JAPANESE | NPUT METHOD
| NDEPENDENT OF APPLI CATI ONS

By Takahi de Honma, Hiroyoshi Baba, and Kuni aki Taki zawa

ABSTRACT

The Japanese i nput nmethod is a conplex procedure involving
preediting operations. An application that accepts Japanese from
an input device nust have three systens for the input nmethod: a
keybi ndi ng system a mani pul ator for preediting, and a
kana-to-kanji conversion system Various keybindi ng systens and
mani pul ators accel erate i nput operations. Qur inplenentation
separates an application fromthe Japanese input nmethod in three
| ayers. An application can use a front-end input processor to
performall operations including I/O. An application can use the
henkan (conversion) nmodule and i nplenent |/O operation itself. An
application can execute all operations except keybinding, which

i s handl ed by an input nethod |ibrary.

| NTRODUCTI ON

In this paper, we first present an overvi ew of the technica

envi ronnent of the Japanese input nethod inplenentation. Based on
this overview, we briefly describe the critical engineering

i ssues for conversion of Digital's products for the Japanese
user. Qur nost critical engineering issue was the reduction of
simlar (but slightly different) work to | ocalize products.

Anot her issue was to satisfy custoners' requests for the ability
to use the many input styles famliar to them W describe our
approach to the devel opnment of a Japanese input nethod that
overcones these issues by separating the input nethod from an
application in three |ayers.

OVERVI EW OF THE JAPANESE | NPUT METHOD

In this section, we describe Japanese input and string
mani pul ation fromthe perspective of both the user and the
application. Based on these descriptions, we present a brief
overvi ew of reengi neering a product for Japanese users and a
summary of the industry's conplex techniques devel oped for
Japanese i nput met hods.

Japanese | nput

The Japanese witing system uses hundreds of ideograns called

kanji. In addition, Japanese uses a phonetic system of
kana characters (hiragana and katakana) and has accepted
romaji, which is the use of Latin letters to spell Japanese

words. Figure 1 summarizes the Japanese character systens.
Japanese i nput requires users to operate in a "preediting" node

to convert kana or rompji into a kana-kanji string.[1, 2]

Figure 1 Japanese Character Systens
JAPANESE CHARACTERS - - - - - PHONOGRAM

+-- KANA (ORI Gl NAL JAPANESE CHARACTERS)

|
+- - H RAGANA

|
+- - KATAKANA

|

|

|

|

+-- ROMAJI (USING LATI N ALPHABET TO EXPRESS A
PHONEME)

+-- | DEOGRAM

|
+- - KANJI

The conputer keyboard used for Japanese input has multiple
character assignnents. Alnost all keys on the Japanese keyboard
are assigned both a Latin al phabet character and a Japanese kana
character. The Japanese user nust first choose between kana key
i nput or al phabet input. A user in an engineering area generally
uses romgji (al phabet) key input. In the office environnent,
however, a user prefers kana key input because it requires half
as many keystrokes as romji input.

Preediting Operation

The user inputs the phonetic expression in either kana or rongji
that represents the statenment the user wants to input. Then the
user presses the conversion key to convert the phonetic
expression to a kana-kanji mxed string. At this tine, the user
checks the accuracy of the conversion result. Sometinmes the user
needs to select the correct word froma systemgenerated |ist of
several hononyns. Moreover, a user may also need to determnine the
separation positions in the phonetic expression to ensure a

meani ngf ul grammuatical construction.

Japanese has no word separator equivalent to the space character
in English. To obtain the correct or expected separation of
granmati cal el ements, the user nmust sometinmes nove the separation
position. After the user constructs a corrected statenent, he or
she finishes preediting and fixes the statement. The user repeats
these conpl ex steps to construct Japanese docunents. Figure 2
shows the preediting steps for the Japanese user

Figure 2 Preediting Japanese |nput

START
| SET UP | NPUT METHOD

--> | NPUT PHONETI C EXPRESSI ON FOR A STATEMENT

|
+-- (CHANGE PHONOGRAM SYSTEM

+-- CONVERT KANA- TO- KANJI

|
+-- MOVE THE SEPARATI ON PCSI Tl ON

|
+-- SELECT WORD FROM MANY HOMONYMS

|
|
|
|
|
|
|
|
|
| -- FIX A STATEMENT
|

Vari ous techni ques have been devel oped to accel erate Japanese
i nput operations. They include UNDO, COPY, zip code conversion
and categorized expert dictionary.

Japanese Application Capabilities

The Japanese application has two special capabilities for
Japanese processing. First, the application nust be capabl e of
handling nmultibyte characters. This subject itself is interesting
as it involves wchar_t and Uni code character sets; however, this
paper focuses on the second capability, the inplenentation of the
i nput nmethod. An application that accepts Japanese from an input
devi ce nust have, at |east, three additional systens for the

i nput method. These are the so-called keybinding system a
mani pul ator for preediting, and the kana-to-kanji conversion
system

Keybi ndi ng System This system anal yzes the key input froma
user and determ nes which of the key's functions the user wants
to do. It defines the user interface and the way a user operates
with keystrokes. It also defines the preediting conversion key.
We inmagine there are as many keybi nding systens as there are word
processors.

Preedit Manipul ator System This system not only echoes the

i nput characters on the screen but also controls the video
attribute that expresses the preediting area. This capability
allows the user to distinguish preediting strings from background
fixed strings. The user must be able to recognize the preediting
string for nore processing (for exanple, to convert the input to
anot her expression such as kana to kanji). In addition, the user

can set this systemto convert input to another expression
dynami cally (for exanple, autonmatic conversion of romaji to
kana) .

Kana-to-kanji Conversion System This system anal yzes the input
string, gets the word froma dictionary, and constructs the
correct statement grammatically. Many personal conputer (PC)
vendors have invested in systens that use this input nmethod. In
Japan, sonme vendors have introduced artificial intelligence
technol ogy, but this systemessentially has only statistica

rul es.[3, 4]

Figure 3 summari zes Japanese processing as handl ed by
applications.

Figure 3 Japanese Processing by Applications
JAPANESE PROCESSI NG - - - - - VARI ABLE MULTI BYTE CHARACTER HANDLI NG

+-- JAPANESE | NPUT METHOD

|
+-- KEYBI NDI NG SYSTEM

|
+-- PREEDI T MANI PULATOR SYSTEM

|
+-- KANA- TO- KANJI CONVERSI ON SYSTEM

Met hod of Japanese Conversion

As nentioned above, to convert a product for use in Japanese, we
nmust i npl ement both a Japanese-string mani pul ator and an input

nmet hod. To retain the "l ook-and-feel" of the original Digita
product, the interface is designed so the Japanese user does not
need to explicitly enter the preediting session with the
speci al - purpose key (Enter Preedit) but is automatically entered.
Wth nost applications on other systenms, a user nust explicitly
enter the preediting session by using the special keystroke. This
i mpl enentation has the advantage that it conpletely separates the
i nput method fromthe application, but it requires the user to
remenber to performan extra step.

To elimnate the conflict between the original product's key
function and the additional Japanese input function, each product
has to have a slightly different keybinding system for Japanese.
As a result, a user mnmust |earn nore than one Japanese i nput
operation when using multiple products.

User Environnents

PCs are widely used in many offices and are popul ar devices for

Japanese input. Naturally a user wants to operate with a famliar
PC keystroke for Japanese input even in integrated systens (in
sonme servers). Wien PCs, which use front-end processors, are
integrated into environnments with VM5 and UNI X systens, a user
often prefers the PC s interface. The nore integrated a user's
environnent is, the nore requirenents a user has.

In addition, a distribution kit for the X Wndow Systemin a UN X
envi ronnent has sone sanple inplenmentations of the Japanese input
met hod. This kit gives a user nore choices for input at no cost.

The market for the Japanese input nmethod separates vendors into
two main groups. One is the PC front-end processor manufacturer
who i npl ements nore advanced techni ques but at a high price. The
other is the UNI X system vendor who supplies input

i mpl ementations free (without guarantee) and thus reduces the
mai nt enance cost.

In the next section, we present our approach to the devel opnent
of an application-independent Japanese input nethod. The goal s of
our design were (1) to include the PC keybi nding systemin

i ntegrated environnments so users could select their preferred

i nput method, (2) to supply a tool that would easily convert
products for the Japanese user, and (3) to provide a way to
access the interfaces of several Japanese engi nes and thus
capture the free software capabilities.

APPLI| CATI ON- | NDEPENDENT APPROACH

As described in the previous section, the Japanese input method

i ncl udes conpl ex techni ques. Many PC software vendors (but not
manuf act urers) deci ded agai nst devel opi ng their own nethods and

i ncorporated a popular input nmethod for their applications. This
deci si on, of course, reduces their devel opnment cost. Qur approach
al so seeks to reduce devel opnent cost. W separated the input

met hod fromthe application to the greatest extent possible, as

Il ong as the separation did not adversely affect the application.

The PC systemis designed as a single-task system but Digital's
operating systens (OpenVMsS, ULTRI X, and DEC OSF/ 1 AXP) are
designed as multitasking systens. Therefore we could not adopt
many of the PC techniques that were inplenmented in the driver

| evel . For exanple, access to dictionary and grammati cal anal ysis
of the input string are too expensive in the driver level of a
mul titasking system because they use systemresources that are
common to all tasks on the system

Qur approach divides the input nmethod into three |ayers. Each

| ayer is dependent on any |ower |ayer. Consequently, any
application using the highest |ayer also uses the functionalities
of the other two | ayers.

Strategy of Three Layers

The criteria of our layering strategy were (1) to reduce the cost
of reengi neering products for the Japanese user, (2) to unify the
i nput method user interface, and (3) to protect the user's
operational investnent in a keybinding system

These criteria led us to set the keybinding systeminto the

| onest | ayer. We naned our systemthe input nethod library
(IMIB) and rel eased it on VMS/ Japanese version 5.5 and
ULTRI X/ Japanese version 4.3. W also ported it to the Al pha AXP
system and this facility is available on any Japanese platform
Any application using our nmethod needs to use | M.IB.

In essence, this keybinding systemallows a user to change the

i nput method of operation to any style by changing the | M.IB
definition files. If an application supports IMIB, a user can
change the application's input operation by changing |IMIB once.
As a result, an application's key custom zation function can nove
into | M.I B.

At this point, we considered the sinplest nethod of separating
the input nethod from applications. The internedi ate process,
also called the front-end nethod, processes all the input and
then passes it to an application. Many front-end inpl enentations
use the pseudo-termnal driver (pty in UNIX or FT in OpenVMs).
The internmedi ate process gets all 1/Oto and from an application,
processes it, and finally passes it to an application or a
device. This inplenentation cannot recogni ze the application

i nput requests, but works only by a user's operation. To change
this operation, we set the hook inside the term nal driver to get
all application-request information. Qur front-end process
recogni zes application requests and works without conflict.

One advantage of this front-end inplenmentation is a conplete

i ndependence of applications. This can also be a disadvant age
since an application cannot control the input nmethod closely. For
exanple, this inplementation can alter the user interface of an
editor system

We continued to study another |ayer for separation. The
preediting operation, that is, all the input string manipul ations
except 1/Oto devices, was a candidate. All applications pass the
i nput frominput devices into the Japanese input mani pul ator and
then pass the output fromthis mani pul ator onto output devices.
By using this system we can unify the input operation except for
devi ce- dependent operations and reduce the cost to inplenment this
ki nd of functionality.

Qur devel opnent process started at the | owest |ayer (IMIB),
proceeded to the highest layer (front-end), and finished at the
m ddl e | ayer (preediting manipulator). In the follow ng sections,
we describe the functionalities in each layer fromthe |lowest to
t he hi ghest | ayer.

| MPLEMENTATI ON OF | MLI B

IMLIB is a utility that supplies the keybinding definition
function and other information for custom zing the Japanese input
operation. This capability enables us to supply user-friendly
keybi ndi ng systens. A user can change the input sequences and the
| ook-and-feel of the user interface by nodifying databases. W

i ntroduced two dat abases, KEYBI ND for keybinding and PROFI LE for

| ook-and-feel and an application's usage. W al so supplied the
KEYBI ND conpi | er for inproved performance and the elimnation of
the grammatical error at run tine.

As nmentioned in the introduction, there are nmany inplenentations
of Japanese input styles on PCs or some word processors, and sone
text editors on various operating systens. If a user needs to use
a different editor, he or she needs to | earn another operation.
Qur nmethod unifies the input operation. W studied several types
of input styles and recogni zed that we could build the genera
nodel for this input operation. The | MIB nanual describes this
nodel in detail.[5,6] In this paper, we discuss it briefly.

KEYBI ND Dat abase

In the Japanese input operation, entering the key input causes
several conversion actions and state transitions. Figure 4 shows
the multiple transitions incurred during input. W needed to
define the conversion actions and sone state transitions as a
single key input action. W inplenented this function through the
KEYBI ND dat abase and | anguage. Figure 5 is an exanple of the
KEYBI ND dat abase. A user builds an input style by changing the
KEYBI ND dat abase with the KEYBI ND | anguage.

Figure 4 State Transition

S + e e e e oo oo - +
| NI TIAL STATE | <--------- >| KANJI CONVERTED
S + < D +

N \ / N

I \ I

I \/ I

I I\ I

I I\ I

v / \ v
e e e e oo oo - + < D +
| I NPUTTI NG STATE| <------- >| KANA CONVERTED

Figure 5 Portion of KEYBIND Dat abase

I (JVMS conversion key definition file (systemtenplate) ver 1.0)
!

gold = CTRL_G, I Gold key; used as a PREFI X key
kakut ei = CTRL_N,; I Finish without any conversion
kanj i _henkan = NULL, gold + CTRL_K; ! Convert to Kanji / next
candi dat e

hi ragana_henkan = CTRL_L; I (Convert clause) to Hiragana
kat akana_henkan = CTRL_K; I (Convert clause) to Katakana
zenkaku_henkan = CTRL_F; I Convert to full width characters
hankaku_henkan = gold + CTRL_F; I Convert to half width characters
ki gou_henkan = GS; I Synbolic code conversion
oonj i = VO D, I Convert to upper characters
konoj i = VO D, I Convert to |lower characters
ji _bunsetsu = CTRL_P; I Move to next clause
zen_bunset su = gold + CTRL_P; I Move to previous clause
t ansyuku = US; I Shrink the clause
si ntyou = gold + US; I Extend the cl ause
zen_kouho = gold + (NULL, CTRL_L);! Previous clause candi date
kaijo = CTRL_N,; I Cancel the conversion

! and go into input state
sakuj o = DEL; I Del ete previous character
hi dar i = LEFT; I Move the cursor |eft
m gi = RI CHT; I Move the cursor right
space_first ="\ ", I Finish by space

I (space at initial state)
space_i nput ="\ ", I Finish by space

I (space at other states)

STATE "initial" =

space_first NONE

kanj i _henkan

hi ragana_henkan
kat akana_henkan
zenkaku_henkan
hankaku_henkan

START_SELECTED
START_SELECTED
START_SELECTED
START_SELECTED
START_SELECTED

CONVERT, GOTO "kk_converting"
HI RAGANA, GOTO "converting";
KATAKANA, GOTO "converting";
ZENKAKU, GOTO "converting";
HANKAKU, GOTO "converting";

ki gou_henkan
oonj i

konoj i

TYPI NG_KEYS
END;

START_SELECTED
START_SELECTED
START_SELECTED

SYMBOL, GOTO "converting"
UPPER, GOTO "converting";
LOVER, GOTO "converting";

START, ECHO, GOTO "inputting";

IM.IB all ows the user to change the keybinding and to choose a
different input sequence with a different state transition

vector. For the user's conveni ence,

| MLI B provi des sone KEYBI ND

dat abases of the mmj or Japanese input styles in default.

When an application calls the |nSetKeybind function, it |oads a
KEYBI ND binary file into menory. Each tine the application gets

the key input,

it queries the key's function from | M.I B.

I M.I B

searches the KEYBIND file for the key's definition and returns

that information,

call ed an action,

to the application.

Each

action is a set of orders that has a different procedure for
Japanese conversion. For exanple, the action CONVERT neans to
convert an input string to a kanji string. At that tinme, IMIB
al so nmi ntai ns Japanese input states and, if necessary, changes
the state.

PROFI LE Dat abase

The Japanese input operation has many paranmeters to determine its
| ook-and-feel, such as the video attribute for the preediting
string, preediting exception handling, and application-specific
processi ng. The PROFI LE dat abase stores these additiona
paraneters the sane way as the resource file does in the X W ndow
System

The PROFILE database is a text file. It contains several records
that represent each environnment. This record format has the style
of INDEX : value. The application predefines the INDEX for its
pur pose; however, | MIB defines sone | NDEXes rel ated to Japanese
i nput operation because it requires sone compn environnment
definitions. The range or value corresponding to the INDEX is

pl aced in the right-hand side of the record. Figure 6 shows a
record froma PROFILE dat abase.

Figure 6 PROFILE Dat abase Record

DEC- JAPANESE. KEY. keybi nd : imkey_jvns_|level 2
DEC- JAPANESE. KEY. keybind_1 : imkey_jvns

DEC- JAPANESE. DI SP. pr eEdi t Row : current

DEC- JAPANESE. DI SP. preEdi t Col umm : current

DEC- JAPANESE. DI SP. i nput Rendi tion : bold

DEC- JAPANESE. DI SP. kanaRendition : bold

DEC- JAPANESE. DI SP. current Cl auseRendi tion : reverse
DEC- JAPANESE. DI SP. | eadi ngCl auseRendi ti on : none
DEC- JAPANESE. DI SP. trai |l i ngCl auseRendi ti on : none
DEC- JAPANESE. ECHO. ascii : hankaku

DEC- JAPANESE. ECHO. kana : hiragana

DEC- JAPANESE. ECHO. aut oRomanKana : of f

DEC- JAPANESE. OQUTRANGE. cl auseSi ze : none

DEC- JAPANESE. OUTRANGE. cl auseNunber : rotate

DEC- JAPANESE. OUTRANGE. cur sor Posi ti on : done

KEYBI ND Conpi | er

The KEYBI ND conpil er analyzes the KEYBIND text file and creates
the KEYBIND binary file. IMIB services reads the PROFILE

dat abase and the KEYBIND binary file and maintains themin
menory. As a response to an application's query, |MIB services
sends it the actions in KEYBIND and the data in PROFILE and at
this time maintains the KEYBIND states. Figure 7 shows the

rel ati onshi p anong the | M.I B conponents.

Figure 7 Rel ationship anong | M.l B Conponents

R +
| APPLI CATI ON
R +
| N ACTI ONS (KEYBI ND)
QUERY v | KEYWORDS (PROFI LE)
S ST —— + S ST —— +
| KEYBIND | | IMIB |
| COWPILER +-------- + Fe-mm - >| SERVI CES
Feommmme e + | | Feommmme e +
N | | N
| v |
[~~~ \ [~~~ \ [~~~ \
| KEYBI NDJ | KEYBI NDJ | PROFI LE
| TEXT | | BI NARY | | DATABASE
| FI LE | | FI LE | | FI LE |
\ / \ / \ /

I MLIB is avail abl e on the OpenVMS VAX, OpenVMs AXP, ULTRI X, and
DEC OSF/ 1 AXP operating systenms. The nmmjor applications are
DECw ndows/ Motif, DECwrite, the front-end input process, and
screen managenent (SMG).

| MPLEMENTATI ON OF THE HENKAN MODULE

The second |l ayer is part of the Japanese input manipulator and is
cal l ed the henkan nodul e or HM (Henkan means conversion in
Japanese.) It does not handle |I/O operation but accepts key input
fromthe application and converts it to a string in preediting.

Figure 8 summari zes the function of HM An application passes the
key input to HM stroke by stroke. HM performs all Japanese
preediting operations; the application has no direct manipul ation
of the input. Then the application gets the preediting string
fromHM Because HM does no I/O it is independent of any
specific device. As a result, all applications, including

wi ndowi ng systens, can use HM

Fi gure 8 Henkan Mbdul e Function

1/ 0O +- -+ Fomm - + +--+ 1/0
KEY ====> | | ==> | HENKAN | ==> | | ====> PREEDI TI NG
I NPUT | | | MODULE | | | STRI NG
| R L
| e e e e oo o +
| APPLI CATI ON
oo e e e e e oo +

In addition, HM can access the resources of IMIB. This feature

hel ps the unification of the Japanese input user interface and
reduces the nunmber of simlar product conversions. HM has anot her
significant capability. W defined the conmon (i nimum
application programring interface to potentially accept al
Japanese conversion engines and i npl enented "PLUGGS" in HM
Therefore HM can use one or nore engi nes for kana-to-kanji
conver si on.

HM Mechani sm Over vi ew

HMis a tool that any application can use. An application passes
key input to HM by a normal procedure call. After HM processes
it, HMcalls application routines with the processed result.
Because HM handl es | arge string buffers, it dynanmically

al l ocates/ deal | ocates nenory. To ensure that nenory is retained,
we used a call back techni que. (These techniques are descri bed
later in the Callback Routines section.)

HM operates by key input as foll ows:

1. HMgets a keycode froman application with procedure
argunent s.

2. HMgets the actions assigned to the key fromI|MIB

3. If the key is not assigned to the Japanese input
operation, HMtells the application to process it
separately.

4. |If the key is assigned to the Japanese input operation
HM processes it according to the actions.

5. HMnodifies the information to be displayed according to
the action and calls a registered callback routine to
update the screen.

HM passes the information that shoul d be displayed on the screen
in an argunment of the callback routines. The call back routines
are prepared by the application and registered into HM context at
the initialization of HM This call back nethod makes the
application interface and data flow nore easily.

Conponent s
Figure 9 shows the conposition of HM The application interfaces

i nclude both the C and the VMsS binding interfaces for the OpenVMS
operating system

Figure 9 HM Conponent Structure

| SEVERAL APPLI CATI ON | NTERFACES

g +
| JAPANESE | NPUT MANI PULATOR |
- o e e s o ea o +
| IMLIB | ROMAJI-TO KANA | KANA- TO- KANJI |
| | CONVERTER | CONVERTER |
- o e e s o ea o +

The Japanese i nput mani pul ator perforns all Japanese i nput
operation by using IMIB, the romgji-to-kana converter, and the
kana-to-kanji converter. After it processes the input key, it
calls back the application routines. There are several types of
romgji-to-kana converters. We inplenmented a subnodul e
romgji-to-kana converter driven by a conversion table; a user can
change this table to another

The kana-to-kanji converter nodule is a generalized Japanese
conversion library. Many Japanese conversi on engi nes exist, and
each one is used differently. The kana-to-kanji converter | oads
the interface routine that absorbs these differences dynamcally
at the initialization of the HM context. It then processes the
conversion request with any engine.

Servi ces

HM provides 17 library entries. In this section, we describe
three basic routines: HMnitialize, HMConvert, and
HVEndConver si on.

o] HMnitialize. This routine creates a context for HM It
accepts three callback entries, a user-defined data
poi nter that would be passed to the call backs, and an
itemlist for initial information as its argunents.

o] HMConvert. This routine sends a key to HM The key is
represented as a 32-bit data (longword) that is generated
by a functi on HVEncodeKey from an escape sequence that
t he keyboard sends or by a function HWKeysyniToKeycode
froma keysymof the X Wndow System |IMIB interprets
t he keycode, and HMConvert perforns a conversion in
accordance with the information. (A summary of what is
executed was given in the Mechani sm Overvi ew section.)

o] HVEndConversion. This routine aborts the conversion and
resets an internal status. It is used when the
application has to stop the input for a particular
reason, for exanple, if an application issues the cance
request.

Cal | back Routi nes

HM requires three call back routines: start_conversion
format _out put, and end_conversion. They are used as foll ows.

o] start_conversion. This routine is called when the
conversion string input is started. The application
menori zes where the cursor is positioned.

o] format _output. This routine is called whenever the
informati on to be displayed has been changed. The
application updates the screen.

o] end_conversion. This routine is called when the input
string is determned. As a result, the application takes
the string passed in the argunment of the |ast call of
format _output into its input buffer

The user-defined data pointer, one of the argunents for
HMnitialize, is always passed to these call backs. Since HMis
not concerned with its contents, the user can put any kind of
information into it.

HM is avail able on the OpenVMs VAX, OpenVMS AXP, ULTRI X, and DEC
OSF/ 1 AXP operating systens. This portability is due to the
nodul e' s i ndependence from physical /O The major client
applications working on these operating systens are

DECw ndows/ Moti f, Japanese SMG, and the front-end i nput process.

| MPLEMENTATI ON OF THE FRONT- END | NPUT PROCESSOR

The front-end i nput process (FIP) for a dunb term nal supports
full operations for the Japanese string manipul ation. FIP

is inmplemented on the foll owing operating systens:

OpenVMS/ Japanese/ VAX version 5.5-2 or later versions and
OpenVMS/ Japanese/ AXP version 1.0 or |ater versions.

Ful | Operation Support

The original product can use FIP if the product's nechani sm
particularly its I/O operation and preediting function, does not
conflict with the FIP inplenentation. Some applications

conflict with the design of FIP due to the linitations of FIP and
its environnent. For exanple, FIP does not detect the read
request that includes the NOECHO item code, so the application
that issues such a read request to the termnal driver (TTdriver)
cannot use FIP as a Japanese front-end input process. Also FIP
does not step into a process for the termination of a read
request sinply because a read buffer that is defined by an
application has overflowed. FIP continues to comrunicate with
the TTdriver and a conversion engine to get the Japanese string
unl ess the terminate key is explicitly input. To overcone these
conflicts, we inplemented a pseudo-driver named Fldriver to
intercept 1/O requests fromthe application before they are
processed by the TTdriver.

FI P Mechani sm Overvi ew

FI P processes all Japanese input operations using HM W supplied
the Digital Conmand Language (DCL) conmand, | NPUT START/ STOP for
activating/deactivating FIP. Once a user activates FIP from DCL,
it is available until the user |ogs out or the systemis

deacti vat ed.

Figure 10 shows FIP and its environnment for the manipul ati on of
Japanese input. An application issues |I/O requests to the
TTdriver to get user inputs, but FIP fetches the requests from
the TTdriver through the Fldriver. Then FIP starts to comrunicate
with the drivers and the Japanese string conversion engine to
pass the resultant string as well as preedits to a screen.

Figure 10 FIP Environnent for Mnipul ation of Japanese | nput

S +
| DI CTI ONARY |
S +
n I
| v
S +
| CONVERSI ON |
| ENG NE |
S +
n I
THE | NPUT | | THE RESULT
STRI NG | | STRING
| Y
R + SEND START REQUEST +----+ +------------- +
AN R >	MAIL	--]		
APPLI CATI ON		BOX		FI P
	bk			
	SEND START CONFI RM			
	- R EEEEEEEEEEEE			
R +--	MAIL] <----/ R +		
A	BOX	/ A A		
oo /				
$Q O READ		WRI TE BACK THE RESULT /		
REQUEST	R i +	$Q O	AST	
I /		I		
e /				
Y, v $Q O READ/ WRI TE REQUEST	v			
o e e e oo + S +				
I I I I I				
TTDRI VER	HOOK	-------mmmmmmmmmm oo - - >	FI DRI VER	
			NTERCEPT OF READ $Q O	
o e e e oo + S +

| TERM NAL / |
| INPUT DEVICE |

The sequence of the front-end i nput process foll ows.

1

2.

10.

11.

12.

13.

An application creates a front-end i nput process.

A front-end i nput process exchanges packets with an
application through its nmail box.

An application issues a queued |/O ($Q O read request to
the TTdriver.

The Fldriver intercepts the request and passes the
information to FIP as a packet.

FIP issues a $Q O read request to the TTdriver to get
i nput strings for conversion

A user inputs a key froma termnal. FIP receives the

i nput and deci des whether or not to call a routine of the
conversion engine. If an input key is recognized as one
of the conversion keys, FIP calls the routine and passes
the input strings. If not, FIP issues a $QO wite
request to the TTdriver to echo an input character

A conversion engi ne receives a string and converts it to
t he Japanese string.

A conversion engine returns the result to FIP

FIP issues a $Q O wite request to the TTdriver to
display the resultant string fromthe engi ne and arranges
the current editing |ine.

Steps 5 to 9 are repeated.

Once a user inputs the Terninate key of an application's
request, FIP recognizes it as a term nator and returns
the entire resultant string to the Fldriver as a wite
packet .

The Fldriver sends the result string and 1/0O status to an
application.

An application accepts the converted string. After
executing its internal process, it issues another $Q O
read request to the TTdriver. (Return to step 3.)

Fldriver. The Fldriver is a pseudo-driver that intercepts $Q O

read requests froman application to the TTdriver. Functioning as
a bridge between term nal read requests and FIP, the Fldriver
gets a read request, passes its information to FIP, and maintains
it. When FIP returns the conpletion nessage with its processed
Japanese string, the Fldriver validates it and conpletes a user's
read request as if the TTdriver had returned it. Thus the
user/application can get the Japanese string w thout nodification
for Japanese input method.

The Fldriver has other notification functions for exception
handl i ng such as | ogout, cancel, or abort.

Front-end | nput Process Operations. All the operations in the
front-end input process are driven by the nail box event, the
Fldriver event, and the key event. Figure 11 shows the functiona
structure of FIP.

Figure 11 FIP Functional Structure

oo o e e e e e e e e e oo oo +
| FI P EVENT MANAGEMENT

o e - R +
| KEY EVENT | |

R + FIDRIVER | MAI LBOX |
| ACTI ON CONTROL | EVENT | EVENT
. [S + | |

| TERM NAL | HENKAN | |

| ACTI ON | MODULE | |

S ST —— - S ST —— S +

The foll owi ng operations in the front-end i nput process
correspond to these three events.

o] Mai | box Event. The mail box event provides comruni cation
with an application. FIP issues a read request to its own
mai | box. The mail box event notifies FIP of the arrival of
a nmessage from an application. When an application sends
a start request to the FIP mail box, the nmail box event is
set so FIP starts to initialize its environnent. Also FIP
termnates itself at the tine a stop request nessage is
delivered to its mail box.

o] Fldriver Event. The Fldriver event provides
comuni cation with the Fldriver. The Fldriver intercepts
a request froman application to the TTdriver and creates
a packet for FIP. FIP issues a read request to the
Fldriver, and this event is set when a packet is
delivered. A request is categorized in three types: read
request, cancel request, and di sconnect request.

o] Key Event. The key event provides comunication with the
TTdriver. FIP issues a $Q O read request to the TTdriver

byte by byte. Al the input froma keyboard is recogni zed
as a key event in FIP. Once a key event is set in FIP,
FI P exam nes the key sequence in a read buffer

If the input is in the range of a term nator mask, FIP terninates
a read operation fromthe TTdriver and wites back the resultant
string and 1/O status block to the Fldriver as a wite packet. (A
termnator mask is defined in the $Q O read request from an
application.)

If the input key is a conversion key, FIP calls a conversion
engi ne and gets the resultant converted string. Then FIP issues a
write request to the TTdriver to display the updated string.

If the input key is a printable character, FIP updates the
contents of its internal buffers defined in the context and
issues a wite request to the TTdriver to echo the character

If the input key is for line editing, for exanple, to delete a
line or a word or to refresh a line, FIP enmulates the
line-editing function of the TTdriver so its editing function is
execut ed.

FIP stores all user input and read-request information from an
application in its internal buffers and database. The buffers
contain the codes of user input and correspondi ng vi deo
attributes to display. The database contains itemcodes in a read
request, channel nunbers to connect other devices, and so on

FI P creates a new database when the updated read request from an
application is delivered, in other words, when the Fldriver event
is set. Also, FIP adds the ASCI| code and an attribute of the
updat ed user input into buffers when a user inputs, that is, when
the key event is set.

CLI ENT/ SERVER CONVERSI ON

The use of a client/server conversion has two advantages: (1) It
reduces the required resources for |anguage conversion by

di stributing some conponents to other systens, and (2) It
presents an environnent that shares a conmon dictionary.

Al'l procedures for the Japanese conversion require |large system
resources such as CPU power. A user can place the conversion

i nformati on server (Clserver) and a dictionary on a renote node
and call sone functions of the Clserver client library to get the
resultant string. In this way, a |local system saves its resources
while the renpte server processes the conversions.

In addition, many users can access a conmon dictionary on the
specific renote node. It is possible for any | ocal user to access
a dictionary on a renote node if the Clserver on the node is
active.

Cl server

The object name is "I MPCI SERVER'. The Clserver initializes itself
by finding the nane of a transport protocol in a logical table.

It then creates correspondi ng shareabl e i mages, nmaps its required
routines, and waits for a connect request froma client. The
Clserver comunicates with its client via a mail box at the
transport |evel. The server sets the asynchronous systemtrap to
the mail box and reads a nessage in it such as a connect request,
a di sconnect request, a connect abortion, or a client's inage
term nation. The Clserver can identify the connection to a client
and specify a conversion streamin the connection.

Clserver Client Library. The client library presents programr ng
interfaces. These are callable routines that execute various
string mani pul ati ons and operations for the Japanese conversion
The Clserver client library is |located between an application and
the Clserver body.

I nput Met hod Control Program (IMCP). |IMCP is a conmand |ine
interface to custom ze the Clserver environment. A user sets
proxy to a Japanese systemdictionary at a renote node on the
network, and | MCP admi nistrates a proxy database. A user can
confirmthe status of the server at a command |ine and can shut
down the server fromthe | MCP interface.

Ot her Servers. HM has a conversion engine di spatcher that can
dynami cally select from several Japanese conversion engi nhes. HM
now serves the CI'S (Clserver, Digital Japan), the Wn (Omron
Conpany), the Canna (NEC), and the JSY (Digital Japan) engines.
Therefore, an application that uses HM as the Japanese conversion
interface can select its preferred engine.

EXTENSI ON I N THE FUTURE

In this section, we describe the possibilities for

i nternationalization of FIP, HM IMIB, the Clserver, and the
Fl driver. Although our approach does not provide a rmultilingua
i nput nmethod, it does provide an architecture that can be used
for any | anguage.

FIP has a multibyte |I/O operation that can be applied to other

two-byte | anguages. In addition, all the read/wite

comuni cations anmong FIP, the Fldriver, and the TTdriver proved
abl e to handl e one-byte | anguages such as English. Also, IMIB
can expand its keybi nding system for conversion of other

| anguages, and HM can add the interfaces for conversion engines
of other | anguages if such engi nes are prepared.

SUMVARY

The Japanese i nput nmethod is a conplex procedure involving
preediting operations. Various keybinding systems and
mani pul ators accel erate i nput operations. OQur approach for the
Japanese i nput nmethod allows an application three choices: (1) An
application can use a front-end input processor to perform al
operations including 1/0O (2) An application can use the

henkan nodul e and inplenment |/O operation itself. (3) An
application can execute all operations except keybinding, which

i s handl ed by an input nethod |ibrary.

ACKNOW.EDGMVENTS

We want to express our appreciation to Katsushi Takeuchi of the
XTPU devel oprent team for his initial designing and prototyping
of IM.IB and sone inplenmentation of FIP, and Junji Mrinmtsu on
the sane teamfor his initial inplenentation of IMIB and its
conpiler. Also, we wish to thank Makoto Inada on the DECwW ndows
team for his inplenentation of HM Hitoshi |zum da, Tsutomu

Sai to, and Jun Yoshida fromthe JVMS driver teamfor their
contribution toward creating the Fldriver; and Naoki OCkudera for
his inplenentation to the entire Clserver environnent. As a fina
remark, we acknow edge Eiichi Aoki, an engineering manager of |SE
Japan, and Hirotaka Yoshioka in the | SA group for their
encouragenent in witing this paper

REFERENCES

1. Gui des to the X Wndow System Programer's Suppl enent for
Rel ease 5 (Sebastopol, CA: OReilly & Associates, Inc.
1991).

2. Standard X, Version 11, Release 5 (Canbridge, MA: MT X
Consortium 1988).

3. K. Yoshimura, T. Hitaka, and S. Yoshida, "Morphol ogica
Anal ysi s of Non-marked-off Japanese Sentences by the Least
BUNSETSU s Nunber Method," Transactions of |Information
Processi ng Soci ety of Japan, vol. 24 (1983).

4, K. Shirai, Y. Hayashi, Y. Hrata, and J. Kubota, "Database
Formul ati on and Learni ng Procedure for Kakari-Uke Dependency
Anal ysis," Transactions of Information Processing
Soci ety of Japan, vol. 26 (1985).

5. | MLl B/ OpenVMS Li brary Reference Manual (in Japanese) (Tokyo:
Di gital Equi pnrent Corporation Japan, Order No. AA- PUBTA- TE,
1993).

6. User's Manual for Defining User Keys in IMIB (in Japanese)
(Tokyo: Digital Equi pment Corporation Japan, Order No.

AA- PUBUA- TE, 1993).

TRADEMARKS

The following are trademarks of Digital Equi pnent Corporation
DEC OSF/ 1 AXP, DECw ndows, DECwite, Digital, OpenVMs AXP
OpenVMS VAX, ULTRI X, and VMSs.

Motif and is a registered trademark of the Open Software
Foundati on, Inc.

Uni code is a trademark of Unicode Inc.
UNIl X is a registered trademark of UN X Systens Laboratories, Inc.

X W ndow Systemis a trademark of the Massachusetts Institute of
Technol ogy.

Bl OGRAPHI ES

Hi royoshi Baba Hiroyoshi Baba is an engineer in the Japanese

I nput Method Group in Digital Japan, Research and Devel opnent
Center. He is currently devel opi ng the Japanese front-end input
system on OpenVMS VAX and OpenVMs AXP and the Japanese | anguage
conversion server system He received a B.S. (1989) and an M S.
(1991) in electronics engineering fromMiroran Institute of
Technol ogy, Japan. He joined Digital in April 1991

Takahi de Honma A senior software engi neer, Takahi de Honma | eads
t he Japanese | nput Method Group. He joined Digital in 1985 as a
software service engi neer. He has worked on systens such as

real -tinme drivers, network system (P.S.1.), and database on VMS
and was a consultant to customers. At the sane tine, he also took
the role of a sales advisory support engineer. Since 1990, he has
been with Research and Devel opnent in Japan and has worked on the
Japanese i nput nmethod. He has an MS. (1983) in high-energy
physics from Kyoto University and is a nmenber of the Physics

Soci ety of Japan.

Kuni aki Taki zawa Kuni aki Taki zawa is an engineer with Digita
Japan, Research and Devel opnent Center and is a nenber of the
Japanese | nput Method Group. He joined Digital in April 1991 and
is currently devel oping and porting the henkan nodul e and the

i nput method library (IMIB) on OpenVMS, ULTRIX, and OSF/ 1. He
graduated fromthe University of Electronic Comunications
(Denki - Tsushin University) in Japan in 1991. His speciality area
was the structure of operating systens.

Copyright 1993 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi prment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be

di stributed for comrerci al advantage. Abstracting with credit of Digital

Equi pment Corporation's authorship is permitted. All rights reserved.

