
CHARACTER INTERNATIONALIZATION IN
DATABASES: A CASE STUDY

By Hirotaka Yoshioka and Jim Melton

ABSTRACT

Character internationalization poses difficult problems for
database management systems because they must address user
(stored) data, source code, and metadata. The revised (1992)
standard for database language SQL is one of the first standards
to address internationalization in a significant way. DEC Rdb is
one of the few Digital products that has a complete
internationalization (Asian) implementation that is also MIA
compliant. The product is still evolving from a
noninternationalized product to a fully internationalized one;
this evolution has taken four years and provides an excellent
example of the issues that must be resolved and the approaches to
resolving them. Rdb can serve as a case study for the software
engineering community on how to build internationalized products.

INTRODUCTION

Internationalization is the process of producing specifications
and products that operate well in many languages and cultures.[1]
Internationalization has several different aspects such as
character set issues, date and time representation, and currency
representation. Most of these affect many areas of information
technology where the solutions are reasonably similar; for
example, solutions to currency representation are equally
applicable to database systems and to programming languages.
Database systems, however, are affected in several unique ways,
all of which deal with character sets. In this paper, we focus on
the issues of character set internationalization in database
management systems (DBMS) and do not address the other aspects of
date and time, currency, or locales.

To better understand the problems and solutions associated with
character internationalization of database systems, we present an
overview of the solutions found in the standard query language
(SQL) standard and report a case study of implementing those
solutions in a commercial product. We first discuss the character
internationalization features supported in the recently published
revision of the standard for Database Language SQL (ISO/IEC
9075:1992 and ANSI X3.135-1992).[2] We then describe in some
detail the application of those features in DEC Rdb, Digital's
relational database product. The internationalization of DEC Rdb
serves as a case study, or a model, for the internationalization
of Digital's software products in general.

INTERNATIONALIZATION IN THE SQL STANDARD

Like most computer languages, SQL came into being with the
minimal set of characters required by the language; vendors were
free to support as many, or as few, additional characters as they
perceived their markets demanded. There was little, if any,
consideration given to portability beyond the English language
customer base. In 1989, after work was completed on ISO 9075:1989
and ANSI X3.135-1989 (SQL-89), significant changes were proposed
for the next revision of the SQL database language to address the
requirement for additional character set support. (Unfortunately,
this put SQL in the vanguard, and little support existed in the
rest of the standards community for this effort.)

Character Set Support

SQL must address a more complex set of requirements to support
character sets than other programming languages due to the
inherent nature of database systems. Whereas other programming
languages have to cover the character set used to encode the
source program as well as the character set for data processed by
the program, database systems also have to address the character
set of the metadata used to describe the user data. In other
words, character set information must be known within three
places in a database environment.

 1. The user data that is stored in the database or that is
 passed to the database system from the application
 programs.

 In SQL, data is stored in tables, which are
 two-dimensional representations of data. Each record of
 data is stored in a row of a table, and each field in a
 row corresponds to a column of a table. All the data in a
 given column of a table has the same data type and, for
 character data, the same character set.

 2. The metadata stored in the database that is used to
 describe the user data and its structure.

 In SQL databases, metadata is also stored in tabular form
 (so that it can be retrieved using the same language that
 retrieves user data). The metadata contains information
 about the structure of the user data. For example, it
 specifies the names of the users' tables and columns.

 3. The data management source code.

 Data management statements (for querying and updating the
 database) have to be represented as character strings in
 some character set. There are three aspects of these
 statements that can be independently considered. The key
 words of the language (like SELECT or UPDATE) can be
 represented in one character set -- one that contains

 only the alphabetic characters and a few special (e.g.,
 punctuation) characters; the character string literals
 that are used for comparison with database data or that
 represent data to be put into the database; and the
 identifiers that represent the names of database tables,
 columns, and so forth.

Consider the SQL statement

SELECT EMP_ID FROM EMPLOYEES
 WHERE DEPARTMENT = 'Purchasing'

In that statement, the words SELECT, FROM, and WHERE; the equals
sign; and the two apostrophes are syntax elements of the SQL
language itself. EMP_ID, EMPLOYEES, and DEPARTMENT are names of
database objects. (EMPLOYEES is a table; the other two are
columns of that table.) Finally, Purchasing is the contents of a
character string literal used to compare against data stored in
the DEPARTMENT column.

That seems straightforward enough, but what if the database had
been designed and stored in Japan so that the names of the table
and its columns were in Japanese kanji characters? Furthermore,
what if the name of some specific department was actually
expressed in Hebrew (because of a business relationship)? That
means that our database would have to be able to handle data in
Hebrew characters, metadata in Japanese characters, and source
code using Latin characters!

One might reasonably ask whether this level of functionality is
really required by the marketplace. The original impetus for the
character internationalization of the SQL standard was provided
by proposals arising from the European and Japanese standards
participants. However, considerable (and enthusiastic)
encouragement came from the X/Open Company, Ltd. and from the
Nippon Telephone and Telegraph/Multivendor Integration
Architecture (NTT/MIA) project, where this degree of mixing was a
firm requirement.[3]

The situation is even more complex than this example indicates.
In general, application programs must be able to access databases
even though the data is in a different character encoding than
the application code! Consider a database containing ASCII data
and an application program written in extended binary coded
decimal interchange code (EBCDIC) for an IBM system, and then
extend that image to a database containing data encoded using the
Japanese extended UNIX code (EUC) encoding and an application
program written in ISO 2022 form. The program must still be able
to access the data, yet the character representations (of the
same characters) are entirely different. Although the problem is
relatively straightforward to resolve for local databases (that
is, databases residing on the same computer as the application),

it is extremely difficult for the most general case of
heterogeneous distributed database environments.

Addressing Three Issues

To support internationalization aspects, three distinct issues
have to be addressed: data representation, data comparison, and
multiple character set support.

Data Representation. How is the data (including metadata and
source code) actually represented? The answer to this question
must address the actual repertoire of characters used. (A
character repertoire is a collection of characters used or
available for some particular purpose.) It must also address the
form-of-use of the character strings, that is, the ways that
characters are strung together into character strings;
alternatives include fixed number of bits per character, like
8-bit characters, or variable number of bits per character, like
ISO 2022 or ASN.1. Finally, the question must deal with the
character encoding (for example, ASCII or EBCDIC). The
combination of these attributes is called a character set in the
SQL standard.

It is also possible for the data to be represented in different
ways within the database and in the application program. A column
definition that specifies a character set would look like this

NAME CHARACTER VARYING (6)
 CHARACTER SET IS KANJI,

or

NAME NATIONAL CHARACTER VARYING (6),

(which specifies the character set defined by the product to the
national character set), while a statement that inserts data into
that column might be

INSERT INTO EMPS(NAME)
 VALUES (..., _KANJI'**', ...);

If the name of the column were expressed in hiragana, then the
user could write

INSERT INTO EMPS(_HIRAGANA 2+++)
 VALUES (..., _KANJI'**', ...);

[EDITOR'S NOTE: The two asterisks (**) above are not really part
of the code but indicate the placement of two kanji characters in
the code. So too, three hiragana characters representing NA MA E
are in the code in place of the plus signs +++ shown here.]

Data Comparison. How is data to be compared? All character data
has to be compared using a collation (the rules for comparing

character strings). Most computer systems use the binary values
of each character to compare character data 1 byte at a time.
This method, which uses common character sets like ASCII or
EBCDIC, generally does not provide meaningful results even in
English. It provides far less meaningful results for languages
like French, Danish, or Thai.

Instead, rules have to be developed for language-specific
collations, and these rules have to resolve the problems of
mixing character sets and collations within SQL expressions.

Applications can choose to force a specific collation to be used
for comparisons if the default collation is inappropriate:

WHERE :hostvar = NAME COLLATE JAPANESE

Multiple Character Set Support. How is the use of multiple
character sets handled? The most powerful aspect of SQL is its
ability to combine data from multiple tables in a single
expression. What if the data in those tables is represented in
different character sets? Rules have to be devised to specify the
results for combining such tables with the relational join or
union operations.

What if the character sets of data in the source program are
different from those in the database? Rules must exist to provide
the ability for programs to query and modify databases with
different character sets.

Components of Character Internationalization

SQL recognizes four components of character internationalization:
character sets, collations, translations, and conversions.
Character sets are described above; they comprise a character
repertoire, a form-of-use, and an encoding of the characters.
Collations are also described above; they specify the rules for
comparing character strings expressed in a given character
repertoire.

Translations provide a way to translate character strings from
one character repertoire to a different (or potentially the same)
repertoire. For example, one could define a translation to
convert the alphabetic letters in a character string to all
uppercase letters; a different translation might transliterate
Japanese hiragana characters to Latin characters. By comparison,
conversions allow one to convert a character string in one
form-of-use (say, two octets per character) into another (for
example, compound text, a form-of-use defined in the X Window
System).

SQL provides ways for users to specify character sets,

collations, and translations based on standards and on
vendor-provided facilities. The current draft of the next version
of the SQL standard (SQL3) also allows users to define their own
character sets, collations, and translations using syntax
provided in the standard.[4,5] If these facilities come to exist
in other places, however, they will be removed from the SQL
standard (see below). SQL does not provide any way for users to
specify their own conversions; only vendor-provided conversions
can be used.

Interfacing with Application Programs

Application programs are typically written in a third-generation
language (3GL) such as Fortran, COBOL, or C, with SQL statements
either embedded in the application code or invoked in SQL-only
procedures by means of CALL-type statements.[6] As a result, the
interface between the database system and 3GL programs presents
an especially difficult problem in SQL's internationalization
facilities. Figure 1 illustrates the procedure to invoke SQL from
C; Figure 2 shows SQL as it is invoked from C; and Figure 3 shows
SQL schema.

Figure 1 Invoking SQL from C

 main()
 {
 #include <stdio.h>
 #include <stdlib.h>
 #include "SQL92.h" /* Interface to SQL-92 */

 static sqlstate char[6];
 static employee_number char[7];
 static employee_name wchar_t[26];
 static employee_contact char[13];

 /* Assume some code here to produce an appropriate
 employee number value */

 LOCATE_CONTACT (employee_number, employee_name,
 employee_contact, sqlstate);

 /* Assume more code here to use the result */

 }
 ;

Figure 2 SQL Invoked from C

 MODULE i18n_demo NAMES ARE Latin1
 LANGUAGE C

 SCHEMA personnel AUTHORIZATION management

 PROCEDURE locate_contact
 (:emp_num CHARACTER (6) CHARACTER SET Ascii,
 :emp_name CHARACTER VARYING (25) CHARACTER SET Unicode,
 :contact_name CHARACTER VARYING (6) CHARACTER SET Shift_jis,
 SQLSTATE)
 SELECT name, contact_in_japan
 INTO :emp_name, :contact_name
 FROM personnel.employees
 WHERE emp_id = :emp_num;

Figure 3 SQL Schema

 CREATE SCHEMA personnel AUTHORIZATION management
 DEFAULT CHARACTER SET Unicode

 CREATE TABLE employees (
 emp_id CHARACTER (6) CHARACTER SET Ascii,
 name CHARACTER VARYING (25),
 department CHARACTER (10) CHARACTER SET Latin1,
 salary DECIMAL (8,2),
 contact_in_japan CHARACTER VARYING (6) CHARACTER SET Shift_jis,
 ...,
 PRIMARY KEY (emp_id))

In these figures, all the metadata values (that is, the
identifiers) are expressed in Latin characters; this resolves the
data representation issue. The reader should compare the
character sets of the data items in the EMPLOYEES table and the
corresponding parameters in the SQL procedure. The difficulties
arise when trying to achieve a correlation between the parameters
of the SQL procedure and the arguments in the C statement that
invokes that procedure.

The C variable employee_number corresponds to the SQL parameter
:emp_num; the C data type char is a good match for CHARACTER SET
ASCII. The C variable employee name corresponds to the SQL
parameter :emp_name; the C data type wchar_t is chosen by many
vendors to match CHARACTER SET Unicode. However, CHARACTER SET
Shift_jis is more complicated; there is no way to know exactly
how many bytes the character string will occupy because each
character can be 1 or 2 bytes in length. Therefore, we have
allocated a C char that permits up to 13 bytes. Of course, the C
run-time library would have to include support for ASCII data,
Unicode data, and Shift JIS data.

Typically, 3GL languages have little or no support for character
sets beyond their defaults. Consequently, when transferring data
from an internationalized SQL database into a
noninternationalized application program, many of the benefits

are lost. Happily, that situation is changing rapidly.
Programming language C is adding facilities for handling
additional character sets, and the ISO standards group
responsible for programming languages (ISO/IEC JTC1/SC22) is
investigating how to add those capabilities to other languages as
well.

The most difficult issue to resolve concerns the differences in
specific character sets (especially form-of-use) supported by SQL
implementations and 3GL implementations. As with other issues,
purely local situations are easy to resolve because a DBMS and a
compiler provided by the same vendor are likely to be compatible.
Distributed environments, especially multivendor ones, are more
complicated. SQL has provided one solution: it permits the user
to write SQL code that translates and converts the data into the
form required by the application program as long as the
appropriate conversions and translations are available for use by
SQL. Of course, once the data has been transferred into the
application program, the question remains: What facilities does
it have to manipulate that data?

Remote Database Access Issue

As mentioned, a distributed environment presents significant
difficulties for database internationalization. A simple remote
database access scenario illustrates these problems. If an
application program must access some (arbitrary) database via a
remote (e.g., network) connection, then the remote database
access facility must be able to deal with all the character sets
that the application and database use together; it may also have
to deal with differences in available character sets. (See Figure
4.)

Figure 4 Remote Database Access

+-------------+ \ / +----------+
| Application |________x________| Database |
| Program | / \ | System |
+-------------+ +----------+
Requires Unicode Supports Latin1

An ISO standard for remote database access (ISO/IEC 9579-1 and
9579-2) uses the ASN.1 notation and encoding for transporting SQL
commands and database data across remote connections.[7] ASN.1
notation, as presently standardized, provides no way to use
various character sets in general. Recently work has begun to
resolve this problem. The revised standard must allow a character
set to be specified uniquely by means of a name or identifier
that both ends of the connection can unambiguously interpret in

the same way. The individual characters in ASN.1 character
strings must be similarly identifiable in a unique way.

This problem has not yet been resolved in the standards
community, partly because several groups have to coordinate their
efforts and produce compatible solutions.

Hope for the Future

In the past, programming languages, database systems, networks,
and other components of information management environments had
to deal with character sets in very awkward ways or use
vendor-provided defaults. The result has been an incredible mess
of 7-bit (ASCII, for example) and 8-bit (Latin-1, for example)
code sets, PC code pages, and even national variants to all of
these. The number of code variants has made it very difficult for
a database user to write an application that can be executed on
any database system using recompilation only. Collectively, they
make too many assumptions about the character set of all
character data.

The future outlook for database internationalization was improved
dramatically by the recent adoption of ISO 10646, Universal
Multiple-Octet Coded Character Set (UCS) and an industry
counterpart, Unicode.[8] The hope is that Unicode will serve as a
"16-bit ASCII" for the future and that all new systems will be
built to use it as the default character set.

Of course, it will be years -- if not decades -- before all
installed computer hardware and software use Unicode.
Consequently, provisions have to be made to support existing
character sets (as SQL-92 has done) and the eccentricities of
existing hardware and software (like networks and file systems).
As a result, several different representations of Unicode have
been developed that permit transmission of its 16-bit characters
across networks that are intolerant of the high-order bit of
bytes (the eighth bit) and that permit Unicode data to be stored
in file systems that deal poorly with all the bit patterns it
permits (such as octets with the value zero).

In the past few years, many alternative character representations
have been considered, proposed, and implemented. For example, ISO
2022 specifies how various character sets can be combined in
character strings with escape sequences and gives instructions on
switching between them.[9] Similarly, ASN.1-like structures,
which provide fully tagged text, have been used by some vendors
and in some standards, e.g., Open Document Architecture.[10] None
of these representations has gained total acceptance. Database
implementors perceive difficulties with a stateful model and with
the potential performance impact of having a varying number of
bits or octets for each character. UCS and Unicode appear to be
likely to gain wide acceptance in the database arena and in other
areas.

Future Work for the SQL Standard

One should not conclude that the job is done, that there is
nothing left to work on. Instead, a great deal of work remains
before the task of providing full character set
internationalization for database systems is completed.

At present, the working draft for SQL3 contains syntax that would
allow users to define their own character sets, collations, and
translations using a nonprocedural language.[4,5] In general, the
SQL standards groups believe that it is inappropriate for a
database standard to specify language for such widely needed
facilities. Consequently, as soon as the other responsible
standards bodies provide a language for these specifications, it
is probable that this capability will be withdrawn from the SQL3
specification. This decision would completely align the SQL
character internationalization capabilities with the rest of the
international standards efforts.

After other standards for these tasks are in place, however, the
remote data access (RDA) standard will have to be evolved to take
advantage of them. RDA must be able to negotiate the use of
character sets for database applications and to transport the
information between database clients and servers. In order for
RDA to be able to do this, the ASN.1 standard will have to
support arbitrary named character sets and characters from those
sets.

As a result, relevant standards bodies will need to provide (1)
names for all standardized character sets and (2) the ability for
vendors to register their own character sets in a way that allows
them to be uniquely referenced where needed. Still other bodies
will need to provide language and services for defining
collations and translations. Finally, registries will need to be
established for vendor-supplied collations, translations, and
conversions.

Of course, the greatest task will be to provide complete support
for all these facilities throughout the information processing
environment: operating systems, communication links, CPUs,
printers, keyboards, windowing systems, file systems, and so
forth. Healthy starts have been made on some of these (such as
the X Window System), but much work remains to be done.

DEC Rdb: AN INTERNATIONALIZATION CASE STUDY

DEC Rdb (Rdb/VMS) is one of the few Digital products that has an
internationalized implementation that is also compliant with the
multivendor integration architecture (MIA).[11,12] Its evolution
from a noninternationalized product to a fully internationalized
one has taken four years to achieve. The design and development
of Rdb can serve as a case study for software engineers on how to

build internationalized products. In this half of our paper, we
present the history of the reengineering process. Then we
describe some difficulties with the reengineering process and our
work to overcome them. Finally, we evaluate the result.

Localization and Reengineering

The localization process comprises all activities required to
create a product variant of an application that is suitable for
use by some set of users with similar preferences on a particular
platform. Reengineering is the process of developing the set of
source code changes and new components required to perform
localization. DEC Rdb had to be reengineered to support several
capabilities that are mandatory in Japan and other Asian
countries.

Our experience has shown that the reengineering process is very
expensive and should be avoided. If the original product was not
designed for internationalization or localization, however,
reengineering is a necessary (and unavoidable) evil. Typically,
reengineering is required; so we decided to develop a technology
that would avoid reengineering and to build a truly
internationalized product.

Most engineering groups follow the old assumptions about product
design. These assumptions include the following:

 1. The character set is implicitly ASCII.

 2. Each character is encoded in 7 bits.

 3. The character count equals the byte count and equals the
 display width in columns.

 4. The maximum number of distinct characters is 128.

 5. The collating sequence is ASCII binary order.

 6. The messages are in English.

 7. The character set of the source code is the same as it is
 at run time.

 8. The file code (the code on the disk) is the same as the
 process code (the code in memory).

Different user environments require different product
capabilities. Japanese kanji characters are encoded using 2 bytes
per character. If a product assumes that the character set is
7-bit ASCII, that product must be reengineered before it can be
used in Japan. On the other hand, internationalized products can
operate in different environments because they provide the
capabilities to meet global requirements. These capabilities
include the following:

 1. Multiple character sets ensure that the customer's needs
 are met.

 2. Each character is encoded using at least 8 bits.

 3. The character count does not equal the byte count or the
 display width.

 4. The maximum number of unique characters is unknown.

 5. The collating sequence meets the customer's needs.

 6. The messages are in the language the customer uses.

 7. The character set of the source code is not necessarily
 the same as it is at run time.

 8. The file code is not necessarily the same as the process
 code.

The reengineering process has two significant drawbacks: (1) the
high cost of reengineering and (2) the time lag between shipping
the product to the customer in the United States and shipping to
the customer in Japan. The time lag can be reduced but cannot be
eliminated as long as we reengineer the original product. If a
local product is released simultaneously with the original, both
Digital and the customers will benefit significantly.

In the next section, we follow the DEC Rdb product through the
reengineering process required to produce the Japanese Rdb
version 3.0.

REENGINEERING PROCESS

DEC Rdb version 3.0 was a major release and consequently was very
important to the Japanese market. The International System
Engineering Group was asked to release the Japanese version by
the end of 1988, which was within six months of the date that it
was first shipped to customers in the United States.

Japanese and Asian Language Requirements to VAX Rdb/VMS

Japanese and Asian language requirements apply to DEC Rdb and
other products as well. The requirements common to Asian
languages are 2-byte character handling, local language editor
support, and message and help file translation.

Japanese script uses a 2-byte code, therefore 2-byte character
handling is mandatory. For example, character searches must be
performed on 2-byte boundaries and not on 1-byte boundaries. If a
string has the hexadecimal value 'A1A2A3A4', then its substrings
are 'A1A2' and 'A3A4'. 'A2A3' must not be matched in the string.

Digital's Asian text editors, e.g., the Japanese text processing
utility (JTPU) and Hanzi TPU (for China), must be supported as
well as the original TPU, the standard EDT editor, and the
language-sensitive editor.

Messages, help files, and documentation must all be translated
into local languages.

The country-specific requirements include support for a Japanese
input method. Kana-to-kanji input methods must be supported in
command lines. In addition, 4-byte character handling is required
for Taiwan (Hanyu). Finally, NTT/MIA SQL features must be added
for Japan.

Since there are not many requirements, one might conclude that
the reengineering task is not difficult. However, reengineering
is complicated, expensive, and time consuming; and thus should be
avoided.

Reengineering Japanese Rdb Version 3.x

A database management system like DEC Rdb is very complex. The
source code is more than 810,000 lines; the build procedures are
complicated; and a mere subset of the test systems consumes more
than one gigabyte of disk space. Consequently, the reengineering
process is complicated. The process encompasses more than
modifying the source code. Instead, a number of distinct steps
must be accomplished:

 1. Source code acquisition

 2. Build environment acquisition

 3. Test system acquisition

 4. Creation of the development environment for the Japanese
 version

 5. Study of the original code

 6. Modification of the source code

 7. Test of the results, including the new Japanese
 functionality and a regression test of the original
 functionality

 8. Maintenance of the reengineered system

Figure 5 shows the development cost in person-weeks for each
of the eight steps. Two engineers stabilized the development

environment -- compile, link/build, and run -- for version 3.0 of
DEC Rdb in approximately four months. It is likely that the
process required four months because it was our first development
work on DEC Rdb. In addition, approximately two months were
needed to be able to run the test system. It was not an easy
task.

[Figure 5: (Reengineering Process for Japanese Rdb Version 3.x)
is not available in ASCII format.]

Each step had to be repeated for each version of the original.
(Project time decreased a little.) Every version required this
reengineering, even if no new functionality was introduced. The
cost of building the environment became cheaper after the first
time. The other steps such as modifying the source code, testing,
and maintenance remained at almost the same cost.

Reengineering Metric

We modified about 10 percent of the original source modules
during reengineering. Most of the modification occurred in the
front end, e.g., SQL and RDML (relational database manipulation
language). The engine parts, the relational database management
system (RDMS), and KODA (the kernel of the data access, the
lowest layer of the physical data access) were not modified very
much. Table 1 gives the complete reengineering metrics.

 (modified modules +
 new created modules)
Reengineering metric = ----------------------
 (original + modified +
 new created modules)

Table 1 Reengineering Metrics

 Reengineering Modified Total Size in
Facility Metric Modules Modules Kilo Lines

SQL 6.3% 8 128 226.0

RDML 11.7% 11 94 188.3

RDMS 3.1% 4 127 154.0

KODA 0.6% 1 157 109.8

RMU 0.0% 0 41 80.5

Dispatcher 0.0% 0 30 60.9

Notes:

 RMU is the Rdb management utility; it is used to
 monitor, back up, restore, and display DEC Rdb
 databases.

 The reengineering metric for JCOBOL (a
 Digital COBOL compiler sold in Japan) is 47/258 =
 18.2%; the size is 225.0 kilo lines.

COENGINEERING PROCESS: NO MORE REENGINEERING

To reduce and eliminate reengineering, we have taken a
conservative, evolutionary approach rather than a revolutionary
one. We used only proven technologies. The evolution can be
divided into three phases:

 1. Joint Development with Hong Kong. Our development goal
 was to merge Japanese, Chinese (People's Republic of
 China and Taiwan), and Korean versions into one common
 Asian Rdb source code.

 2. Coengineering Phase I. Our goal was to merge Asian common
 Rdb into the original master sources for version 4.0. The
 merger of J-Rdb and Chinese-Rdb into Rdb would eliminate
 reengineering and create one common executable image.

 3. Coengineering Phase II. In the final phase, our goal was
 to develop the internationalized product for version 4.2
 by adding more internationalization functionality, SQL-92
 support, MIA support for one common executable, and
 multiple character set support.

Coengineering is a development process in which local engineers
temporarily relocate to the Central Engineering Group in the
United States to develop the original product jointly with
Central Engineering. The engineers from a non-English-speaking
country provide the user requirements and the cultural-dependent
technology (e.g., 2-byte processing and input methods), and
Central Engineering provides the detailed knowledge of the
product. This process promotes good experiences for both parties.
For example, the local engineers learn the corporate process, and
the corporate engineers have more dedicated time to understand
the requirements and difficulties of local product needs, what
internationalization means, and how to build the
internationalized product. Coengineering minimizes the risks
associated with building internationalized products.

Asian Joint Development

Our goal for the Asian joint development process was to provide a
common Asian source code for Japan, People's Republic of China

(PRC), Taiwan, and Korea. One common source code would reduce
reengineering costs in Asia. To achieve our goal, we devised
several source code conventions. The purposes of the conventions
were

 1. To identify the module for each Asian version by its file
 name

 2. To make it possible to create any one of the Asian
 versions (for Japan, the PRC, Taiwan, or Korea) or the
 English version from the common source codes, using
 conditional compilation methods

 3. To identify the portions of codes that were modified for
 the Japanese version

 4. To facilitate an engineer in Hong Kong who is developing
 versions for the PRC, Taiwan, and Korea

We developed the Japanese Rdb version 3.0 in Japan. The files
were transferred to Hong Kong to develop versions for the PRC,
Taiwan, and Korea. The modified versions were sent back to Japan
to be merged into one common Asian source file.

Since we had one common Asian source file, reengineering in Hong
Kong was reduced. Reengineering in Japan, however, was still
necessary. We used compilation flags to create four country
versions, that is, we had four sets of executable images. As a
result, we needed to maintain four sets of development
environments (source codes, tests, and so forth). We wanted to
further simplify the process and therefore entered the
coengineering phases.

Coengineering Phase I

The integration of Asian DEC Rdb into the base DEC Rdb product
took place in two phases. In the first phase, we integrated the
Asian code modifications into the source modules of the base
product. Consequently, the specific Asian versions of the product
can be attained by definition and then translation of a logical
name (a sort of environment variable). No conditional compilation
is necessary. In all releases of DEC Rdb version 3.x, source
modules of the base product were conditionally compiled for each
Asian version, which created separate object files and images.

The process steps in this phase were

 1. Merge the source code

 a. Create one executable image

 b. Remove Japanese/Asian VMS dependency

 c. Remove kana-to-kanji input method

 2. Transfer the J-Rdb/C-Rdb tests

Source Code Merge (Rdb Version 4.0). To create a single set of
images, we removed the compilation flags and introduced a new way
of using the Asian-specific source code. We chose to do this by
using a run-time logical name; the behavior of DEC Rdb changes
based on the translation of that logical name.

We removed the Japanese/Asian VMS dependencies by using Rdb code
instead of JSYSHR calls. (JSYSHR is the name given to the OpenVMS
system services in Japanese VMS.)

We removed the kana-to-kanji input method: By calling
LIB$FIND_IMAGE_SYMBOL (an OpenVMS system service to dynamically
link library routines) to invoke an input method, the image need
not be linked with JVMS; even an end user can replace an input
method.

Run-time Checking. We removed the compilation flags, but
introduced a new logical name, the RDB$CHARACTER_SET logical, to
switch the behavior of the product. For example, if
RDB$CHARACTER_SET translates to DEC_KANJI, then the symbol
ARDB_JAPAN_VARIANT is set true. This would indicate that all text
would be treated as if it were encoded in DEC_KANJI. The code
would behave as if it were DEC J-Rdb. This translation must occur
at all levels of the code, including the user interface, DEC Rdb
Executive, and KODA.

Since DEC Rdb checks the value of the logical name at run time,
we do not need the compilation flags; that is, we can have one
set of executable images.

Figure 6 shows the values that are valid for the
RDB$CHARACTER_SET logical.

Figure 6 RDB$CHARACTER_SET Logical

 $ DEFINE RDB$CHARACTER_SET -
 { DEC_KANJI | DEC_HANZI | DEC_HANGUL | DEC_HANYU }

 DEC_KANJI Japanese
 DEC_HANZI Chinese
 DEC_HANGUL Korean
 DEC_HANYU Taiwan

 $ SET LANGUAGE JAPANESE ! If you use Japanese VMS

The DEC J-Rdb source contains code fragments similar to those
shown in Figure 7, which were taken from RDOEDIT.B32 (written in
the BLISS programming language). This code was changed to use a

run-time flag set as a result of translation of the logical
RDB$CHARACTER_SET, as shown in Figure 8.

Figure 7 Compilation Flag in DEC Rdb Version 3

 ! This example switches the default TPU shareable
 ! image (TPUSHR). If the Japanese variant is set,
 ! then the default editor should be JTPUSHR.
 !
 %IF $ARDB_JAPAN_VARIANT
 %THEN
 TPU_IMAGE_NAME = (IF (.TPU_NAME EQL 0)
 THEN $DESCRIPTOR ('TPUSHR')
 ELSE $DESCRIPTOR ('JTPUSHR'));
 %ELSE
 TPU_IMAGE_NAME = $DESCRIPTOR ('TPUSHR');

Figure 8 Run-time Checking in Version 4

 ! This code could be translated to the following
 ! which might contain redundant code but should work:
 !
 IF.ARDB_JAPAN_VARIANT ! If ARDB_JAPAN_VARIANT flag is true,
 THEN ! then Rdb/VMS should use the J-Rdb/VMS behavior.
 TPU_IMAGE_NAME = (IF (.TPU_NAME EQL 0)
 THEN $DESCRIPTOR ('TPUSHR')
 ELSE $DESCRIPTOR ('JTPUSHR'))
 ELSE
 TPU_IMAGE_NAME = $DESCRIPTOR ('TPUSHR');

Remove Japanese VMS (JVMS) Dependency. The Japanese version of
DEC Rdb version 3.x used the JVMS run-time library (JSY
routines). The JSY routines are Japanese-specific
character-handling routines such as "get one kanji character" and
"read one kanji character." The library is available only on
JVMS; native VMS does not have it, so DEC Rdb cannot use it. To
remove the JVMS dependency, we modified all routines that called
JSY routines so that they contain their own code to implement the
same functions.

The J-Rdb/VMS source contains code fragments similar to the ones
shown in Figure 9. The code was changed to remove references to
the JSY routines as shown in Figure 10. This example does not use
JSY routines like JSY$CH_SIZE or JSY$CH_RCHAR.

Figure 9 Using JSY Routines in DEC Rdb Version 3

 %IF $ARDB_COMMON_VARIANT %THEN
 !+
 ! ARDB: Advance character pointer.
 !

 ! JSY$CH_SIZE counts the size of the character.
 ! If it is ASCII, return 1,
 ! If it is Kanji, return 2.
 ! CP is a character pointer
 CP = CH$PLUS(.CP, JSY$CH_SIZE(JSY$CH_RCHAR(.CP)));
 !-
 %ELSE
 CP = CH$PLUS(.CP, 1);
 %FI !$ARDB_COMMON_VARIANT

Figure 10 Removing JSY Routines in Version 4

 !******************run time checking

 IF $RDMS$ARDB_COMMON THEN
 !+
 ! ARDB: Advance character pointer.
 !
 ! If the code value of CP is greater than 128,
 ! then it means the first byte of Kanji, so
 ! advance 2, else it is ASCII, advance 1.
 !
 CP = CH$PLUS(.CP, (IF CH$RCHAR(.CP) GEQ 128
 THEN
 2
 ELSE
 1));
 !-
 ELSE
 CP = CH$PLUS(.CP, 1);
 FI !$RDMS$ARDB_COMMON

 where $RDMS$ARDB_COMMON is a macro.

Remove Kana-to-kanji Input Method. The dependency on JVMS can be
eliminated by making the 2-byte text handling independent of JSY
routines, but the input method still depends on JSYSHR for
kana-to-kanji conversions. To remove this dependency, we
developed a new method to invoke the kana-to-kanji conversion
routine. Figure 11 shows the new input method.

Figure 11 Input Method for Version 4: Kana-to-kanji Conversion
(Japanese Input) Shareable Image

 SQL$.EXE
 |
 + (default) -> SMG$READ_COMPOSED_LINE
 |
 + (if Japanese Input is selected)
 LIB$FIND_IMAGE_SYMBOL

 |
 +------> (shareable for Japanese Input).EXE

Since LIB$FIND_IMAGE_SYMBOL is used to find the Japanese input at
run time, JSYSHR does not need to be referenced by the SQL$
executable image.

We created a shareable image for the input method, using the
SYS$LANGUAGE logical to switch to the Japanese input method or to
other Asian language input methods. Since an input method is a
shareable image, a user can switch input methods by redefining
the logical name to identify the appropriate image.

Note that the input method is a mechanism to convert alphabetic
characters to kanji characters. It is necessary to permit input
of ideographic characters, i.e., kanji, through the keyboard.
Asian local language groups would be responsible for creating a
similar shareable image for their specific input methods.

Transfer DEC J-Rdb and DEC C-Rdb Tests. To ensure the
functionality of Japanese/Asian DEC Rdb, we transferred the tests
into the original development environment. We integrated not only
the source modules but also all the tests. Consequently, the
Asian 2-byte processing capabilities have now been tested in the
United States.

Kit Components and J-Rdb Installation Procedure. The original
DEC Rdb version 4.0 has the basic capability to perform 2-byte
processing. Japanese and other Asian language components must be
provided for local country variants. The localization kit for
Japan contains Japanese documentation such as messages and help
files, an input method, and the J-Rdb license management facility
(LMF). As a result, we need not reengineer the original product
any more. The installation procedure is also simplified. Users
worldwide merely install DEC Rdb and then install a localization
kit if it is needed.

The localization kits contain only the user interfaces, so no
reengineering is necessary; however, translation of
documentation, message files, help files, and so on to local
languages still remains necessary. Nonetheless, the reengineering
process is eliminated.

In version 4.0, we achieved the main goal, to integrate the Asian
source code into the base product to avoid reengineering. The
Japanese localization kit was released with a delay of about one
month after the U.S. version (versus a five-month delay in
version 3.0). The one-month delay between releases is among the
best in the world for such a complex product.

Coengineering Phase II

In the second phase of integration, we redesigned the work done
in Phase I and developed a multilingual version of Rdb/VMS.

In version 4.0, we introduced the logical name RDB$CHARACTER_SET
to integrate Asian functionality into DEC Rdb. In Phase II, we
created an internationalized version of DEC Rdb. We retained the
one set of images and introduced new syntax and semantics. We
also provided support for the NTT/MIA requirements.

The following are the highlights of the release. The details are
given in the Appendix.

 o NTT/MIA SQL Requirements

 - NATIONAL CHARACTER data type

 - N'national' literal

 - Kanji object names

 o Changes/extensions to the original DEC Rdb

 - Add a character set attribute

 - Multiple character set support

 o Dependencies upon other products

 - CDD/Plus, CDD/Repository: Add a character set
 attribute

 - Programming languages: COBOL, PIC, N

Since we are no longer reengineering the original product, we now
have time to develop the new functionality that is required by
NTT/MIA. The new syntax and semantics of the character-set
handling are conformant with the new SQL-92 standard. As far as
we know, no competitor has this level of functionality.

If we had to continue to reengineer the original, we would not
have had enough resources to continue development of important
new functionalities. Coengineering not only reduces development
cost but also improves competitiveness.

We introduced the RDB$CHARACTER_SET logical during Phase I to
switch the character set being used. Since the granularity of
character set support is on a process basis, however, a user
cannot mix different character sets in a given process. In Phase
II, we implemented the CHARACTER SET clause, defined in SQL-92,
to allow multiple character sets in a table.

Database Character Sets. The database character sets are the
character sets specified for the attached database. Database
character set attributes are default, identifier, and national.

SQL uses the database default character set for two elements: (1)
database columns with a character data type (CHARACTER and
CHARACTER VARYING) that do not explicitly specify a character set
and (2) parameters that are not qualified by a character set. The
user can specify the database default character set by using the
DEFAULT CHARACTER SET clause for CREATE DATABASE.

SQL uses the identifier character set for database object names
such as table names and column names. The user can specify the
identifier character set for a database by using the IDENTIFIER
CHARACTER SET clause for CREATE DATABASE.

SQL uses the national character set for the following elements.

 o For all columns and domains with the data type NATIONAL
 CHARACTER or NATIONAL CHARACTER VARYING and for the
 NATIONAL CHARACTER data type in a CAST function

 o In SQL module language, all parameters with the data type
 NATIONAL CHARACTER or NATIONAL CHARACTER VARYING

 o For all character-string literals qualified by the
 national character set, that is, the literal is preceded
 by the letter N and a single quote (N')

The user can specify the national character set for a database by
using the NATIONAL CHARACTER SET clause for CREATE DATABASE.

The following example shows the DEFAULT CHARACTER SET, IDENTIFIER
CHARACTER SET, and NATIONAL CHARACTER SET clauses for CREATE
DATABASE.

CREATE DATABASE FILENAME ENVIRONMENT

DEFAULT CHARACTER SET DEC_KANJI
NATIONAL CHARACTER SET KANJI
IDENTIFIER CHARACTER SET DEC_KANJI;

CREATE DOMAIN DEC_KANJI_DOM CHAR(8);
CREATE DOMAIN KANJI_DOM NCHAR(6);

DEC_KANJI_DOM is a text data type with DEC_KANJI character set,
and KANJI_DOM is a text data type with KANJI character set. The
database default character set is DEC_KANJI and the national
character set is KANJI.

As previously stated, the user can choose the default and
identifier character sets of a database. Consequently, users can
have both text columns that have character sets other than 7-bit
ASCII and national character object names (i.e.,
kanji names, Chinese names, and so on).

In Rdb version 3.1 and prior versions, the character set was
ASCII and could not be changed. In Rdb version 4.0, users could
change character sets by defining the RDB$CHARACTER_SET logical.
It is important to note that the logical name is a volatile
attribute; that is, the user must remember the character set
being used in the database in his process. On the other hand, the
database character sets introduced in version 4.2 are persistent
attributes, so the user is less likely to become confused about
the character set in use.

Session Character Sets. The session character sets are used
during a session or during the execution of procedures in a
module. The session character set has four attributes: literal,
default, identifier, and national.

SQL uses the literal character set for unqualified character
string literals. Users can specify the literal character set only
for a session or a module by using the SET LITERAL CHARACTER SET
statement or the LITERAL CHARACTER SET clause of the SQL module
header, DECLARE MODULE statement, or DECLARE ALIAS statement.

Session character sets are bound to modules or an interactive SQL
session, and database character sets are attributes of a
database. For example, a user can change the session character
sets for each SQL session; therefore, the user can attach to a
database that has DEC_MCS names and then attach to a new database
that has DEC_HANZI names.

Octet Length and Character Length. In DEC Rdb version 4.1 and
prior versions, all string lengths were specified in octets. In
other words, the numeric values specified for the
character-column length or the start-off set and substring length
within a substring expression were considered to be octet lengths
or offsets.

DEC Rdb version 4.2 supports character sets of mixed-octet and
fixed-octet form-of-use. For this reason and to allow an upgrade
path to SQL-92 (where lengths and offsets are specified in
characters rather than octets), users are allowed to specify
lengths and offsets in terms of characters. To change the default
string-length unit from octet to characters, users may invoke the
following:

SET CHARACTER LENGTH 'CHARACTERS';

Multiple Character Sets Examples. Users can create a domain
using a character set other than the database default or national
character sets with the following sequence:

CREATE DOMAIN DEC_KOREA_DOM CHAR(6)
 CHARACTER SET DEC_KOREAN;

CREATE TABLE TREES
(TREE_CODE TREE_CODE_DOM,
 QUANTITY INTEGER,

 JAPANESE_NAME CHAR(30),
 FRENCH_NAME CHAR(30)
 CHARACTER SET DEC_MCS,
 ENGLISH_NAME CHAR(30)
 CHARACTER SET DEC_MCS,
 KOREAN_NAME CHAR(30)
 CHARACTER SET DEC_KOREAN,
 KANJI_NAME NCHAR(30));

The table TREES has multiple character sets. This example assumes
the default character set is DEC_KANJI and the national character
set is KANJI. Users can have object names other than ASCII names
specifying the identifier character set. The database engine uses
the specific routines to compare data, since the engine knows the
character set of the data. With DEC Rdb version 4.2, all three
issues of data representation, multiple character-set support,
and data comparison have been resolved.

CONCLUSIONS

By replacing reengineering with coengineering, we reduced the
time lag between shipping DEC Rdb to customers in the United
States and in Japan from five months for version 3.0 in July 1988
to two weeks for version 4.2 in February 1993. Figure 12 shows
the decrease in time lag for each version we developed. We also
eliminated expensive reengineering and maintenance costs.
Finally, we increased competitiveness.

[Figure 12: (Time Lag between U.S. and Japanese Shipment of DEC
Rdb) is not available in ASCII format.]

It has taken more than four years to evolve from a
noninternationalized product to an internationalized one. If the
product had originally been designed to be internationalized,
this process would have been unnecessary. When DEC Rdb was
originally created, however, we did not have an
internationalization model, the architecture, or mature
techniques. Reengineering is unavoidable under these
circumstances.

By sharing our experience, we can help other product engineering
groups avoid the reengineering process.

FUTURE WORK FOR DEC Rdb

Coengineering has proved that an evolutionary approach is not
only possible, but that it is the most reasonable approach.
additional work, however, remains to be done for DEC Rdb.

DEC Rdb must support more character sets like ISO 10646-1. We
think that the support of new character sets would be
straightforward in the DEC Rdb implementation. DEC Rdb has the
infrastructure for supporting it. SQL-92 has the syntax for it,
that is, the character set clause. Furthermore, the DEC Rdb
implementation has the attribute for a character set in the
system tables.

Collations on Han characters should be extended. The current
implementation of a collation on Han characters is based on its
character value, that is, its code value. We believe the user
would also like to have collations based on dictionaries,
radicals, and pronunciations.[13]

SUMMARY

There are significant difficulties in the specification of
character internationalization for database systems, but the
SQL-92 standard provides a sound foundation for the
internationalization of products. The application of SQL-92
facilities to DEC Rdb is quite successful and can serve as a case
study for the internationalization for other software products.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the help and contributions
made by many people during the development of DEC Rdb's
internationalization facilities and those of the SQL standard. In
particular, Don Blair, Yasuhiro Matsuda, Scott Matsumoto, Jim
Murray, Kaz Ooiso, Lisa Maatta Smith, and Ian Smith were
particularly helpful during the DEC Rdb work. During the
internationalization of SQL, Laurent Barnier, David Birdsall,
Phil Shaw, Kohji Shibano, and Mani Subramanyam all made
significant contributions.

REFERENCES

1. G. Winters, "International Distributed Systems --
 Architectural and Practical Issues," Digital Technical
 Journal, vol. 5, no. 3 (Summer 1993): 53-62.

2. American National Standard for Information Systems --
 Database Language SQL, ANSI X3.135-1992 (American National
 Standards Institute, 1992). Also published as Information
 Technology -- Database Languages -- SQL, ISO/IEC 9075:1992
 (Geneva: International Organization for Standardization,
 1992).

3. W. Rannenberg and J. Bettels, "The X/Open
 Internationalization Model," Digital Technical Journal, vol.
 5, no. 3 (Summer 1993): 32-42.

4. Database Language SQL (SQL3), Working Draft, ANSI

 X3H2-93-091 (American National Standards Institute, February
 1993).

5. Database Language SQL (SQL3), Working Draft, ISO/IEC
 JTC1/SC21 N6931 (Geneva: International Organization for
 Standardization, July 1992).

6. J. Melton and A. Simon, Understanding the New SQL: A
 Complete Guide (San Mateo, CA: Morgan Kaufmann Publishers,
 1992).

7. Information Technology -- Remote Database Access -- Part 1:
 Generic Model, Service, and Protocol, ISO/IEC 9579-1:1993,
 and Information Technology -- Remote Database Access -- Part
 2: SQL Specialization, ISO/IEC 9579-2:1993 (Geneva:
 International Organization for Standardization, 1993).

8. J. Bettels and F. Bishop, "Unicode: A Universal Character
 Code," Digital Technical Journal, vol. 5, no. 3 (Summer
 1993): 21-31.

9. Information Processing -- ISO 7-bit and 8-bit Coded
 Character Sets -- Code Extension Techniques, ISO 2022:1986
 (Geneva: International Organization for Standardization,
 1986).

10. Information Processing, Open Document Architecture, ISO/IEC
 8613:1989 (Geneva: International Organization for
 Standardization, 1989).

11. DEC Rdb, SQL Reference Manual (Maynard, MA: Digital
 Equipment Corporation, Order No. AA-PWQPA-TE, January 1993).

12. Multivendor Integration Architecture, Version 1.2 (Tokyo:
 Nippon Telegraph and Telephone Corporation, Order No.
 TR550001, September 1992).

13. R. Haentjens, "The Ordering of Universal Character Strings,"
 Digital Technical Journal, vol. 5, no. 3 (Summer 1993):
 43-52.

APPENDIX: SYNTAX OF Rdb VERSION 4.2

Format of CHARACTER SET Clause

<character data type> ::=
 <character string type>
 [CHARACTER SET <character set specification>]
 | <national character string type>

<character string type> ::=

 CHARACTER [VARYING] [(<length>)]
 | CHAR [VARYING] [(<length>)]
 | VARCHAR (<length>)

<national character string type> ::=
 NATIONAL CHARACTER [VARYING] [(<length>)]
 | NATIONAL CHAR [VARYING] [(<length>)]
 | NCHAR [VARYING] (<length>)

<character set specification> ::=
 <character set name>

<character set name> ::= <name>

Character Set Names

 DEC_MCS
 | KANJI
 | HANZI
 | KOREAN
 | HANYU
 | DEC_KANJI
 | DEC_HANZI
 | DEC_KOREAN
 | DEC_SICGCC
 | DEC_HANYU
 | KATAKANA
 | ISOLATINARABIC
 | ISOLATINHEBREW
 | ISOLATINCYRILLIC
 | ISOLATINGREEK
 | DEVANAGARI

Example of CHARACTER SET

CREATE DATABASE FILENAME ENVIRONMENT
 DEFAULT CHARACTER SET DEC_KANJI
 NATIONAL CHARACTER SET KANJI
 IDENTIFIER CHARACTER SET DEC_KANJI;

CREATE DOMAIN NAMES_GENERAL CHAR(20);

CREATE DOMAIN NAMES_PRC CHAR(20)
 CHARACTER SET IS HANZI;

CREATE DOMAIN NAMES_MCS CHAR(20)
 CHARACTER SET IS MCS;

CREATE DOMAIN NAMES_KOREAN CHAR(20)
 CHARACTER SET IS HANGUL;

CREATE DOMAIN NAMES_JAPAN NCHAR(20);

Format of Literals

<character literal> ::=
 <character string literal>
 | <national character string literal>

<character string literal> ::=
 [<introducer><character set specification>]
 <quote>[<character representation>...]<quote>

<character representation> ::=
 <nonquote character>
 | <quote symbol>

<nonquote character> ::= !! See the Syntax Rules.

<quote symbol> ::= <quote> <quote>

<national character string literal> ::=
 N <quote>[<character representation>...]<quote>

Example of National Object Name

[EDITOR'S NOTE: The example of the national object name is in kanji and cannot
be represented in the ASCII version.]

BIOGRAPHIES

Jim Melton A consulting engineer with Database Systems, Jim
Melton represents Digital to the ANSI X3H2 Technical Committee
for Database. He represents the United States to the ISO/IEC
JTC1/SC21/WG3 Working Group for Database. He edited the SQL-92
standard and continues to edit the emerging SQL3 standard. Jim
also represents Digital to the X/Open Data Management Working
Group and to the SQL Access Group. Jim is the author of
Understanding the New SQL: A Complete Guide, published in 1992,
and is a regular columnist (SQL Update) for Database Programming
& Design.

Hirotaka Yoshioka A senior software engineer in the
International Software Engineering Group, Hiro Yoshioka is the
project leader of the CDD/Repository/Japanese. He is a member of
the internationalization special committee of ITSCJ (Information
Technology Standards Commission of Japan) and ISO/IEC JTC1
SC22/WG20 internationalization. During the past nine years, he
has designed and implemented the Japanese COBOL, the Japanese
COBOL generator, and the internationalized DEC Rdb. Hiro joined
Digital in 1984, after receiving an M.S. in engineering from Keio
University, Yokohama.

TRADEMARKS

CDD/Plus, CDD Repository, DEC Rdb, Digital, and OpenVMS are
trademarks of Digital Equipment Corporation.

PIC is a trademark of Wang Laboratories, Inc.

Unicode is a trademark of Unicode Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

X/Open is a trademark of X/Open Company Ltd.

===
Copyright 1993 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

