
THE X/OPEN INTERNATIONALIZATION MODEL

By Wendy Rannenberg and Jürgen Bettels

ABSTRACT

Software internationalization standards allow developers to
create applications that are neutral with respect to language and
cultural information. X/Open adopted a model for
internationalization and has revised the model several times to
expand the range of support. The latest version of the X/Open
internationalization model, which supports multibyte code sets,
provides a set of interfaces that enables users in most of Europe
and Asia to develop portable applications independent of the
language and code set. One implementation of this model, the
internationalized DEC OSF/1 AXP version 1.2 (based on OSF/1
release 1.2) supports complex Asian languages such as Chinese and
Japanese.

INTRODUCTION

Software internationalization standards initiatives began in the
late 1980s. This paper provides a brief history of
internationalization standards activities followed by a
description and an analysis of the X/Open model for
internationalization. The Open Software Foundation's OSF/1
release 1.2 and Digital's DEC OSF/1 AXP version 1.2
internationalization implementations serve as reference software
for the description. The analysis covers both the strengths and
the limitations of the model. The paper concludes with a
discussion of current and future relationships between this model
and other work in the field.

INTERNATIONALIZATION STANDARDS

The International Organization for Standardization (ISO) is the
primary group that is currently publishing or developing
internationalization specifications, including code sets,
programming languages, and frameworks. Before the ISO adopts
emerging specifications, much work is done by other groups. In
the case of interfaces that support the development of
international applications, the Uniforum Internationalization
Technical Work Group, the X/Open Internationalization Work Group,
the Unicode Consortium, and the X Consortium have been
instrumental.

Internationalization is generally considered to be the processes
and tools applied to create software that is neutral with respect
to language and cultural information. This neutrality can be
accomplished by providing a set of application interfaces
designed to isolate sensitivity to language and culture-specific
information. Such interfaces include functionality to

 o Attain character attributes independent of coded
 character sets, i.e., code sets

 o Order relationships of characters and strings

 o Process culturally sensitive format conversion (e.g.,
 date, time, and numbers)

 o Maintain user messages for multiple languages

Standardization of internationalization interfaces began
predominantly in the UNIX environment. Companies such as
Hewlett-Packard and AT&T provided early proprietary solutions.[1]

When X/Open announced its intention to include support for
internationalization in Issue 2 of its X/Open Portability Guide
(XPG2), Hewlett-Packard submitted its Natural Language Support
System as a proposal for an internationalization model. X/Open
further developed this proposal and published the guide in
1987.[2] Some principles developed for these solutions found
their way into the emerging C programming language standard
(ISO/IEC 9899) and the POSIX operating system interface
specification (ISO/IEC 9945-1).[3,4]

The subsequent version of the X/Open Portability Guide, XPG3,
published in 1989, demonstrated further improvement in
internationalization support.[5] The guide was aligned with the
ISO/IEC C standard and the ISO/IEC POSIX specification, both of
which meanwhile had been finalized.

A major drawback of the XPG3 specification is that it is
limited to single-byte code sets. Such code sets are used
primarily for western European languages and preclude use of the
X/Open internationalization model for Asian and eastern European
languages.

The Japanese UNIX Advisory Group developed specifications to
extend support to character sets that are encoded in more than
one byte. These code sets are generally known as multibyte code
sets. The Multibyte Support Extensions developed by this group
are now included in an addendum to the ISO/IEC C programming
language standard.[6] This work was also adopted by X/Open for
inclusion in Issue 4 of the X/Open Portability Guide (XPG4),
which was published in 1992.[7,8,9]

However, the underlying model used by X/Open and POSIX does not
fully meet the needs of distributed and multilingual computing
environments. Therefore, in 1992 X/Open and Uniforum created a
joint internationalization work group, commonly referred to as
the XoJIG. This group investigated internationalization
requirements for distributed and multilingual environments and,
in November 1992, published a revised model for
internationalization.[10]

THE X/OPEN INTERNATIONALIZATION MODEL

When X/Open first investigated the need for internationalization
services, several needs were identified:

 o Meet the market requirements of the X/Open member
 companies. (Many of these requirements were based on the
 needs of the European Economic Community [EEC].)

 o Support more than one language and cultural environment,
 including messages and date/time.

 o Provide for data transparency, i.e., remove 7-bit, U.S.
 ASCII restrictions from the environment.

As discussed previously, X/Open adopted a model for
internationalization and has updated and revised the model many
times. The next section describes the current X/Open model.

Overview of the X/Open Portability Model, Issue 4

There are five components to the current X/Open
internationalization model, X/Open Portability Guide, Issue 4
(XPG4):

 1. Locale announcement mechanism

 2. Locale databases

 3. Internationalization-specific library routines

 4. Internationalized interface definitions for standard
 C language library routines

 5. Message catalog subsystem

The locale announcement mechanism provides a way for an
application to load, at run time, a specific set of data that
describes a user's native language and cultural information. An
application user can specify a language, a territory, and a code
set by means of environment variables. The locale announcement
mechanism checks the environment variables. If the variables are
set, the application attempts to load the locale-specific data.
If the environment variables are not set, most applications
default to the use of the POSIX (i.e., C language) locale or an
implementation-defined locale. The POSIX locale definition is
based on the U.S. ASCII code set and the U.S. English language.

In conjunction with locale databases, the announcement mechanism
provides access to code set specification data, character
collation information, date/time/numerical/monetary formatting

information, negative/affirmative responses, and
application-specific message catalogs.

Figure 1 shows the relationships among the components of the
X/Open internationalization model.[11] Refer to Figure 1
throughout this section, as the various elements of the figure
are described.

[Figure 1 (Components of the X/Open Internationalization Model)
is not available in ASCII format.]

The locale announcement mechanism is based on the setlocale()
function

char *setlocale(int category,
 const char *locale)

The categories correspond to components of the locale database
and have a set of corresponding user environment variables. The
announcement mechanism supports an order of precedence when
querying the user's environment to establish the preferred
locale. Table 1 shows the environment variables specified by
XPG4.

Table 1 Locale-specific Environment Variables

Variable Use

LC_ALL For all categories
LC_COLLATE For collation
LC_CTYPE For character classification
LC_MESSAGES For responses and message catalogs
LC_MONETARY For monetary information
LC_NUMERIC For numeric information
LC_TIME For date/time information
LANG If no others are set

If no others are set The LC_ALL environment variable has
precedence over all others, whereas the LANG environment variable
has no precedence. The other LC_* environment variables are of
equal weight.

Although it does not provide a naming convention for locales, the
X/Open model does specify the locale argument as a pointer to a
string in the form

XPG3:
language[_territory[.codeset]][@modifier]

XPG4:
language[_territory][.codeset][@modifier]

Examples of environment variable settings are

 LANG=en_US.ISO8859-1

and

 LC_COLLATE=ja_JP.jpEUC

The modifier is sometimes used to specify a particular instance
of a language or cultural information for a locale. For instance,
if support for a particular sort order is necessary, in a German
locale the user might specify

 LC_COLLATE=de_DE.ISO8859-1@phone

to sort alphabetically according to the telephone directory
rather than the dictionary.

Locale databases can be provided by either the system vendor or
an application developer. A description of utilities that convert
a source format specification of a locale to a binary file
follows.

The setlocale() function accesses the binary locale databases and
provides a global locale within a given application. The global
locale is similar to a global variable in that it is shared by
all of an application's procedures. Locale switching can be done
within an application, but within the scope of the XPG4 model
such locale switching is unnecessarily complex and costly, in
terms of performance. A later section discusses additional
limitations of this mechanism.

The set of interfaces shown in Table 2 supports international
application development and was first introduced as part of the
ISO/IEC C and the XPG2 and XPG3 specifications. These interfaces
are used primarily to access data in the locale databases or to
manipulate locale-sensitive data.

Table 2 Interfaces for International Application Development

Interface Use

localeconv() For retrieving locale-dependent formatting parameters
nl_langinfo() For extracting information from the locale database
setlocale() For locale announcement
strcoll() For locale-based string collation
strftime() For converting date/time formats based on locale
strxfrm() For transforming a string for collation in current locale

The XPG3 specification is based on the use of ISO/IEC 8859-1 as
the transmission code set.[12] Some implementations use this as
an internal code set, instead of the ASCII code set.

A limited set of functions that support multibyte characters is
also available: mblen(), mbtowc(), mbtowcs(), wctomb(), and

wcstombs(). Each of these functions is based on the ISO/IEC C
wide character (wchar_t) data type. The size of the data type is
not specified by the standard and can vary from one
implementation to the next, depending on the code set support
offered by a particular vendor. This multibyte function set does
not provide adequate support for Asian language application
development.

In addition to the mb* and wc* functions, the X/Open
internationalization model specifies a set of extensions for many
library functions and commands. These extensions enable the
support of 8-bit characters as well as provide the functionality
required to meet the original goal of ensuring data transparency.
For example, changes to the printf() and scanf() families of
functions allow the ordering of arguments to be specified in
translated message catalogs. In addition, about 80 commands,
including sort and date, were modified to support the locale
categories.

The XPG specifications include a message catalog subsystem.
Although not very sophisticated, this subsystem provides much
needed functionality. Minor updates have been made with each new
issue of the Portability Guide. The subsystem comprises only
three functions: catopen(), catclose(), and catgets(). A command,
gencat, is used to convert a message source file into a binary
message catalog that is accessed at run time by an application.
The behavior of the catopen() function is dependent on the user's
chosen locale allowing selection of translated messages.

XPG4 Specification and the OSF/1 Release 1.2 Implementation

This section discusses the XPG4 model in terms of the OSF/1
release 1.2 implementation. Topics include code set support, the
locale definition utility (the utility for handling data in mixed
code sets), worldwide portability interfaces, and local language
support.

Code Set Support. As mentioned in the previous section, the XPG3
specification primarily supports code sets based on the ISO/IEC
8859-1 specification. The XPG4 model goes beyond this by
including additional interface specifications to support
multibyte locales and internationalized commands.

The XPG4 model is a superset of the five basic components of the
XPG3 model. The use of the wchar_t data type is a key feature of
the new interface specifications, because this data type supports
multibyte code sets. In the internationalized DEC OSF/1 AXP
version 1.2 system, the size of wchar_t is 32 bits, which enables
the support of complex Asian languages such as Chinese. This
implementation is based on the OSF/1 release 1.2, which is itself
designed to support 8-, 16-, or 32-bit wchar_t definitions. The
X/Open internationalization model is based on the concept of

process and file codes. In the internationalized DEC OSF/1
version 1.2 implementation, the wchar_t data type is used as
process code. That is, internal to an application, characters are
converted to the wchar_t data type before use. File code, i.e.,
on-disk data, is always stored as multibyte characters. An
application converts all internal process code (i.e., wchar_t
data type) character to multibyte character prior to storing it
on disk. This enables file compression and enforces the use of a
constant width for the processing of character information. The
mb* and wc* functions convert between the two types of data. The
size of the wchar_t data type combined with the capability to
support multiple encoding schemes provides the flexibility
required to have a code set-independent implementation.

Restrictions exist on the use of certain characters in the second
and subsequent bytes of a multibyte character so that full code
set independence is difficult to achieve. An example of such a
restriction is the slash character /. The UNIX file system uses
this character as a delimiter in absolute and relative pathname
specifications. Implementations based on OSF/1 release 1.2
restrict the use of characters in the range 0x00-0x3F to the
ASCII code set. However, even with this restriction, it is
possible to build robust systems that support a wide range of
multibyte code sets.

To gain the necessary flexibility, the Open Software Foundation
introduced an object-oriented architecture for the
internationalization subsystem. This architecture specifies the
various components of the X/Open model as subclasses. At run
time, an application instantiates objects built from these
subclasses by means of the setlocale() function call.

localedef, iconv and Code Set Independence. XPG3 does not
provide a utility for describing locales. Therefore, the number
of different approaches to the problem matched the number of
vendors. Introduced in the POSIX specification ISO/IEC DIS 9945-2
and hence adopted by X/Open, the localedef utility provides a
mechanism for specifying a locale in a portable manner.[13] For
each code set supported in the internationalized DEC OSF/1 AXP
system, there is a corresponding charmap file and one or more
corresponding locale definition files that adhere to the POSIX
specifications. Combined with a set of locale-specific methods
and code set converter modules, these subclasses provide the
foundation for the OSF internationalization architecture.

Locale-specific methods provide a way for the ISO/IEC C language
mbtowc(), wctomb() family of functions to work in a multiple code
set environment. The wchar_t encoding of a multibyte character in
the Japanese SJIS code set is different from that for a character
in the Super DEC Kanji code set. At execution time, the correct
method is instantiated based on the user's choice of locale. An
example of such an instantiation is shown in Figure 2.

Figure 2 Instantiation of mbtowc()

 LANG=ja_JP.SJIS

 mbtowc() -- > sjis_mbtowc()

 or

 LANG=zh_TW.eucTW

 mbtowc() -- > eucTW_mbtowc()

A user-level utility (iconv) and several library functions
(iconv(), iconv_open(), and iconv_close()) provide a way to
handle data that may be in mixed code sets. Internationalized DEC
OSF/1 version 1.2 provides an extensive set of code set
conversion modules. New conversion methods are easily added to
the system.

Worldwide Portability Interfaces. The XPG4 internationalization
architecture parallels the XPG3/ISO C model. For example, XPG4
specifies a family of isw* functions similar in design to the is*
functions (e.g., isalpha) specified in the ISO/IEC C standard. As
mentioned previously, the XPG3 model does not include all the
interfaces necessary for application developers to handle
multibyte code sets. A new set of interfaces, which parallels the
set of ISO/IEC C 8-bit interfaces, was developed and integrated
into the XPG4 specification. The final version of the interface
specification was proposed to the ISO/IEC C committee as the
Multibyte Support Extensions.

Cultural Data/Local Language Support. Local language support is
achieved through the use of locale databases and message
catalogs. The catalogs enable translation of user messages.
Locale databases have two components: the charmap file and the
locale definition file. These databases are created by means of
the localedef command.

The charmap file contains a POSIX-compliant specification of the
code set, i.e., a one-to-one mapping from character to code
point. The locale definition file contains the cultural
information. Various sections of the definition file correspond
to the categories referenced by the setlocale() function. The
definition file contains collation specifications, numeric and
monetary formatting information, date/time formats,
affirmative/negative response specifications, and character
classification information. In the OSF/1 release 1.2
implementation, these definition files are independent of the
code set. For example, the definition for Japanese (ja_JP) can be
combined with multiple charmap files such as SJIS or eucJP.

STRENGTHS OF THE X/OPEN MODEL

The greatest strength of the X/Open internationalization model is
that it is in place today and enables the development of
portable, language- and code set-independent applications. The
internationalized DEC OSF/1 AXP version 1.2 system provides
support throughout the commands and utilities for 20 code sets
that represent major European and Asian languages. All this is
accomplished using XPG4 application programming interfaces
(APIs). In addition, the programming paradigm is consistent with
ANSI C, making it easier for application developers to modify
existing applications for international support.

LIMITATIONS OF THE X/OPEN MODEL

As described previously, the X/Open model for
internationalization provides a comprehensive set of application
interfaces, thus enabling the development of applications that
can be used worldwide. Yet, as with many standards, there are
limits to what can be accomplished. In this case, limitations
manifest themselves in several areas:

 o C language API

 o Distributed computing environments

 o Multithreaded applications

 o Multilingual applications[14]

 o Unicode and ISO/IEC 10646 support[15,16]

Because the X/Open and POSIX specifications are based on UNIX
implementations, the APIs are specified only for the C
programming language. For programming languages such as COBOL,
FORTRAN, and Ada, it is not necessarily possible to match the
syntax and semantics of the API. The remainder of this section
explores generic problems with the global locale model and
addresses specific issues in more detail.

Global Locale Issues

The X/Open model is based on the concept of a global locale. This
aspect of the model is achieved through the use of locale data
that is maintained in a private, process-wide global structure.
The use of a global locale is one of the more severe drawbacks to
using the overall model.

When working with this model, application developers typically
assume that a single language-territory-code set combination is
in use at a given time and will remain constant on a per-process
basis. Although it is possible to use the announcement mechanism

to determine the run-time locale of a process, this mechanism is
cumbersome. The application must both save and restore the locale
information.

Another drawback of the X/Open model is that existing APIs do not
include a way to share locale-specific information between
processes. This, combined with the difficulty of locale
switching, limits the ability to support multilingual
and distributed applications.

Distributed Processing Issues

In a client-server environment, the problem of supporting
multiple locales becomes a serious issue. Consider the following
examples:

 o A server gets requests from various clients, each running
 their own locale. These requests are processed using the
 locale of the client. The process includes returning
 locale-specific user messages to the client and
 processing user-locale-sensitive date/time formats,
 collation information, and string manipulation.

 o A window manager that supports multiple clients displays
 menus for a client based on the client's locale. The user
 error messages displayed are based on the locale of the
 server.

When a client sends a request to a server, the request parameters
that are passed between the client and the server imply an
associated locale. Since the global locale is not an explicit
argument in any of the XPG4 functions, this locale is difficult
to pass to the server. Consider the specific case of remote
procedure calls (RPCs), where an interface definition language
(IDL) might be used to generate client stubs. Because of the
global nature of the locale, insufficient information is
available to the IDL to determine if the locale information needs
to be used as an argument to any generated functions. Thus, the
server may need to change its locale for each client request,
which may be unacceptable in terms of system performance.

Using the current XPG model, synchronizing the use of a specific
locale between a client and server may not be possible. Even if a
client could specify a locale as part of the request, the locale
may not be available at the server side or may be replicated
incorrectly on the server side. This situation exists because
locale names and content are not standardized.

Although the XPG4 specification includes the localedef command
for specifying the content of a locale database, there is no
provision for standardizing the content. The only locale for
which an X/Open specification exists is the POSIX or C locale. In

addition, there is no specification for explicitly naming a
locale. Locale names are composed of language, territory, and
code set components. Many vendors use ISO/IEC 639 and ISO/IEC
3166 for the language and territory components, but there is
little agreement on code set naming conventions.[17,18] This
naming scheme is not sufficient for uniquely identifying locales,
as is required in a client-server model.

Another problem with the X/Open model that impacts application
performance and the ease with which an application can be
internationalized is related to the process code. The
representation of the process code, i.e., wchar_t, is
implementation defined, and the mapping of multibyte characters
to wide character codes may be locale sensitive. Therefore,
wchar_t-encoded data cannot be exchanged freely between the
client-server pair. The only exception would be if the end user
guaranteed that the process code was identical for a given locale
for each part of the client-server pair. The XPG4 specification
does not include functionality to identify or to interrogate the
wchar_t encoding scheme used.

Multithreaded Applications

The problems encountered in a distributed processing environment
become more complex if the application is also multithreaded.
Using POSIX threads, commonly referred to as pthreads, more than
one thread is in the execution phase at the same time.[19] Again,
a problem with the global, process-wide locale is evident. The
application cannot maintain the state of the global locale,
accomplished by a save/restore process, without blocking all
other threads. Likewise, execution of locale-sensitive functions
requires locking all threads to ensure that the global state is
not altered prior to completion. The need to continually lock and
unlock threads, in addition to being undesirable, results in a
performance problem for internationalized applications. Another
approach is to make locale data thread-specific.

Multilingual Applications

The X/Open internationalization model is oriented toward the
development of monolingual applications. Therefore, the model
does not provide functions to handle data that consists of an
arbitrary mixture of languages and code sets.

The following are some examples of applications that may require
multilingual services:

 o Applications that simultaneously interact with a number
 of users (e.g., transaction processing systems), where
 each user can choose a language

 o A word processing application for multilingual texts that

 need language-sensitive formatting, hyphenation, etc.

Unicode Support

With the arrival of the Unicode universal character code and the
adoption of ISO/IEC 10646 as its form, both POSIX and X/Open have
to address the issues of support.[15,16] The X/Open
Internationalization Working Group is preparing a paper on
Unicode support within the existing specifications; this
publication should be available in late 1993. Some of the issues
that the C language, POSIX, and XPG4 are facing to support
Unicode or ISO/IEC 10646 are character compatibility, code
restrictions, and valid character strings.

Unicode characters are incompatible with the C language char*
data type used in the POSIX and X/Open models. Unicode characters
are 16-bit entities, whereas the POSIX and X/Open characters are
in practice 8-bit bytes, even though theoretically the byte size
is implementation dependent. Most APIs defined in the POSIX and
X/Open models implicitly assume 8-bit characters. This principle
is extended to cover Asian multibyte characters by considering
each character to be a sequence of 8-bit char data elements.
Unicode characters, however, cannot be broken down into sequences
of valid 8-bit char* data elements.

The POSIX character model requires that the code values for char*
data protect the code ranges for control characters between
0x00-0x1F and 0x80-0x9F, the code position DELETE, and the slash
character /. No such restrictions exist in Unicode.

The C language postulates that a null character terminates a
char* string. Since the Unicode string most likely contains zero
bytes, these bytes would be interpreted as string terminators. In
principle, the C language would allow a compiler to define the
char* data type to be of 16-bit width. However, given the
prevailing assumption in POSIX and XPG4 that one character equals
one 8-bit byte, a Unicode character string cannot be a valid
char* string.

For these reasons, Unicode cannot be a valid file code as defined
by the POSIX and X/Open specifications. Unicode is not usable as
an XPG4 process code either. Unicode and ISO/IEC 10646 allow the
combining of 16-bit characters.[15] However, in many operations
the combining character (e.g., in the French character set, the
grave accent) and the base character (e.g., the letter
e) have to be processed together. This situation contradicts the
XPG4 model, where each character of the process code is
individually addressed and processed.

Using a well-defined encoding as XPG4 process code would also
violate the principle that the process code is opaque,
implementation defined, and not valid outside the current
process. For all these reasons, the X/Open Joint

Internationalization Group decided to propose using Unicode in a
modified form of the universal multiple-octet coded character set
(UCS) transformation format (UTF).[16,20]

PROPOSED CHANGES TO THE MODEL

The XPG4 model limitations described in the previous sections are
well understood in the internationalization community. X/Open has
published a Snapshot specification for a set of distributed
internationalization services.[10] This specification does not
solve all the problems identified in this paper. It does,
however, address the problems associated with the use of the
global locale mechanism, locale identification, and text object
manipulation. Note that these are proposed changes and have not
been adopted by any standards organization.

The proposed changes include

 o A locale naming specification that enables the
 identification of a given locale in a distributed
 environment

 o Definition and support of a locale registry

 o A new set of APIs that enables application software to

 - Concurrently manage and use many different locales

 - Manipulate opaque text objects[21]

 - Support stateful and nonstateful encodings and file
 codes that are excluded by the current standards
 (e.g., nonzero byte terminators used in the Unicode
 code set)

Locale Naming and the Locale Registry

In an internationalized environment, the server must replicate
the client's locale. If the client's locale can be uniquely
identified, the remote code can replicate the locale by obtaining
it and specifying this information as part of the operation. To
solve the locale replication problem, the XoJIG developed a
locale naming scheme, referred to as the locale specification.

The locale specification is a character string that contains the
locale name for each category that exists within the locale. The
syntax for locale names is a list of keyword-value pairs, where
each pair defines a locale category. Certain keywords, such as
code set name, encoding name, and owner or vendor name, are
standardized as part of the registration process. Table 3 shows
two examples of locale specifications.

Table 3 Network Locale Naming Specifications

American English Locale Using the ISO/IEC Latin-1 Code Set

CTYPE=ANSI;en_US;01_00;ISO-88591-1987;;/
COLLATE=ANSI;en_US;01_00;ISO-88591-1987;;/
MESSAGES=ANSI;en_US;01_00;ISO-88591-1987;;/
MONETARY=ANSI;en_US;01_00;ISO-88591-1987;;/
NUMERIC=ANSI;en_US;01_00;ISO-88591-1987;;/
TIME=ANSI;en_US;01_00;ISO-88591-1987;;/

Japanese Locale Using Japanese Extended UNIX Code (EUC) Encoding

CTYPE=ISO;ja_JP;01_00;JIS-X0208-1987,JIS-X0201-1987,JIS-X0212-1991;EUC;/
COLLATE=ISO;ja_JP;01_00;JIS-X0208-1987,JIS-X0201-1987,JIS-X0212-1991;EUC;/
MESSAGES=ISO;ja_JP;01_00;JIS-X0208-1987,JIS-X0201-1987,JIS-X0212-1991;EUC;/
MONETARY=ISO;ja_JP;01_00;JIS-X0208-1987,JIS-X0201-1987,JIS-X0212-1991;EUC;/
NUMERIC=ISO;ja_JP;01_00;JIS-X0208-1987,JIS-X0201-1987,JIS-X0212-1991;EUC;/
TIME=ISO;ja_JP;01_00;JIS-X0208-1987,JIS-X0201-1987,JIS-X0212-1991;EUC;/

Although this naming scheme provides for unique identification of
locales, the names are long. The specification calls for the use
of ASCII characters to name locales. The American English locale
specification is over 200 bytes in length. A shorthand notation
called network locale specification token has been proposed.

The network locale specification token is an unsigned integer
value that can be represented within four bytes. The two most
significant bytes represent the registration authority. Under the
proposal, national and international standards bodies, companies,
and consortia, etc., that wish to use network locale
specification tokens will receive unique identifiers. A block of
values will be reserved for private use between consenting
systems. A set of new functions will allow conversion between the
full locale specification and the locale specification token.

The locale specification proposal solves the problem of unique
naming for locales. Combined with a locale registry, this
proposal overcomes some of the limitations of the current X/Open
model. Within the registry, each locale will have a name defined
according to the new syntax. Assuming vendors add these
registered locales to their systems, language-sensitive
operations in a distributed environment will obtain the same
results across systems. This registry has been established by
X/Open, and several locales have been submitted.

Multilocale Support

A new set of interfaces, the set of o* functions, has been
proposed. These interfaces provide capabilities similar to those
defined by the XPG4 model. These new functions address many of
the model's limitations, including multithreaded applications,

distributed systems, and multilingual applications.

Most of the o* functions utilize three new data types: locale
object, attribute object, and text object. To overcome the
limitation imposed by a global, per-process locale, the
fundamental XPG4 programming paradigm is altered to define
localization on a per-call rather than a per-process basis. This
change is accomplished by defining a new opaque data type called
a locale object. A locale object identifies the locale and can be
passed as an argument to locale-sensitive functions on a per-call
basis. In this way, the basic programming paradigm becomes

 1. Perform operation X on data Y using locale Z

and not

 1. Set global locale Z

 2. Perform operation X on data Y

An attribute object is a generic opaque object that serves as a
container to other opaque objects, such as a locale object. Use
of an attribute object in the proposed APIs provides a solution
that is not specific to solving internationalization problems. It
is anticipated that objects, in addition to the locale object,
will be identified. The additional objects might result from
requirements in such areas as multimedia, network security, and
X11-specific extensions to the locale.

A text object is a new data type that replaces the character
(char) and wide character (wchar_t) data types used in the XPG4
internationalization model. As previously defined, a text object
refers to a collection of text characters that may or may not
have metadata associated with them. Support for directionality,
as required for right-to-left languages such as Hebrew, is an
example of when such metadata would be introduced. If a text
object has a locale defined as part of the metadata (i.e.,
self-announcing data), the locale specified as part of the data
supersedes the locale passed as an argument to the o* functions.
The locale that is passed as a function argument acts as a
default locale for operations that require it. All o* functions
allow a locale identifier to be passed as an argument. This
capability eliminates the limitations of the XPG4 global locale.
The support of metadata associated with text objects is
implementation defined.

A text object data type is represented by a text pointer of type
txt_ptr. A text pointer represents all the information associated
with a particular character position within the text object. This
information is sufficient to perform any kind of operation, such
as classification, extraction, or uppercasing.

In summary, the o* functions allow text objects to be classified,

converted, transferred to and from files, etc. The functionality
of the o* functions is designed to parallel the
character-handling functionality provided by the X/Open
internationalization model. For example, functions for
manipulating text pointers and for concatenating text objects are
tuned to the multilocale model. Interfaces have also been
introduced to provide management functions for new objects.

CONCLUSIONS

When introduced, the X/Open Portability Guide Issue 3 model for
internationalization met about 90 percent of the known
requirements in the western European market. The introduction of
the XPG4 worldwide portability interfaces expanded the region to
include Asia, Japan, and eastern Europe. Consequently,
application developers can write portable code that supports a
variety of languages. The use of the worldwide portability
interfaces for computer-aided design applications that are
distributed worldwide is one example of such code.

However, the use of the client-server model expanded greatly in
the time it took to develop these standards. Also, the need to
support truly multilingual applications in a distributed
environment became evident. New code set specifications (i.e.,
Unicode) have been adopted, and systems supporting Unicode as
both file and process code have been implemented. Application
vendors are beginning to see their markets expand into every
corner of the world.

The XPG4 model will continue to provide much-needed interfaces
for quite some time. Yet, to meet the challenges of the truly
distributed environment, a new API, similar to the o* functions
presented here, must be developed and accepted.

ACKNOWLEDGMENTS

Thanks to Mike Feldman, Richard Hart, and Dave Lindner, among
others, who spent their time providing comments and
recommendations during the writing of this paper.

REFERENCES AND NOTES

 1. UNIX System V Release 4 Multi-National Language Supplement
 (SVR4 MNLS) Product Overview (Japan: American Telephone and
 Telegraph Co., 1990).

 2. X/Open Portability Guide, Issue 2 (Reading, U.K.: X/Open
 Company Ltd., 1987).

 3. Programming Languages -- C, ISO/IEC 9899:1990 (Geneva:
 International Organization for Standardization/International

 Electrotechnical Commission, 1990).

 4. Information Technology -- Portable Operating System
 Interface (POSIX) -- Part 1: System Application Program
 Interface (API) [C Language], ISO/IEC 9945-1:1990 (Geneva:
 International Organization for Standardization/International
 Electrotechnical Commission, 1990).

 5. X/Open Portability Guide, Issue 3 (Reading, U.K.: X/Open
 Company Ltd., 1989).

 6. Multibyte Support Extensions, ISO/IEC 9899:1990/Amendment
 3:1993(E) (Geneva: International Organization for
 Standardization/International Electrotechnical Commission,
 1993).

 7. X/Open CAE Specification, System Interface Definitions,
 Issue 4, ISBN 1-872630-46-4, C204 (Reading, U.K.: X/Open
 Company Ltd., 1992).

 8. X/Open CAE Specification, Commands and Utilities, Issue
 4, ISBN 1-872630-48-0, C203 (Reading, U.K.: X/Open Company
 Ltd., 1992).

 9. X/Open Internationalisation Guide (Reading, U.K.: X/Open
 Company Ltd., 1992).

10. Distributed Internationalization Services (Snapshot)
 (Reading, U.K.: X/Open Company Ltd., 1992).

11. L. Laverdure, P. Srite, and J. Colonna-Romano, NAS
 Architecture Reference Manual (Maynard, MA: Digital Press,
 1993): 255-264.

12. Information Processing -- 8-bit, Single-byte Coded Graphic
 Character Sets -- Part 1: Latin Alphabet No. 1, ISO/IEC
 8859-1 (Geneva: International Organization for
 Standardization/International Electrotechnical Commission,
 1987).

13. Information Technology -- Portable Operating System
 Interface (POSIX) -- Shell and Utilities, ISO/IEC DIS 9945-2
 (Geneva: International Organization for
 Standardization/International Electrotechnical Commission,
 1992).

14. Multilingual applications can process multiple languages at
 the same time, whereas implementations of the X/Open model
 can process several languages but only on an individual
 basis.

15. J. Bettels and F. Bishop, "Unicode: A Universal Character
 Code," Digital Technical Journal, vol. 5, no. 3 (Summer
 1993): 21-31.

16. Information Technology -- Universal Multiple-Octet Coded
 Character Set (UCS) -- Part 1: Architecture and Basic
 Multilingual Plane, ISO/IEC 10646-1 (Geneva: International
 Organization for Standardization/International
 Electrotechnical Commission, 1993).

17. Codes for the Representation of Names and Languages, ISO/IEC
 639 (Geneva: International Organization for
 Standardization/International Electrotechnical Commission,
 1988).

18. Codes for the Representation of Names of Countries, ISO/IEC
 3166 (Geneva: International Organization for
 Standardization/International Electrotechnical Commission,
 1988).

19. Information Technology -- Portable Operating System
 Interface (POSIX) -- Threads Extension for Portable
 Operating Systems, IEEE 1003.4a/D7 (New York, NY: The
 Institute of Electrical and Electronics Engineers, 1993).

20. File System Safe -- UCS Transformation Format (Reading,
 U.K.: X/Open Company Ltd., 1993).

21. As defined in the X/Open Draft Internationalization Services
 Snapshot: A text object is an implementation-defined
 representation of a fragment of text that consists of zero
 or more text characters.

GENERAL REFERENCE

S. Martin and M. Mori, Internationalization in OSF/1 Release 1.1
(Cambridge, MA: Open Software Foundation, Inc., 1992).

TRADEMARKS

AXP, DEC, DEC OSF/1 AXP, and Digital are trademarks of Digital
Equipment Corporation.

AT&T is a registered trademark of American Telephone and
Telegraph Co.

Hewlett-Packard is a registered trademark of Hewlett-Packard
Company.

Open Software Foundation is a trademark and OSF/1 is a registered
trademark of Open Software Foundation, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

X/Open is a trademark of X/Open Company Ltd.

BIOGRAPHIES

Jürgen Bettels Jürgen Bettels is an internationalization
architect and the standards manager for the International Systems
Engineering Group. Since 1986, he has worked on a number of
internationalization architectures starting with DECwindows. He
participated in the Unicode consortium, ECMA, and X/Open on
internationalization. He contributed to the ISO/IEC WG2/SC2,
whose work merged Unicode and ISO 10646 into a single universal
character encoding. Prior to joining Digital, he was a physicist
at the European particle laboratory, CERN, in Geneva. Jürgen has
the degree of Diplom Physiker (physicist) from the University of
Aachen.

Wendy Rannenberg Principal software engineer Wendy Rannenberg
manages the UNIX Software Group's internationalization team.
She is responsible for the delivery of Digital's
internationalization technology on both the ULTRIX and the DEC
OSF/1 AXP platforms. Prior to joining Digital in 1988, she held
engineering positions with Lockheed Sanders Associates and the
Naval Underwater Systems Center. Wendy holds a B.S. (1980) in
engineering from the University of Connecticut at Storrs and is a
member of IEEE, SWE, and ACM. She has written or contributed to
numerous technical publications.

===
Copyright 1993 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

