
SUPPORTING THE CHINESE, JAPANESE, AND KOREAN LANGUAGES
IN THE OPENVMS OPERATING SYSTEM

By Michael M. T. Yau

ABSTRACT

The Asian language versions of the OpenVMS operating system allow
Asian-speaking users to interact with the OpenVMS system in their
native languages and provide a platform for developing Asian
applications. Since the OpenVMS variants must be able to handle
multibyte character sets, the requirements for the internal
representation, input, and output differ considerably from those
for the standard English version. A review of the Japanese,
Chinese, and Korean writing systems and character set standards
provides the context for a discussion of the features of the
Asian OpenVMS variants. The localization approach adopted in
developing these Asian variants was shaped by business and
engineering constraints; issues related to this approach are
presented.

INTRODUCTION

The OpenVMS operating system was designed in an era when English
was the only language supported in computer systems. The Digital
Command Language (DCL) commands and utilities, system help and
message texts, run-time libraries and system services, and names
of system objects such as file names and user names all assume
English text encoded in the 7-bit American Standard Code for
Information Interchange (ASCII) character set.

As Digital's business began to expand into markets where common
end users are non-English speaking, the requirement for the
OpenVMS system to support languages other than English became
inevitable. In contrast to the migration to support single-byte,
8-bit European characters, OpenVMS localization efforts to
support the Asian languages, namely Japanese, Chinese, and
Korean, must deal with a more complex issue, i.e., the handling
of multibyte character sets. Requirements for the internal
representation, input, and output of Asian text are radically
different from those for English text. As a result, many
traditional ASCII programming assumptions embedded in the OpenVMS
system are not valid for handling Asian multibyte characters.

Since the early 1980s, Digital's engineering groups in Asia have
been localizing the OpenVMS system to support Asian languages.
The resultant Asian language extensions allow Asian-speaking
users to interact with the OpenVMS system in their native
languages. These extensions also provide a platform for
developing Asian applications. This paper presents a high-level
overview of the major features of Chinese, Japanese, and Korean
support in the OpenVMS operating system and discusses the

localization approach and techniques adopted.

ASIAN LANGUAGE VARIANTS OF THE OpenVMS OPERATING SYSTEM

The following five separate Asian language variants of the
OpenVMS operating system are available in the Pacific Rim
geographical area:

LANGUAGE COUNTRY OpenVMS VARIANT

Japanese Japan OpenVMS/Japanese

Chinese People's OpenVMS/Hanzi
 Republic
 of China

Chinese Taiwan, OpenVMS/Hanyu
 Republic
 of China

Korean Republic OpenVMS/Hangul
 of Korea
 (South
 Korea)

Thai Thailand OpenVMS/Thai

This paper covers the first four variants, omitting the Thai
variant because of space limitations. Each Asian language variant
of the OpenVMS system is designed to be installed and to run as a
separate system. Currently, no provision exists to formally
support multiple Asian languages simultaneously on a single
OpenVMS system. Each variant provides a bilingual system
environment of English and one Asian language. Such an
environment, called Asian OpenVMS mode in this paper, supports
ASCII and one multibyte Asian character set. The variants are
available on the VAX and the Alpha AXP platforms with identical
features. Throughout the paper, the generic name Asian OpenVMS
variant denotes any of the Asian language variants of the OpenVMS
operating system, regardless of the hardware platform.

To achieve full downward compatibility for existing users,
applications, and data from the standard OpenVMS system, each
Asian OpenVMS variant is a superset of the standard OpenVMS
system. In fact, a user can operate in the standard OpenVMS mode,
i.e., the 1-byte DEC Multinational Character Set (DEC MCS), on an
Asian OpenVMS variant without noticing any difference in the
functional behavior compared to a standard OpenVMS system. The
components of an Asian OpenVMS variant are installed on a

standard OpenVMS system in a manner similar to that of a layered
product; files (executable images and other data files) are added
and replaced on the standard OpenVMS system. In general, three
types of components are supplied in an installation:

 1. A standard OpenVMS component supplanted by an Asian
 localized version that includes the standard OpenVMS mode
 as a subset. At the process level, the user can set the
 component to run in either standard OpenVMS mode or Asian
 OpenVMS mode. The DCL and the terminal driver are
 examples of this type of component.

 2. A standard OpenVMS component supplemented by an Asian
 localized version that runs only in Asian OpenVMS mode.
 Both versions of the component run simultaneously on the
 system. Examples are the TPU/EVE editor and the MAIL
 utility.

 3. A new Asian-specific component created to provide
 functionality for Asian processing that does not exist in
 the standard OpenVMS system. An example of this type of
 component is the character manager (CMGR), which is
 discussed later in this paper.

OVERVIEW OF ASIAN WRITING SYSTEMS

Before looking at specific features of the Asian OpenVMS
variants, this paper briefly reviews the Chinese, Japanese, and
Korean writing systems. For a more detailed discussion of the
differences among these writing systems, refer to Tim Greenwood's
paper in this issue of the Journal.[1]

The Chinese Writing System

The Chinese writing system uses ideographic characters called
Hanzi, which originated in ancient China more than 3,000 years
ago. Each ideographic character (or ideogram) is a symbol made up
of elementary root radicals that represent ideas and things. Some
ideograms have very complex glyphs that consist of up to 30 brush
strokes. Over 50,000 Chinese ideograms are known to exist today;
however, a subset of 20,000 or less is typically sufficient for
general use. Two or more ideograms are often strung together to
represent more complex thoughts.

Ideographic writing systems have characteristics that are quite
different from those of alphabetical writing systems, such as the
Latin languages. For instance, the concept of uppercase and
lowercase does not apply to ideographic characters, and collation
rules are built on different attributes. The input of ideographic
characters on a standard keyboard requires additional processing.

Two forms of Chinese characters are in use today: Traditional

Chinese and Simplified Chinese. Traditional Chinese is the
original written form and is still used in Taiwan and Hong Kong.
In the 1940s, the government of the People's Republic of China
(PRC) launched a campaign to simplify the writing of some
traditional Chinese characters in an effort to speed up the
learning process. The resulting simpler set of Chinese characters
is known as Simplified Chinese and is used in the PRC, Singapore,
and Hong Kong.

The Japanese Writing System

The Japanese writing system uses three scripts: Chinese
ideographic characters (called kanji in Japan), kana (the native
phonetic alphabet), and romaji (the English alphabet used for
foreign words). The kanji script commonly used in Japanese
includes about 7,000 characters. There are two sets of kana
scripts, namely, hiragana and katakana; each comprises 52
characters that represent syllables in the Japanese language.
Hiragana is used extensively intermixed with kanji.
Katakana is used to represent words borrowed from other
languages.

The Korean Writing System

The Korean writing system uses two scripts: Hangul (the native
phonetic characters) and Hanja (Chinese ideographic characters).
The Hangul script was invented in 1443 by a group of scholars in
response to a royal directive. Each Hangul character is a
grouping of two to five Hangul letters (phonemes) that forms a
square cluster and represents a syllable in the Korean language.
The modern Hangul alphabet contains 24 basic letters -- 14
consonants and 10 vowels. Extended letters are derived by
doubling or combining the basic letters.

ASIAN CHARACTER SETS

During the early days of Asian language computerization when de
jure standards did not exist for Asian character sets, individual
vendors in the local countries invented their own local character
sets for use in their Asian language products. Although most
vendors have migrated to conform with the national standards, a
variety of local character sets still exists today in legacy
systems, thus creating interoperability issues. This paper
reviews only the national standard character sets that are
supported by the Asian OpenVMS variants.

National Standards

National standards bodies in each of the Asian Pacific
geographies have established character set standards to

facilitate information interchange for their local characters.
For languages that use Han characters (which are large in number)
in their writing scripts, the character set standards all share a
similar structure, which is illustrated in Figure 1. Characters
are assigned to a 94-row by 94-column structure called a plane.
Each character is represented by a 2-byte (7-bit) value in the
range of 0x21 to 0x7E. A plane, therefore, has a total of 8,836
code points available. Such a structure avoids the ASCII control
code values, thus preventing conflicts with existing operating
systems and communication hardware and software.

Figure 1 Code Structure in Asian Character Set Standards

 COLUMN
 1 94 ROW COLUMN
 1+---------+ +-+--------------+ +-+--------------+
 | | |*| | |*| |
ROW | | +-+--------------+ +-+--------------+
 | | 0x21-0x7E 0x21-0x7E
 | |
 94+---------+ TWO-BYTE CODE STRUCTURE
 A PLANE

*Note that the first bit of each row and column can be either 0 or 1.

Japan. Japan was the first country to announce a 2-byte
character set standard, the Code of the Japanese Graphic
Character Set for Information Interchange (JIS C 6226-1978).[2]
This standard has since been revised twice, in 1983 and 1990, and
renamed JIS X 0208. The JIS X 0208-1983 standard includes 6,353
kanji characters divided into two levels, according to frequency
of usage.[3] Level 1 has 2,965 characters, and level 2 has an
additional 3,388 characters. This standard also includes complete
sets of characters for hiragana and katakana, ASCII, and the
Greek and Russian scripts -- a total of 453 characters. The 1990
revision, JIS X 0208-1990, added two characters to the
standard.[4] An additional plane of kanji characters became
standard in 1990 with the announcement of JIS X 0212-1990.[5]

Prior to the introduction of the 2-byte standards, Japanese
systems that support katakana used the JIS X 0201-1976 standard
for a 1-byte, 8-bit character set.[6] Today, there is still a
demand to support this standard, in addition to the 2-byte
standards, due to its pervasive use primarily in legacy mainframe
systems.

People's Republic of China. In 1980, China announced a 2-byte
standard, Chinese Character Coded Character Set for Information

Interchange -- Basic Set (GB 2312-1980).[7] Its structure, which
follows that of the Japanese standard, includes two levels of
Hanzi. Level 1 has 3,755 characters, and level 2 has an
additional 3,008 characters. The standard also has 682
characters, including ASCII, Greek, Russian, and the Japanese
kana characters. Subsequently, China has announced additional
character set standards.

Taiwan, Republic of China. The Taiwanese national standard,
Standard Interchange Code for Generally Used Chinese Characters
(CNS 11643-1986) was first announced in 1986.[8] Again, the
structure is similar to the Japanese and PRC standards. It
defines two planes of characters with a total of 13,051 Hanzi,
651 symbols, and 33 control characters. The standard was revised
in 1992 and renamed Chinese Standard Interchange Code (CNS
11643-1992).[9] An additional five planes were defined in this
revision, adding 34,976 characters.

Republic of Korea (South Korea). The latest version of the
Korean 2-byte character set standard is the Korean Industrial
Standards Association Code for Information Interchange (KS C
5601-1987), announced in 1987.[10] This standard includes 2,350
precomposed Hangul characters, 4,888 Hanja (Chinese characters),
and 352 other characters such as ASCII, the Hangul alphabets,
Japanese kana, Greek, Russian, and special symbols.

User-defined Characters

Character set standards do not always encode all known characters
of the writing scripts for which the standards are intended. For
instance, when the total number of known characters exceeds the
available code space, only subsets of the most common characters
are included. In addition, new characters are invented over time
to describe new ideas or objects, such as new chemical elements.
The concept of user-defined characters (UDCs), sometimes known as
gaiji in Japan, was introduced to address the user's need for
characters that are not coded in a character set standard. Many
computer vendors, including Digital, provide extended code areas
for assigning UDCs and vendor-defined nonstandard characters.
Attributes of these characters for various operations such as
display fonts, collation weights, and input key sequence are
often made available, e.g., by registering them in a system
database. From an end-user and application perspective, UDCs
should be processed transparently and in the same way as standard
characters.

ASIAN OpenVMS SYSTEM OVERVIEW

From an operating system perspective, three basic issues need to
be addressed to support Asian character processing, namely,

internal representation, (i.e., how Asian characters are
represented and stored inside the computer), basic text input,
and output.

Internal Representation

Asian OpenVMS variants support the respective national standard
character sets. To achieve full compatibility with existing ASCII
data, each Asian OpenVMS variant simultaneously supports one
multibyte Asian character set and ASCII. A variety of schemes can
be used to combine multiple coded character sets. In general, the
schemes fall into one of the following three types:

 1. Shift code-based representation. In this scheme, the
 1-byte code is combined with a 2-byte code by inserting
 shift control codes to switch between the two code sets.
 A 1-byte "shift out" control code changes the mode from
 1- to 2-byte, while a 1-byte "shift in" control changes
 the mode back to 1-byte characters. This scheme is in
 common use in mainframes.

 2. ISO 2022-based representation. The ISO 2022 Code
 Extension Techniques allow a designated character set to
 consist of two, three, or four 7-bit bytes in addition to
 the 7-bit sets.[11] The only requirement is that all
 bytes of a character have the same high-order bit setting
 (all 0 or all 1). A simple scheme of simultaneously
 supporting ASCII and one 2-byte character set can be
 achieved by statically designating ASCII to G0 and
 invoking it to graphics left (GL) and designating a local
 2-byte set (e.g., one of the Chinese, Japanese, or Korean
 sets) to G1 and invoking it to graphics right (GR). The
 resulting mixed 1-byte/2-byte representation is shown in
 Figure 2.

 The high-order bit of each 8-bit byte provides
 self-identifying information for the local 2-byte set.
 This scheme can be further extended to include two
 additional character sets by statically designating them
 to G2 and G3 and invoking them by the single shift codes
 SS2 and SS3. The Extended UNIX Code (EUC) scheme employs
 this additional extension.

Figure 2 Example of an ISO 2022-based Representation That
 Combines Multiple Coded Character Sets

 FIRST BYTE SECOND BYTE

 +-+-+-+-+-+-+-+-+
 |0| |
 +-+-+-+-+-+-+-+-+

 7-BIT ASCII

 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 |1| | |1| |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 14-BIT JIS/GB/KS

 3. Shift range-based representation. This scheme, a hybrid
 of the previous two schemes, is used by the "Shift JIS
 Code" on PC-based systems in Japan. Bytes with codes 0 to
 127 are interpreted as 1-byte ASCII, codes 160 to 191 and
 192 to 223 are interpreted as 1-byte
 katakana (as specified by the JIS X 0201 standard), and
 codes 128 to 159 and 224 to 255 are combined with the
 byte that follows to form a 2-byte code that is
 interpreted as a kanji character (as specified by the JIS
 X 0208 standard). This scheme allows more single-byte
 characters to be represented at the expense of the number
 of 2-byte characters allowed.

Asian OpenVMS variants employ the ISO 2022-based representation
for Digital's Asian code sets (the DEC Asian code sets) and are
named respectively DEC Kanji, DEC Hanzi, DEC Hanyu, and DEC
Hangul for the Japanese, Simplified Chinese, Traditional Chinese,
and Korean character sets. This encoding scheme maintains full
downward compatibility with all existing ASCII software and data.
In particular, a string or record that consists of only ASCII
characters has the form of simple ASCII. Because there is no need
to keep state information about the data, this scheme simplifies
processing, when compared to the shift code-based scheme.
However, without explicit support for coded character set
designation, simultaneous support for Chinese, Japanese, and
Korean is not possible.

To support UDCs, each DEC Asian code set contains an extended
code area for their assignment. The high-order bit of the second
byte no longer has to be set; thus, an additional 94 by 94 plane
of code positions is available. The disadvantages of this
approach are that synchronizing a character boundary requires
scanning forward from the beginning of the string and that the
second byte can now conflict with the ASCII characters.

The DEC Asian code set internal representation corresponds to
mapping a character plane (94 by 94) to one of the (1,1) and
(0,1) quadrants of the 2-byte code space in Figure 3. The exact
mappings of individual DEC Asian character sets supported by
Asian OpenVMS vary. Table 1 provides a summary of the common code
range assignments.

Figure 3 DEC Asian Code Set Internal Representation

 SECOND BYTE

 00 21 80 A1 FF
 +---+------------+---+------------+
 | CONTROLS |
 21+ +------------+ +------------+
 CONTROLS | | | | |
 \ | | | | |
 \| | (0,0) | | (0,1) |
 \ | | | |
 |\ | | | |
 FIRST 80+ +------------+ +------------+
 BYTE | CONTROLS |
 A1+ +------------+ +------------+
 | | | | |
 | | | | |
 | | (1,0) | | (1,1) |
 | | | | |
 | | | | |
 FF+---+------------+---+------------+

Table 1 Summary of DEC Asian Code Range Assignments

CODE RANGE DEC KANJI DEC HANZI DEC HANYU DEC HANGUL

(0xxxxxxx) ASCII ASCII ASCII ASCII
(1xxxxxxx 1xxxxxxx) JIS X 0208 GB 2312-1980 CNS 11643-1986(1)* KS C
5601-1987
(1xxxxxxx 0xxxxxxx) UDC UDC CNS 11643-1986(2)! --
(000xxxx) C0 Control C0 Control C0 Control C0 Control
(100xxxx) C1 Control C1 Control C1 Control C1 Control

Notes:
* denotes plane 1 of CNS-11643-1986.
! denotes plane 2 of CNS-11643-1986.

DEC Kanji. The DEC Kanji (OpenVMS/Japanese) code set currently
supports ASCII, JIS X 0208-1983, and an area for UDCs, as shown
in Table 1. The UDC area is further divided into the two subareas
described in Table 2.

Table 2 The DEC Kanji UDC Area

 NUMBER OF
AREA USAGE QUADRANT ROWS CHARACTERS CODE RANGE

User Area (1,0) 1-31 2,914 0xA121-0xBF7E
DEC Reserved (1,0) 32-94 5,922 0xC021-0xFE7E

Recently, Super DEC Kanji, a revision and extension to the DEC

Kanji code set, has been proposed to support additional character
sets such as JIS X 0201-1978 and JIS X 0212-1990, which are
specified as follows:

ADDITIONAL
CODE RANGE PLANES

(SS2 1xxxxxxx) JIS X 0201
(SS3 1xxxxxxx 1xxxxxxx) JIS X 0212

The redefined UDC area includes both a user/vendor-defined area
(UDA) and a user-definable character set (UDCS), as described in
Table 3.

Table 3 The Super DEC Kanji UDC Area

 NUMBER OF
AREA USAGE QUADRANT ROWS CHARACTERS CODE RANGE

JIS X 0208 UDA (1,1) 85-94 940 0xF5A1-0xFEFE
JIS X 0212 UDA SS3 (1,1) 78-94 1,598 (SS3 + 0xEEA1)-0xFEFE
UDCS (1,0) 1-94 8,836 0xA121-0xFE7E

DEC Hanzi. The DEC Hanzi (OpenVMS/Hanzi for Simplified Chinese)
code set supports ASCII, GB 2312-80, and a UDC area described in
Table 4.

Table 4 The DEC Hanzi UDC Area

 NUMBER OF
AREA USAGE QUADRANT ROWS CHARACTERS CODE RANGE

DEC Reserved (1,1) 88-94 658 0xA1A1-0xFEFE
User Area (1,0) 1-87 8,178 0xA121-0xF77E
DEC Area (1,0) 88-94 658 0xF821-0xFE7E

DEC Hanyu. The DEC Hanyu (OpenVMS/Hanyu for Traditional Chinese)
code set currently supports ASCII, CNS 11643-1986 (first and
second planes), and the Digital Taiwan Supplemental Character Set
(DTSCS). The DTSCS supplements the characters defined in CNS
11643-1986 with an additional collection of characters that
address customer needs. Currently, the DTSCS defines the 6,319
characters recommended by the Electronic Data Processing Center
(EDPC) of the Executive Yuan, a Taiwanese government body. The
CNS 11643-1992 standard includes the DTSCS.

To support the additional DTSCS, the mixed 1-byte/2-byte scheme
is extended to a 1-byte/2-byte/4-byte scheme. Each DTSCS

character maps to a 4-byte code, in which a fixed leading 2-byte
code (0xC2CB) combines with the following 2-byte code to form a
4-byte code. Of course, the code point 0xC2CB is reserved for
this purpose. This scheme makes available another two 94 by 94
planes of code positions:

(0xC2CB 1xxxxxxx 1xxxxxx) (0xC2CB 1xxxxxxx 0xxxxxx).

Table 5 shows the current definition of the DTSCS. An additional
area is available for UDCs in the CNS planes, as defined in Table
6.

Table 5 The DEC Hanyu DTSCS Area

 NUMBER OF
AREA USAGE QUADRANT ROWS CHARACTERS CODE RANGE

EDPC Recommended
 Characters C2CB (1,1) 1-68 6,319 0xC2CBA1A1-0xC2CBE4B5
Reserved C2CB (1,1) 68-94 2,517 0xC2CBBEB6-0xC2CBFEFE
Reserved C2CB (1,0) 1-94 8,836 0xC2CBA121-0xC2CBFE7E

Table 6 The DEC Hanyu UDC Area

 NUMBER OF
AREA USAGE QUADRANT ROWS CHARACTERS CODE RANGE

UDC (1,1) 93-94 145 0xFDCC-0xFEFE
UDC (1,0) 82-94 1,186 0xF245-0xFE7E

DEC Hangul. The DEC Hangul (OpenVMS/Hangul) code set supports
ASCII and KS C 5601-1987 (with the exception of UDCs).

Asian Text Input

The most widely used computer input device remains the keyboard.
Because it is impossible to assign thousands of ideographic
characters to a standard QWERTY keyboard, new methods must be
devised to facilitate the Asian text input process. In this
context, an input method is basically an algorithm that takes
keystroke input representing certain attributes (e.g., phonetics)
of a character or string and uses a lookup table to find
characters or strings that have those attribute values.
Typically, a user inputs several keystrokes and selects the
desired character or string from a candidate list by means of an
iterative dialog with the input method. This process is sometimes
referred to as preediting. Depending on the physical location of
where the dialog takes place, a preediting user interface can be
one of three styles: off-the-spot, over-the-spot, or on-the-spot.
Different input methods may have different preedit interface
requirements. Usually, several screen areas are needed for the

preediting dialog to take place. Input methods differ from
culture to culture and from script to script.

The major difference in the implementation of input method
support among the Asian OpenVMS variants is in the character cell
terminal environment. Some input methods are suitable for
programming into the terminal firmware. The Chinese and Korean
input methods supported on the OpenVMS/Hanzi, OpenVMS/Hanyu, and
OpenVMS/Hangul systems are examples of such methods. Other input
methods are too complex or require so many resources as to make
them too costly for firmware implementation. This is true of the
Japanese input method, which needs to be implemented on the host.
Such implementation causes a number of technical issues with the
traditional ASCII character cell terminal-oriented application
programming model, where an application does not have to be
concerned with input methods and expects to receive character
codes directly. The following three alternatives have been used
to implement host-based input methods on the OpenVMS/Japanese
system:

 1. Application. All Japanese applications directly program
 the input method themselves. An application must call
 low-level routines (a set of kana-kanji input method
 routines are available in the JSY Run-time Library) to
 access the input method dictionary and directly controls
 the preedit interface in relation to its own screen
 management. This method is used by applications such as
 text editors, which need to directly manage the screen
 display. The method requires substantial reengineering of
 an ASCII application to support a Japanese input method.

 2. Run-time library (RTL). Japanese applications call
 special text line input routines, which handle the
 Japanese input method. This method is suitable for
 applications that require simple line input of text. The
 RTL method hides the details of the input method from the
 application but lacks the flexibility to control the
 preedit user interface. The reengineering needed to
 handle the Japanese input method is shifted from the
 application to the RTL routines. This approach requires
 less application reengineering, but all standard line
 input routine calls in the application must be replaced
 by Japanese line input routine calls.

 3. Front-end input processor (FIP). The Japanese input
 method is embedded as a front-end process inside the
 terminal queued I/O (QIO) system service. This method of
 implementation benefits existing high-level RTL text line
 input routines and requires little application or RTL
 reengineering to support the Japanese input method in the
 single-line input of Japanese text.[12]

The Asian OpenVMS graphical user interface on workstations is
called Asian DECwindows/Motif. Current input method support is

provided through a Digital extension implemented as an X client.
With release 5 of the X11 standard, the implementation will
migrate to using the standard X input method (XIM) support in the
Xlib library routines.

Most Asian PCs have a front-end processor implementation of input
methods resident on the PC. Therefore, PC desktop computers can
send Asian characters directly when communicating with an Asian
OpenVMS host.

The following is an overview of the input methods supported
by each Asian OpenVMS variant.

Japanese Input Method. Kana characters can be typed directly on
a standard keyboard using a kana keyboard layout. For kanji
characters, the de facto standard input method is called the
romaji/kana-to-kanji conversion, which is based on phonetic
conversion. The process of entering a kanji string involves
typing the kana (hiragana or katakana) or the romaji
pronunciation of the string. The input method then looks in a
conversion dictionary for the list of kanji strings that have the
same pronunciation. Since most Japanese words have homonyms, the
user usually needs to go through a selection process to find the
desired kanji string. More advanced implementations involve
performing syntactic and semantic analysis of the sentence to
increase the efficiency of the input method. On the
OpenVMS/Japanese system, the kana-to-kanji input method has a
provision for separating conversion units into word, clause, and
sentence. The method also has a learning capability that reorders
the candidate list entries by means of a personal dictionary,
putting the characters selected at the top of the list so that
more frequently used words appear first in the homonym list.

Chinese Input Method. No standard exists for the Chinese input
method. The large number of input methods that have been proposed
over the years can be classified into one of two major types:

 1. Pattern decomposition-based method. Each character is
 decomposed into basic strokes or patterns. Each stroke or
 pattern, e.g., a root radical, is assigned a code (mapped
 to a key) and each character is retrieved by inputting a
 sequence of such codes.

 2. Phonetic-based method. Each character is transcribed
 into phonemic letters and retrieved by this phonemic
 transcription. The system used in Taiwan is based on the
 National Phonetic Alphabet (Bopomofo), whereas the PRC
 uses Roman alphabets based on the Wade-Giles system.

The OpenVMS/Hanzi system supports the following Chinese input
methods:

 o Five stroke

 o Five shape

 o Pinyin

 o Telex code

 o GB 2312 code

The OpenVMS/Hanyu system supports the following Chinese input
methods, which are implemented by firmware on the Digital VT382
series Chinese terminals:

 o Tsang-Chi

 o Quick Tsang-Chi

 o Phonetic

 o Internal code

 o Phrase

Korean Input Method. Hangul characters are composed by directly
typing the individual Hangul letters. The composition sequence
always starts with a consonant, is followed by a vowel, and
finishes with a consonant, if present. The input method validates
the composition sequence keyed in by the user at each step. The
display device updates the intermediate rendering of the
partially formed Hangul character as the shape and position of
each letter changes during composition. Hanja characters are
entered by typing their Hangul pronunciation. The input method
displays a list of all possible Hanja characters (homonyms). More
sophisticated implementations can perform Hangul-to-Hanja
conversion in word units similar to that of the
kana-to-kanji conversion. On the Digital VT382 Korean terminal,
both the Hangul and the Hanja input methods are implemented by
firmware.

Asian Text Output

Asian character fonts are usually displayed or printed as bit-map
graphics. To meet the requirements of specific applications such
as scaling and plotting, these fonts can also be defined as
outline fonts using vector representation. International codes of
Asian language characters are mapped to the corresponding font
data when needed for output. Predefined character fonts are
usually stored in the read-only memory (ROM) of terminals and
printers for better performance. As for the English alphabet,
different standards, styles, and sizes exist for Asian language
character fonts. The following list contains some of the more

popular font styles used in the respective markets:

MARKET FONT STYLE

Japan Mincho, Gothic, Round-Gothic

Korea Myuncho, Gothic

PRC Song, Quasi-Song,
 Hei (boldface), Kai

Taiwan Sung, Hei (boldface), Kai

In general, Asian ideographic characters require high-definition
fonts, i.e., at least a 24-by-24 dot matrix, to achieve
acceptable visual quality. As a result, memory requirement is a
major issue when supporting Asian fonts.

Hardware

Supporting Asian language processing requires modifying the
standard video terminals and printers. In general, software
products need to recognize the different functional
characteristics of Asian terminals and printers. For example, the
character set designation and invocation defaults differ from
those of standard terminals.

Workstations do not require any modifications (except for
exchanging a local language keyboard for the standard one),
because input and display are directly supported by software.

Asian Video Terminals. The traditional character cell terminal
provides certain local display and input functions on behalf of a
software program. For example, the terminal firmware preprocesses
scan codes generated by keyboard input and converts them to
character code before sending them to an application. Similarly,
character fonts are usually stored in the terminal ROM. Digital
has developed a variety of video terminals to support Asian
language processing.

Some major hardware considerations for Asian video terminals are

 o High-resolution video display. Ideographic characters
 have complex glyphs, which require at least a 24-by-24
 dot matrix cell to be of acceptable display quality.
 Such a cell would occupy two ASCII columns. As a result,
 to maintain a 26-line (40 ideograms per line) display
 requires a screen resolution of at least 960 by 780
 pixels. Typically, Digital's Asian video terminals use
 monitors that run at a 60-hertz noninterlaced mode, a
 mode substantially higher than that of standard ASCII

 terminal monitors.

 o Font memories and loading protocol. The terminal
 requires additional ROM to hold the fonts of standard
 characters in an Asian character set, typically 7,000 to
 20,000 characters. Also, for characters outside the
 standard set, i.e., UDCs, the terminal requires
 random-access memory (RAM) to downline load the fonts
 from the host. Digital Asian terminals support
 font-loading protocols that work with the host software
 to downline load fonts into RAM either on demand or on a
 preloading basis. The font cache in Digital's Asian
 terminals can usually hold about 400 characters at once.

 o Input method. Implementing input methods on a video
 terminal requires additional hardware modification. The
 input method algorithms must be programmed into the
 firmware together with extra memory for the input method
 lookup tables. In addition to the main display area, one
 extra line on the screen is needed as an input method
 work area, e.g., for displaying candidate lists for user
 selection. Some keys must be assigned permanently for
 invoking different input methods. The printing of legends
 on the tops of the keys is now more complex, because the
 keytops must include additional legends for the input
 method keyboard layout. For example, on Digital's
 Hanzi terminals, four ideograms must appear on the tiny
 area of one keytop.

Asian Printers. Digital supports a range of Asian printers.
Similar to Asian video terminals, Asian printers must support
font-loading protocols to downline load fonts for UDCs by either
preloading or on-demand-loading methods. Additional RAM is
required to hold these fonts. Also, Digital's Asian printers
generally support multiple font typefaces and sizes.

Asian OpenVMS Structure

The components provided by the Asian OpenVMS variants on top of
the standard OpenVMS system can be divided into five main groups:

 1. System support for transparent processing of UDCs

 2. An enhanced OpenVMS terminal I/O subsystem to support
 Asian terminal devices

 3. A set of run-time libraries to facilitate Asian
 application development on Asian OpenVMS systems

 4. A set of localized utilities and commands for users to
 perform common tasks on OpenVMS systems in their native
 languages

 5. A utility to set the operating modes (standard OpenVMS
 mode or Asian OpenVMS mode) of the localized components

Figure 4 summarizes the Asian OpenVMS system structure.

Figure 4 Asian OpenVMS System Structure

+-----------++--------------+ +---------------++-----------+
		LOCALIZED				
		OPENVMS		USER		
		COMMANDS AND		APPLICATION		
		UTILITIES				
USER-	+--------------+ +---------------+	MODE				
DEFINED	+--------------------------------+	SWITCHING				
CHARACTER		MULTIBYTE PROCESSING RTL				
SUPPORT		LOCALIZED SCREEN MANAGEMENT RTL				
		LOCALIZED OPENVMS CALLABLE				
		UTILITY ROUTINES				
	+--------------------------------+					
	+--------------------------------+					
		ASIAN TERMINAL I/O SUBSYSTEM				
+-----------++--------------------------------++-----------+

ASIAN OpenVMS COMPONENTS

This section reviews the major components of the Asian OpenVMS
variants.

User-defined Character Support -- The Character Manager

Attributes of characters in the standard character sets supported
on an Asian OpenVMS system are known and fixed. Therefore,
attribute support can be built into the system statically. In
contrast, UDCs usually require their attributes to be dynamically
defined and accessed. A new utility called the character manager
(CMGR) enables users to create, manage (modify and update), and
retrieve UDCs and their attributes. UDC support is currently
offered on the OpenVMS/Japanese, OpenVMS/Hanzi, and OpenVMS/Hanyu
systems. In the OpenVMS/Hanyu system, the CMGR also supports
Digital-defined characters, e.g., the DTSCS and DEC Recommended
Characters (DRC).

The CMGR manages a set of systemwide databases that store UDC
attributes. Two UDC attributes are currently supported, glyph
images and collating values.

To represent the UDCs in the computer, the CMGR allows a user to
assign each UDC a code point in the designated UDC area.

Currently, UDC characters are entered by directly typing their
binary code. The code point serves as the key in the CMGR
databases for retrieving other attributes of the character.

The CMGR utility provides a user interface to create and manage
the UDC attribute database. The user interface includes a font
editor for users to create the glyph image of a UDC and entries
for other attributes. To allow applications to retrieve the UDC
attributes, the CMGR has a set of application programming
interfaces (APIs) used to access the individual attribute
databases. In particular, the on-demand font loading of UDCs
supported by the Asian terminal I/O subsystem employs the CMGR
font databases, and the SORT/MERGE utility uses the collation
databases for UDC sorting.

CMGR Font Database. To output a UDC to a display or printing
device, the UDC's glyph image must first be defined. The CMGR
provides a screen font editor for users to create the glyph
images. The CMGR supports multiple typefaces (e.g., Hei, Sug, and
Default) and font sizes (e.g., 24 by 24, 32 by 32, and 40 by 40)
in multiple databases. There are two ways to load the UDC fonts
to Asian output devices, namely, preloading and on-demand
loading.

Fonts can be preloaded by sending a file that contains the
appropriate control sequences and font patterns, which are
discussed in more detail later in this section. The CMGR provides
a command that generates a preload file from the font database
for required UDCs.

On-demand font loading is a more complicated mechanism, which
involves an on-demand loading protocol. Font patterns are
retrieved from the font database through the CMGR callable
interface by a font-handling process.

CMGR Collation Attribute Database. To facilitate the sorting of
data, including UDCs, the collation weights of the characters
must be defined. Currently, only the OpenVMS/Hanzi and
OpenVMS/Hanyu systems offer this feature.

Asian Terminal I/O Subsystem

The Asian terminal I/O subsystem is an extension of the standard
OpenVMS terminal I/O subsystem. It consists mainly of the OpenVMS
terminal class drivers/port drivers, auxiliary class drivers, and
server processes, and handles both standard and Asian terminals
simultaneously. For Asian terminals, the subsystem provides
extended functions to support multibyte character handling in the
terminal QIO system service, input method, code set conversion,
and font loading.

Terminal QIO System Service/Multibyte Character Handling. The
enhanced terminal QIO system service can handle mixed ASCII and
multibyte Asian characters in line input calls. Line editing
(e.g., character echo, cursor movement, character deletion,
character insertion, word delimiters, and character overstrike),
line wrapping, uppercasing, and read verifying will handle Asian
characters correctly. Because the QIO system service is the
lowest-level routine that handles terminal I/O, all other text
I/O routines such as LIB$GET_INPUT, $GET RMS service, and the
text I/O facility of programming languages such as C, Fortran,
and COBOL are layered on it. The enhancements automatically
benefit all of these higher-level routines.

Font Loading. Asian terminal devices have writable font memory
(WFM), and the firmware supports font-loading sequences and
logic. A text file is scanned by a utility program prior to
output to a terminal or printer. The Asian terminal I/O subsystem
then creates a preloading file, which contains the font-loading
sequence for all nonresident characters found in the file. Next,
the subsystem sends this preloading file to the terminal or
printer, causing the required fonts to be loaded in the font
memory. Finally, the text file is output to the terminal or
printer. This method is limited by the size of the font memory,
typically 300 to 500 characters. The font preloading method is
used mainly in batch operations, such as line printers, where
performance is an important factor.

When an Asian video terminal or printer receives an Asian
character code and determines that it is a UDC, the terminal
firmware automatically halts the current processing and generates
a font request to the OpenVMS system. The terminal driver traps
this request and passes it on to a process called the font
handler. On behalf of the terminal, the font handler retrieves
the font bit map of the requested character from the system font
database and sends it back to the terminal or printer, which in
turn loads it into its RAM and resumes the display processing.
Because it involves XON/XOFF flow control, which is done at a
very low level of the system, the process requires modifications
to device drivers. The amount of UDC font is not limited by WFM
capacity, because the terminal firmware automatically updates the
memory.

Front-end Input Process (FIP).[12] One of the biggest
differences between Japanese and other Asian language (e.g.,
Chinese and Korean) support on the OpenVMS system is in the
implementation of the input method. The nature of the
kana-to-kanji input method makes it unsuitable for implementation
in terminal firmware. The method requires a huge input method
dictionary (about 1 megabyte in size) and a dynamic memory work
area for syntactic and semantic analysis. Also, updating an input
method dictionary that is implemented in firmware is a very

costly operation.

Code Set Conversion. Prior to the introduction of the Asian
OpenVMS variants, Digital's customers used video terminals and
printers that support proprietary local language code sets from
third-party vendors. To protect customer investments and to
ensure a smooth migration path for legacy equipment, the Asian
terminal I/O subsystem provides an application-transparent, code
set conversion facility. This facility is based on the terminal
fallback facility (TFF) introduced in OpenVMS version 5.0, which
provides a similar function for conversion between 7-bit National
Replacement Character Sets (NRCSs) and the 8-bit DEC MCS. TFF
provides a middriver that converts both incoming and outgoing
data from one code set to another. For the Asian OpenVMS
variants, the conversion logic is extended to support 16-bit
character entities. Currently, TFF supports the conversion
between the DOOSAN code and the DEC Hangul code on the
OpenVMS/Hangul system and the MITAC TELEX code and the DEC Hanyu
code on the OpenVMS/Hanyu system.

In addition, code set conversion is necessary between
heterogeneous systems because of the proliferation of encoding
schemes used by different vendors. For instance, Chinese PCs in
Taiwan use the BIG 5 code. To facilitate the communication
between the OpenVMS system and PC desktop computers, the
OpenVMS/Hanyu system supports the conversion between the BIG 5
code and the DEC Hanyu code.

Asian Application Programming Support

To help software developers write Asian applications on Asian
OpenVMS variants, Digital provides a set of common Asian
multibyte character processing RTL routines to supplement the
standard OpenVMS RTLs. In particular, our Asian localization
effort to develop OpenVMS layered products utilizes these RTLs.
Functions provided by the Asian language RTL (approximately 240
routines) are classified into the following categories of
routines:

 o Character conversion

 o String

 o Read/write

 o Pointer

 o Comparison

 o Search

 o Count

 o Character type

 o Date/time

 o Code set conversion

The majority of the routine interfaces are common to all Asian
countries. Currently, one library image supports the Hanzi,
Hanyu, and Hangul language variants. Language-specific code is
hidden under this generic multibyte interface and switched at run
time by a system logical name defined during system start-up.

The OpenVMS/Japanese system has a set of routines for handling
kana-to-kanji conversion, both high level and low level. The
high-level routines, such as JLBGET_INPUT, JLBGET_COMMAND, and
JLB$GET_SCREEN (Japanese versions of LIB$GET_INPUT,
LIB$GET_COMMAND, and LIB$GET_SCREEN), hide the
kana-to-kanji input method details from the application. These
routines use the off-the-spot preediting that usually takes place
at the last line of the screen; however, the flexibility of the
preedit user interface is limited. A set of low-level routines
performs primitive functions such as opening the conversion
dictionary, finding the next candidate kanji string, and getting
the contents of the internal buffer. The kana-to-kanji input
method is programmed by calling a sequence of these routines.
This implementation gives the application the ability to directly
control the screen management and allows flexibility in the
design of the preedit user interface; however, the application
must deal with every detail of the input method, which is a
disadvantage. In addition, the library IMLIB helps the
application customize the keyboard mapping for
kana-to-kanji conversion.[12]

The screen management (SMG) RTL on the OpenVMS system provides a
suite of routines for designing, composing, and keeping track of
complex images on a character cell video terminal in a
device-independent manner. The standard SMG version supports only
the ASCII and DEC Special Graphics character sets and cannot
correctly handle multibyte Asian characters. For example,
operations such as screen update optimization, boundary
processing (clipping on borders), and cursor movements operate on
part of a multibyte Asian character and cause screen corruption
because of the "one-character-is-equal-to-one-byte" assumption.

The Asian OpenVMS variants provide an extended version of SMG
(about 20 percent of the original routines have been extended) to
support multibyte character sets and DEC MCS, in addition to
ASCII and DEC Special Graphics. To maintain downward
compatibility, most routine entries remain identical, with an
optional character set argument added at the end of the argument
list to indicate desired character set operations. Alternatively,
users can define a logical name SMG$DEFAULT_CHARACTER_SET without
explicitly passing the character set argument in the routine

call. Existing ASCII applications run unmodified with the Asian
SMG. New Asian applications that use multibyte features relink
with the new library.

Asian Commands and Utilities

The OpenVMS user interface determines the way an end user
interacts with the system. The interface includes such components
as the DCL command line interpreter, system help and messages,
and all the system utilities provided by the OpenVMS system.
Selected user interface components of the OpenVMS system have
been localized to support Asian characters on the Asian OpenVMS
variants. A description of some of these localized components
follows.

DCL Command Line Interpreter. The algorithms in the standard DCL
that assume characters to be equal to 1 byte and interpret these
characters as ASCII/DEC MCS are enhanced for the following DCL
primitives in the Asian code set modes:

 o Command parsing. Parsing of command input in single-byte
 units causes data corruption, because part of some
 multibyte Asian characters can be mistaken for one of the
 special DCL ASCII characters such as !, @, or ". Command
 parsing is now done in character units instead of byte
 units, and operations such as terminator, delimiter
 checks, and quotation mark compression are skipped on
 Asian characters, since the DCL special characters are
 all in ASCII.

 o Character uppercasing and lowercasing. Uppercasing and
 lowercasing are applied only to ASCII characters, because
 the concept of uppercase/lowercase does not exist in
 Asian character sets. Uppercasing/lowercasing in
 single-byte units corrupts Asian character data, because
 part of an Asian character can be indiscriminately
 uppercased/lowercased.

 o Symbols and labels. Certain 8-bit values (those with no
 character assigned in the DEC MCS) are currently
 disallowed for DCL symbol names, symbol values, and
 labels. This restriction has been removed in the Asian
 modes to allow all Asian characters in DCL symbols and
 labels. The enhanced algorithms maintain separate symbol
 tables for each of the code set modes, because of the
 possibility of code collision issues across different
 code sets.

The Asian DCL command line interpreter is currently supplied with
the OpenVMS/Hanzi, OpenVMS/Hangul, OpenVMS/Hanyu, and
OpenVMS/Thai systems in the same binary image, i.e., a single
image supports multiple code sets. The default code set mode for

DCL for a particular system is established during system start-up
by means of a defined logical name supplied with the start-up
procedure of each Asian OpenVMS variant. Switching the code set
mode between DEC MCS and the particular Asian code set of the
system is accomplished through a utility, e.g., HANZIGEN in the
OpenVMS/Hanzi system. The Asian DCL is not supplied with the
OpenVMS/Japanese system, because until only recently the Japanese
input method was not available at the DCL level.

System Help and Messages. The OpenVMS/Hanzi, OpenVMS/Hanyu, and
OpenVMS/Hangul systems include a translated Asian language
version of the OpenVMS system help library (accessed by typing
HELP at the $ prompt). The Asian version of the system help
library is placed in a directory that is separate from the
original English one but that has the same file name. The user
can switch the language (English or the particular Asian
language) of system help by using the ASIANGEN utility, which
redefines the file specification logical to point to the
appropriate file.

The OpenVMS/Japanese system provides a translated Japanese
version of the system messages (SYSMSG.EXE), which is placed in a
subdirectory of SYS$MESSAGE. Users can switch the language of the
system messages by using the SET LANGUAGE command, which reloads
the message file into memory.

In addition, most of the localized original utilities and
Asian-specific utilities provide bilingual help and messages.

SORT/MERGE. Collation rules in the Asian languages are very
different from those of the Latin languages.[13]

 o Asian collation sequences. An Asian character has
 different collation sequences based on different
 attributes. The SORT/MERGE command is extended as follows
 to include new subqualifiers for the Asian collating
 sequences: /KEY=(POS:m, CSIZE:n, <collating sequence
 subqualifier>). The Asian OpenVMS SORT/MERGE utility
 supports the Asian collating sequences shown in Table 7.

 o Collation weights. Unlike ASCII, the collation weights
 of the Asian collating sequences cannot be derived by
 virtue of the code value. Rather, the string comparison
 for Asian collation sequences are driven by collation
 weight tables. For the standard characters, these tables
 are built into binary images that are linked with the
 utility for fast access.

 o Multibyte characters. String comparison in the original
 SORT/MERGE operation is done in byte units, because a
 character is assumed to be equal to 1 byte. For the Asian
 SORT/MERGE, a comparison operation must be aligned by

 character, i.e., multibyte, units rather than by byte
 units. The operation must be able to handle the case in
 which the start position of a sort key (specified by a
 byte position) in a record is in the middle of a
 multibyte character. Also, to avoid a truncation problem
 at the key boundary, the size of the sort key (mixed
 ASCII and multibyte characters are allowed) is specified
 as a number of characters instead of a number of bytes.

 o Multiple passes. Sorting Asian characters by any of the
 individual collating sequences (except QuWei) may not
 produce a unique sort order. In general, multiple
 successive passes using different collating sequences are
 needed to do so. Thus, the Asian OpenVMS SORT/MERGE
 utility allows a sort key specified with multiple passes
 of different collating sequences. In addition, if the
 /STABLE qualifier is not specified, QuWei collation is
 always added last to the sort key to further classify
 records with identical collation values.

 o User-defined characters. The Asian OpenVMS SORT/MERGE
 utility supports collation of UDCs. When a UDC is
 encountered, the SORT/MERGE operation retrieves the
 collation weight from a system database maintained by the
 CMGR utility with the value defined by a user when the
 character was registered.

Table 7 Asian Collating Sequences Supported
 by the OpenVMS User Interface

COLLATION
SEQUENCE TYPE OpenVMS/JAPANESE OpenVMS/HANZI OpenVMS/HANYU

Pronunciation Onyomi* Pinyin Phonetic_Code
 Kunyomi!

 Kokugo!!
 Kana8bit

Radical Bushu Radical Radical
Stroke Count Sokaku Stroke Stroke
Internal Code JIScode QuWei QuWei

Notes:
* denotes a Chinese reading.
! denotes a Japanese reading.
!! denotes a Kana reading.

MAIL. Most of the work involved in localizing the MAIL utility
enhances the user interface to use Asian characters. String
search enhancements allow processing by character units instead
of by byte units. String uppercasing is not applied to Asian
characters. The subject field, the personal name field, and the
folder names can all contain Asian characters. The listing of

mail folders can be displayed in sorted order in any of the
supported collation sequences using the new command qualifier
DIR/FOLD/COLLATING_SEQUENCE=(<collating sequences>).

The MAIL utility invokes the Asian text editors by default
instead of invoking the standard ones. The OpenVMS/Japanese
system incorporates the Japanese input method to allow users to
enter Japanese characters.

EDT. The Asian OpenVMS EDT editor was localized and enhanced for
Asian text editing. Much of the work involved driving the
terminal display correctly for Asian characters. In addition, the
editor has a large number of new editing features.

TPU/EVE. Localization of TPU and EVE deals mainly with managing
the screen update for mixed ASCII and Asian characters, such as
cursor movement and screen boundary handling. Both the TPU
editing engine and the EVE interface were modified.
Asian-specific TPU built-in procedures were added, and existing
ones were enhanced. String search is now aligned at the character
boundary rather that on byte units.

For the Japanese TPU/EVE, one of the most difficult tasks is to
incorporate the Japanese input method. This requires managing
overlap windows in a character cell terminal between the input
method working area and the background editing area.

DECwindows System. With the increasing emphasis on
internationalization features in the X11 and OSF/Motif standards,
OpenVMS DECwindows systems provide these features and the
localization features demanded by the market. For a description
of the latest internationalization support in the X Window System
standard, refer to the book by Scheifler and Gettys.[14]

ASIAN OpenVMS LOCALIZATION ISSUES

The Asian OpenVMS effort has been addressing various technical
and engineering issues.[15,16,17] This section discusses the
major ones.

Technical Issues

Localization of the OpenVMS components to support the Asian
languages requires reengineering the program codes and text
translation. The need to reengineer source code arises for two
main reasons.

 1. OpenVMS components make fundamental programming
 assumptions and practices based on the ASCII and DEC MCS
 character sets. For example,

- OpenVMS components assume the character set to be

 ASCII (plus DEC MCS in some cases), and blindly
 uppercase and lowercase characters, validate
 characters against the DEC MCS, and define printable
 characters according to the ASCII and DEC MCS
 encodings.

- OpenVMS components assume characters to be 1 byte and
 use string manipulation algorithms based on 1-byte
 units.

- OpenVMS components assume the display width of a
 character to be of fixed length (1 byte) and use
 screen display management algorithms based on the
 assumption that 1 byte equals one display column.

- OpenVMS components assume that the character count,
 the byte count, and the display width are the same,
 and use string manipulation algorithms and character
 cell terminal screen display management based on this
 assumption.

 2. Some functionality that is required to support Asian
 languages is missing in the standard OpenVMS environment.
 For example,

 - Keyboard input of Asian characters requires more
 complicated input method processing than is available
 in the standard OpenVMS environment.

 - Collation rules of Asian languages are radically
 different from English collation rules, on which the
 standard OpenVMS environment is based.

 - The standard OpenVMS environment does not support the
 application-transparent processing of UDCs.

 - The writing direction of Asian languages can be
 vertical, i.e., from top to bottom. The standard
 OpenVMS environment assumes horizontal, left-to-right
 languages.

Engineering Issues

Historically, the Asian localization of the OpenVMS system has
been organized as an engineering effort that is separate from
mainstream development. As a result, a number of engineering
constraints and overhead costs exist.

 o Single language support. The design goal for the Asian
 OpenVMS variants, as driven by the local market
 requirements, has been targeted at supporting a single
 language on one system, i.e., one language variant per
 system. As a result, no special design considerations are
 given to supporting multiple languages on one system.

 o Full upward compatibility. The top design requirement is
 to keep full downward compatibility with original
 ASCII/DEC MCS OpenVMS systems. All ASCII/DEC MCS
 applications with existing data must be able to run
 unchanged on the Asian OpenVMS variants. In fact, an
 Asian OpenVMS system can, at any time, be reset to
 operate in the original DEC MCS mode, if desired.
 Therefore, most localized components must be able to
 switch between the standard and Asian code paths. System
 mechanisms for determining the current language variant
 and operating mode are required.

 o Optimal performance. Another design goal is to minimize
 any performance impact on standard English components. As
 a result, Asian codes are designed around standard code
 paths. For example, branches for Asian code are placed at
 the end of a conditional statement, and Asian code
 branches out from the main line code using special hooks.

 o Limited or no kernel changes. Since Asian code changes
 are not merged into the mainstream, kernel changes in
 Asian code would be very difficult to maintain with new
 OpenVMS releases. In addition, any kernel changes in the
 standard OpenVMS release will likely break the Asian
 code. This puts a constraint on supporting Asian
 languages in OpenVMS kernel components.

 o Commonality. Because the Asian languages share a lot of
 commonality, techniques such as common source are used
 for most Asian localized components to maximize
 engineering return by sharing common Asian localization
 code.

CONCLUSIONS

Local language processing has become a mandatory functionality
for computer systems sold in Asian markets. From the OpenVMS
operating system perspective, the basic local Asian language
processing requirements are being addressed by its Asian language
variants in a single-language-for-a-single-locale manner. With
global trade and the technology trend of distributed computing
systems, the challenge for the future is to be able to provide
OpenVMS services simultaneously to multiple clients operating in
different languages and code sets. Such a requirement leads to
the concept of a multilingual operating system, which allows
software applications to run irrespective of the language and/or
code set they support. With the availability of the ISO 10646
Universal Character Set (UCS) standard, the set of tools for
building such a multilingual operating system has been
enhanced.[18]

From an engineering perspective, the current Asian localization
approach of OpenVMS has been adopted historically because of a

number of factors and constraints, such as the organization of
engineering resources and the initial need to bring the
capability rapidly to the market. The reengineering techniques
are geared toward the character set encoding schemes currently
supported. The arrangement of performing localization remotely
and independently from the original mainstream development has
meant costly reengineering and maintenance overheads in the long
term. With the industrial trend of shipping global software
simultaneously satisfying multiple different local market
requirements, an international product engineering approach must
be taken to minimize the cost of worldwide system engineering to
deliver a global product. In particular, the original product
must be internationalized from the ground up, so that no separate
reengineering is needed during localization to support a local
market. In addition, to achieve simultaneous worldwide delivery,
concurrent engineering of localization needs to be performed
closely in parallel with the product development.

REFERENCES

 1. T. Greenwood, "International Cultural Differences in
 Software," Digital Technical Journal, vol. 5, no. 3 (Summer
 1993): 8-20.

 2. Code of the Japanese Graphic Character Set for Information
 Interchange, JIS C 6226-1978 (Tokyo: Japanese Standards
 Association, 1978).

 3. Code of the Japanese Graphic Character Set for Information
 Interchange, JIS X 0208-1983 (Tokyo: Japanese Standards
 Association, 1983).

 4. Code of the Japanese Graphic Character Set for Information
 Interchange, JIS X 0208-1990 (Tokyo: Japanese Standards
 Association, 1990).

 5. Code of the Supplementary Japanese Graphic Character Set for
 Information Interchange, JIS X 0212-1990 (Tokyo: Japanese
 Standards Association, 1990).

 6. Code for Information Interchange, JIS X 0201-1976 (Tokyo:
 Japanese Standards Association, 1976).

 7. Code of Chinese Graphic Character Set for Information
 Interchange, GB 2312-1980 (Beijing: Technical Standards
 Publishing, 1981).

 8. Standard Interchange Code for Generally-used Chinese
 Characters, CNS 11643-1986 (Taipei: National Bureau of
 Standards, 1986).

 9. Chinese Standard Interchange Code, CNS 11643-1992 (Taipei:
 National Bureau of Standards, 1992).

10. Code for Information Interchange (Hangul and Hanja), KS C
 5601-1987 (Seoul: Korean Industrial Standards Association,
 1989).

11. Information Processing -- ISO 7-bit and 8-bit Coded
 Character Sets -- Code Extension Techniques, 3d ed., ISO
 2022 (Geneva: International Organization for
 Standardization/International Electrotechnical Commission,
 1986).

12. T. Honma, H. Baba, and K. Takizawa, "Japanese Input Method
 Independent of Applications," Digital Technical
 Journal, vol. 5, no. 3 (Summer 1993): 97-107.

13. R. Haentjens, "The Ordering of Universal Character Strings,"
 Digital Technical Journal, vol. 5, no. 3 (Summer 1993):
 43-52.

14. R. Scheifler and J. Gettys, X Window System, X11, Release
 5, 3d ed. (Burlington, MA: Digital Press, Order No.
 EY-J802E-DP-EEB, 1992).

15. Introduction to Asian Language Software Localization
 (Maynard, MA: Digital Equipment Corporation, Order No.
 AD-PG0AA-TE, December 1990).

16. Technical Guide to Asian Language Software
 Localization (Maynard, MA: Digital Equipment Corporation,
 Order No. AD-PG0BA-TE, December 1990).

17. Addendum to Technical Guide to Asian Language Software
 Localization (Maynard, MA: Digital Equipment Corporation,
 Order No. AD-PG0CA-TE, December 1990).

18. Information Technology -- Universal Multiple-Octet Coded
 Character Set (UCS) -- Part 1: Architecture and Basic
 Multilingual Plane, ISO/IEC 10646-1 (Geneva: International
 Organization for Standardization/International
 Electrotechnical Commission, 1993).

TRADEMARKS

The following are trademarks of Digital Equipment Corporation:
Alpha AXP, DEC, DECwindows, Digital, EDT, OpenVMS, VAX, and VT.

Motif and OSF/Motif are registered trademarks of Open Software
Foundation, Inc.

X Window System is a trademark of the Massachusetts Institute of
Technology.

BIOGRAPHY

Michael M. T. Yau Michael Yau is a principal software engineer
in the International Systems Engineering Group. Since 1984, he
has worked on Asian language support in the OpenVMS operating
system. He led and managed the development team in Hong Kong from
1986 to 1991. Currently, he provides architecture and product
internationalization support to U.S. engineering groups. Prior to
joining Digital, Michael worked for GEC Marconi Avionics (U.K.).
Michael holds a B.Sc.(Hons) in mathematics and an M.Sc. in
communication engineering from the Imperial College of Science
and Technology, University of London.

===
Copyright 1993 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

