
THE ORDERING OF UNIVERSAL CHARACTER STRINGS

By René Haentjens

ABSTRACT

In the countries of the world, people have developed various
methods to order words and names based on their cultures. Many
challenges and problems are associated with developing ways for
computers to emulate human ordering methods. An efficient
computer method for obtaining a quality ordering has been devised
as an extension to the single-step compare. It solves many but
not all of the problems. A universal code now exists to store
words and names written in many languages and scripts, but there
is no universal way to order words and names. Hence, formal
specification methods are needed for computer users to describe
culture-specific ordering rules. This area is still open to
research. Meanwhile, international standardization committees
endeavor to formulate sensible proposals for multicultural
contexts.

INTRODUCTION

Today, when we access information stored in computers, we often
ask the computer to present us lists of items arranged in an
order that is meaningful to us and easy to use. In the future,
will the computer render obsolete the lists of words and names
ordered for human reference? Will the computer look up all
information in our place? Will we no longer need the skills to
find our way around in dictionaries, telephone directories, and
the like? These things are not impossible, but we ourselves might
not live to see them happen.

If ordering for human consumption is to stay around for a while,
then the next question that we might ask is whether or not it
would be possible to harmonize the ways in which lists are
ordered around the world. Most people are aware that alphabetic
order may differ from one country to another. The same is true
for scripts that are not based on an alphabet: although the
Chinese Han characters are used to write Japanese and Korean,
lists with Han characters are not in the same order in the
People's Republic of China, Japan, Korea, and Taiwan, Republic of
China.

Can we change to a universal ordering system or at least make
ordering the same where the same script is being used? If the
order of words were the same, life would surely be easier for the
traveler! Unfortunately (if the reader permits that expression),
the way in which we work with ordered lists is a cultural aspect
and is related to the languages that we use. A proposal to change
ordering habits is a bit like proposing a spelling reform.

Everyone is in favor of simplification as long as it applies to
other groups of people, but we see no reason to change things for
ourselves. In fact, looking back to the roots of our own culture,
we find many good reasons why things are as they are today, so a
change is seldom perceived as an improvement.

The conclusion is, for the time being, that we may as well use
the computer to help us organize lists and to take into account
that the task of ordering lists is not universally the same.

This paper explores the issues involved with ordering and the
ways the computer can deal with them. It describes how people
order words and names, and consequently, how they expect words
and names to be ordered if a computer does the ordering. It
presents examples of ordering in various cultures. This paper
concentrates on the ordering of words and names; it does not
include a discussion of numerical ordering.

WORDS, NAMES, AND CHARACTER STRINGS

Computers store words and names as character strings. The symbols
that we use for writing are mapped to bit patterns in computers,
and these patterns are chained together. For pragmatic reasons,
the bit patterns do not correspond to graphic symbols in a simple
one-to-one fashion. Attributes such as the font in which the
symbol is presented and the size of the symbol are usually stored
in separate areas, and the bit pattern for the specific character
that represents the symbol remains the same. Also, several
characters or bit patterns can sometimes be represented by the
same graphic symbol. For example, the characters LATIN CAPITAL
LETTER A and GREEK CAPITAL LETTER ALPHA can be rendered with the
same graphic symbol A. Finally, the chaining of characters to
strings may not completely agree with the visual arrangement of
corresponding graphic symbols.

In other words, there are differences between how people order
words and names and how computers order the corresponding
character strings. People combine knowledge about words and names
(for example, how to read and pronounce them) with visual aspects
of the written or printed words and names. Computers must work
with the bit patterns.

With regard to character coding, the International Standard
ISO/IEC 10646-1:1993, Universal Multiple-Octet Coded Character
Set, and the de facto standard, Unicode version 1.1, are
considered state of the art. These two coding methods can
conveniently be considered as identical, and the same
abbreviation, UCS, refers to both of them. With UCS coding, words
and names can be stored in many of the scripts of the world, and
Chinese Han characters can be chained together with Latin, Greek,
Cyrillic, Hebrew, and Arabic letters and many more.

Before discussing the complexities of UCS coding, this paper

explores some important aspects of ordering of character strings
in the next section.

LEXICAL ORDERING

With lexical ordering, the computer takes into account only the
kinds of characters that appear in the strings and the
arrangement of these characters. Apart from the ordering
algorithm and the associated data, the computer uses no other
knowledge that it might have about the words in the character
strings. For example, it does not use an electronic dictionary or
rules about natural language syntax, phonetics, and semantics.
The idea is to see how computers can work with reasonably
efficient techniques, while staying close to how people work.
Meaning-based ordering and searching with the computer is an
interesting subject in itself, but is too broad a scope for this
paper.

When people order words or names or when they are looking for
them in an ordered list, they often use (unconsciously sometimes)
the meanings of these words or some other knowledge about the
words or names. For example, when looking for the name McMillan
in a telephone directory, they might try to find it between
MacLeod and MacNeville, knowing that Mc is the same as Mac. They
might even look between Melbourne and Murphy, ignoring the Mc of
McMillan altogether. If the computer has only a character string
that represents the letters of the name McMillan, then it lacks
the knowledge to look up the name any other way. Lexical ordering
cannot incorporate expanding or ignoring prefixes and
abbreviations; there is no lexical rule to determine what part of
the character string might be a prefix or an abbreviation.

As another example, in Japanese many Han characters (called kanji
by the Japanese) are pronounced in a different way depending on
the context. Japanese dictionaries for general use are ordered by
pronunciation; therefore, if the computer has only the kanji
character in the character string, it cannot order or look up in
the same way as people do in Japan. The character for rice, for
example, is pronounced mai in a form such as gai mai (imported
rice), but as bei in a form such as bei koku (America). The
difference is due to the historical background of the character
or when, in its specific context, it was borrowed from the
Chinese. When kanji are used in proper names, such as names of
persons and geographical names, there may be no context
information, and human intervention might be needed to know the
correct pronunciation.

In these cases, since the computer must mimic how people order
and is limited to lexical techniques, more than codes for the
letters or for the kanji must be stored in the character strings.
For example, the computer might have a character string that
contains a kanji character plus its pronunciation represented
with kana characters. Or the computer might have strings such as

(Mc)Millan with the convention that the parentheses indicate
parts to be ignored for ordering and searching.

Modern dictionaries and telephone directories use lexical
techniques as much as possible, which is better in a
multicultural environment. It is much easier to understand and
apply lexical rules for searching than to acquire intuitive
knowledge of an unfamiliar culture.

Words, Not Individual Letters

It is important to understand that people order words and names,
not just the individual letters and symbols. Consequently, good
quality lexical ordering that comes close to how people work
cannot be achieved by looking at all the characters in a string
only once, from the first one through the last one. This concept
can best be illustrated with alphabetic scripts, and some English
examples are given below.

When one looks for SOS in a modern English dictionary, one
expects to see it between sort and soul. Now, to find SOS between
sort and soul, one must ignore that SOS is in uppercase letters
and sort and soul are in lowercase. This type of lookup is
achievable by looking at all the letters once.

Now consider the abbreviation CAT, meaning clear air turbulence.
CAT is listed between casual and catalyst. In this case, we
cannot ignore the difference between CAT and cat. The dictionary
lists both words, and some dictionaries consistently list
lowercase words before uppercase words (or vice versa), so the
order using lowercase first would be casual, cat, CAT, catalyst.
It is not possible to devise an algorithm or method that would
arrange these four words in the correct order by looking at all
the letters once. To guarantee the correct order in all cases, a
first step is needed in which uppercase is considered equal to
lowercase; the two words cat and CAT must be placed in the
correct order in a second step, in which uppercase and lowercase
make a difference.

Dealing with uppercase and lowercase is not the only issue for
alphabetic ordering. Many languages use letters with diacritical
marks such as accents. Words and names may also contain spaces or
special symbols, such as hyphens, apostrophes, and points.
Examples are big bang, best-seller, rock 'n' roll, and P.S. When
ordering is strictly alphabetic, as is the case in many
dictionaries, then accents on letters, spacing, and special
symbols are ignored in the first step, but they are taken into
account to resolve a tie. For example, the correct order in
French might be denier, dénier, dernier; or Nb, NB, N.B., Nd,
n.d., N.D. in English.

TABLE-DRIVEN MULTILEVEL ORDERING

The heart of ordering methods is the comparison of two character
strings. If we have an algorithm to determine whether one string
should precede, follow, or be considered equal to a second
string, then arranging a list of strings in the correct order is
straightforward.

Single-step or One-level Compare

The single-step compare or one-level ordering algorithm is known
by most readers:

Compare the first characters of the two strings; if equal, then
compare the second characters; continue until a difference is
found or until at least one string is exhausted. If a difference
is found, then the character-collating sequence determines which
string precedes the other. (Example: words precedes working
because d precedes k.) If one of the two strings is exhausted,
then the shorter string precedes. (Example: word precedes words.)
If both strings are exhausted, then they are considered equal.

Multiple-step or Multilevel Compare

The state-of-the-art computer method for comparing character
strings is a generalization of the single-step compare. If, after
using the above algorithm with the first collating sequence, both
strings are found to be equal, then in the second step the
algorithm is repeated. Both strings are compared again, starting
from their first characters, now using the second collating
sequence. The second step may be followed by a third step and so
on, one step for each collating sequence.

To be precise, the one collating sequence of all characters is
replaced by a matrix of collating weights and collating weight
sequences for each weight (W) column. Consider the following
example:

 W1 W2 W3
LATIN CAPITAL LETTER D <D> <NONE> <UC>
LATIN SMALL LETTER E <E> <NONE> <LC>
LATIN SMALL LETTER E WITH ACUTE <E> <ACUTE> <LC>
LATIN SMALL LETTER E WITH GRAVE <E> <GRAVE> <LC>
LATIN CAPITAL LETTER E <E> <NONE> <UC>
LATIN CAPITAL LETTER E WITH ACUTE <E> <ACUTE> <UC>
LATIN CAPITAL LETTER E WITH GRAVE <E> <GRAVE> <UC>
LATIN SMALL LETTER F <F> <NONE> <LC>

The collating sequence for W1 is <A>, , <C>, etc. This means
that, with the example matrix, all variants of Latin letter E are
equal in the first comparison step. The collating sequence for W2
is <NONE>, <ACUTE>, <GRAVE>, which means that in the second step,

the accents make a difference, but there is no distinction
between lowercase and uppercase variants. That distinction is
made in the third step: the collating sequence for W3 is <LC>,
<UC>.

The weight matrix and the collating sequences can be placed in
tables that are used by the ordering algorithm, hence the name
table-driven multilevel ordering.

If this example matrix is extended in a similar way, then the
multilevel algorithm would place the following words (most of
which are real French words) in this correct order:
dénie, DÉNIE, denier, DENIER, dénier, DÉNIER, dènier, dernier.

The method that is described here is also used in POSIX
(ISO/IEC 9945-2.2 Shell and Utilities, LC_COLLATE
Definition).[1] Rolf Gavare was among the first to publish a
paper on multiple-step comparisons.[2] Alain LaBonté was the
first to describe it as explained in this paper, and he also
implemented it as a Canadian Standard (CSA Z243.4.1-1992).
LaBonté devised a complete and predictable ordering method that
corresponds to very fine detail with the best examples of French
and English dictionary ordering.[3]

Generate Comparison Key

With the multilevel method, it is also possible to have the
algorithm generate a comparison key for a specific character
string rather than always compare two strings. These comparison
keys can be stored with the character strings; a one-level
comparison of keys then gives the same result as a multilevel
comparison of the original character strings. For example, and
again extending the example matrix given above, the comparison
key for dénie could be a convenient numerical representation of
<D><E><N><I><E><nil><NONE><ACUTE><NONE><NONE><NONE><nil>
<LC><LC><LC><LC><LC>.

The <nil> precedes all other weights. Its presence at the end of
the comparison key subfields guarantees that shorter strings
precede longer strings. Efficient compression techniques exist
for such comparison keys.

VARIATIONS OF THE MULTILEVEL METHOD

The following section expands upon the multilevel method and
gives examples of changes necessary to accommodate cultural
differences in word order.

Special Symbols

With a small extension, the multilevel method can also handle

special characters such as the hyphen and the apostrophe, to
mimic traditional human alphabetic ordering. Another weight
column must be added to the matrix given above to distinguish
letters from special characters:

LATIN SMALL
 LETTER E <E> <NONE> <LC> <LTR>
...
HYPHEN-MINUS IGNORE IGNORE IGNORE <HPH>

The IGNORE indicates that the character is skipped in the
comparison algorithm in the first three steps. A collating
sequence for W4, in which <LTR> precedes all symbols for special
characters such as <HPH>, guarantees that words and names without
special characters precede the ones with exactly the
same letters, but with special characters.

A four-level ordering such as the one suggested here is
sufficient for a good quality, complete, and predictable
alphabetic ordering with the Latin alphabet.

Additional Letters

For most languages written in Latin characters, the correct order
of words would be senior, señorita, sentimental, separable. To
achieve this order, W1 would be ..., <M>, <N>, <O>, ..., and the
matrix would include LATIN SMALL LETTER N WITH TILDE, where W1 is
<N>, W2 is <TILDE>, and W3 is <LC>.

In Spanish, the N WITH TILDE is considered a letter to be ordered
between N and O and the correct order is senior, sentimental,
señorita, separable. To achieve this type of ordering, W1 would
be ..., <M>, <N>, <NTILDE>, <O>, ..., and the matrix would add
LATIN SMALL LETTER N WITH TILDE, where W1 is <NTILDE>, W2 is
<NONE>, and W3 is <LC>.

Ligatures

The multilevel method can also handle ligatures by allowing each
matrix element to be a sequence of weights, rather than one
weight. For Æ in French and Swedish, the matrix would include
LATIN SMALL LIGATURE AE, where W1 is <A><E>, W2 is <LG><LG>, and
W3 is <LC><LC>. In these languages, LIGATURE AE is equivalent to
two letters when ordering words. In Norwegian, the Æ is a letter
on its own. W1 is ..., <Y>, <Z>, <AE>, <OSTROKE>, <ARING>. For
the matrix element, LATIN SMALL LIGATURE AE, W1 is <AE>, W2 is
<NONE>, and W3 is <LC>.

Logograms

Some special symbols, sometimes called logograms, can be seen as
short notations for words: & + %. A culture-specific ordering may
replace such symbols by the corresponding words. If the language
is English, for example, then Research & Development can be
ordered as Research and Development. As long as a fixed rule
exists for replacing symbols by equivalent words, the extension
that was introduced for Æ can be applied in a similar way to
obtain the desired ordering. On the other hand, if the
replacement word depends on the language used in the rest of the
string, then lexical ordering cannot do the job properly without
more information coded in the character strings.

Fine Tuning for the Accents

The table-driven multilevel method, as explained so far, would
place French words in this order: cote, coté, côte, côté, maçon,
mâcon. In a traditional, correct ordering, they should be in the
following order: cote, côte, coté, côté, mâcon, maçon. (In
general, accents at the end of a French word are more important
for understanding than other accents.)

To obtain the desired ordering, another extension of the
multiple-step method is needed: for the second step, the one that
discriminates between quasi-homographs (words that differ only in
their diacritical marks), the comparison algorithm should start
from the end of the strings rather than from the beginning. For
the other Western languages that use the Latin alphabet, this
reverse processing for the accents is not needed. On the other
hand, it does not hinder either, so the French method is
acceptable as well.

French is not the only language with such quasi-homographs. In
new-Greek, with the modern monotoniko spelling, all multisyllabic
words have one accent that indicates the stressed syllable.
New-Greek has many quasi-homographs, including the following
examples, which use a simple transcription of Greek letters to
Latin letters: árguros, argurós, diakonía, diakoniá, métro,
metró, pára, pará. The French method of reverse processing
produces acceptable results for new-Greek as well.

Fine Tuning for the Special Symbols

With the tables extended as explained in the section Special
Symbols, the multiple-step algorithm would order words as
follows: unionized, union-ized, un-ionized. For the exceptional
cases such as this one, in which two words are identical except
for the placement of a special symbol, the order unionized,
un-ionized, union-ized may seem more appropriate. Usually, the
hyphen is perceived as a word break, not on the first level, but
on a subsequent level, and with word breaks, shorter words always
come first.

To obtain the latter ordering, one could use the same technique
as for the diacritical marks: have the algorithm start from the
end of the strings for the level that deals with the special
symbols. POSIX has a small extension to the multilevel method
that gives similar results while still moving forward. This
extension adds the position of the symbol to its table weight
during comparison.

Special Symbols in Combination with Uppercase and Lowercase
Characters

This section does not introduce a new extension but reconsiders
the extension for the special symbols. This method adds a fourth
weight column:

LATIN SMALL LETTER E <E> <NONE> <LC> <LTR>
...
HYPHEN-MINUS IGNORE IGNORE IGNORE <HPH>

With W3 for uppercase and lowercase and W4 for the special
characters, the distinctions between uppercase and lowercase are
considered more important than the presence or absence of spacing
and special symbols. In many cultures, this is indeed the case
with proper names of people. The following order is desired with
names that differ in use of uppercase or lowercase letters:
deGroot, de Groot, Degroot, De groot, DeGroot, De Groot.

For some geographical names, it could be argued that special
symbols are more significant than the difference between
lowercase and uppercase. For example, the desired order is
Sanssouci, SANSSOUCI, Sans Souci, SANS SOUCI, Sans-Souci,
SANS-SOUCI. (Sanssouci is a castle near Potsdam in Germany; Sans
Souci is a city in South Carolina, U.S.A., and a suburb of
Sydney, Australia; and Sans-Souci is a historical place on
Haiti.) To obtain this order, W3 and W4 must be switched.

SOME PROBLEMS WITH THE MULTILEVEL METHOD

To obtain the correct order, changes are sometimes necessary to
the multilevel method. This section discusses cases in which it
is less easy to adapt the table-driven multilevel method.

Digraphs and Collating Elements

CH and LL have special placement in the Spanish alphabet. Spanish
is not unique in this respect; combinations of letters also have
special placement in the Albanian, Hungarian, Vietnamese, and
Welsh alphabets. The Welsh ordering alphabet, for example, is A B
C CH D DD E F FF G NG H I J L LL M N O P PH R RH S T TH U W Y,
and the following list of words is correctly ordered in Welsh:
acw, achos, adwy, addas, agwedd, angau, almon, allan, anfynych,

anffodus, antur, anthem.

Before the multilevel method can be applied, it is necessary to
replace the multiple-character combinations by pseudo-characters.
In POSIX LC_COLLATE, such a mechanism is foreseen. One can
declare combinations such as LATIN SMALL LETTER C followed by
LATIN SMALL LETTER H to be collating elements and give them a
name that can be used in the matrix.

At first it would seem that this solves the problem. One
complication, however, is that the two letters together do not
always represent the special alphabet letter. In Welsh, for
example, the N and G are separate letters in the Welsh words
melyngoch, dangos, gwyngalchu, and mwynglawdd. The word
melyngoch then is among words starting with melyn, not after the
words with melyg. More information must be coded in the character
strings that represent Welsh words to define a correct lexical
ordering.

A similar problem exists with Danish. In most Danish words, aa is
semantically and phonetically equivalent to å. Danes expect aa
and å to be ordered together, after Z, Æ, and Ø. But in words of
foreign origin, aa is just A + A.

The reader with a knowledge of programming complexity will
probably also see that the collating-element extension makes the
table-driven multilevel method less straightforward to implement.
If there are only a few collating-element extensions, then simple
workarounds might help, but what if there are thousands of them?
(Improbable? Wait to form your opinion until you read the section
Added Complexity with UCS Coding.)

Sequences, However Long

Other ordering requirements are difficult to accommodate with the
matrix method. For example, the British standard on ordering, BS
1749:1985, requires that (in the first step) spaces, dashes,
hyphens, and diagonal slashes and sequences of them be treated as
a single space (which is significant), except at the beginning of
an entry, where they should be ignored. Making a space
significant for ordering is easy, but the collating-element
extension unfortunately does not allow recursive definitions, so
it cannot incorporate the sequences of spaces, etc.

Other Problems

Context dependencies illustrate another problem for
collating-element extensions. The Japanese language has several
DUP characters, the weights for which depend on the context. For
first-level ordering, a DUP character in a Japanese word or name
can be considered equivalent to the character that precedes it.
Hence, if X represents a Japanese character, then X followed by
DUP is equivalent to X followed by X in the first comparison

step. Tie breaking is done in a subsequent step: X DUP then
precedes X X. If collating-element definitions are used,
definitions for all possible combinations are required.

ADDED COMPLEXITY WITH UCS CODING

The concepts discussed in this section have existed in other
coded character sets for some time. For example, ISO 6937 has
combining characters, and ISO/IEC 8859-7 contains Latin and Greek
letters. With UCS, script mixing and combining characters will
for the first time be implemented on a wide scale, not only
geographically speaking, but also when counting the number and
the importance of the computer platforms on which UCS coding will
exist.

UCS has room for some 65,000 characters in the currently defined
basic multilingual plane. The first and most obvious implication
is that the tables for the multilevel method will be huge with
UCS.

Mixing Scripts

With UCS coding, many scripts can be used in a single character
string. Although all languages with a non-Latin script have some
tradition of incorporating words and names written in Latin
letters, there are not many rules about ordering in such a
context. For example, where should the Latin-letter abbreviation
SOS be placed in a Greek, Russian, or Chinese dictionary? The
problem with computers, of course, is that everything must be
specified, including the unusual situations.

Ordering Han Characters

As previously stated, UCS also codes Han characters. The people
who use them for writing characterize a Han character with
attributes such as its main radical, the number of pen strokes to
draw the character, and its Chinese or Japanese pronunciation. (A
radical is a constituent part of the character.)

For example, the Han characters with Japanese pronunciation
tera (temple), kata (type), and shiro (capital) all have the same
main radical. Tera has six strokes; kata and shiro have nine. The
Chinese pronunciations are ji, kei, and jyou.

A popular ordering is by radical first, then by number of
keystrokes, and finally by Chinese pronunciation. With this
ordering, tera comes first (it has only six strokes), and
kata precedes shiro because of the Chinese pronunciation. If this
were the one and only way of ordering Han characters, then the
computer would not need to know about the radicals, pen strokes,
etc. Each Han character has a different code (bit pattern), so a
single (but long) collation order for the corresponding codes
would be sufficient.

Significantly, each dictionary of Han characters has developed
its own tradition for ordering. Depending on the application,
audience, school, or political considerations, the preferred
ordering may be different. For example, the onyomi ordering is
also in popular use in Japan. It is by Chinese pronunciation
first, then by stroke count. With onyomi ordering, kata comes
first, then tera, and shiro is the last one.

Han characters are always ordered character by character, so the
multilevel method that applies multiple weights in multiple steps
involving complete strings is not required. Han characters
require multiple weights with a specific combination that is
dynamically selected for a single-step ordering.

It is not evident how this dynamic single step can be combined
with the standard multiple-step method, which is needed for UCS
strings containing Han characters mixed with other ones.

Combining Characters

UCS also contains the concept of combining character. In the
example matrices given above, it was assumed that letters with
accents such as LATIN SMALL LETTER E WITH ACUTE are coded as one
character. UCS indeed has such one-character codings, but it
allows a letter with an accent to be coded as two characters as
well. The sequence of two characters LATIN SMALL LETTER E
followed by COMBINING ACUTE is also valid in UCS.

UCS does not state that LATIN SMALL LETTER E WITH ACUTE is the
same as LATIN SMALL LETTER E followed by COMBINING ACUTE; it
leaves it to applications to consider them equivalent or not.
Needless to say, many application developers will want users to
have the possibility of considering both forms equivalent, at
least for ordering.

The notion of equivalence becomes quite intricate with two or
more diacritical marks. See the paper on Unicode in this issue
for a discussion on transformations between equivalent
spellings.[4]

For our extended matrix method, not only thousands, but an
unlimited number of collating elements would have to be defined.
UCS allows any number of combining characters to follow a
noncombining character.

Logical Order and Coding Order

With UCS coding, the order of the characters in a string is
the logical or reading order, not the order in which the symbols
have to be printed or displayed. Hence, UCS encoded text is
difficult to display and print, but relatively easy to be
processed, e.g., for ordering.

In Thai, unfortunately, this approach was not implemented
totally. The vowels and diacritics that appear above or under a
consonant are coded in logical (reading) order, but Thai has five
so-called pre-positioned vowels that are written and coded before
the consonant after which they have to be pronounced. This
corresponds to current computing practices in Thailand and was
incorporated in UCS coding as a sort of backward compatibility.
For example, the word written and encoded as E + CH + N (ignoring
vowel shortener and tone mark) is pronounced chên and ordered
accordingly. To allow correct ordering for UCS-encoded Thai,
some preprocessing is necessary to arrange the Thai vowels in the
correct position for the ordering step.

Formatting Characters

Many coded character sets contain characters that do not
correspond to some written symbol but have some control function,
often for output formatting. For ordering, these formatting
characters can usually be handled in the same ways as special
characters.

The characters ZERO WIDTH JOINER and ZERO WIDTH NON-JOINER are
among the UCS formatting characters. Their primary purpose is to
influence the display of characters of a cursive script such as
Arabic. Before UCS was finalized, some people suggested that ZERO
WIDTH NON-JOINER might be used to indicate the absence of special
digraphs such as in the Welsh word melyngoch. It has also been
proposed that ZERO WIDTH JOINER might be used to create new
letters such as unusual or newly invented ligatures. Today, this
is no longer considered a valid use of these formatting
characters.

TOWARD A FORMAL DESCRIPTION OF ORDERING

Excellence for computer applications means not only that the
application incorporate a different way of ordering for each
culture, but also that it give freedom to its users to define
variations and use different approaches to ordering. This is
important for some cultures. Not so long ago, the use of multiple
letter fonts was considered specialized work for professional
printers; today every word processor must allow it. Flexibility
with regard to ordering may also become commonplace a few years
from now. But how can such flexibility be provided in a
computer-digestible yet user-friendly way?

Many documents describe ordering in an informal way. National
standards on ordering are seldom formal definitions. They contain
directives such as each unbroken sequence of digits, disregarding
commas, spaces, and stops, is considered as one character; or
multiple hyphens collate as one; or ij is ordered as i + j; or
ß = ss. Such directives are vague for computers. They are
imprecise: Is the hyphen to be understood as the character

HYPHEN-MINUS only, or also as related, but distinct characters in
UCS coding such as HYPHEN, MINUS SIGN, and others? They are also
incomplete: ij is ordered, but not IJ, Ij, and iJ. They use
graphic symbols, where the computer wants to know things about
characters: Does ß stand for LATIN SMALL LETTER SHARP S or for
GREEK SMALL LETTER BETA?

On the other hand, the descriptions for POSIX LC_COLLATE are
quite formal. They are more or less bound to a specific
implementation, in this case the table-driven multilevel method
described above. A more simple formal description is sometimes
sufficient. For example, if the data to be ordered is filtered
and contains only uppercase Latin letters, then the POSIX syntax
may seem an overkill. In other cases, the LC_COLLATE formalism
lacks expressive power, as we have seen.

Is it possible to design a formal specification method that falls
between the descriptive texts in country standards and the almost
algorithmic parameters such as POSIX LOCALEs?

ISO/IEC 10646-1:1993 may provide a first step to build formal
definitions. It is the most comprehensive repertoire of
characters to date and a strict superset of many earlier
repertoires and coded character sets. Moreover, it establishes a
unique and authorative naming for characters. This paper uses
character names such as LATIN CAPITAL LETTER E WITH ACUTE. ISO
has decided that the 10646 names will be used in all future
character set standards and standard updates. In a certain sense,
ISO/IEC 10646-1:1993 is a character reference manual, and formal
definitions about ordering can be built upon its content.

PREPROCESSING

Preprocessing a character string, transforming it into text
elements or linguistic units in a logical sequence, is a second
concept that deserves elaboration. It was mentioned in relation
to Thai with its pre-positioned vowels in a preceding section.

Breaking down a string into the smallest units to be processed by
an ordering algorithm and arranging these units in the desired
processing order is a powerful mechanism. It could also be used
to detect collating elements, to replace Japanese DUP characters,
or to transform character sequences that contain combining
characters. This mechanism would then allow the table-driven
multilevel method to be used to its full extent on preprocessed
strings.

Preprocessing might change the character string: units are
rearranged, characters are replaced by other ones, etc. It is
possible that two originally different character strings could be
preprocessed to an identical intermediate form. If ordering is to
be complete and predictable, preprocessing must generate
additional tags that are taken into account by the multilevel

method.

Consequently, the output of the preprocessing phase might be more
than pieces of character strings. The lines used in the matrices
for the multilevel method have (names of) characters as labels.
If preprocessing were designed to generate an output that is
easier to consume by the multilevel method, the labels could be
anything that seems suitable.

The problem, again, is how to allow for the specification of
preprocessing in a formal yet user-friendly way. Transformations
based on regular expressions and finite state machines are a
possible path. These techniques allow an efficient
implementation. P. J. Plauger has published material about using
them for ordering with the C language.[5,6]

CONCLUSIONS

The evolution of computer systems is progressing toward a better
quality interaction with people. An aspect of that interaction is
the ordering of words and names. Efficient methods exist today
for obtaining a quality ordering. Although some software uses
these methods, many applications perform computer-friendly
ordering rather than human-friendly ordering. There is no
technical limitation to improve on that aspect; for example, a
multilevel algorithm with user-specified tables can replace a
single-step bit-code ordering.

For some cultures and in multicultural environments, not all
ordering problems are solved. Research is needed, as well as
formal rules to allow users to specify ordering preferences.

Some useful ordering techniques are in place. The table-driven
multilevel method is an important one. Preprocessing can solve
some problems, but a convenient formalism is needed to specify
it. UCS coding provides many new challenges; but at the same time
it offers a new fixed point, from which it may be possible to
derive user-friendly formal definitions.

APPENDIX:
INTERNATIONAL STANDARDIZATION EFFORTS

Many countries have developed a standard on ordering. These
standards are not listed in this section.

ISO/IEC JTC1/SC22/WG15 (Programming Languages) is the committee
and work group that is discussing the POSIX work (ISO 9945).

ISO/IEC JTC1/SC22/WG20 (Internationalization) is working on a
Technical Report that will provide a framework for
internationalization. The work group is also preparing documents
on the registry of cultural elements, specification methods for
defining string comparison, and a default-tailorable ordering for

10646.

CEN (European Standardization Committee) BTS7 (Technical Bureau
on IT)/TC304 (Character Set Technology) has a project on European
character string ordering rules. The scope is to establish
procedures for the registration of national and regional ordering
rules and to prepare multilingual character ordering rules for
European scripts (Latin, Greek, and Cyrillic).

ISO TC37/SC2/WG2 is currently working on multilingual ordering
for terminological and lexicographical purposes. ISO TC46/SC9 has
similar work but for bibliographical purposes. The approach
is application oriented, whereas the other ISO and CEN efforts
mentioned above are computer-oriented approaches.

To allow for some level of synchronization of these efforts and
to avoid overlaps, liaisons have been established between all
these committees.

ACKNOWLEDGMENTS

Alain LaBonté of the Gouvernement du Quebec, Direction Générale
des Technologies de l'Information, has been the inspiration for
many things written in this paper. He has on many occasions
encouraged me to continue with my explorations of ordering. I
also owe thanks to Johan van Wingen, independent consultant in
Leiden, the Netherlands, who has gathered and made available much
background information on coded character sets and ordering
practices. A special word of thanks goes to Kevin P. Donnelly, to
Denis Garneau, and to P. J. Plauger for reviewing this paper and
for providing many useful comments and suggestions.

Of the many colleagues in Digital who have helped me, I want to
especially mention Masahiro Morozumi of International Systems
Engineering in Japan, with whom I could exchange many mails about
ordering in Japanese and about Digital's implementation of XPG4.
I also want to mention Tim Greenwood of International Systems
Engineering in the U.S., who has done a lot of coordination work
for this issue of the Digital Technical Journal, and for my
contribution to it in particular. And I know that I'm doing an
injustice by not naming the many other colleagues who
contributed.

REFERENCES

1. X/Open CAE Specification, System Interface Definitions, Issue
 4, X/Open Doc N C204 (London: X/Open Company Limited, 1992).

2. R. Gavare, "Alphabetical Ordering in a Lexicological
 Perspective," Data Linguistica 18 (Almquist & Wiksell, 1988).

3. A. LaBonté, Regles du classement alphabetique en langue
 francaise et procedure informatisee pour le tri (Ministere

 des Communications du Quebec, 1988).

4. J. Bettels and F. Bishop, "Unicode: A Universal Character
 Code," Digital Technical Journal, vol. 5, no. 3 (Summer 1993)
 21-31.

5. P. Plauger, "Translating Multibyte Characters," The Journal
 of C Language Translation (June 1991).

6. P. Plauger, The Standard C Library (Englewood Cliffs, NJ:
 Prentice Hall, 1992).

GENERAL REFERENCES

G. Adams, "Introduction to Unicode," Proceedings of the Fourth
Unicode Implementors Workshop (Mountain View, CA: Unicode
Consortium, 1992).

B. Comrie, ed., The World's Major Languages (Oxford: Oxford
University Press, 1990).

F. Coulmas, The Writing Systems of the World (Oxford: Basil
Blackwell, 1989).

J. DeFrancis, The Chinese Language (Honolulu: University of
Hawaii Press, 1984).

D. Garneau, Keys to Sort and Search for Culturally Expected
Results (Ontario: IBM National Language Technical Center, 1990).

S. Jones et al., Developing International User Information
(Burlington, MA: Digital Press, 1992).

K. Katzner, The Languages of the World (London: Routledge, 1989).

C. Kennelly, Digital Guide to Developing International Software
(Burlington, MA: Digital Press, 1991).

E. Kohl, The Art of Arranging Files, ISO Bulletin
(December 1986).

A. LaBonté, "Multiscript Ordering for Unicode," Proceedings of
the Fourth Unicode Implementors Workshop (Mountain View, CA:
Unicode Consortium, 1992).

A. Nakanishi, Writing Systems of the World (Rutland, VT and
Tokyo: Charles E. Tuttle, Co., 1980).

G. Sampson, Writing Systems (Hutchinson, 1985).

STRI TS73, Nordic Cultural Requirements on Information Technology
(Reykjavik: Idntaeknistofnum Islands, 1992).

U. Warotamasikkhadit and D. Londe, Computerized Alphabetization
of Thai, Technical Memo TM-BA-1000/000/01 (Santa Monica, CA:
System Development Corp., 1969).

Unicode 1.0.1, Report from the Unicode Consortium (Mountain View,
CA: Unicode, Inc., 1992).

TRADEMARKS

Digital is a trademark of Digital Equipment Corporation.

Unicode is a trademark of Unicode Inc.

BIOGRAPHY

René Haentjens René Haentjens is a software consultant working
for both Digital Consulting Belgium and Corporate Standards and
Consortia. He was the Belgian local engineering manager for two
years. Today, René is a member of the Belgian, the European
(CEN), and the ISO committees on character sets and
internationalization. He contributed significantly to the ISO/IEC
10646-1:1993 standard. He has a civil engineering degree
(chemistry) from the University of Ghent and has contributed to
publications on compiler portability, on software engineering,
and on developing international software and user information.

===
Copyright 1993 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

