| NTERNATI ONAL DI STRI BUTED SYSTEMS - -
ARCHI TECTURAL AND PRACTI CAL | SSUES

By Gayn B. Wnters

ABSTRACT

Buil ding distributed systens for international usage requires
addressing many architectural and practical issues. Key to the

ef ficient construction of such systenms, nodularity in systenms and
inrun-tine libraries allows greater reuse of conponents and thus
permts increnmental inprovements to nultilingual systens. Using
safe software practices, such as banishing the use of literals
and paraneterizing user preferences, can help minimze the costs
associated with localization, reengi neering, naintenance, and
desi gn.

| NTRODUCTI ON

The wor | dwi de depl oynent of conmputer systens has generated the
need to support multiple | anguages, scripts, and character sets
si mul taneously. A system should focus on natural ease of use and
thus all ow end users to read system nessages in the | anguage of
their choice, to have natural menus, fornms, pronpts, etc., and to
enter and display data in their preferred presentation form

Digital envisions a conmputer systemthat not only is distributed
but is distributed geographically across the world. A single site
may have end users with varying | anguage and cul tura

preferences. For exanple, a Japanese bank in Tel Aviv may have
enpl oyees whose native | anguages are Arabic, English, Hebrew,
Japanese, or Russian, and may conduct business in one or severa
of these | anguages. Figure 1 could represent a portion of their
network. The client software, e.g., a mail client and the | oca

wi ndowi ng system could be conpletely nonolingual. Networking,
dat abase, and printing services, for instance, should be

mul tilingual in that they support the various end users by
provi di ng services independent of the natural |anguages, scripts,
or character sets used.

Figure 1 A Portion of a Miultilingual Network

ARABI C USER JAPANESE USER MULTI LI NGUAL USER
R + R + R +
| PC1 | | PC 2 | | PC 3 |
R + R + R + W DE AREA
| | | NETWORK
| |
oo + o e o +

| MULTI LI NGUAL | | MULTI LI NGUAL

| SERVER | SERVER

| DATA | | DATA |

Thi s paper surveys many of the architectural and practical issues
i nvolved in the efficient construction of internationa

di stributed systenms. We begin by discussing some econom c issues
and pitfalls related to |ocalization and reengi neering. Many of
these topics can be addressed by straightforward good engi neering
practices, and we explore several inportant techniques. The
structure of application-specific and systemlevel run-tine
libraries (RTLs) is a key issue. We therefore devote severa
sections of this paper to preferred RTL structures, data
representations, and key RTL services. Distributed systens cause
sonme special problems, which we briefly discuss, commenting on
nam ng, security, managenment, and configuration. In particular, a
desire for client software designed for nonolingual distributed
systenms to work without change in a multilingual distributed
systemled to a new system nodel. In the nodel, the host servers
and the system managenent provide the interfaces and conversions
necessary for these clients to interface with the multilingua
world. Finally, we observe that all the preceding techni ques can
be delivered increnmentally with respect to both increasing
functionality and | owering engi neering cost.

LOCALI ZATI ON AND REENG NEERI NG

When a system conmponent is productized for sonme | ocal nmarket, the
process of making it conpetitive and totally acceptable to that
mar ket is called localization. During this process, changes in
the design and structure of the product may be required. These
changes are called reengi neering. For exanple, U S. autonobiles
whose steering |inkages, engine placenent, console, etc., were
not designed to allow the choice of left- or right-hand steering
were not conpetitive in Japan. Reengi neering these autonobiles
for right-hand steering was prohibitively expensive, so

manuf acturers had to redesign | ater nodels.

Comput er systems have problens simlar to the autonobile

| eft-hand-right-hand steering problem A good architecture and
design is necessary to avoid expensive reengi neering during

| ocalization. The followi ng are exanples of areas in which a

| ocalization effort may encounter problens: user-defined
characters and |igatures; geonetry preferences, such as vertica
or right-to-left witing direction, screen |ayout, and page size;
and policy differences, such as neeting protocols and required
paper trails. Building limting assunptions into a software or
har dwar e product can often |l ead to costly reengineering efforts

and regional tinme-to-market del ays.

On the other hand, an internal survey of reengi neering problens
associated with Digital's software indicates that sinple
easy-to-avoid problens are strikingly frequent. In fact, it is
amazi ng how many ways a U. S. engineer could find to make use of
the (ultimately erroneous) assunption that one character fits
into one 8-bit (or even nore constrictive, one 7-bit) byte!

SAFE SOFTWARE PRACTI CES

Many wel | - known, straightforward programing practices, if
adopted, can dramatically reduce reengi neering efforts.[1-7] Even
for existing systens, the cost of increnentally rewiting
software to incorporate sonme of these practices is often nore
than recovered in | ower mai ntenance and reengi neering costs. This
section discusses a few key practices.

Probably the nost fundanmental and elenmentary safe software
practice is to banish literals, i.e., strings, characters, and
nunbers, fromthe code. Applying this practice does not sinply
redefine YES to be "yes" or THREE to be the integer 3. Rather
this practice yields nmeani ngful nanmes, such as

affirmati ve_response and mexi mum al ternatives, to hel p anyone who
is trying to understand how the code functions. Thus, not only
does the practice nmake the code nore nmintainable, but it also
makes it easier to paraneterize or generalize the data
representation, the user interface preferences, and the
functionality in ways the original progranmer may have mni ssed.
These definitions can be gathered into separate declaration
files, message catal ogs, resource files, or other databases to
provide flexibility in supporting clients of different |anguages.

The abstraction of literals extends to nmany data types. In
general, it is best to use opaque data types to encapsul ate

obj ects such as typed nunbers (e.g., noney and weight), strings,
date and tine of day, graphics, imge, audio, video, and
handwriting. Providing nethods or subroutines for data type
mani pul ati on conceals fromthe application how these data types
are mani pul ated. The use of pol ynorphi sm can serve to overl oad
common net hod and operation nanes |ike create, print, and delete.
Support for multiple presentation forns for each data type should
al l ow additi onal ones to be added easily. These presentation
forms are typically strings or images that are formatted
according to end-user preferences. Both input and output should
be factored first into transformati ons between the data type and
the presentation form and then into input and output on the
presentation form For exanple, to input a date involves

i nputting and parsing a string that represents a presentation
formof the date, e.g., "17 janvier 1977," and conmputing a val ue
whose data type is Date.

The concepts of character and of how a character is encoded

i nside a conputer vary dramatically worldw de.[2,7-11] In
addition, a process that works with a single character in one

| anguage may need to work with multiple characters in another

| anguage. One sinple rule can prevent the problens that this
variation can cause: Banish the Character data type from
applications, and use an opaque string data type instead. This
rule elimnates the tenpting practice of meking pervasive use of
how a character is stored and used in the progranmer's native
system The Array of Character data type is nearly as insidious,
because it is tenpting to use the ith elenment for sonething that
wi |l not make sense in another natural |anguage. One should only
extract substrings s[i:j] froma string s. Thus, when in a given
| anguage the object being extracted is only one code point
s[i:i], the extraction is obviously a special case. The section
Text El enents and Text Operations discusses this concept further.

Anot her safe software practice is to paraneterize preferences, or
better yet, to attach themto the data objects. As discussed
previously, a "hardwi red" preference such as witing direction

i nvari ably becones a reengi neering problem The | anguage
represented by the string, the encoding type, the presentation
formof the object, and the input nmethod for the object are al
preferences. In servers and in all kinds of databases, tagging
the data with its encoding type is desirable. In general, the
data type of the object should contain the preference attributes.
The client that processes the object can override the
preferences.

Geonetry preferences shoul d be user sel ectable. Sonme geonetry
preferences affect the user's working environment, e.g., the ways
in which dialog boxes work, wi ndows and pop-up nmenus cascade,

and el evator bars work.[1] These preferences are al nost al ways
deternmined by the end user's working | anguage. O her geonetry
preferences relate to the data on which the user is working,

e.g., paper size, vertical versus horizontal witing (for sone
Asi an | anguages), how pages are oriented in a book, |ayouts for
tabl es of contents, and | abels on graphs.

Conput er progranms, in particular groupware applications, mx
policy with processing. "Policy" refers to the sequence or order
of processing activities. For exanple, in a neeting schedul er
can anyone call a neeting or nust the manager be notified first?
Is an invoice a request for paynent or is it the admi nistrative
equi val ent of delivered goods requiring another docunent to

i nstigate paynent? Oten such policy issues are not logically
forced by the conputation, but they need to be enforced in
certain business cultures. A sequence of processing activities
that is "hardwired" into the programcan be very difficult to
reengi neer. Thus, policy descriptions should be placed into an
external script or database. The advent of workflow controllers,
such as those in Digital's EARS, ECHO and TeanRoute products,
makes it easy to do this.

Applications should not put date formatting, sorting, display, or

i nput routines into their mainline code. Often such operations
have been coded previously, and a new application's code will
probably not be international and nmay well contain other bugs.
Therefore, programers should construct applications to use, or
nore precisely reuse, run-tinme libraries, thus investing in the
quality and the nultilingual and rmulticultural capabilities of
these RTLs. When the underlying systemis not rich enough and/or
conpetition dictates, the existing RTL structures nust be
augnent ed.

RUN- TI ME LI BRARY STRUCTURE

A conmon theme for internationalizing software and for the safe
programm ng practices discussed in the previous section is to
keep the main application code i ndependent of all natura

| anguage, script, or character set dependencies. In particular
the code must use only RTLs with universal application
programm ng i nterfaces (APIs), i.e., the name of the routine and
its formal paraneter |ist nmust accommopdate all such variants.
Digital's early localization efforts typically made the mi stake
of replacing the U S.-only code with code that called RTLs
specific to the local market. This practice generated multiple
versions of the same product, each of which needed to be changed
whenever the pertinent part of the U S. version was changed. A
better structure for run-time libraries is shown in Figure 2.

Figure 2 Modular Run-tinme Library Structure

| |
| VARI OQUS RUN- TI ME LI BRARIES W TH UNI VERSAL |
| APPLI CATI ON PROGRAMM NG | NTERFACES

| |

ot o e oo oo +
| LANGUAGE 1 | LANGUAGE 2 | | LANGUAGE N
| RUN-TI ME | RUN-TIME | - | RUN-TI ME
| LI BRARY | LI BRARY | | LI BRARY
ot o e oo oo +
The application illustrated in Figure 2 calls an RTL routine

through the routine's universal APlIs. This routine may in turn
cal |l another |anguage-specific routine or nmethod, or it may be
tabl e driven. For exanple, a sort routine may be inplenmented
usi ng sort keys rather than conpare functions for better
performance. Wth this structure, localization to a new | anguage
i nvolves only the addition of the new | anguage-specific RTL or
the correspondi ng new table entries.

Note that the application nmust pass sufficient structure to the

RTL to guarantee that the APIs are universal. For exanple, to
sort a list of strings, a cal

sort_algorithm(list_pointer,sort_nane, sort_order)

could be created. The sort_order paraneter is of the type
{ascendi ng, descendi ng}. The sort_nane paranmeter is necessary
because in many cultures nunerous nethods of sorting are
standard.[1, 12] In sonme RTL designs, notably those specified by
X/ Open Conpany Ltd., these extra paraneters are passed as gl oba
variables.[5,6,7] This technique has the advantage of sinplifying
the APIs and meking them al nost identical to the APIs for the

U. S. code. Such RTLs, however, do not tend to be thread-safe and
have other problens in a distributed environnent.[5,13,14] An
alternative and far nore flexible nmechanismis nore object
oriented -- using a subtype of the List of String data type when
alternate sorts are neaningful. This subtype has the additiona
information (e.g., sort_nanme and sort_order) used by its Sort

nmet hod. [12, 14]

The next three sections discuss the organization and
extensibility of RTLs with this structure.

DATA REPRESENTATI ON

Data representation in RTLs incorporates text el enents and text
operations, user-defined text elenments, and docunent interchange
formts.

Text El enents and Text Operations

A text elenent is a conmponent of a witten script that is a unit
of processing for sone text operation, such as sorting,
rendering, and substring search. Sequences of characters,

di graphs, conjunct consonants, ligatures, syllables, words,
phrases, and sentences are exanples of comon text

el enents.[10, 15] An encoded character set E represents sone
particul ar set of text elenments as integers (code points).
Typically, the range of E is extended so that code points can
represent not only text elements in nultiple scripts but also
abstractions that may or nmay not be part of a script, such as
printing control codes and asynchronous conmuni cati on codes. [16]
More conpl ex text elenents can be represented as sequences of
code points. For exanple, U may be represented by two code points
<U> <*>, and a ligature such as {Ojoined with E} may be
represented as three code points <O> <joiner> <E> where a
"joiner" is a special code point reserved for creating text

el enents. Less conplex text elenments, i.e., subconponents of the
encoded text elenents, are found by using the code point and the
operation name to index into sone database that contains this

i nformati on. For exanple, if <é> is a single code point for ¢,
then the base character e is found by applying some function or

tabl e | ookup to the code point <é> The sanme is true for finding
a code point for the acute accent. \Wen a sequence of code points
represents a text elenent, the precise term "encoded text
element” is often abbreviated as "text elenent."

An encoded character set of particular inportance is Unicode,

whi ch addresses the encodi ng of nost of the world's scripts using
integers fromO to 2**16 -1.[11, 17] The Uni code universa
character set is the basis of |SO 10646, which will extend the
code point interval to 2**31 -1 (wi thout using the high-order
bit).[9] Unicode has a rich set of joiner code points, and it
formalizes the construction of many types of text elements as
sequences of code points.

Processing text elenents that are represented as sequences of
code points usually requires a three-step process: (1) the
original text is parsed into operation-specific text elenents,

(2) these text elenents are assigned values of sone type, and (3)
the operation is performed on the resulting sequence of val ues.
Not e that each step depends on the text operation. In particular
a run-tinme library must have a wi de variety of parsing
capabilities. The follow ng discussion of rendering, sorting, and
substring searching operations denonstrates this need.

In rendering, the text nust be parsed into text elenents that
correspond to glyphs in sone font database. The val ues assigned
to these text elenents are indexes into this database. The
rendering operation itself gets additional data froma font
server as it renders the text onto a |ogical page.

The sorting operation is nore conplicated because it involves a
list of strings and nmultiple steps. A step in npst sorting

al gorithms involves the assignnent of collation values (typically
integers) to various text elements in each string. The parsing
step has to take into account not only that rmultiple code points
may represent one character but also that sone | anguages

(Spani sh, for exanmple) treat nmultiple characters as one, for the
pur poses of sorting. Thus, a sorting step parses each string into
text el enents appropriate for the sort, assigns collation val ues
to these el enents, and then sorts the resulting sequences of

val ues. Note that the parsing step that takes place in a sorting
operation is somewhat different fromthe one that occurs in a
renderi ng operation, because the sort parse nust sonetines group
into one text elenent several characters, each of which has a
separate gl yph.

Searching a string s for a substring that matches a given string
s' involves different degrees of conplexity depending on the
definition of the term"matches." The trivial case is when

"mat ches" nmeans that the substring of s equals s' as an encoded
substring. In this case, the parse only returns code points, and
t he val ues assigned are the code point val ues. Wen the
definition of "matches" is weaker than equality, the situation is
nore conplicated. For exanple, when "matches" is "equal after

uppercasing," then the parsing step is the same one as for

upper casi ng and the values are the code points of the uppercased
strings. (Note that uppercasing has two subtle points. The code
point for a German sharp s, , actually becones two code points
<S><S>. Thus, sonetines the values assigned to the text elenents
resulting fromthe parse consist of nore code points than in the
original string. In addition, this substring match invol ves

regi onal preferences, for exanple, uppercasing a French é is Ein
France and E in Canada.) The situation is simlar when "matches"
equal s "equal after renoving all accents or similar rendering
marks." A nmore conplex case would be when s' is a word and
finding a match in s nmeans finding a word in s with the sane root
as s'. In this case, the operation nust first parse s into words
and then do a table or dictionary | ookup for the values, i.e.

the roots.

User-defi ned Text El enents

When the user of a system wi shes to represent and nanipul ate a
text elenent that is not currently represented or nani pul ated by
the system a nechanismis required to enable the user to extend
the system s capabilities. Exanples of the need for such a
mechani sm abound. Chi nese ideograns created as new gi ven nanes
and as new chem cal conpounds, Japanese gaiji, corporate |ogos,
and new di ngbats are often not represented or manipul ated by
standard systens.

User-defined text elenents cause two separate problens. The first
probl em occurs when E, the encoded character set in use, needs to
be extended so that a sequence of E's code points defines the
desired user-defined text element. The issues related to this
probl em are ones of registration to prevent one user's extensions
fromconflicting with another user's extensions and to allow data
i nt er change.

The second, nore difficult problem concerns the extensions of the
text operations required to mani pul ate the new text el ement. For
each such text operation, the parsing, value mapping, and
operational steps discussed earlier nust be extended to operate
on strings that involve the additional code points of E. Wen
tabl es or databases define these steps, the extensions are

tedi ous but often straightforward. Careful design of the steps
can greatly sinplify their extensions. In sonme cases, nhew
algorithnms are required for the extension. To the extent that
these tabl es, databases, or algorithnms are shared, the extensions
nmust be registered and shared across the system

Docunent | nterchange Formats
Compound docunents (i.e., docunents that contain data types other

than text) use encoded character sets to encode sinple text.
Al t hough many new docunent interchange formats (DI Fs) will

probably use Uni code exclusively (as does Go Conputer
Corporation's internal format for text), existing formats should
treat Unicode as nerely another encoded character set with each
character set being tagged.[18] This allows links to be made to
exi sting docunents in a natural way.

Many so-called revisable DIFs, such as Standard Generated Mark-up
Language (SGW), Digital Docunment |nterchange Format (DDl F),

O fice Docunent Architecture (ODA), Mcrosoft Rich Text Format
(RTF), and Lotus spreadsheet format (VWKS), and page description
| anguages (PDLs), such as PostScript, Sixels, or X 11, can be
extended to provide this Unicode support by enhancing the
attribute structure and extending the text inport map
Strings(E)-->DIF for each encoded character set E. In doing so,
however, many of the richer constructs in Unicode, e.g., witing
direction, and many printing control codes are often best
replaced with the DIF' s constructs used for these features
instead.[19] In this way, both processing operations are easier
to extend and facilitate the | ayout functions DI F-->PDL and the
rendering functions PDL-->l mage.

PRESENTATI ON SERVI CES

The practice of factoring input and output of data types into a
transformation T<-->T Presentati on_Form and performng the 1/0 on
the presentation formallows one to focus on each step
separately. This factorization also clarifies the applicability
of various user preferences, e.g., a date form preference applies
to the transformation, and a font preference applies to how the
string is displayed. As nentioned in the section Safe Software
Practices, preferences such as presentation form are best
attached to the end user's copy of the data. Data types such as
encoded i nage, encoded audi o, and encoded vi deo pose few

i nternational problenms except for the exchangeability of the
encodi ngs and the viability of some algorithnms for recognizing
speech and handwiting. Algorithnms for presentation services can
be distributed, but we view themas typically residing on the
client.[20] In Figure 1, we presune that the |ocal |anguage PCs
have this capability.

| nput
Exi sting technol ogy offers several basic input services, which
are presented in the following partial |ist of device-data type
functions:

o] Keyst rokes- - >Encoded Char act er

o] | mage- - >Encoded | mage

o] Audi o Si gnal - - >Encoded Audi o

o] Vi deo Si gnal -->Encoded Vi deo

o] Handwri ti ng-->Encoded Handwriting

The nethods for each input service depend on both the device and
the digital encoding and often use nultiple algorithms. \Wereas
for sone | anguages the mapping of one or nore keystrokes into an
encoded character (e.g., [conpose] + [e] + [/] yielding €) nmay be
consi dered nundane, input nethods for characters in many Asian

| anguages are conpl ex, fascinating, and the topic of continuing
research. The introduction of user-defined text elenents, which
is nmore common anong the Asian cultures, requires these input

nmet hods to be easily extendabl e to accommpdat e user-defined
characters.

Cut put

The basic output services are similar to the input services
listed in the previous section.

o] Strings-->l mage

o] DI F- - >PDL- - >l mage

o] Encoded | nmage- - >l nage

o] Encoded Audi o-->Audi o Si gna

o] Encoded Vi deo-->Vi deo Signa

o] Encoded Handwiting-->l nage
These output services also vary with encodi ng, device, and
algorithm Figure 3 illustrates the sequence DI F-->PDL-->| mage.
Optional paraneters are permitted at each step. A viable
i mpl enmentation of Strings-->Image is to factor this function by
means of the function Strings-->DIF, which is discussed in the

Dat a Representation section. Alternatively, the data type Strings
can be sinply viewed as another DIF to be supported.

Figure 3 Layout and Rendering Services

DOCUMENT				PAGE						
	NTERCHANGE	-->	LAYOUT	-->	DESCRIPTION	-->	RENDER	-->		MAGE
FORMAT			LANGUAGE							

| FONT |

A revi sabl e docunment begins in sone DI F such as plain text,
Strings(Unicode), SGWM., or DDIF. A |ayout process consunes the
docunent and sone | ogi cal page paranmeters and creates an

i ntermedi ate form of the docunment in some PDL such as Post Scri pt,
Si xel s, or even a sequence of X 11 packets. To acconplish this,
the | ayout process needs to get font netrics fromthe font server
(to conmpute relative glyph position, word and |ine breaks, etc.).
In turn, the rendering process consunes the PDL and sone physica
nmedi a paraneters to create the image that the end user actually
sees. The rendering process may need to go back to the font
server to get the actual glyphs for the inmge. Rendering, |ayout,
and font services are nultilingual services. The servers for
these services are the nmultilingual servers envisioned in Figure
1

COVPUTATI ON SERVI CES

To build systens that process multilingual data, such as the one
shown in Figure 1, a rich variety of text operations is
necessary. This section categorizes such operations, but a

conpl ete specification of their interfaces would consunme too much
space in this paper. Text operations require parsing, value

mappi ng, and operational functions, as described earlier

Text Mani pul ati on Services

Text mani pul ati on services, such as those specified in C
programm ng | anguage standard | SO | EC 9899: 1990, System V Rel ease
4 Multi-National Language Supplenment (M\LS), or XPG4 run-tine
libraries (including character and text elenment classification
functions, string and substring operations, and conpression and
encryption services) need to be extended to multilingual strings
such as Strings(Unicode) and other DI Fs, and to various text
object class libraries.[6,8, 13]

Data Type Transfornmations

Data type transformations (e.g., speech to text, image-to-text
optical character recognition [OCR], and handwiting to text) are
operations where the data is transformed froma representati on of
one abstract data type to a representation of another abstract
data type. The presentation formtransformtions

T<-->T _Presentation_Form and the fundanmental input and output
services are data type transformations. Care needs to be taken
when paraneterizing these operations with user preferences to
keep the transfornmation thread-safe. Again, this is best
acconpl i shed by keeping the presentation form preferences
attached to the data.

Encodi ng Conversi ons

Encodi ng conversions (between encoded character sets, DIFs, etc.)
are operations where only the representation of a single data
type changes. For exanple, to support Unicode, a system nust have
for each other encoded character set a function
to_uni:Strings(E)-->Strings(Uni code), which converts the code
points in E to code points in Unicode.[11] The conversion
function to_uni has a partial inverse
fromuni:Strings(Unicode)-->Strings(E), which is only defined on
those encoded text elenents in Unicode that can be expressed as
encoded text elenents in E. If s is in Strings(E), then

fromuni (to_uni(s)) is equal to s. O her encoding conversions
Strings(E)-->Strings(E') can be defined as a to_uni operation
followed by a fromuni operation, for E and E respectively.

Anot her cl ass of encodi ng conversions arises when the character
set encoding renmains fixed, but the conversion of a docunent in
one DIF to a docunment in another DIF is required. A third class
ori gi nates when Uni code or | SO 10646 strings sent over
asynchronous communi cati on channel s nmust be converted to a

Uni versal Transni ssion Format (UTF), thus requiring
Strings(Uni code) <-->UTF encodi ng conversi ons.

Col lation or Sorting Services

Anot her group of conputation services, collation or sorting
services, sorts lists of strings according to
application-specific requirenents. These services were di scussed
earlier in the paper.

Li ngui stic Services

Li ngui stic services such as spell checking, grammar checking,
word and |ine breaking, content-based retrieval, translation
(when existent), and style checking need standard APlIs. Although
the inplementation of these linguistic services is natura

| anguage-specific, nost can be inplenented with the structure
shown in Figure 2.

Al so, large character sets such as Unicode and other nultilingua
structures require a uni form exception-handling and fall back
mechani sm because of the | arge nunber of unassigned code points.
For exanple, a system should be able to unifornmly handle
exceptions such as "glyph not found for text elenment." Mechani sns
such as gl obal variables for error codes inhibit concurrent
progranmm ng and therefore should be di scouraged. Returning an
error code as the return value of the procedure call is
preferred, and when supported, raising and handling exceptions is
even better.

SYSTEM NAM NG, SYNONYMS, AND SECURI TY

The multilingual aspect of Unicode can sinplify system nam ng of
objects and their attributes, e.g., in nanme services and
repositories. Using encoded strings tagged with their encoding
type for names is too rigid, because of the high degree of
overlap in the various encoded character sets. For exanple, the
string "ABC' should represent one nane, independent of the
character set in which the string is encoded. Two tagged strings
represent the same nane in the systemif they have the sane
canonical formin Unicode according to the foll owi ng definitions.

Uni code has the property that two different Unicode strings, u
and v, may well represent the sanme sequence of glyphs when
rendered.[11] To deal with this, a systemcan define an interna
canonical formc(u) for a Unicode string u. c(u) would expand
every conbined character in u to its base characters foll owed by
their assorted marking characters in sone prescribed order. The
recommended order is the Unicode "priority value."[11,21] The
canoni cal form shoul d have the follow ng property: Wen c(u) is
equal to c(v), the plain text representations of u and v are the
sanme. ldeally, the converse should hold as well

Thus, u and v represent the same nane in the systemif c(u) is
equal to c(v). In any directory listing, an end user of a

| anguage sees only one nanme per object, independent of the

| anguage of the owner who nanmed the object. Further restrictions
on the strings used for nanes are desirable, e.g., the absence of
speci al characters and trailing blanks. In a multivendor
environnent, both the canonical formand the name restrictions
shoul d be standardi zed. The X. 500 worki ng groups currently
studying this problem plan to achi eve conparabl e standardi zati on

Since wel |l -chosen nanes convey useful information, and since such
nanes are entered and displayed in the end user's witing system
of choice, it is often desirable for the systemto store various
transl ations or "synonyns" for a nane. Synonyns, for whatever

pur pose, should have attributes such as | ong_nane, short_nane,

| anguage, etc., so that directory functions can provide
easy-to-use interfaces. Access to objects or attribute val ues

t hrough synonyns shoul d be as efficient as access by means of the
primary name.

In a global network, public key authentication using a replicated
nanme service is recomended.[22] One principal can | ook up
another in the name service by initially using a (possibly
nmeani ngl ess) nane for the object in sone common character set,
e.g., {A-Z 0-9}. Subsequently, the principals can define their
own synonyms in their respective |anguages. Attributes for the
principals, such as network addresses and public encryption keys,
can then be accessed through any synonym

SYSTEM MANAGEMENT AND CONFI GURATI ON

The system managenent of a multilingual distributed systemis
somewhat nore conplicated than for a nonolingual system The
following is a partial list of the services that nmust be
provi ded:

o] Services for various nonolingual subsystens

o] Regi stration services for user preferences, |ocales,
user-defined text elenents, formats, etc.

o] Both multilingual and multiple nonolingual run-tine
libraries, sinultaneously (see Figure 2)

o] Mul tilingual database servers, font servers, |ogging and
qgqueui ng nmechani sns, and directory services

o] Mul tilingual synonym services
o] Mul tilingual diagnhostic services

Since a system cannot provide all the services for every

possi bl e situation, registering the end users' needs and the
system s capabilities in a global name service is essential. The
nanme service nust be configured so that a nultilingual server can
identify the | anguage preferences of the clients that request
services. This configuration allows the servers to tag or convert
data fromthe client w thout the nonolingual client's active
participation. Therefore, the nane service database nmust be
updated with the necessary preference data at client installation
time.

Typi cal ly, system nmanagers for different parts of the systemare
nmonol i ngual end users (see Figure 1) who need to do their job
froma standard PC. Thus, both the normal and the diagnhostic
managenent interfaces to the system nust behave as multilingua
servers, sending error codes back to the PCto be interpreted in
the |l ocal |anguage. Although the quality of the translation of an
error nmessage is not an architectural issue, translations at the
syst em managenent | evel are generally poor, and the system design
shoul d account for this. Systens devel opers shoul d consi der
giving both an English and a | ocal -1 anguage error nessage as wel

as giving easy-to-use pointers into | ocal-language reference
manual s.

Data errors will occur nore frequently because of the m xtures of
character sets in the system and attention to the identification
of the location and error type is inportant. Logging to capture

of fending text and the operations that generated it is desirable.

| NCREMENTAL | NTERNATI ONALI ZATI ON

Mul tilingual systems and international conponents can be built
increnmental ly. Probably the nopst powerful approach is to provide
the services to support multiple nonolingual subsystenms. Even new
operating systenms, such as the Wndows NT system that use

Uni code internally need nmechani sns for such support.[23]

Mul ti di nensi onal inprovenents in a systenlis ability to support an
i ncreasi ng nunber of variations are possible. Sone such

i mprovenents are nmaking nore servers multilingual, supporting
nore multilingual data and end-user preferences, supporting nore
sophi sticated text elenments (the first rel ease of the Wndows NT

operating systemw ||l not support Unicode's joiners), as well as
addi ng nore character set support, |ocales, and user-defined text
el enments. The key point is that, |ike safe progranm ng practices,

mul tilingual support in a distributed systemis not an
"al | -or-nothing" endeavor.

SUMVARY

Custoner demand for nultilingual distributed systens is

i ncreasing. Suppliers nmust provide systens without incurring the
costs of expensive reengineering. This paper gives an overview of
the architectural issues and progranmm ng practices associ ated
with inplenenting these systens. Mdularity both in systems and
inrun-tine libraries allows greater reuse of conponents and
incremental inprovenents with regard to internationalization
Usi ng the suggested safe software practices can | ower

reengi neeri ng and mai ntenance costs and hel p avoid costly
redesi gn problens. Providing multilingual services to nonolingua
subsystens pernmits increnmental inprovenents while at the sane
time | owers costs through increased reuse. Finally, the

regi stration of synonynms, user preferences, |ocales, and services
in a global nanme service nakes the system cohesive.

ACKNOW.EDGVENTS

I wish to thank Bob Ayers (Adobe), Joseph Bosurgi (Univel), Asnus
Freytag (Mcrosoft), JimGay (Digital), and Jan te Kiefte
(Digital) for their hel pful conments on earlier drafts. A specia
thanks to Digital's internationalization team whose
contributions are always understated. In addition, |I would Iike

to acknowl edge the Uni code Technical Conmittee, whose inpact on
the industry is profound and growing; | have | earned a great dea
fromfollowi ng the work of this committee.

REFERENCES

1. D. Carter, Witing Localizable Software for the
Maci nt osh (Readi ng, MA: Addi son-Wesl ey, 1991).

2. Produci ng I nternational Products (Maynard, MA: Digita
Equi prent Corporation, 1989). This internal docunent is
unavail able to external readers.

3. Digital Guide to Devel oping International Software
(Burlington, MA: Digital Press, 1991).

4, S. Martin, "Internationalization Made Easy," OSF Wite Paper
(Canbridge, MA: Open Software Foundation, Inc., 1991).

5. S. Snyder et al., "Internationalization in the OSF DCE -- A
Framework, " May 1991. This docunment was an el ectronic nail
nmessage transnmitted on the Internet.

6. X/ Open Portability Guide, Issue 3 (Reading, U K. : X Open
Conpany Ltd., 1989).

7. X/ Open Internationalization Guide, Draft 4.3 (Reading, UK
X/ Open Conpany Ltd., October 1990).

8. UNI X System V Rel ease 4, Multi-National Language Suppl enent
(M\LS) Product Overview (Japan: American Tel ephone and
Tel egraph, 1990).

9. I nformati on Technol ogy -- Universal Coded Character Set
(UCS) Draft International Standard, |1SO |EC 10646 (Geneva:
International Organization for Standardization/lnternationa
El ectrot echni cal Conmi ssion, 1990).

10. A. Nakanishi, Witing Systens of the World, third printing
(Rutland, Vernmont, and Tokyo, Japan: Charles E. Tuttle
Conpany, 1988).

11. The Uni code Consortium The Unicode Standard -- Worl dwi de
Character Encoding, Version 1.0, Volunme 1 (Reading, MA:
Addi son- Wesl ey, 1991).

12. R Haentjens, "The Ordering of Universal Character Strings,"
Digital Technical Journal, vol. 5, no. 3 (Sunmer 1993):
43-52.

13. Progranm ng Languages -- C, |SO | EC 9899: 1990(E) (Geneva:
International Organization for Standardization/lnternationa

El ectrot echni cal Conmi ssion, 1990).
14. S. Martin and M Mori, Internationalization in OSF/1 Rel ease
1.1 (Canbridge, MA: Open Software Foundation, Inc., 1992).

15. J. Becker, "Multilingual Wbrd Processing," Scientific
American, vol. 251, no. 1 (July 1984): 96-107.

16. Coded Character Sets for Text Communi cation, Parts 1 and
2, SO 1EC 6937 (Geneva: International Organization for
St andar di zati on/ I nternati onal El ectrotechni cal Comm ssion,
1983) .

17. J. Bettels and F. Bishop, "Unicode: A Universal Character
Code," Digital Technical Journal, vol. 5, no. 3 (Sunmmer
1993): 21-31.

18. Go Computer Corporation, "Conpaction Techni ques,"
Second Uni code | npl enentors' Conference (1992).

19. J. Becker, "Re: Updated [Problens with] Unbound (Open)
Repertoire Paper" (January 18, 1991). This electronic nail
nessage was sent to the Unicode mailing |ist.

20. V. Jol oboff and W MMhon, X W ndow System Version 11
I nput Met hod Specification, Public Review Draft (Canbridge,
MA: Massachusetts Institute of Technol ogy, 1990).

21. M Davis, (Taligent) correspondence to the Uni code Technica
Conmittee, 1992.

22. M CGasser et al., "Digital Distributed Security
Architecture" (Maynard, MA: Digital Equi prment Corporation
1988). This internal docunent is unavailable to externa
readers.

23. H. Custer, Inside Wndows NT (Redmond, WA: M crosoft Press,
1992).

TRADEMARKS

Digital and TeanRoute are trademarks of Digital Equi pnment
Cor poration.

PostScript is a registered trademark of Adobe Systens Inc.

W ndows NT is a trademark of M crosoft Corporation

Bl OGRAPHY

Gayn B. Wnters Corporate consulting engineer Gayn Wnters has
25 years' experience devel oping conpilers, operating systens,
di stributed systenms, and PC software and hardware. He joi ned

Digital in 1984 and managed the DECnmate, Rai nbow, VAXmate, and PC
integration architecture. He was appoi nted Technical Director for
Software in 1989 and contributes to the Corporate software
strategy. From 1990 to 1992, Gayn led the internationalization
systenms architecture effort and is on the Board of Directors for
Uni code, Inc. He has a B.S. fromthe University of California at
Berkel ey and a Ph.D. from MT.

Copyright 1993 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi prment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permtted. All rights reserved.

