CHARACTER | NTERNATI ONALI ZATI ON I N
DATABASES: A CASE STUDY

By Hirotaka Yoshi oka and Ji m Melton

ABSTRACT

Character internationalization poses difficult problens for

dat abase nmamnagenent systens because they nust address user
(stored) data, source code, and netadata. The revised (1992)
standard for database | anguage SQL is one of the first standards
to address internationalization in a significant way. DEC Rdb is
one of the few Digital products that has a conplete

i nternationalization (Asian) inplenentation that is also MA
conpliant. The product is still evolving froma

noni nternationalized product to a fully internationalized one;
this evolution has taken four years and provi des an excel |l ent
exanpl e of the issues that nmust be resolved and the approaches to
resolving them Rdb can serve as a case study for the software
engi neering comrunity on how to build internationalized products.

| NTRODUCTI ON

Internationalization is the process of producing specifications
and products that operate well in many | anguages and cul tures.[1]
Internationalization has several different aspects such as
character set issues, date and tinme representation, and currency
representation. Mst of these affect many areas of information
technol ogy where the solutions are reasonably simlar; for
exanpl e, solutions to currency representation are equally
applicable to database systens and to programm ng | anguages.

Dat abase systens, however, are affected in several unique ways,
all of which deal with character sets. In this paper, we focus on
the i ssues of character set internationalization in database
managenment systens (DBMS) and do not address the other aspects of
date and tinme, currency, or |ocales.

To better understand the problens and sol utions associated with
character internationalization of database systens, we present an
overview of the solutions found in the standard query | anguage
(SQ) standard and report a case study of inplenenting those
solutions in a comercial product. W first discuss the character
i nternationalization features supported in the recently published
revision of the standard for Database Language SQ. (1 SO | EC

9075: 1992 and ANSI X3.135-1992).[2] W then describe in sone
detail the application of those features in DEC Rdb, Digital's
rel ati onal database product. The internationalization of DEC Rdb
serves as a case study, or a nodel, for the internationalization
of Digital's software products in general

| NTERNATI ONALI ZATI ON I N THE SQL STANDARD

Li ke nost conputer | anguages, SQ. cane into being with the

m ni mal set of characters required by the | anguage; vendors were
free to support as many, or as few, additional characters as they
percei ved their markets demanded. There was little, if any,
consideration given to portability beyond the English | anguage
custoner base. In 1989, after work was conpleted on | SO 9075: 1989
and ANSI X3.135-1989 (SQ.-89), significant changes were proposed
for the next revision of the SQUL database | anguage to address the
requi renent for additional character set support. (Unfortunately,
this put SQL in the vanguard, and little support existed in the
rest of the standards comrunity for this effort.)

Character Set Support

SQL nust address a nmore conplex set of requirenments to support
character sets than other progranm ng | anguages due to the

i nherent nature of database systens. Wereas other progranmr ng

| anguages have to cover the character set used to encode the
source programas well as the character set for data processed by
the program database systens al so have to address the character
set of the netadata used to describe the user data. |In other
words, character set information nust be known within three

pl aces in a database environment.

1. The user data that is stored in the database or that is
passed to the database system fromthe application
pr ogr ans.

In SQL, data is stored in tables, which are

t wo- di nensi onal representations of data. Each record of
data is stored in a row of a table, and each field in a
row corresponds to a colum of a table. Al the data in a
given colum of a table has the sane data type and, for
character data, the sane character set.

2. The netadata stored in the database that is used to
descri be the user data and its structure.

In SQL dat abases, netadata is also stored in tabular form
(so that it can be retrieved using the sane | anguage that
retrieves user data). The netadata contains informtion
about the structure of the user data. For exanple, it
speci fies the nanes of the users' tables and col ums.

3. The data managenent source code

Dat a managenent statenents (for querying and updating the
dat abase) have to be represented as character strings in
some character set. There are three aspects of these
statements that can be independently considered. The key
words of the | anguage (like SELECT or UPDATE) can be
represented in one character set -- one that contains

only the al phabetic characters and a few special (e.g.
punctuation) characters; the character string literals
that are used for conparison with database data or that
represent data to be put into the database; and the
identifiers that represent the names of database tables,
colums, and so forth.

Consi der the SQL statenent

SELECT EMP_I D FROM EMPLOYEES
WHERE DEPARTMENT = ' Purchasi ng

In that statenent, the words SELECT, FROM and WHERE; the equals
sign; and the two apostrophes are syntax elenments of the SQ

| anguage itself. EMP_I D, EMPLOYEES, and DEPARTMENT are nanes of
dat abase objects. (EMPLOYEES is a table; the other two are
colums of that table.) Finally, Purchasing is the contents of a
character string literal used to conpare agai nst data stored in
t he DEPARTMENT col um.

That seens straightforward enough, but what if the database had
been designed and stored in Japan so that the names of the table
and its colums were in Japanese kanji characters? Furthernore,
what if the name of sonme specific departnent was actually
expressed in Hebrew (because of a business rel ationship)? That
nmeans that our database would have to be able to handle data in
Hebrew characters, netadata in Japanese characters, and source
code using Latin characters!

One mi ght reasonably ask whether this |evel of functionality is
really required by the marketplace. The original inpetus for the
character internationalization of the SQL standard was provi ded
by proposals arising fromthe European and Japanese standards
partici pants. However, consi derable (and enthusiastic)

encour agenent canme fromthe X/ Open Conpany, Ltd. and fromthe

Ni ppon Tel ephone and Tel egraph/ Mul tivendor Integration
Architecture (NTT/MA) project, where this degree of mxing was a
firmrequirenent. [3]

The situation is even nore conplex than this exanple indicates.
In general, application progranms nust be able to access dat abases
even though the data is in a different character encoding than
the application code! Consider a database containing ASCI| data
and an application programwitten in extended binary coded

deci mal interchange code (EBCDIC) for an |IBM system and then
extend that inmage to a database containing data encoded using the
Japanese extended UNI X code (EUC) encoding and an application
programwitten in | SO 2022 form The program nust still be able
to access the data, yet the character representations (of the
same characters) are entirely different. Although the problemis
relatively straightforward to resolve for | ocal databases (that

i s, databases residing on the sane conputer as the application),

it is extrenely difficult for the npst general case of
het er ogeneous di stri buted database environnents.

Addressing Three |ssues

To support internationalization aspects, three distinct issues
have to be addressed: data representation, data comparison, and
nmul tipl e character set support.

Dat a Representation. How is the data (including netadata and
source code) actually represented? The answer to this question
nmust address the actual repertoire of characters used. (A
character repertoire is a collection of characters used or

avail abl e for sone particular purpose.) It nust also address the
form of -use of the character strings, that is, the ways that
characters are strung together into character strings;
alternatives include fixed nunber of bits per character, I|ike
8-bit characters, or variable nunber of bits per character, |ike
| SO 2022 or ASN. 1. Finally, the question nmust deal with the
character encoding (for exanple, ASCI|I or EBCDIC). The

conbi nati on of these attributes is called a character set in the
SQL standard.

It is also possible for the data to be represented in different
ways within the database and in the application program A colum
definition that specifies a character set would look like this

NAME CHARACTER VARYI NG (6)
CHARACTER SET IS KANJI,

or
NAME NATI ONAL CHARACTER VARYI NG (6),

(which specifies the character set defined by the product to the
nati onal character set), while a statenent that inserts data into
that columm night be

| NSERT | NTO EMPS(NAME)
VALUES (..., _KANJI'**' | ...);

If the name of the colum were expressed in hiragana, then the
user could wite

| NSERT | NTO EMPS(_HI RAGANA 2+++)
VALUES (..., _KANJI'**' .. .);

[EDI TOR' S NOTE: The two asterisks (**) above are not really part

of the code but indicate the placenment of two kanji characters in
the code. So too, three hiragana characters representing NA MA E
are in the code in place of the plus signs +++ shown here.]

Dat a Conparison. How is data to be conpared? Al character data
has to be conpared using a collation (the rules for conparing

character strings). Mst conputer systens use the binary val ues
of each character to conpare character data 1 byte at a tine.
Thi s nmethod, which uses comon character sets |ike ASCII| or
EBCDI C, generally does not provide meani ngful results even in
English. It provides far |ess neaningful results for |anguages
i ke French, Danish, or Thai

I nstead, rules have to be devel oped for | anguage-specific
collations, and these rules have to resolve the problens of
m Xi ng character sets and collations within SQL expressions.

Applications can choose to force a specific collation to be used
for conparisons if the default collation is inappropriate:

VWHERE : hostvar = NAME COLLATE JAPANESE

Mul ti pl e Character Set Support. How is the use of multiple
character sets handl ed? The nost powerful aspect of SQ is its
ability to conbine data fromnultiple tables in a single
expression. What if the data in those tables is represented in

di fferent character sets? Rules have to be devised to specify the
results for combining such tables with the relational join or

uni on operations.

What if the character sets of data in the source program are
different fromthose in the database? Rul es must exist to provide
the ability for prograns to query and nodify databases with

di fferent character sets.

Conmponents of Character Internationalization

SQL recogni zes four conponents of character internationalization:
character sets, collations, translations, and conversions.
Character sets are described above; they conprise a character
repertoire, a formof-use, and an encodi ng of the characters.
Col l ations are al so descri bed above; they specify the rules for
conparing character strings expressed in a given character
repertoire.

Transl ations provide a way to translate character strings from
one character repertoire to a different (or potentially the sane)
repertoire. For exanple, one could define a translation to
convert the al phabetic letters in a character string to al
uppercase letters; a different translation mght transliterate
Japanese hiragana characters to Latin characters. By conpari son,
conversions allow one to convert a character string in one
formof -use (say, two octets per character) into another (for
exanpl e, conpound text, a formof-use defined in the X W ndow

Systen).

SQL provides ways for users to specify character sets,

collations, and translations based on standards and on
vendor-provided facilities. The current draft of the next version
of the SQL standard (SQ.L3) also allows users to define their own
character sets, collations, and translations using syntax
provided in the standard.[4,5] If these facilities cone to exist
in other places, however, they will be renoved fromthe SQ
standard (see below). SQL does not provide any way for users to
speci fy their own conversions; only vendor-provi ded conversi ons
can be used.

Interfacing with Application Prograns

Application prograns are typically witten in a third-generation

| anguage (3G.) such as Fortran, COBOL, or C, with SQL statenents
ei ther enmbedded in the application code or invoked in SQ.-only
procedures by nmeans of CALL-type statenents.[6] As a result, the

i nterface between the database system and 3GL prograns presents
an especially difficult problemin SQ's internationalization
facilities. Figure 1 illustrates the procedure to invoke SQ. from
C, Figure 2 shows SQ. as it is invoked fromC, and Figure 3 shows
SQL schenma.

Figure 1 Invoking SQL fromC

mai n()
{
#i ncl ude <stdio. h>
#include <stdlib. h>
#include "SQ.92.h" [/* Interface to SQ.-92 */

static sqlstate char[6];

static enpl oyee_nunber char[7];
static enpl oyee_nane wchar _t[26];
static enpl oyee_contact char[13];

/* Assume sone code here to produce an appropriate
enpl oyee nunber val ue */

LOCATE_CONTACT (enpl oyee_nunber, enpl oyee_nane,
enpl oyee_contact, sql state);

/* Assume nore code here to use the result */

Figure 2 SQ. I nvoked fromC

MODULE i 18n_deno NAMES ARE Latinl
LANGUAGE C

SCHEMA per sonnel AUTHORI ZATI ON managenent

PROCEDURE | ocat e_cont act

(:enmp_num CHARACTER (6) CHARACTER SET Ascii,
;enp_nane CHARACTER VARYI NG (25) CHARACTER SET Uni code
. contact _nane CHARACTER VARYI NG (6) CHARACTER SET Shift_jis,
SQLSTATE)

SELECT nane, contact_in_japan
I NTO : enp_nane, :contact_nane
FROM per sonnel . enpl oyees
WHERE enp_id = :enp_num

Figure 3 SQ. Schema
CREATE SCHEMA personnel AUTHORI ZATI ON managenent

DEFAULT CHARACTER SET Uni code

CREATE TABLE enpl oyees (

enp_id CHARACTER (6) CHARACTER SET Asci i,

name CHARACTER VARYI NG (25),

depart ment CHARACTER (10) CHARACTER SET Latinl

sal ary DECI MAL (8, 2),

contact _in_japan CHARACTER VARYI NG (6) CHARACTER SET Shift_jis,

PRI MARY KEY (enp_id))

In these figures, all the netadata values (that is, the
identifiers) are expressed in Latin characters; this resolves the
data representation i ssue. The reader should conpare the
character sets of the data itens in the EMPLOYEES table and the
correspondi ng paraneters in the SQL procedure. The difficulties
arise when trying to achieve a correlation between the paraneters
of the SQL procedure and the argunments in the C statenent that

i nvokes that procedure.

The C vari abl e enpl oyee_nunber corresponds to the SQ. paraneter
enp_num the C data type char is a good match for CHARACTER SET
ASClII. The C vari abl e enpl oyee nane corresponds to the SQ
paraneter :enp_nane; the C data type wchar_t is chosen by nmany
vendors to match CHARACTER SET Uni code. However, CHARACTER SET
Shift jis is nore conplicated; there is no way to know exactly
how many bytes the character string will occupy because each
character can be 1 or 2 bytes in length. Therefore, we have
allocated a C char that permits up to 13 bytes. O course, the C
run-time |ibrary would have to include support for ASCII data,
Uni code data, and Shift JI'S data.

Typi cally, 3GL |anguages have little or no support for character
sets beyond their defaults. Consequently, when transferring data
froman internationalized SQL database into a

noni nternationalized application program nany of the benefits

are lost. Happily, that situation is changing rapidly.
Programm ng | anguage C is adding facilities for handling
addi ti onal character sets, and the | SO standards group
responsi bl e for programm ng | anguages (1SO | EC JTCl/ SC22) is

i nvestigating how to add those capabilities to other |anguages as
wel | .

The nost difficult issue to resolve concerns the differences in
speci fic character sets (especially formof-use) supported by SQ
i mpl enmentations and 3GL i npl ementations. As with other issues,
purely local situations are easy to resolve because a DBMS and a
conpi |l er provided by the sanme vendor are likely to be conpatible.
Di stributed environnents, especially multivendor ones, are nore
conplicated. SQL has provided one solution: it permts the user
to wite SQL code that translates and converts the data into the
formrequired by the application programas long as the
appropriate conversions and translations are available for use by
SQ. O course, once the data has been transferred into the
application program the question remains: Wat facilities does
it have to manipul ate that data?

Renpt e Dat abase Access |ssue

As nmentioned, a distributed environnent presents significant
difficulties for database internationalization. A sinple renote
dat abase access scenario illustrates these problens. If an
application program nust access sone (arbitrary) database via a
renmote (e.g., network) connection, then the renpte database
access facility nmust be able to deal with all the character sets
that the application and database use together; it may al so have
to deal with differences in available character sets. (See Figure
4.)

Figure 4 Renote Database Access

T + \ / . +

| Application | X | Dat abase

| Program | [\ | System |
S + Fomm e +
Requi res Uni code Supports Latinl

An | SO standard for renpte database access (ISO I EC 9579-1 and
9579-2) uses the ASN. 1 notation and encoding for transporting SQ
commands and dat abase data across renmpte connections.[7] ASN. 1
not ati on, as presently standardi zed, provides no way to use
various character sets in general. Recently work has begun to
resolve this problem The revised standard nust allow a character
set to be specified uniquely by nmeans of a name or identifier
that both ends of the connection can unanbiguously interpret in

the sane way. The individual characters in ASN.1l character
strings nust be sinmlarly identifiable in a unique way.

Thi s probl em has not yet been resolved in the standards
comunity, partly because several groups have to coordinate their
efforts and produce conpati bl e sol utions.

Hope for the Future

In the past, programr ng | anguages, database systens, networks,
and ot her conponents of information nmanagenent environnments had
to deal with character sets in very awkward ways or use
vendor - provi ded defaults. The result has been an incredible nmess
of 7-bit (ASCII, for exanple) and 8-bit (Latin-1, for exanple)
code sets, PC code pages, and even national variants to all of
these. The nunber of code variants has nade it very difficult for
a database user to wite an application that can be executed on
any database system using reconpilation only. Collectively, they
make too many assunptions about the character set of al

character data.

The future outl ook for database internationalization was inproved
dramatically by the recent adoption of |SO 10646, Universa

Mul ti pl e-Cctet Coded Character Set (UCS) and an industry
counterpart, Unicode.[8] The hope is that Unicode will serve as a
"16-bit ASCII" for the future and that all new systems will be
built to use it as the default character set.

O course, it will be years -- if not decades -- before al

i nstall ed conputer hardware and software use Uni code.
Consequently, provisions have to be nmade to support existing
character sets (as SQ.-92 has done) and the eccentricities of

exi sting hardware and software (like networks and file systens).
As a result, several different representati ons of Unicode have
been devel oped that pernit transm ssion of its 16-bit characters
across networks that are intolerant of the high-order bit of
bytes (the eighth bit) and that permit Unicode data to be stored
in file systens that deal poorly with all the bit patterns it
permts (such as octets with the val ue zero).

In the past few years, many alternative character representations
have been consi dered, proposed, and inplenmented. For exanple, |SO
2022 specifies how various character sets can be conbined in
character strings with escape sequences and gives instructions on
switching between them[9] Simlarly, ASN 1-1ike structures,

whi ch provide fully tagged text, have been used by sone vendors
and in sone standards, e.g., Open Docunent Architecture.[10] None
of these representations has gained total acceptance. Database

i mpl enmentors perceive difficulties with a stateful nodel and with
the potential performance inpact of having a varyi ng nunber of
bits or octets for each character. UCS and Uni code appear to be
likely to gain wide acceptance in the database arena and in other
ar eas.

Future Work for the SQ. Standard

One should not conclude that the job is done, that there is
nothing left to work on. Instead, a great deal of work renains
before the task of providing full character set

i nternationalization for database systens is conpl et ed.

At present, the working draft for SQ.3 contains syntax that would
all ow users to define their own character sets, collations, and
transl ati ons usi ng a nonprocedural |anguage.[4,5] In general, the
SQL standards groups believe that it is inappropriate for a

dat abase standard to specify |anguage for such wi dely needed
facilities. Consequently, as soon as the other responsible

st andards bodi es provide a | anguage for these specifications, it
is probable that this capability will be withdrawn fromthe SQ.3
speci fication. This decision would conpletely align the SQ
character internationalization capabilities with the rest of the
i nternational standards efforts.

After other standards for these tasks are in place, however, the
renote data access (RDA) standard will have to be evolved to take
advant age of them RDA nust be able to negotiate the use of
character sets for database applications and to transport the

i nformati on between database clients and servers. |In order for
RDA to be able to do this, the ASN.1 standard will have to
support arbitrary nanmed character sets and characters fromthose
sets.

As a result, relevant standards bodies will need to provide (1)
names for all standardi zed character sets and (2) the ability for
vendors to register their own character sets in a way that allows

themto be uniquely referenced where needed. Still other bodies
will need to provide | anguage and services for defining
collations and translations. Finally, registries will need to be

established for vendor-supplied collations, translations, and
conver si ons.

Of course, the greatest task will be to provide conplete support
for all these facilities throughout the information processing
envi ronnent: operating systens, conmunication |inks, CPUs,
printers, keyboards, w ndowi ng systens, file systenms, and so
forth. Healthy starts have been nmade on sonme of these (such as
the X Wndow Systen), but much work remains to be done.

DEC Rdb: AN | NTERNATI ONALI ZATI ON CASE STUDY

DEC Rdb (Rdb/VMS) is one of the few Digital products that has an
internationalized inplenentation that is also conpliant with the
nmul ti vendor integration architecture (MA).[11,12] Its evolution
froma noninternationalized product to a fully internationalized
one has taken four years to achieve. The design and devel opnent
of Rdb can serve as a case study for software engineers on howto

build internationalized products. In this half of our paper, we
present the history of the reengineering process. Then we
describe sone difficulties with the reengi neering process and our
work to overconme them Finally, we evaluate the result.

Local i zati on and Reengi neeri ng

The localization process conprises all activities required to
create a product variant of an application that is suitable for
use by sone set of users with simlar preferences on a particular
platform Reengineering is the process of devel oping the set of
source code changes and new conponents required to perform

| ocalization. DEC Rdb had to be reengi neered to support severa
capabilities that are mandatory in Japan and other Asian
countries.

Qur experience has shown that the reengineering process is very
expensive and shoul d be avoided. |If the original product was not
designed for internationalization or |ocalization, however,
reengi neering i s a necessary (and unavoi dable) evil. Typically,
reengineering is required; so we decided to devel op a technol ogy
that woul d avoid reengineering and to build a truly

i nternationalized product.

Most engi neering groups follow the old assunptions about product
desi gn. These assunptions include the follow ng:

1. The character set is inplicitly ASClI
2. Each character is encoded in 7 bits.

3. The character count equals the byte count and equals the
di splay width in colums.

4. The maxi mum nurber of distinct characters is 128.
5. The collating sequence is ASCI| binary order
6. The nmessages are in English.

7. The character set of the source code is the sane as it is
at run tine.

8. The file code (the code on the disk) is the sane as the
process code (the code in nenory).

Di fferent user environments require different product
capabilities. Japanese kanji characters are encoded using 2 bytes
per character. If a product assunes that the character set is
7-bit ASCII, that product nust be reengi neered before it can be
used in Japan. On the other hand, internationalized products can
operate in different environnents because they provide the
capabilities to neet global requirenments. These capabilities

i nclude the foll ow ng:

1. Miltiple character sets ensure that the custonmer's needs
are met.

2. Each character is encoded using at |east 8 bits.

3. The character count does not equal the byte count or the
di spl ay wi dth.

4. The maxi mum nunber of unique characters is unknown.
5. The collating sequence neets the customer's needs.
6. The nessages are in the | anguage the custoner uses.

7. The character set of the source code is not necessarily
the sane as it is at run tine.

8. The file code is not necessarily the sane as the process
code.

The reengi neering process has two significant drawbacks: (1) the
hi gh cost of reengineering and (2) the tinme | ag between shi pping
the product to the customer in the United States and shipping to
the custonmer in Japan. The tine |lag can be reduced but cannot be
elimnated as | ong as we reengi neer the original product. If a

| ocal product is released sinmultaneously with the original, both
Digital and the custonmers will benefit significantly.

In the next section, we follow the DEC Rdb product through the
reengi neering process required to produce the Japanese Rdb
version 3.0.

REENG NEERI NG PROCESS

DEC Rdb version 3.0 was a mgajor rel ease and consequently was very
i mportant to the Japanese market. The International System

Engi neeri ng Group was asked to rel ease the Japanese version by
the end of 1988, which was within six nonths of the date that it
was first shipped to custonmers in the United States.

Japanese and Asi an Language Requirenents to VAX Rdb/VMS

Japanese and Asi an | anguage requirenents apply to DEC Rdb and
ot her products as well. The requirenments common to Asian

| anguages are 2-byte character handling, |ocal |anguage editor
support, and nessage and help file translation.

Japanese script uses a 2-byte code, therefore 2-byte character
handling is mandatory. For exanple, character searches nust be
performed on 2-byte boundari es and not on 1-byte boundaries. If a
string has the hexadeci mal value ' ALA2A3A4', then its substrings
are ' A1A2' and ' A3A4'. ' A2A3' nust not be matched in the string.

Digital's Asian text editors, e.g., the Japanese text processing
utility (JTPU) and Hanzi TPU (for China), nust be supported as
well as the original TPU, the standard EDT editor, and the

| anguage-sensitive editor.

Messages, help files, and docunentation nust all be translated
into |l ocal |anguages.

The country-specific requirenments include support for a Japanese
i nput method. Kana-to-kanji input nethods nust be supported in
command lines. In addition, 4-byte character handling is required
for Taiwan (Hanyu). Finally, NTT/MA SQ features nmust be added
for Japan.

Since there are not many requirenents, one m ght conclude that
the reengi neering task is not difficult. However, reengi neering
is conplicated, expensive, and tinme consum ng; and thus should be
avoi ded.

Reengi neeri ng Japanese Rdb Version 3.Xx
A dat abase managenent system|ike DEC Rdb is very conplex. The
source code is nore than 810,000 |ines; the build procedures are
conplicated; and a mere subset of the test systens consumes nore
t han one gi gabyte of disk space. Consequently, the reengineering
process is conplicated. The process enconpasses nore than
nodi fyi ng the source code. Instead, a nunber of distinct steps
nmust be acconpli shed:

1. Source code acquisition

2. Build environnment acquisition

3. Test system acquisition

4. Creation of the devel opnment environnent for the Japanese
version

5. Study of the original code

6. Mddification of the source code

7. Test of the results, including the new Japanese
functionality and a regression test of the origina
functionality

8. Maintenance of the reengi neered system

Figure 5 shows the devel opnment cost in person-weeks for each
of the eight steps. Two engineers stabilized the devel opnent

environnent -- conpile, link/build, and run -- for version 3.0 of
DEC Rdb in approximately four nonths. It is likely that the
process required four nmonths because it was our first devel opnent
work on DEC Rdb. In addition, approximately two nonths were
needed to be able to run the test system It was not an easy

t ask.

[Figure 5: (Reengineering Process for Japanese Rdb Version 3.x)
is not available in ASCII format.]

Each step had to be repeated for each version of the original
(Project tinme decreased a little.) Every version required this
reengi neering, even if no new functionality was introduced. The
cost of building the environnent becanme cheaper after the first
time. The other steps such as nodifying the source code, testing,
and mai ntenance remni ned at al nost the sane cost.

Reengi neering Metric

We nodi fied about 10 percent of the original source nodul es
during reengi neering. Mdst of the nodification occurred in the
front end, e.g., SQ and RDM. (rel ati onal database mani pul ati on
| anguage). The engine parts, the relational database nanagenent
system (RDMS), and KODA (the kernel of the data access, the

| onest | ayer of the physical data access) were not nodified very
much. Table 1 gives the conplete reengineering netrics.

(nodi fied nmodul es +
new creat ed nodul es)
Reengineering metric = -------momomomnn
(original + nmodified +
new creat ed nodul es)

Table 1 Reengineering Metrics

Reengi neeri ng Modified Total Size in

Facility Metric Modul es Mbdul es Kil o Lines
SQL 6.3% 8 128 226.0
RDML 11. 7% 11 94 188. 3
RDMS 3.1% 4 127 154.0
KODA 0.6% 1 157 109. 8
RMU 0. 0% 0 41 80.5

Di spat cher 0. 0% 0 30 60.9

Not es:

RMU is the Rdb nmanagenent utility; it is used to
nmoni tor, back up, restore, and display DEC Rdb
dat abases.

The reengi neering netric for JCOBOL (a
Digital COBOL conpiler sold in Japan) is 47/258 =
18.2% the size is 225.0 kilo lines.

CCENG NEERI NG PROCESS: NO MORE REENG NEERI NG

To reduce and elim nate reengi neeri ng, we have taken a
conservative, evolutionary approach rather than a revol utionary
one. We used only proven technol ogi es. The evol ution can be

di vided into three phases:

1. Joint Developnent with Hong Kong. Qur devel opnent goa
was to nmerge Japanese, Chinese (People's Republic of
Chi na and Taiwan), and Korean versions into one common
Asi an Rdb source code.

2. Coengineering Phase |I. Qur goal was to nerge Asian conmon
Rdb into the original master sources for version 4.0. The
nmerger of J-Rdb and Chinese-Rdb into Rdb would elininate
reengi neeri ng and create one commopn execut abl e i mage.

3. Coengineering Phase Il. In the final phase, our goal was
to devel op the internationalized product for version 4.2
by adding nore internationalization functionality, SQL-92
support, M A support for one commn executable, and
nmul ti pl e character set support.

Coengi neering is a devel opnent process in which |ocal engineers
tenporarily relocate to the Central Engineering Group in the
United States to develop the original product jointly with
Central Engineering. The engineers from a non-English-speaking
country provide the user requirenents and the cultural -dependent
technol ogy (e.g., 2-byte processing and input methods), and
Central Engineering provides the detail ed know edge of the
product. This process pronotes good experiences for both parties.
For exanple, the local engineers |learn the corporate process, and
the corporate engi neers have nore dedicated tinme to understand
the requirenments and difficulties of |ocal product needs, what

i nternationalization neans, and how to build the

i nternationalized product. Coengineering mnimzes the risks
associated with building internationalized products.

Asi an Joi nt Devel opnent

Qur goal for the Asian joint devel opnment process was to provide a
common Asi an source code for Japan, People's Republic of China

(PRC), Taiwan, and Korea. One conmpon source code woul d reduce
reengi neering costs in Asia. To achieve our goal, we devised
several source code conventions. The purposes of the conventions
wer e

1. To identify the nodule for each Asian version by its file
name

2. To naeke it possible to create any one of the Asian
versions (for Japan, the PRC, Taiwan, or Korea) or the
Engli sh version fromthe commpn source codes, using
condi tional conpilation nethods

3. To identify the portions of codes that were nodified for
t he Japanese version

4. To facilitate an engineer in Hong Kong who is devel opi ng
versions for the PRC, Taiwan, and Korea

We devel oped the Japanese Rdb version 3.0 in Japan. The files
were transferred to Hong Kong to devel op versions for the PRC,
Tai wan, and Korea. The nodified versions were sent back to Japan
to be nerged into one commopn Asian source file.

Since we had one commopn Asian source file, reengineering in Hong
Kong was reduced. Reengineering in Japan, however, was stil
necessary. W used conpilation flags to create four country
versions, that is, we had four sets of executable inmages. As a
result, we needed to nmintain four sets of devel opnent

envi ronnents (source codes, tests, and so forth). W wanted to
further sinplify the process and therefore entered the

coengi neeri ng phases.

Coengi neeri ng Phase |

The integration of Asian DEC Rdb into the base DEC Rdb product
took place in two phases. In the first phase, we integrated the
Asi an code nodifications into the source nodul es of the base
product. Consequently, the specific Asian versions of the product
can be attained by definition and then translation of a |ogica
name (a sort of environnment variable). No conditional conpilation
is necessary. In all releases of DEC Rdb version 3.x, source
nodul es of the base product were conditionally conpiled for each
Asi an version, which created separate object files and inages.

The process steps in this phase were
1. Merge the source code
a. Create one executable inage

b. Renove Japanese/ Asi an VMS dependency

c. Renove kana-to-kanji input nethod
2. Transfer the J-Rdb/C-Rdb tests

Source Code Merge (Rdb Version 4.0). To create a single set of

i mmges, we renoved the conpilation flags and introduced a new way
of using the Asian-specific source code. W chose to do this by
using a run-tinme |ogical name; the behavior of DEC Rdb changes
based on the translation of that |ogical nane.

We renoved the Japanese/ Asi an VMS dependenci es by using Rdb code
i nstead of JSYSHR calls. (JSYSHR is the nane given to the OpenVMS
system services in Japanese VMS.)

We renoved the kana-to-kanji input nethod: By calling

LI B$FI ND_| MAGE_SYMBCL (an OpenVMS system service to dynami cally
link library routines) to invoke an input nethod, the inmge need
not be |linked with JVMS, even an end user can replace an input
met hod.

Run-time Checking. W renpved the conpilation flags, but
introduced a new | ogi cal name, the RDB$CHARACTER SET | ogical, to
switch the behavior of the product. For exanple, if
RDB$CHARACTER_SET translates to DEC_KANJI, then the synbol
ARDB_JAPAN _VARI ANT is set true. This would indicate that all text
woul d be treated as if it were encoded in DEC KANJI. The code
woul d behave as if it were DEC J-Rdb. This translation nust occur
at all levels of the code, including the user interface, DEC Rdb
Executive, and KODA.

Si nce DEC Rdb checks the value of the | ogical name at run tine,
we do not need the conpilation flags; that is, we can have one
set of executable inmages.

Figure 6 shows the values that are valid for the
RDB$CHARACTER_SET 1 ogi cal

Figure 6 RDB$CHARACTER_SET Logica

$ DEFI NE RDB$CHARACTER SET -
{ DEC_KANJI | DEC_HANZI | DEC_HANGUL | DEC_HANYU }

DEC_KANJI Japanese
DEC_HANZI Chi nese
DEC_HANGUL Kor ean
DEC_HANYU Tai wan

$ SET LANGUAGE JAPANESE ! If you use Japanese VMS

The DEC J-Rdb source contains code fragnents sinmlar to those
shown in Figure 7, which were taken from RDOEDI T.B32 (written in
the BLISS progranm ng | anguage). This code was changed to use a

run-time flag set as a result of translation of the |ogica
RDB$CHARACTER_SET, as shown in Figure 8.
Figure 7 Conpilation Flag in DEC Rdb Version 3

I This exanple switches the default TPU shareable

I image (TPUSHR). If the Japanese variant is set,
I then the default editor should be JTPUSHR
I

% F $ARDB_JAPAN_VARI ANT

% HEN
TPU_I MAGE_NAME = (| F (. TPU_NAME EQL 0)
THEN $DESCRI PTOR (' TPUSHR')
ELSE $DESCRI PTOR (' JTPUSHR));

YELSE

TPU_I MAGE_NAME = $DESCRI PTOR (' TPUSHR) ;

Figure 8 Run-time Checking in Version 4

I This code could be translated to the foll ow ng
I which nmight contain redundant code but shoul d work:
I
| F. ARDB_JAPAN VARI ANT ! |f ARDB_JAPAN VARI ANT flag is true,
THEN ! then Rdb/VMsS shoul d use the J-Rdb/VMS behavi or
TPU_| MAGE_NAME = (| F (. TPU_NAME EQL 0)
THEN $DESCRI PTOR (' TPUSHR')
ELSE $DESCRI PTOR (' JTPUSHR))
ELSE
TPU_| MAGE_NAME = $DESCRI PTOR (' TPUSHR') ;

Renmove Japanese VMS (JVMS) Dependency. The Japanese version of
DEC Rdb version 3.x used the JVMS run-tine library (JSY
routines). The JSY routines are Japanese-specific
character-handling routines such as "get one kanji character" and
"read one kanji character." The library is available only on
JVMS; native VMsS does not have it, so DEC Rdb cannot use it. To
remove the JVMS dependency, we nodified all routines that called
JSY routines so that they contain their own code to inplenment the
same functions.

The J-Rdb/ VMS source contains code fragnents sinmlar to the ones
shown in Figure 9. The code was changed to renpve references to
the JSY routines as shown in Figure 10. This exanpl e does not use
JSY routines |ike JSY$CH SI ZE or JSY$CH RCHAR

Figure 9 Using JSY Routines in DEC Rdb Version 3

% F $ARDB_COMMON_VARI ANT %THEN
I+

I ARDB: Advance character pointer.
!

JSY$CH_SI ZE counts the size of the character.

If it is ASCII, return 1,

If it is Kanji, return 2.

CP is a character pointer

CP = CH$PLUS(.CP, JSY$CH SI ZE(JSY$CH RCHAR(.CP)));
I -

Y%ELSE

CP = CH$PLUS(.CP, 1);

%1 ! $ARDB_COMMON_VARI ANT

Figure 10 Renoving JSY Routines in Version 4
!******************run tl me Check| ng

| F $RDMS$ARDB_COVMON THEN
I+
I ARDB: Advance character pointer.

!
I If the code value of CP is greater than 128,
I then it neans the first byte of Kanji, so

I advance 2, else it is ASCII, advance 1

!

CP = CH$PLUS(.CP, (IF CH$RCHAR(.CP) GEQ 128
THEN
2
ELSE
1));
-
ELSE
CP = CH$PLUS(.CP, 1);
FI ! $RDVMS$SARDB_COMVON

wher e $RDMS$ARDB_COMMON i s a nmcro.

Renmove Kana-to-kanji |nput Method. The dependency on JVMS can be
elimnated by maki ng the 2-byte text handling i ndependent of JSY
routines, but the input nmethod still depends on JSYSHR for
kana-to-kanji conversions. To renove this dependency, we

devel oped a new nethod to invoke the kana-to-kanji conversion
routine. Figure 11 shows the new i nput et hod.

Figure 11 Input Method for Version 4: Kana-to-kanji Conversion
(Japanese | nput) Shareable | nage

SQLS$. EXE
I
+ (default) -> SMESREAD_COWVPCSED LI NE
I
+ (if Japanese Input is selected)

LI B$FI ND_I MAGE_SYMBOL

Fomm - > (shareabl e for Japanese | nput). EXE

Since LI B$FI ND_| MAGE_SYMBOL is used to find the Japanese input at
run time, JSYSHR does not need to be referenced by the SQ$
execut abl e i mage.

We created a shareable inmage for the input method, using the
SYS$LANGUACGE | ogical to switch to the Japanese input nethod or to
ot her Asian | anguage i nput nmethods. Since an input nethod is a
shareabl e i mage, a user can switch input nethods by redefining
the logical nane to identify the appropriate imge.

Note that the input nmethod is a nechanismto convert al phabetic
characters to kanji characters. It is necessary to permt input
of ideographic characters, i.e., kanji, through the keyboard.
Asi an | ocal |anguage groups woul d be responsible for creating a
simlar shareable image for their specific input nethods.

Transfer DEC J-Rdb and DEC C-Rdb Tests. To ensure the
functionality of Japanese/ Asian DEC Rdb, we transferred the tests
into the original devel opment environnment. W integrated not only
the source nodul es but also all the tests. Consequently, the

Asi an 2-byte processing capabilities have now been tested in the
United States.

Kit Components and J-Rdb Installation Procedure. The origina
DEC Rdb version 4.0 has the basic capability to perform 2-byte
processi ng. Japanese and ot her Asian |anguage conponents nust be
provi ded for local country variants. The localization kit for
Japan contai ns Japanese documentation such as nmessages and help
files, an input nethod, and the J-Rdb |icense managenent facility
(LMF). As a result, we need not reengineer the original product
any nore. The installation procedure is also sinplified. Users
wor |l dwi de nerely install DEC Rdb and then install a | ocalization
kit if it is needed.

The localization kits contain only the user interfaces, so no
reengi neering i s necessary; however, translation of

docunent ati on, nessage files, help files, and so on to |oca

| anguages still remains necessary. Nonethel ess, the reengineering
process is elimnated.

In version 4.0, we achieved the main goal, to integrate the Asian
source code into the base product to avoid reengi neering. The
Japanese |l ocalization kit was released with a delay of about one
nmonth after the U. S. version (versus a five-nonth delay in
version 3.0). The one-nonth delay between rel eases is anong the
best in the world for such a conpl ex product.

Coengi neering Phase |1

In the second phase of integration, we redesigned the work done
in Phase | and devel oped a multilingual version of Rdb/VMS.

In version 4.0, we introduced the |ogical name RDB$CHARACTER SET
to integrate Asian functionality into DEC Rdb. In Phase I, we
created an internationalized version of DEC Rdb. W retained the
one set of images and introduced new syntax and semantics. W

al so provi ded support for the NTT/M A requirenents.

The following are the highlights of the release. The details are
given in the Appendi x.

o] NTT/M A SQL Requirenents
- NATI ONAL CHARACTER data type
- Nnational' litera
- Kanji object nanes
o] Changes/ extensions to the original DEC Rdb
- Add a character set attribute
- Miltiple character set support
o] Dependenci es upon ot her products

- CDD/ Plus, CDD/ Repository: Add a character set
attribute

- Progranm ng | anguages: COBOL, PIC, N

Since we are no | onger reengineering the original product, we now
have tine to develop the new functionality that is required by
NTT/M A. The new syntax and semantics of the character-set
handling are conformant with the new SQ.-92 standard. As far as
we know, no conpetitor has this level of functionality.

If we had to continue to reengi neer the original, we would not
have had enough resources to conti nue devel opment of inportant
new functionalities. Coengineering not only reduces devel opnent
cost but also inproves conpetitiveness.

We introduced the RDB$CHARACTER SET | ogi cal during Phase | to
switch the character set being used. Since the granularity of
character set support is on a process basis, however, a user
cannot nix different character sets in a given process. |In Phase
I1, we inplenented the CHARACTER SET cl ause, defined in SQL-92,
to allow multiple character sets in a table.

Dat abase Character Sets. The database character sets are the
character sets specified for the attached dat abase. Database
character set attributes are default, identifier, and national

SQL uses the database default character set for two el enents: (1)
dat abase colums with a character data type (CHARACTER and
CHARACTER VARYING) that do not explicitly specify a character set
and (2) paraneters that are not qualified by a character set. The
user can specify the database default character set by using the
DEFAULT CHARACTER SET cl ause for CREATE DATABASE.

SQL uses the identifier character set for database object nanes
such as table nanes and colum nanes. The user can specify the

identifier character set for a database by using the | DENTIFIER
CHARACTER SET cl ause for CREATE DATABASE.

SQL uses the national character set for the follow ng el enents.

o] For all colums and domains with the data type NATI ONAL
CHARACTER or NATI ONAL CHARACTER VARYI NG and for the
NATI ONAL CHARACTER data type in a CAST function

o] In SQL nodul e | anguage, all paranmeters with the data type
NATI ONAL CHARACTER or NATI ONAL CHARACTER VARYI NG

o] For all character-string literals qualified by the
nati onal character set, that is, the literal is preceded
by the letter N and a single quote (N)

The user can specify the national character set for a database by
usi ng the NATI ONAL CHARACTER SET cl ause for CREATE DATABASE.

The foll owi ng exanpl e shows the DEFAULT CHARACTER SET, | DENTI FI ER
CHARACTER SET, and NATI ONAL CHARACTER SET cl auses for CREATE
DATABASE.

CREATE DATABASE FI LENAME ENVI RONMENT
DEFAULT CHARACTER SET DEC_KANJI
NATI ONAL CHARACTER SET KANJI
| DENTI FI ER CHARACTER SET DEC_KANJI ;

CREATE DOMAI N DEC_KANJI _DOM CHAR(8) ;
CREATE DOMAI N KANJI _DOM NCHAR(6) ;

DEC KANJI _DOMis a text data type with DEC KANJI character set,
and KANJI _DOMis a text data type with KANJI character set. The
dat abase default character set is DEC KANJI and the nati onal
character set is KANJI.

As previously stated, the user can choose the default and
identifier character sets of a database. Consequently, users can
have both text colums that have character sets other than 7-bit
ASCl | and national character object nanmes (i.e.,

kanji names, Chinese nanes, and so on).

In Rdb version 3.1 and prior versions, the character set was
ASCl | and could not be changed. In Rdb version 4.0, users could
change character sets by defining the RDBSCHARACTER SET | ogi cal

It is inportant to note that the logical name is a volatile
attribute; that is, the user nust renenber the character set
bei ng used in the database in his process. On the other hand, the
dat abase character sets introduced in version 4.2 are persistent
attributes, so the user is less likely to become confused about
the character set in use

Sessi on Character Sets. The session character sets are used
during a session or during the execution of procedures in a
nmodul e. The session character set has four attributes: literal
default, identifier, and national

SQL uses the literal character set for unqualified character
string literals. Users can specify the literal character set only
for a session or a nmodule by using the SET LI TERAL CHARACTER SET
statenent or the LI TERAL CHARACTER SET cl ause of the SQ. nodul e
header, DECLARE MODULE st atenent, or DECLARE ALI AS statenent.

Session character sets are bound to nodules or an interactive SQ
sessi on, and database character sets are attributes of a

dat abase. For exanpl e, a user can change the session character
sets for each SQL session; therefore, the user can attach to a
dat abase that has DEC MCS nanes and then attach to a new dat abase
t hat has DEC_HANZI nanes.

Octet Length and Character Length. |In DEC Rdb version 4.1 and
prior versions, all string |lengths were specified in octets. In
ot her words, the numeric val ues specified for the
character-colum |l ength or the start-off set and substring | ength
Wi thin a substring expression were considered to be octet |engths
or offsets.

DEC Rdb version 4.2 supports character sets of m xed-octet and

fi xed-octet formof-use. For this reason and to allow an upgrade
path to SQ.-92 (where |l engths and offsets are specified in
characters rather than octets), users are allowed to specify

I engths and offsets in terns of characters. To change the default
string-length unit fromoctet to characters, users may invoke the
fol | owi ng:

SET CHARACTER LENGTH ' CHARACTERS' ;

Mul ti pl e Character Sets Exanples. Users can create a domain
using a character set other than the database default or nationa
character sets with the follow ng sequence:

CREATE DOMAI N DEC_KOREA DOM CHAR(6)
CHARACTER SET DEC_KOREAN;

CREATE TABLE TREES
(TREE_CODE TREE_CODE_DOM
QUANTI TY | NTEGER,
JAPANESE_NAME CHAR(30),
FRENCH_NAME CHAR(30)
CHARACTER SET DEC_MCS,
ENGLI SH_NAME CHAR(30)
CHARACTER SET DEC_MCS,
KOREAN_NAME CHAR(30)
CHARACTER SET DEC_KOREAN,
KANJI _NAME NCHAR(30));

The table TREES has nultiple character sets. This exanple assunes
the default character set is DEC KANJI and the national character
set is KANJI. Users can have object nanmes other than ASCI| nanes
speci fying the identifier character set. The database engi ne uses
the specific routines to conpare data, since the engine knows the
character set of the data. Wth DEC Rdb version 4.2, all three

i ssues of data representation, multiple character-set support,
and data conpari son have been resol ved.

CONCLUSI ONS

By repl acing reengi neering with coengi neering, we reduced the
time |ag between shipping DEC Rdb to custoners in the United
States and in Japan fromfive nonths for version 3.0 in July 1988
to two weeks for version 4.2 in February 1993. Figure 12 shows
the decrease in tine lag for each version we devel oped. W al so
el i m nat ed expensi ve reengi neering and nmai nt enance costs.

Finally, we increased conpetitiveness.

[Figure 12: (Tine Lag between U.S. and Japanese Shipment of DEC
Rdb) is not available in ASCII format.]

It has taken nmore than four years to evolve froma

noni nternationalized product to an internationalized one. If the
product had originally been designed to be internationalized,
this process woul d have been unnecessary. \Wen DEC Rdb was
originally created, however, we did not have an

i nternationalization nodel, the architecture, or mature

techni ques. Reengi neering i s unavoi dabl e under these

ci rcumst ances.

By sharing our experience, we can hel p other product engi neering
groups avoid the reengi neeri ng process.

FUTURE WORK FOR DEC Rdb
Coengi neering has proved that an evolutionary approach is not

only possible, but that it is the nost reasonabl e approach
addi ti onal work, however, renmmins to be done for DEC Rdb.

DEC Rdb must support nore character sets like |SO 10646-1. W
think that the support of new character sets would be
straightforward in the DEC Rdb i npl enmentati on. DEC Rdb has the
infrastructure for supporting it. SQ.-92 has the syntax for it,
that is, the character set clause. Furthernore, the DEC Rdb

i mpl enmentation has the attribute for a character set in the
system t abl es.

Col I ati ons on Han characters should be extended. The current

i mpl enentation of a collation on Han characters is based on its
character value, that is, its code value. W believe the user
woul d also like to have coll ations based on dictionaries,

radi cal s, and pronunci ations.[13]

SUMVARY

There are significant difficulties in the specification of
character internationalization for database systens, but the
SQL-92 standard provides a sound foundation for the

i nternationalization of products. The application of SQL-92
facilities to DEC Rdb is quite successful and can serve as a case
study for the internationalization for other software products.

ACKNOW.EDGVENTS

The authors gratefully acknow edge the hel p and contributions
made by many people during the devel opnent of DEC Rdb's
internationalization facilities and those of the SQ. standard. In
particul ar, Don Blair, Yasuhiro Matsuda, Scott Mtsunmoto, Jim
Murray, Kaz Qoiso, Lisa Maatta Smith, and lan Smith were
particularly hel pful during the DEC Rdb work. During the
internationalization of SQ., Laurent Barnier, David Birdsall

Phil Shaw, Kohji Shibano, and Mani Subranmanyam all nmade

signi ficant contributions.

REFERENCES

1. G Wnters, "International Distributed Systenms --
Architectural and Practical |ssues," Digital Technica
Journal, vol. 5, no. 3 (Summer 1993): 53-62.

2. American National Standard for Information Systens --
Dat abase Language SQ., ANSI X3.135-1992 (Anerican Nationa
Standards Institute, 1992). Also published as Infornmation
Technol ogy -- Database Languages -- SQ., |SO|IEC 9075: 1992
(Geneva: International Organization for Standardization
1992).

3. W Rannenberg and J. Bettels, "The X/ Open
Internationalization Mddel," Digital Technical Journal, vol.
5, no. 3 (Sumer 1993): 32-42.

4, Dat abase Language SQ. (SQL3), Working Draft, ANSI

X3H2-93-091 (Anerican National Standards Institute, February
1993).

5. Dat abase Language SQ. (SQ.3), Working Draft, SO IEC
JTC1l/ SC21 N6931 (Ceneva: International Organization for
St andardi zation, July 1992).

6. J. Melton and A. Sinon, Understanding the New SQ.: A
Conpl ete Gui de (San Mateo, CA: Mrgan Kaufmann Publishers,

1992).

7. I nformati on Technol ogy -- Renote Dat abase Access -- Part 1
Generic Model, Service, and Protocol, ISO|EC 9579-1:1993,
and I nformation Technol ogy -- Renpte Dat abase Access -- Part

2: SQL Specialization, 1SOIEC 9579-2:1993 (Geneva:
I nternational Organi zation for Standardization, 1993).

8. J. Bettels and F. Bishop, "Unicode: A Universal Character
Code," Digital Technical Journal, vol. 5, no. 3 (Sunmmer
1993): 21-31.

9. I nformati on Processing -- 1SO 7-bit and 8-bit Coded
Character Sets -- Code Extension Techni ques, |SO 2022: 1986
(Geneva: International Organization for Standardization
1986) .

10. Information Processing, Open Docunent Architecture, |SOIEC
8613: 1989 (Geneva: International Organization for
St andar di zati on, 1989).

11. DEC Rdb, SQ. Reference Manual (Maynard, MA: Digita
Equi pnent Corporation, Oder No. AA-PWQPA-TE, January 1993).

12. Ml tivendor Integration Architecture, Version 1.2 (Tokyo:
Ni ppon Tel egraph and Tel ephone Corporation, Order No.
TR550001, Septenber 1992).

13. R Haentjens, "The Ordering of Universal Character Strings,"

Digital Technical Journal, vol. 5, no. 3 (Sunmer 1993):
43-52.

APPENDI X: SYNTAX OF Rdb VERSI ON 4. 2

Format of CHARACTER SET Cl ause

<character data type> ::=
<character string type>
[CHARACTER SET <character set specification>]
| <national character string type>

<character string type> ::=

CHARACTER [VARYING] [(<length>)]
| CHAR[VARYING] [(<length>)]
| VARCHAR (<l ength>)

<national character string type> ::=
NATI ONAL CHARACTER [VARYING] [(<length>)]
| NATIONAL CHAR [VARYING] [(<length>)]
| NCHAR [VARYING] (<length>)

<character set specification> ::=
<character set nanme>

<character set name> ::= <nane>

Character Set Nanes

DEC_MCS
KANJ|

HANZI

KOREAN

HANYU

DEC_KANJI
DEC_HANZI
DEC_KOREAN

DEC_SI CGCC
DEC_HANYU
KATAKANA

| SOLATI NARABI C

| SOLATI NHEBREW

| SOLATI NCYRI LLI C
| SOLATI NGREEK
DEVANAGARI

Exanpl e of CHARACTER SET

CREATE DATABASE FI LENAME ENVI RONMENT
DEFAULT CHARACTER SET DEC_KANJI
NATI ONAL CHARACTER SET KANJI
| DENTI FI ER CHARACTER SET DEC_KANJI ;

CREATE DOVAI N NAMES_GENERAL CHAR(20);

CREATE DOVAI N NAMES_PRC CHAR(20)
CHARACTER SET | S HANZI ;

CREATE DOVAI N NAMES_MCS CHAR(20)
CHARACTER SET IS MCS

CREATE DOVAI N NAMES_KOREAN CHAR(20)
CHARACTER SET |'S HANGUL;

CREATE DOVAI N NAMES_JAPAN NCHAR(20);

Format of Literals

<character literal> ::=
<character string literal >
| <national character string literal >

<character string literal> ::=
[<introducer><character set specification>]
<quote>[<character representation>...]<quote>
<character representation> ::=
<nonquot e character>
| <quote synbol >
<nonquot e character> ::= 1! See the Syntax Rul es.

<quote synbol > ::= <quote> <quot e>

<national character string literal> ::=
N <quote>[<character representation>...]<quote>

Exanpl e of National Object Nanme

[EDI TOR' S NOTE: The exanple of the national object nane is in kanji
be represented in the ASCII version.]

Bl OGRAPHI ES

JimMelton A consulting engineer with Database Systenms, Jim
Melton represents Digital to the ANSI X3H2 Technical Conmittee
for Database. He represents the United States to the 1SO | EC
JTCLl/ SC21/ W3 Wor ki ng Group for Database. He edited the SQ.-92
standard and continues to edit the enmerging SQ.3 standard. Jim
al so represents Digital to the X/ Open Data Managenent WorKking
Group and to the SQL Access Group. Jimis the author of
Under st andi ng the New SQ.: A Conpl ete CGuide, published in 1992,
and is a regular columist (SQ Update) for Database Programm ng
& Desi gn.

Hi r ot aka Yoshi oka A senior software engineer in the

I nternational Software Engi neering Goup, Hro Yoshioka is the
proj ect | eader of the CDD/ Repository/Japanese. He is a nenber of
the internationalization special conmttee of ITSC) (Infornmation
Technol ogy Standards Comni ssion of Japan) and | SO | EC JTCL

SC22/ W20 internationalization. During the past nine years, he
has desi gned and i npl emented the Japanese COBOL, the Japanese
COBOL generator, and the internationalized DEC Rdb. Hiro joi ned
Digital in 1984, after receiving an MS. in engineering fromKeio
Uni versity, Yokohans.

and cannot

TRADEMARKS

CDD/ Pl us, CDD Repository, DEC Rdb, Digital, and OpenVMS are
trademar ks of Digital Equi pment Corporation.

PIC is a trademark of Wang Laboratories, Inc.
Uni code is a trademark of Unicode Inc.
UNIl X is a registered trademark of UN X Systens Laboratories, Inc.

X/ Open is a trademark of X/ Open Conpany Ltd.

Copyright 1993 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi prment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be

di stributed for comrerci al advantage. Abstracting with credit of Digital

Equi pment Corporation's authorship is permitted. All rights reserved.

