplenentation. Unicode defines the semantics of
characters nore explicitly than 10646 does. For exanple, it
defines the default display order of a stream of bidirectiona
text. (Hebrew text with nunmbers or enbedded text in Latin script
is described in the section Display of Bidirectional Strings.)
Uni code al so provides tables of character attributes and
conversion to other character sets.

In contrast with the Unicode standard, |1SO 10646 defines the
following three conpliance | evels of support of conbining

characters:

o Level 1. Conbining characters are not all owed
(recogni zed) by the software.

o Level 2. This level is intended to avoid duplicate coded
representations of text for sone scripts, e.g., Latin,
Greek, and Hiragana.

o Level 3. Al conbining characters are all owed.

Therefore, Unicode 1.1 can be considered a superset of UCS-2,
 evel 3.

Throughout the remai nder of this paper, we refer to this jointly
devel oped standard as Uni code. Where differences exist between

| SO 10646 and Uni code standards, we describe the Unicode
functionality. We also point out the fact that Unicode and | SO
sonmetinmes use different terns to denote the sane concept. Wen

i dentifying characters, we use the hexadeci mal code
identification and the | SO character nanes.

GENERAL DESI GN OF UNI CODE

This section discusses the design goals of Unicode and its
adherence to or variance fromthe principles of universality,
uni queness, and uniformty.

Design Goal s and Principles

The fundanmental design goal of Unicode is to create a uni que
encodi ng for the characters of all scripts used by living

| anguages. In addition, the intention is to encode scripts of
hi stori c | anguages and synbol s or other characters whose use
justifies encoding.

An inportant design principle is to encode each character with
equal width, i.e., with the sane nunber of bits. The Uni code
designers deliberately resisted any calls for variable-length or
stateful encodings. Preserving the sinplicity and uniformty of
the encodi ng was considered nore inportant than considerations of
optim zation for storage requirenents.

A Uni code character is therefore a 16-bit entity, and the

conpl ete code space of over 65,000 code positions is available to
encode characters. A text encoded in Unicode consists of a
stream of 16-bit Unicode characters w thout any other enbedded
controls. Such a text is sonetinmes referred to as Uni code plain
text. The section Processing Unicode Text discusses these
concepts in nore detail

Anot her departure fromthe traditional design of code sets is

Uni code' s i nclusion of combining characters, i.e., characters
that are rendered above, below, or otherwi se in close association
with the preceding character in the text stream Exanples are
the accents used in the Latin scripts, as well as the vowel nmarks
of the Arabic script. Conmbining characters are allowed to
combi ne with any other character, so it is possible to create new
text el enents out of such combinations.[8] This technique can be
used in bibliographic applications, or by linguists to create a
script for a |language that does not yet have a witten
representation, or to transliterate one | anguage using the script
of another. An exanple in recent times is the conversion of sone
Central Asian witing systenms fromthe Arabic to the Latin
script, follow ng Turkey's exanple in the 1920s (Kazakhstan).

An additional design principle is to avoid duplication of
characters. Any character that is nearly identical in shape
across | anguages and is used in an equivalent way in these

| anguages i s assigned a single code position. This principle |ed
to the unification of the ideographs used in the Chinese,
Japanese, and Korean witten | anguages. This so-called CIK

uni fication was achieved with the cooperation of officia
representatives fromthe countries involved.

The principle of uniqueness was al so applied to decide that
certain characters should not be encoded separately. In general
the principle states that Uni code encodes characters and not

gl yphs or glyph variations. A character in Unicode represents an
abstract concept rather than the manifestation as a particul ar
formor glyph. As shown in Figure 1, the glyphs of many fonts
that render the Latin character A all correspond to the sane
abstract character "a."

[Figure 1 (Abstract Latin Letter "a" and Style Variants) is not
available in ASCI| format.]

Anot her exanple is the Arabic presentation form An Arabic
character may be witten in up to four different shapes. Figure 2
shows an Arabic character witten in its isolated form and at
the beginning, in the nmddle, and at the end of a word. According
to the design principle of encoding abstract characters, these
presentation variants are all represented by one Unicode
character.[9]

[Figure 2 (Isolated, Final, Initial, and Mddle Forns of the
Arabi ¢ Character Sheen) is not available in ASCII format.]

Since nmuch existing text data is encoded using historic character
set standards, a neans was provided to ensure the integrity of
characters upon conversion to Unicode. Great care was taken to
create a Uni code character corresponding to each character in

exi sting standards. Characters identical in shape appearing in
different standards are identified and mapped to a single Unicode
character. For characters appearing twice in the sane standard, a
conpatibility zone was created. These characters are encoded as

required to make round-trip conversion possible between other
st andards and Uni code. The Uni code Consortium has agreed to
create nmapping tables for this purpose.

Text El enents and Conbi ni ng Characters

When a conputer application processes a text docunent, it
typically breaks down text into smaller elenments that correspond
to the smallest unit of data for that process. These units are
called text elements. The conposition of a text elenent is
dependent on the particular process it undergoes. The Arabic
ligature lamalef is a text elenment for the rendering process but
not for other character operations, such as sorting.

In addition, the sane process applied to the same string of text
requires different text el ements depending on the |anguage
associated with the string. Figure 3 shows sorting applied to the
string "ch." If this string is part of English text, the text

el enents for the process of sorting are "c" and "h." |n Spanish
text, however, the text elenment for sorting is ch because ch is
sorted as if it were a single character

Figure 3 Text Elenents and Col | ation

Spani sh Engli sh
curra charm
chasqui do current
dano digit

For other text-processing operations, text elenents m ght
constitute units smaller than those traditionally called
characters. Exanples are the accents and diacritical nmarks of the
Latin script. These small text elenents interact graphically with
a nonconbi ni ng character called a base character. The acute
accent interacts with the base character A to formthe character
A acute. |If a given font does not have the character A acute, but
it does have A and acute accent as separate glyphs, the character
A acute has to be divided into smaller units for the rendering
process.

In Thai script, vowels and consonants conbine graphically so that
the vowel mark can be either before, above, below, or after a
consonant, thus formng one display unit. This unit becones the
text el enent for purposes of rendering. For a process such as
advance to next character, however, the individual vowels and
consonants are the natural units of operation and are therefore
the text el enents.

There is no sinple relationship between text elenments and code
el ements. As we have shown, this relationship varies both with
the | anguage of the text and with the operation to be perforned
by the application. In earlier encoding systems such as ASCI| or
others with a strong relationship to a | anguage, this problem was
not apparent. Wen designing a universal character code, the

Uni code desi gners acknow edged the i ssue and anal yzed whi ch
character elements have to be encoded as code el enents to
represent the scripts of Unicode across nultiple | anguages.

Rat her than burden the character code with the conplexity of
encoding a rich set of text elenents, the Unicode Technica
Committee deci ded that the mapping of code elenments to nore
conpl ex text elenents should be performed at the application

| evel .

Code Space Structure

The Uni code code space is the full 16-bit space, allow ng for
65,536 different character codes. As shown in Figure 4,
approximately 50 percent of this space is allocated. This code
space is logically divided into four different regions or zones.

[Figure 4 (Code Space Allocation for Scripts) is not avail able
in ASCII format.]

The A-zone, or al phabetic zone, contains the al phabetic scripts.
The first 256 positions in the A-zone are occupied by the | SO
8859-1, or 8-bit ANSI codes, in such a way that an 8-bit ASCI
code maps to the correspondi ng 16-bit Uni code character through
padding it with one null byte. The positions corresponding to the
32 ASCI|1 control codes 0 to 31 are enpty, as well as the

positi ons 0x0080 to Ox009F

The characters of other al phabetic scripts occupy code space in
the range from 0x0000 to 0x2000. Not all of the space is
currently occupied, |eaving roomto encode nore al phabetic
scripts.

The remai nder of the A-zone up to 0x4000 is allocated for genera
synmbol s and the phonetic (i.e., nonideographic) characters in use
in the Chinese, Japanese, and Korean | anguages.

The second zone up to OxAO000 is the ideograph, or |-zone, which
contains the unified Han characters. Currently about 21,000
positions have been filled, leaving virtually no room for
expansion in the |-zone.

The third zone, or O zone, is a currently unallocated space of
16K. Al though several uses for this space have been proposed, its
nost natural use seens to be for nore ideographic characters.
However, even 16K can hold only a subset of the ideographic
characters.

The fourth zone, the restricted or R zone, has some space
reserved for user-defined characters. It also contains the area
of codes that are defined for conpatibility with other standards
and are not allocated el sewhere.

PROCESSI NG UNI CODE TEXT

The sinplest formof Unicode text is often called plain Unicode.
It is a text stream of pure Unicode characters w thout additiona
formatting or attribute data enbedded in the text stream In
this section, we discuss the issues any application faces when
processi ng such text. Processing in this context applies to the
steps such as parsing, analyzing, and transform ng that an
application perforns to execute its required task. In nost cases,
the text processing can be divided into a nunmber of primtive
processing operations that are typically offered as a tool kit
service on a system |In describing Unicode text processing, we
di scuss sonme of these primtives.

Code Conversion

One of the goals of Unicode is to nmake it possible to wite
applications that are capable of handling the text of many
writing systenms. Such an application would typically apply a
nodel that uses Unicode as its native process code. The
application could then be witten in ternms of text operations on
Uni code data, which does not vary across the different witing
syst ens.

Today, and for sonme tine to come, however, the data that the
application has to process is typically encoded in sone code

ot her than Unicode. A frequent operation to be perforned is
therefore the conversion fromthe code (file code) in which data
is presented to Unicode and back

One of the design goals of Unicode was to allow conpatibility

Wi th existing data through round-trip conversion w thout |oss of
information. It was not a goal to be able to convert the codes of
ot her character sets to Unicode by sinply adding an offset. This
woul d violate the principle of uniqueness, since many characters
are duplicated in the various character sets. Mst existing
character sets therefore have to be nmapped through a table

| ookup. These mapping tables are currently being collected by the
Uni code Consortiumand will be nade available to the public.

It was, however, decided that the 8-bit ASCII, or |SO 8859-1
character set, was to be mapped into the first 256 positions of
Uni code. Ot her character sets (or subsets), such as the Tha
standard TI'S 620-2529, could also be napped directly, since
character uni queness was preserved. Al so, one of the blocks of
Korean syllables is a direct mapping fromthe Korean standard KSC
5601.

Some character sets contain characters that cannot be assigned
code val ues under the Unicode design rules. Oten these
characters are different shapes of encoded characters, and
encodi ng them woul d violate the principle of uniqueness. To all ow
round-trip conversion for these characters, a special code area,
the conpatibility zone, was set aside in the R zone to encode
themand to allow interoperation with Unicode. For exanple, the

wi de forns of the Latin letters in the Japanese JI'S 208 standard
were invented to sinplify rendering on nonospacing term nals and
printers.

Character Transformations

A frequently used operation in text processing is the
transformati on of one character into another character. For
exanple, Latin | owercase characters are often transformed into
upper case characters to execute a case-insensitive search. In
nost traditional character sets, this operation would translate
one code value to another. Thus, the output string of the
operation woul d have the same nunber of code val ues as the input
string, and both strings woul d have the same length. This
assunption is no longer true in the case of Unicode strings.

Consi der the Unicode characters, Latin small letter a + conbining
grave accent, i.e., a string of two Unicode characters. If this
string were part of a French text (in France), transformng a to
A would result in one Unicode character, Latin capital letter A
If the same string were part of a French Canadi an text, the
accent would be retained on the uppercase character. W can
therefore nmake two observations: (1) The string resulting froma
character transformation may contain a different nunber of
characters than the original string and (2) The result depends on
other attributes of the string, in this case the | anguage/region
attribute.

Anot her inmportant character transformation operation is a
normal i zati on transformation. This operation transfornms a string
into either the nost unconposed or the nobst preconposed form of
Uni code characters. As an exanple, we consider the different

spel lings of the conbination

0

Latin capital letter U
with diaeresis and grave accent

This letter has been encoded in preconposed formin the
Addi tional Extended Latin part of Unicode. There are two
addi tional spellings possible to encode the sanme character shape:

U+ °

Latin capital letter Uwth diaeresis
+ conbi ni ng grave accent

and
U+ .. +°

Latin capital letter U
+ conbi ning di aeresis
+ conbi ni ng grave accent

The npst unconposed and the nmost preconposed forns of these
spellings can be considered normalized forms. \When processing
Uni code text, an application would typically transformthe
character strings into either of these two fornms for further
processi ng.

Not e that the spellings:
U+ ..

Latin capital letter U
with grave accent
+ conbi ning di aeresis

and
u+ " + ..

Latin capital letter U
+ conbi ni ng grave accent
+ conbi ning di aeresis

would result in a different character

[Note: The resulting character is not readable in ASCI| fornmatted
text. The character should be Latin capital Uwith a grave accent
above it and a di aeresis above that.]

This result is due to the rule that diacritical marks, which
stack, nust be ordered fromthe base character outwards.

Byte Ordering

Tradi tional character set encodi ngs, which are conformant to | SO
2022 and the C | anguage nultibyte nodel, consider characters to
be a stream of bytes, including cases in which a character

consi sts of nmore than one byte. Unicode characters are 16-bit
entities; the standard does not nmke any explicit statenent about
the order in which the two bytes of the 16-bit characters are
transmitted when the data is serialized as a stream of bytes.

The ordering of bytes becomes an issue when machines with
different internal byte-order architecture comrunicate. The two
possi bl e byte orders are often called little endian and big
endian. In a little-endian machine, a 16-bit word is addressed as
two consecutive bytes, with the | oworder byte being the first
byte; in a big-endian machi ne, the high-order byte is first.
Today all conputers based on the Intel 80x86 chips, as well as
Digital's VAX and Al pha AXP systens, inplenent a little-endian
architecture, whereas nachines built on Mtorola' s 680xx, as
wel | as the reduced instruction set conputers (Rl SC) of Sun,

Hew ett - Packard, and IBM inplenment a big-endian architecture. In
bli nd i nterchange between systens of possibly different byte
order, Uni code-encoded text nay be read incorrectly. To avoid
such a situation, Unicode has inplenented a byte-order mark that
behaves as a signature. As shown in Figure 5, the byte-order nark
has the code value OxFEFF. It is defined as a zero-wi dth,

no- break space character with no semanti c neani ng other than
byt e- order nmark.

[Figure 5 (Byte-order Mark) is not available in ASCII format.]

The code val ue corresponding to the byte-inverted formof this
character, nanmely OxFFFE, is an illegal Unicode value. |[If the
byte-order mark is inserted into a serialized data streamand is
read by a machine with a different byte-order architecture, it
appears as OxFFFE. This fact signals to the application that the
bytes of the data stream have been read in reverse order from
that in which they were wwitten and shoul d be inverted.
Applications are encouraged to use the byte-order nmark as the
first character of any data witten to a storage nedi um or
transmitted over a network.

Di splay of Bidirectional Strings

To facilitate internal text processing, a Unicode-conpliant
application always stores characters in |ogical order, that is,
in the order a hunman being would type or wite them This causes
conplications in rendering when text normally displayed right to
left (RL) is mxed with text displayed left to right (LR). Hebrew
or Arabic is witten right to left, but may contain characters
witten left to right, if either |anguage is mixed with Latin
characters. Nunerals or punctuation mxed with Hebrew or Arabic
can be written in either order

The Default Bidirectional Al gorithm

Uni code defines a default algorithmfor displaying such text
based on the direction attributes of characters. W outline the
algorithmin this paper; for details, see both volunes of the
Uni code standard.[4,5] (It is inmportant to consult the second
vol une because it contains corrections to the algorithmgiven in
the first volune.)

Al printing characters are classified as strongly LR, weakly LR
strongly RL, weakly RL, or neutral. In addition, Unicode defines
the concept of a global direction associated with a bl ock of
text. A block is approximately equivalent to a paragraph. The
first task of the rendering software is to determ ne the gl oba
direction, which beconmes the default. Enbedded strings of
characters from other scripts are rendered according to their
direction attribute. Neutral characters take on the attribute of
surroundi ng characters and are rendered accordi ngly.

Directionality Contro

Al t hough the default algorithmgives correct rendering in nost
realistic cases, extra information occasionally is needed to

i ndicate the correct rendering order. Therefore, Unicode includes
a nunmber of inplicit and explicit formatting codes to allow for

t he enmbeddi ng of bidirectional text:

Left-to-right mark (LRM
Right-to-left mark (RLM
Ri ght-to-left enbeddi ng (RLE)
Left-to-right enbeddi ng (LRE)
Left-to-right override (LRO
Right-to-left override (RLO

Pop directional formatting (PDF)

It nmust be pointed out that the directional codes are to be
interpreted only in the case of horizontal text and ignored for
any operation other than bidirectional processing. In particular
they must not be included in conpare string operations.

The LRM and RLM characters are nondi spl ayabl e characters with
strong directionality attributes. Since characters with weak or
neutral directionality take their rendition directionality from

t he surroundi ng characters, LRM and RLM are used to influence the
directionality of neighboring characters.

The RLE and LRE enbeddi ng characters and the LRO and RLO override
characters introduce substrings with respect to directionality.
The override characters enforce a directionality and are used to
enforce rendering of, for instance, Latin letters or nunbers from
right to left. Substrings can be nested, and conform ng
applications nmust support 15 levels of nesting. Each RLE, LRE
LRO, or RLO character introduces a new sublevel, and the next

foll owi ng PDF character returns to the previous |level. The
directionality of the uppernost level is inplicit or determ ned
by the application.

Only correct resolution of directionality nesting gives the
correct result. In general it cannot be assunmed that a string of
text that is inserted into other bidirectional text will have the
correct directionality attributes w thout special processing.
This may result in the renmoval of directional codes in the text
or in the addition of further controls. As shown in Figure 6,

particul ar care needs to be taken for cut-and-paste operations of
bi di recti onal text.

[Figure 6 (Cut and Paste of Bidirectional Text) is not avail able
in ASCII format.]

Transm ssi on over 8-bit Channels

Exi sting communi cati on systens often require that data adheres to
the rules of 1SOIEC 2022, which reserve the 8-bit code val ues
bet ween 0x00 and Ox1F (the CO space), between 0x80 and Ox9F (the
Cl space), and the code position DELETE.[1] Since Unicode uses

t hese val ues to encode characters, direct transm ssion of Unicode
data over such transm ssion systems is not possible.

The Uni code designers, in collaboration with I SO have therefore
proposed an al gorithmthat transforns Unicode characters so that
the CO and Cl characters and DELETE are avoi ded. This al gorithm
the UCS transformation format (UTF), is part of the | SO 10646
standard as an informative annex. It is expected that it will be
i ncluded in the revised Unicode standard.

The transformation al gorithm has been conceived in such a way
that the characters corresponding to the 7-bit ASCI| codes and
the Cl codes are represented by one byte (see Figure 4). Code
positi ons 0x00AO t hrough 0x4015 (which include the renai nder of
the extended Latin al phabet) are represented by two bytes each
and three bytes each are used for the remaining code val ues.

Oiginally, UTF had been proposed for use in data transni ssion
and to avoid the problemthat enbedded zero bytes represent for
C |l anguage character strings in the char data type. Subsequently,
it has been proposed to use UTF in historical operating systens
(e.g., UNIX) to store Unicode-encoded systemresources such as
file names.[10]

Modi fications of UTF have therefore been proposed to address

ot her special requirenments such as preservation of the slash (/)
character.[11] It remains to be seen which of these various
transformation nmethods will be wi dely adopted.

Handl i ng of Conbi ni ng Characters

In some of the operations discussed above, we have indicated that
the presence of conbining characters requires processi ng Uni code
text differently fromtext encoded in a character set without
combi ni ng characters. Nornmelization or transformation of the
characters into a normalized formis usually a first hel pful step
for further processing. For exanple, to prepare a text for a
conmpari son operation, one may wi sh to deconpose any preconposed
characters. In this way, multiple-pass conparison and sorting

al gorithms, which typically pass through a |l evel that ignores
diacritical marks, can be applied al nbst unchanged. [12]

For sinple conparison operations, the application nust decide on
a policy of what constitutes equality of two strings. If the
string contains characters with a single diacritical mark, it can
choose either strong matching, which requires the diacritica
marks in both strings, or weak matching, which ignores
diacritical marks. |If the text includes characters with nore than
one diacritical mark for a nmediumstrong match, the presence of
certain marks mght be required but not of others. Strong
matching is required for the Greek word for nmicromateria

m krodl i kad and the Greek dimnuitive formof small mikroulika

W thout the diacritical marks, the words woul d be identical

Uni code requires that conbining characters foll ow the base
character. This solution was chosen over the alternatives of (1)
precede and (2) precede and follow, for various reasons.[13]
Text-editing operations nust take into account the presence and
ordering of diacritical marks. A user-friendly application should
be consistent in its choice of text element on which operations
such as next character or delete character operate. This choice
shoul d feel natural to the user. For exanple, in Latin, G eek
and Cyrillic, the expectation would be that accented characters
are the unit of operation, whereas in Devanagari and Thai, where
several conbining characters and a base character conbine into a
cell, the natural unit is the individual character

| MPLEMENTATI ON | SSUES

In this section we descri be sonme of the approaches that can be
taken to support Unicode. As a concrete exanple, we describe how
the Mcrosoft Wndows NT operating system uses Unicode as the
native text encoding and maintains conpatibility with existing
applications based on a different encoding.

General Considerations in Adding Uni code Support

I nformal discussions with vendors planning to support Unicode
indicate that the followi ng data types and data access are being
consi dered when using the C progranm ng | anguage.

1. A new data type would be designated for Unicode only. It
woul d be directly accessible by the application, e.g.
t ypedef unsigned short UNI CHAR

The Uni code-only data type has the advantage of being
unencunbered wi th preconcepti ons about semantics or
usage. Also, since the application knows that the
contents are in Unicode, it can wite code-set-dependent
applications.

The maj or di sadvantage is that the data type would vary
fromone vendor or platformto another and woul d

t herefore have no standard string-processing |ibraries.

2. An existing data type, such as wchar_t in C would be
used. (Note that the char data type is appropriate only
if char is defined as 16 bits, or if the string is given
some further structure to define its |ength by neans
other than null termnation. Simlar issues may exist in
ot her | anguages.)

The use of an existing data type has the advantage of
bei ng wi dely known and i npl enented; however, it also has
t he di sadvant age of preexisting assunptions about
behavi or and/ or senmantics.

3. An opaque object would be used. Since the data in these
objects is not visible to the calling program it can
only be processed by routines or by invoking its nenber
functions (e.g., in C++).

Use of an opaque object has the advantage of hiding much
of the conplexity inherent in the world's witing systens
fromthe application witer. It has the di sadvant ages
common to object-oriented systens, such as the need for
software engineers to | earn a new programi ng paradi gm
and a set of class libraries for the Unicode objects.
How W ndows NT | npl enments Uni code
The W ndows NT design teamstarted with several goals to nmake an
operating systemthat would preserve the investnent of custoners
and devel opers. These goals affected their decisions regarding
the data types and migration strategies described in the previous
secti on.
The goals related to text processing were to
1. Provide backward conpatibility
a) Support existing Ms-DOS and 16-bit MS W ndows
applications, including those based on 8-bit and
doubl e- byt e character set (DBCS) code pages.
b) Support the DOS file allocation table file system
2. Provide worl dwi de character support in
a) File nanes
b) File contents

c) User nanes

As described later in this section, these conflicting goals were

met under a single Wndows NT architecture, if not sinultaneously
in the sane application and file system then by clever
segregation of Wndows NT into nultitasking subsystens. These
goal s also affect the way M crosoft recomends devel opers mgrate
their existing applications to Wndows NT.

The Basi c Approach. Mcrosoft's overall approach is close to
that of using a standard data type that accesses data mainly

t hrough string-processing functions. |In addition, Mcrosoft
defined a special set of synbols and macros for application
devel opers who wi sh to continue to devel op applications based on
DOS (e.g., to sell to those with 286 and 386SX systens), while
they migrate their products to run as native Wn32 applications
on Wndows NT. The devel oper can then conpile the application
with or without the conpiler switch -DUN CODE to produce an

obj ect nodul e conpiled for a native Wndows NT or a DOS operating
envi ronnent, respectively.

Dual -path Data Types. To select the appropriate conpilation
path, Mcrosoft provides C | anguage header files that
conditionally define data types, macros, and function nanmes for

ei ther Unicode or traditional 8-bit (and DBCS) support, depending
on whether or not the synbol UN CODE has been defined. An exanple
of a data type that illustrates this approach is TCHAR |If

UNI CODE i s defined, TCHAR is equivalent to wchar_t. O herw se,

it is the same as char. The application witer is asked to
convert all instances of char to TCHAR to inplenent the dua

devel opnent strategy.

String-handling Functions. Sinmilarly, the macro TEXT is defined
to indicate that string constants are wi de string constants when
UNI CODE i s defined, or ordinary string constants otherw se.
Application witers should surround all instances of a string or
character constant with this macro. Thus, "Filenane" becones
TEXT("Fi |l enane"), and 'Z' becomes TEXT('Z'). The conmpiler treats
these as a wide string or character constant if UN CODE is
defined, and as a standard char based string or character

ot herwi se.

Finally, there are synbol nanmes for each of the various
string-processing functions. For exanple, if UNI CODE is defined,
the function synmbol nane _tcscnp is replaced by wescnp by the C
preprocessor, indicating that the wi de character function of that
name is to be called. Otherwi se, _tcscnp is replaced with the
standard C library function strcnp. Details of this procedure
can be found in Wn32 Application Progranmm ng

I nterface.[14]

Procedures for Devel oping/ M grating Applications in the Dua

Path. In his paper on "Program M gration to Unicode," Asnus
Freytag of M crosoft explains the steps used to convert an

exi sting application to work in Unicode and retain the ability to
conpile it as a DOS or 16-bit W ndows application.[15] The basic

idea is to renpve the assunptions about how a string is
represented or processed. Al references to string-rel ated
objects (e.g., char data types), string constants, and
string-processing functions are replaced with their dual-path
equi valents. The followi ng steps are then taken

1. Replace all instances of char with TCHAR, char* with
LPSTR, etc. (For a conplete listing, see "Program
M gration to Unicode.")[15]

2. Replace all instances of string or character constants
with the equival ent using the TEXT macro.[16] For
exanpl e,
char filenessage[] = "Fil enane";
char yeschar = 'Y';
becones

TCHAR fil enessage[] = TEXT("Fil ename");
TCHAR yeschar = TEXT('Y');

3. Replace standard char based string-processing functions
with the Wn32 functions. (See page 221 of Wn32
Application Programm ng Interface, for a conplete
listing.)[14]

4. Normelize string-length conmputations using sizeof () where
appropriate. For exanple, direct conmputation using
address arithnmetic should take the form string_length =
(last _address -- first_address)*sizeof (TCHAR)

5. Mark all files with the byte-order mark.[17]
6. Make other, nore substantial changes.

Most char act er - code- dependent processi ng shoul d be taken care of
by step 3, assuning the devel oper has used standard functions.
If the source code nmakes assunptions about the encoding, it wll
have to be replaced with a neutral function call. For exanple,
the wel | - known uppercasi ng sequence

char _upper = char_lower + 'a'" -- "A";

implicitly assunes the | anguage and the uppercasing rules are
Engli sh. These nust be replaced with a function call that
accesses the Wndows NT Natural Language Services.

SUMVARY

A universal character encoding -- the Unicode standard -- has
been devel oped to produce international software and to process
and render data in nost of the world's | anguages. The standard,
often referred to as Uni code/ 10646, was jointly devel oped by
vendors and individual experts and by the Internationa

Organi zation for Standardi zation and Internationa

El ectrot echni cal Conmission (I1SOI1EC). Unicode breaks the
(incorrect) principle that one character equals one byte equals
one glyph. It stipulates the use of text elements that are
dependent on the particular text operation. A nunber of software
vendors are now nmoving to support Unicode. Mcrosoft's

i mpl ement ati on supports Unicode as the native text encoding in
its Wndows NT operating system At the sane tinme, it maintains
conpatibility with existing applications based on 8-bit encoding.

ACKNOWL.EDGMVENTS

The authors would |ike to express their thanks to Asnus Freytag
of M crosoft Corporation and Masam Hasegawa (1 SO' | EC 10646
editor) for their efforts in reviewing this paper

REFERENCES AND NOTES

1. I nformati on Processing -- |1SO 7-bit
and 8-bit Coded Character Sets -- Code Extension Techni ques,
International Standard, |SO 2022:1986 (Geneva: Internationa
Organi zation for Standardi zation, 1986).

2. I nformati on Technol ogy -- Miltiple-COctet Coded Character
Set, Draft International Standard, |SOIEC DI S 10646: 1990
(Geneva: International Organization for
St andardi zati on/ I nternational Electrotechnical Conm ssion,
1990).

3. J. Becker, "Muiltilingual Word Processing," Scientific
American, vol. 251 (July 1984): 96-107.

4, The Uni code Standard, Version 1.0, Volune 1 (Reading, MA:
Addi son- Wesl ey Publishing Conpany, 1991).

5. The Uni code Standard, Version 1.0, Volune 2 (Reading, MA:
Addi son- Wesl ey Publishing Conpany, 1992).

6. I nformati on Technol ogy -- Universal Miltiple-Octet Coded
Character Set (UCS), Draft International Standard, |1SO1EC
DI'S 10646-1.2:1991 (Ceneva: International Organization for
St andardi zation/ I nternational Electrotechnical Conmi ssion,
1991).

7. Unicode 1.0.1 Errata Insert for The Uni code Standard,
Version 1.0, Volunme 1 and Volunme 2 (Readi ng, MA:

Addi son- Wesl ey Publishing Conpany, 1992).

8. | SO I EC 10646 restricts the use of conbining characters. See
the definitions of level 2 and level 3 in the section
Rel ati onshi p bet ween Uni code and | SO | EC 10646.

9. Some of the presentation variants are encoded for
conpatibility with existing standards. For a discussion, see
t he section Code Conversion.

10. R Pike and K. Thonpson, "Hello World," Useni x Conference,
1993.

11. File System Safe -- UCS Transformati on Format (Readi ng:
X/ Open Conpany Limted, 1993).

12. A LaBonté, "Miltiscript Ordering for Unicode," Proceedi ngs
of the Fourth Unicode I nplenmentors Workshop, Sul zbach
(Uni code Inc., 1992).

13. Private conmunication, Joseph D. Becker, 1993.

14. Wn32 Application Programm ng Interface (Rednmond: M crosoft
Press, 1992).

15. A Freytag, "Program M gration to Unicode,"
Proceedi ngs of the Second Uni code | npl enentors Wrkshop,
Merrimack (Unicode Inc., 1992).

16. String constants in source code should be avoided in al
cases. They violate one of the fundamental design rules of
software internationalization, i.e., that objects dependent
on | anguage and/or culture should be isolated into easily
accessi bl e nodul es for the purpose of |ocalization.

17. Uni code defined the code val ue OXFEFF to have the semantic
byt e-order mark (BOM and encourages software devel opers to
place it as the first character in a Unicode file. (For
details, see the section Byte Ordering.)

TRADEMARKS

Al pha AXP, Digital, and VAX are trademarks of Digital Equi pnment
Cor poration.

Hew ett-Packard is a trademark of Hew ett-Packard Corporation

IBMis a registered trademark of International Business Machi nes
Cor poration.

Intel is a trademark of Intel Corporation

M crosoft, MsS-DOS, and MS Wndows are regi stered trademarks and

W n32 and W ndows NT are trademarks of M crosoft Corporation
Motorola is a registered trademark of Mdtorola, Inc.

Uni code is a trademark of Unicode Inc.

UNI X is a registered trademark of UN X System Laboratories, Inc.
WordPerfect is a trademark of WordPerfect Corporation

X/ Open is a trademark of X/ Open Conpany Limted.

Bl OGRAPHI ES

Jirgen Bettels Jirgen Bettels is an internationalization
architect and the standards nanager for the International Systens
Engi neeri ng Group. Since 1986, he has worked on nany
internationalization architectures starting with DECwW ndows. He
participated in the Unicode consortium ECMA and X/ Open on

i nternationalization. He contributed to the | SO | EC W&/ SC2,
whose work merged Uni code and | SO 10646 into a single universa
character encoding. Prior to joining Digital, he was a physici st
at the European particle laboratory, CERN. Jirgen has the degree
of Di pl om Physi ker (physicist) fromthe University of Aachen.

F. Avery Bishop Avery Bishop is the program rmanager for W ndows
NT/ Al pha internationalization. Prior to this position, he worked
in ISE as Digital's representative to the Unicode consortium and
the ANSI X3L2 technical advisory group on character encoding. He
wor ked with |1 SO I EC W&2/ SC2, Uni code, and others in Digital to
nmer ge Uni code and | SO 10646 into a single universal character
encoding. Prior to that, he nanaged projects at DECwest and

wor ked as the product managenent manager for |ISE in Japan. Avery
has a Ph.D. in electrical engineering fromthe University of

Ut ah.

Copyright 1993 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

