
 Modeling the Cost of Software Quality

 by

 Stephen T. Knox

ABSTRACT

This paper offers an extrapolation of the manufacturing and
service industries' Cost of Quality Model to the business of
software development. The intent is to provide a theoretical
account of the changing quality cost structure as a function of a
maturing software development process. Thus, the trends in
expenditures due to the four major quality cost
categories --- appraisal, prevention, internal failures, and
external failures --- are presented over the five levels of
software process maturity, according to the Software Engineering
Institute's (SEI's) Capability Maturity Model for Software (CMM).
The Software Cost of Quality Model conservatively proposes that
the total cost of quality, expressed as a percentage of the cost
of development, can be decreased by approximately two-thirds as
process maturity grows from Level 1 to Level 5 of the SEI's CMM.

INTRODUCTION

Two questions often asked of quality function professionals by a
software project manager are, How much will working on these
quality processes cost me? and What can I expect in return for my
investment? The manager recognizes that to implement a quality
improvement project, resources must be allocated toward processes
not currently being undertaken, and prior management experience
has proven that usually the resources available are barely
adequate to meet aggressive project and schedule deliverables.
Also implicit in the manager's questions is the expectation of
some point of diminishing returns: Even if there is benefit from
an investment in quality-related work, help me understand the
point at which the investment will be more costly than what I can
get in return.

Background --- The Traditional Cost of Quality Model

The concerns expressed by our present-day hypothetical software
manager are the same concerns expressed by industrial management
during the 1950s. At that time, the quality function
professionals saw the need to extend quality attainment efforts
beyond the traditional inspection and test activities to the
processes further upstream in the manufacturing and product
development groups. Quality function managers, hoping to increase
the scope of the quality effort, were faced with the task of

convincing upper management of the necessity to allocate
additional resources to quality attainment. Management demanded
that the quality function quantitatively demonstrate the amount
of resource investment that was necessary and the expected return
on that investment.

The quality function professionals responded by developing an
investment model that expressed quality in terms of costs --- the
cost of attaining quality (the investment) and the cost of not
attaining quality (the return). Their argument was that moderate
increases in the former (typically, appraisal processes, such as
inspection and test, and some defect prevention processes) would
result in significant decreases in the latter (e.g., defects,
scrap, repair and warranty costs), up to some point of
diminishing returns. The traditional Cost of Quality Model shown
in Figure 1 graphically represents their investment model.[1] The
three curves portray moderate increases in prevention and
appraisal costs resulting in dramatic decreases in failure costs.
The point of inflection in the total cost of quality quadratic
curve represents the point of diminishing returns on quality
investment.

Figure 1 reflects the belief of the 1950s' quality function
professionals that attaining 100 percent conformance to
specification would be prohibitively expensive. The rationale was
that zero-defects production would require extensive testing and
inspection at every point in the design, manufacture, and
delivery process. Consequently, they conceived of a point of
diminishing returns on quality-related investments. This point of
maximum quality attainment for the minimum amount of investment
is exactly the point of interest to our hypothetical software
manager.

The modeled point of diminishing returns, however, was not
verified by empirical cost of quality data.[2,3,4] In actual
practice, investment in quality attainment shifted from appraisal
to prevention processes as the quality function moved upstream
into the manufacturing process and product design groups. Defect
prevention processes, such as statistical process control and
robust product designs, actually reduced the overall cost of
attaining quality, contrary to the expectation of the quality
function of the 1950s. Designing durable products to delight
customers and manufacturing these products in a well-controlled
environment resulted in fewer defects at the point of final
inspection. Thus, appraisal costs were reduced significantly.
(The author has participated in cases where successful
application of defect prevention processes led to the complete
elimination of expensive inspection and test.[5])

The Revised Cost of Quality Model

The quality function managers of the 1950s could not conceive of
a quality investment model that did not rely heavily on

inspection and test. Actual experience, however, uncovered that
an increased emphasis on defect prevention processes led to
significant reductions in appraisal costs and, in some cases,
eliminated final inspection. The empirical cost of quality data
resulted in a revised model, published in 1988.[2] As shown in
Figure 2, the Revised Cost of Quality Model extracts the point of
diminishing returns.

The three curves express the changing quality cost structure as
quality attainment efforts shift from appraisal processes to the
processes designed to achieve higher-quality output before final
product test. In the revised model, the costs due to defect
appraisal and defect prevention rise moderately as investments are
made to improve product quality. The moderate increases in the
costs of appraisal and prevention result in dramatic decreases in
the failure costs. Unlike the corresponding curve in Figure 1,
appraisal and pr do not increase exponentially, since the means of
quality attainment shifts from defect appraisal to defect
prevention. The total cost of quality curve in Figure 2
consistently decreases as quality improves; therefore, the curve
does not have a point of diminishing returns.

The Software Cost of Quality Model

The Revised Cost of Quality Model has been used extensively in
the manufacturing and service industries as a benchmark against
which actual quality costs are compared. The model has thus
helped organizations identify opportunities for continuous
improvement.[4] Also, a leading government research corporation,
MITRE Economic Analysis Center, recently advocated using this
method for reducing the cost of quality in software
development.[6] What is lacking, however, is a model of quality
costs in the domain of software development.

Important differences exist between the domains of the industrial
environment and the software development environment. While an
extrapolation of the Revised Cost of Quality Model can be made to
monitor software quality costs (as suggested by MITRE), the
author believes greater detail on and adjustments to the cost
trends are required to account for differences between the
domains. This paper presents a model that incorporates these
differences. The Software Cost of Quality Model offers a
rationale that addresses the reasonable concerns expressed by our
hypothetical software manager.

MODELING THE COST OF SOFTWARE QUALITY

As background for a discussion of the Software Cost of Quality
Model, this section deals with the subject of attaining software
quality cost data and lists the software quality cost categories.

Software Quality Cost Data

Whereas the literature has sufficient data to support estimates
of the costs related to not attaining software quality (e.g.,
defect and software maintenance costs), the author has been
unable to locate rigorous accounting of costs related to
attaining quality (e.g., testing and defect prevention). This is
not surprising, given the relative lack of cost metrics tracked
in software development. Capers Jones asserts that full quality
costs have been tracked in some projects; in a personal
conversation with the author, Jones cited his own work at
International Telephone and Telegraph (ITT).[7] Other consulting
firms (e.g., Computer Power Group) reported to the author that
some clients kept limited metrics of defect costs. In follow-up
investigation, however, the author has not found any rigorous
accounting of defect appraisal and defect prevention costs in
software development.

Consequently, the Software Cost of Quality Model offered in this
paper extrapolates two key concepts from Gryna's Revised Cost of
Quality Model (shown in Figure 2): (1) moderate investments in
quality attainment result in a significant decrease in the cost
of not attaining quality, and (2) an emphasis on attaining
quality through defect prevention processes results in an overall
decrease in the cost of traditional testing activities.

Software Quality Cost Categories

Following the modern trend in the industrial and service
industries, the Software Cost of Quality Model subdivides the
driving cost elements into four categories: appraisal and
prevention (the costs of attaining quality, i.e., the
investment), and internal failures and external failures (the
costs of not attaining quality, i.e., the return).[2,3,4] Table 1
provides some examples of these elements in software development.
The list of elements within each cost category is meant to be
exemplary, not exhaustive.

Table 1 Software Quality Cost Categories

Appraisal Prevention Internal Failures External
Failures

Unit/Integration Contextual Inquiry/ Defect Management Problem Report
 Testing Quality Function Management

 Deployment (QFD)

Quality Assurance Project Management Test Failure Rework Warranty Rework

Field/Acceptance Requirements Design Change Rework Customer
Support
 Tests Management

Audits/Assessments Formal Inspections Requirement Change Lost Market
Share
 Work

Appraisal Costs. Traditionally, the costs associated with
appraisal activities are those incurred by product inspection,
measurement, and test to assure the conformance to standards and
performance requirements. In software development, these costs
are usually related to the various levels of testing and to
audits and assessments of the software development process.
Appraisal costs also include costs (e.g., quality assurance)
incurred by organizations that provide test support and/or
monitor compliance to process standards.

Prevention Costs. While appraisal costs are those used to find
defects, prevention costs are those incurred by process
improvements aimed at preventing defects. The examples of
prevention costs listed in Table 1 are the costs that worried our
hypothetical software manager, because for the most part, defect
prevention processes in software are not traditional. Such
processes are perceived as "front-loaded" processes, which
lengthen the initial development schedule and threaten the
probability that a project will deliver on the scheduled target
date. Ironically, field testing (an appraisal cost) and the
subsequent rework of found defects (internal failure costs) are
traditionally accepted by software managers as legitimate yet
frustrating tasks in the development cycle. One goal of software
defect prevention processes is to reduce (and possibly eliminate)
the need for expensive field testing.

Internal/External Failure Costs. Failure costs are primarily due
to the rework, maintenance, and management of software defects.
Internal failures are software defects caught prior to customer
release, whereas external failures are detected after release.
Consistent with the initial cost of quality findings in the
manufacturing industry data, the majority of quality costs in
software are incurred by internal and external failures. The
literature indicts the rework from software defects as the most
significant driver of all development costs. Independent studies
show costs associated with correcting software defects that range
from 75 percent of the development effort at General Motors, to
an average of 60 percent for U.S. Department of Defense projects,
to an average of 49 percent, as reported in a survey by 487
respondents from academia and industry.[8,9,10]

THE MODEL

Figure 3 depicts the Software Cost of Quality Model. The curves
represent how the quality cost structure changes as a software

development environment improves its capability to deliver a
high-quality, bug-free product. Whereas the x-axes in Figures 1
and 2 reflect improving process capability in an industrial
environment, the x-axis in Figure 3 is based on the Software
Engineering Institute's (SEI's) Capability Maturity Model for
Software (CMM).[11] The Software Cost of Quality Model
incorporates the CMM, which offers a descriptive road map for
improving software development processes. The details of this
road map provide a rationale for theorizing the changing quality
cost structure within the domain of software development.

The Maturing Software Development Process

The CMM is too extensive to describe fully in this paper.
(Humphrey presents a detailed accounting.[12]) The central
concept of the CMM is that a software development environment has
a measurable process capability analogous to industrial process
capability. In the software domain, process capability can be
measured through assessment. The CMM proposes five levels of
capability, ranging from the chaotic, ad hoc development
environment to the fully matured and continually optimizing,
production-line environment.

The SEI estimates through their assessment data that most
software development environments are at the initial, chaotic
level of capability. The SEI has also declared that although some
individual projects show the attributes of the highest level of
capability, no organization measured has demonstrated full
maturation. Since no organization has made the journey to full
maturation, and since scant data exists on the appraisal and
prevention costs as they apply to software development, the
Software Cost of Quality Model uses CMM Levels 1 to 5 as the
discrete milestones at which the appraisal, prevention, and
internal and external failure cost trends can be theorized.

Software Cost of Quality Model Assumptions

Before the cost trends in Figure 3 are examined in detail, two
data-driven assumptions need to be declared. First, the total cost
of quality (the sum of the costs associated with appraisal,
prevention, internal failures, and external failures) at CMM Level
1 is equal to approximately 60 percent of the total cost of
development. This assumption is based primarily on internal failure
cost data taken from the literature and external failure cost data
tracked at Digital. The estimate of internal failure costs comes
from recent data collected by Capers Jones. The data indicates that
software rework due to internal failures consumes 30 to 35 percent
of the development effort for projects the size of those typical at
Digital.[13] The lower range of this figure has been added to the
cost of the Customer Support Center (CSC) management of external
failures, which an unpublished study by the Atlanta CSC estimates
to be 33 percent of the development costs (available internally

only, on TPSYS::Formal_Inspection, Cost of a Software Bug, Note
31.0). Thus, the estimate of a total cost of quality equal to 60
percent of the development cost is based on the sum of the
estimates of just two of the many cost elements, namely, rework due
to internal failures and CSC management of external failures.

The second assumption is that the total cost of quality will
decrease by approximately two-thirds as the development process
reaches full maturity, i.e., CMM Level 5. This assumption is
based on normative case-study industrial data cited by Gryna.[2]
The data details the recorded change in the total cost of quality
at the Allison-Chalmers plant during seven years of its quality
improvement program.[14] Table 2 summarizes the reduction in the
total cost of quality at Allison-Chalmers and relates this
reduction to a similar change theorized in the Software Cost of
Quality Model.

Table 2 Reduction in Total Cost of Quality (TCQ)

 Allison-Chalmers Software Cost of Quality Model
 (% of Cost of Sales) (% of Cost of Development)

Initial TCQ 4.5 60.0
Improved TCQ 1.5 18.0

TCQ Decrease 67.0% 67.0%

Although it may be unwise to assume that a normative trend for
the manufacturing industry can be applied to software
development, note that the assumed two-thirds decrease in the
total cost of quality is more conservative than the estimates of
SEI's Dr. Bill Curtis. He claimed return on investments (ROIs) in
the range of 5:1 to 8:1, as an organization progresses in process
maturity.[15] (Note: These claims have received empirical support
from Quantitative Software Management [QSM] Associates, who
report measured decreases in required effort and overall
development cost on the order of 5:1.[16])

THE CHANGING COST STRUCTURE

Given the two grounding assumptions just discussed, the paper now
presents a theoretical view of the changing cost trends between
Level 1 and Level 5. The theory is based on the expected returns
on investing in process maturity as outlined by the CMM. This
section examines the details of Figure 3.

CMM Level 1

The SEI estimates that 90 percent of the software organizations
today are at Level 1, which is characterized by an ad hoc,

undefined, and sometimes chaotic development environment, highly
dependent on heroic individual effort to meet delivery dates.
Little attention is given to fundamental process management in
this highly reactive atmosphere, and rework to correct internal
and external failures is often perceived as necessary
"fire fighting" to avoid disaster. At this level, the major costs
of software quality are due to rework and maintenance. Testing is
sporadic, so appraisal costs are minimal and most defects are
experienced by the customers, resulting in expensive warranty
costs and loss of market share. The costs associated with defect
prevention approach zero.

CMM Level 2

A software organization at Level 2 has instituted the fundamental
processes to manage resources, artifacts, and change. Project
management, configuration management, and requirements management
are the key processes that characterize a CMM Level 2 development
environment that is, at the least, repeatable. In Figure 3,
appraisal and internal failure costs increase at this level,
primarily due to the formation of a quality assurance
organization that monitors compliance to proscribed testing
standards. Since, at Level 2, the organization applies testing
activities more rigorously, more defects are found and reworked
internally.

The increased testing activity and additional resources allocated
to fix defects cause the apprehension that our hypothetical
software manager expressed earlier. The manager experiences fear
and uncertainty about being able to fix all the found defects and
deliver the product on the scheduled date. Although our
hypothetical software manager is probably aware that adherence to
rigorous testing results in fewer defects shipped to the
customer, a manager's success is often measured on the ability to
deliver a product on time. The reduction in external failure
costs at Level 2 occurs too late in the process to mitigate the
career risk of seriously missing the delivery date.

CMM Level 3

According to the CMM literature, the major gains at Level 2 are
the creation of repeatable processes that provide the base
underpinning of a maturing development environment. Figure 3
illustrates that the investments to improve quality have been
primarily in the appraisal category. But at CMM Level 3, the
development environment has achieved a point of stability. A
defined, documented framework exists within which the creative
act of software design can be executed in a controlled manner.
Quality attainment now emphasizes investing in the prevention
activities, such as Contextual Inquiry into customer problems and
Formal Inspections of specification and design documents. Such
prevention processes are intended to ensure a more accurate

understanding of and a greater conformance to customer
requirements. Investing in prevention results in a steep decline
in the external failure costs and gaining back lost market share.

Our hypothetical software manager is entitled to be more than
skeptical about such claims; however, empirical data
substantiates them. For example, Figure 4 details the 66 percent
increase over projected revenue for VAX RALLY version 2.0, a
direct result of improvements made to earlier
versions --- improvements suggested by the Contextual Inquiries
conducted with VAX RALLY version 1.0 customers.[17] Figure 5
clearly demonstrates that Contextual Inquiry leads not only to
increased revenue but to the higher productivity and lower defect
density experienced by POLYCENTER System Census version 1.0, when
compared to four other system management applications.[18] These
applications, represented in Figure 5 as A, B, C, and D, were
developed without the use of this critical defect prevention
process.

While generally considered to be part of the appraisal process,
Formal Inspections, when applied to source documentation such as
specifications and design, are similar to process control
monitors. These inspections ensure that critical functionality is
not omitted as the development process proceeds from the stated
requirement for a solution to the specification and design of
that solution. The effectiveness of the Formal Inspection process
in preventing potential inconsistencies and omissions accounts
for its rating as the most efficient defect removal method, as
shown in Table 3.[19] Thus, applying Formal Inspections as a
defect prevention process means fewer defects to test and fix
internally and a more satisfied customer using the product.

Table 3 Defect Removal Efficiencies

 Efficiency
Method (Percent)

Formal Inspections 65
Informal Reviews 45
Unit Testing 25-50
System Testing 25-50
Regression Testing 20-50
Field Testing 30
Beta Testing 25

The data in Table 3 is not intended to fully account for the
magnitude of the trends at Level 3. Rather, the data offers a
rationale for the overall direction of these trends. If a
disparity exists between the data and the acceleration of
decreasing failure costs in Figure 3, bear in mind that the model
is the more conservative estimator.

CMM Levels 4 and 5

Although it has seen evidence of CMM Levels 4 and 5 in a few
discrete projects (e.g., one Japanese project reported to be at
Level 5), the SEI reports that it has not yet measured a Level 4
or a Level 5 organization. At these higher levels of maturity,
the dominant cost of quality is due to the prevention elements,
primarily from the cost elements of metric-driven continuous
improvement and process control. The software process at these
levels has become so well characterized by metrics that it has
achieved a state where development schedules are predictable.
Requirements are now understood quantitatively. The costs
attributable to traditional appraisal activities, especially
field testing, are dramatically decreasing, since product quality
can now be appraised by monitoring the development process as
opposed to expensive testing of the product. By Level 5,
appraisal and failure costs have dropped to the level expected of
a Six Sigma organization. The model proposes that the total cost
of quality has decreased by approximately two-thirds, which is
consistent with the normative industrial data.

CONCLUSION

This paper is not an endorsement of the SEI's Capability Maturity
Model for Software, which is used here to describe discrete
states within a maturing software development process. Although
the CMM offers a rational, staged approach to achieving a
predictable and highly productive development environment, the
CMM is not the only road map to improving Digital's software
process. For example, the variety of customers served in
commercial software development offers special challenges to
ensure that these customers' work experiences are brought into
the design and development process. The CMM does not detail
Voice of the Customer processes, which are practiced increasingly
at Digital. In addition, some key processes specified for CMM
Levels 3, 4, and 5 (e.g., Formal Inspections and metric-driven
Continuous Improvement) are effective in reducing defects. These
processes are already used in many of Digital's organizations,
even though it is doubtful that any of the software development
groups at Digital would be assessed as being beyond CMM Level 2.

The author believes that CMM Level 5 is the goal, regardless of
the road map for attainment. The Software Cost of Quality Model
explored in this paper offers the same argument for improving
process capability that was offered in the manufacturing
industries: the major costs of quality are the waste and the
resource loss due to rework, scrap, and the lost market share
when products do not possess the quality to address the problems
faced by customers. The key to reducing quality costs is to
invest in defect prevention processes, many of which are detailed
by the CMM.

So, the response to the initial concern expressed by our

hypothetical software manager is the following: You will not
experience a point of diminishing returns from investing in
quality-attaining processes. Certainly, there is a steep learning
curve, and the short-term gains are not apparent. Given the
software life cycle, most of the short-term gains will be
experienced after the development is complete and the product has
been shipped.

Since investments in quality, however, are not meant to realize
quick, dramatic returns, the defect prevention processes probably
offer the most immediate visible evidence that the overall cost
of quality has been reduced. Yet, regardless of whether the
investment is made according to the CMM road map or using some
other quality attainment plan, software managers must keep in
mind that quality attainment processes require a great deal of
hard work. Also, the investment must be constant to achieve the
significant, long-term payback, as reflected in the Software Cost
of Quality Model.

REFERENCES

 1. J. Juran and F. Gryna, Quality Planning and Analysis (New
 York: McGraw-Hill, 1980).

 2. F. Gryna, "Quality Costs," Juran's Quality Control Handbook,
 4th ed. (New York: McGraw-Hill, 1988).

 3. J. Campanella, Principles of Quality Costs, 2d ed.
 (Milwaukee, WI: ASQC Quality Press, 1990).

 4. J. Atkinson et al., Current Trends in Cost of Quality:
 Linking the Cost of Quality and Continuous Improvement
 (Montvale, NJ: National Association of Accountants, 1991).

 5. S. Knox, "Combining Taguchi Signal-to-Noise Metrics with
 Classical Regression for Robust Process Optimization,"
 Technical Report ISB Quality (Marlboro, MA: Digital
 Equipment Corporation, 1990).

 6. E. deGuzman and T. Roesch, "Cost Analysis Provides Clues to
 Spot Quality Problems," The MITRE Washington Economic
 Analysis Center Newsletter (McLean, VA: April 1993): 2.

 7. C. Jones, Applied Software Measurement (New York:
 McGraw-Hill, 1991).

 8. B. Boehm, Software Engineering (Redondo Beach, CA: TRW,
 1976).

 9. J. Hager, "Software Cost Reduction Methods in Practice,"
 IEEE Transactions on Software Engineering, vol. 15, no. 12
 (December 1989).

10. W. Goeller, "The Cost of Software Quality Assurance," 1981
 ASQC Quality Congress Transactions, San Francisco, CA
 (1981): 684-689.

11. M. Paulk, B. Curtis, and M. Chrissis, "Capability Maturity
 Model for Software," Technical Report CMU/SEI-91-TR-24
 (Pittsburgh, PA: Software Engineering Institute,
 Carnegie-Mellon University, 1991).

12. W. Humphrey, Managing the Software Process (Reading, MA:
 Addison-Wesley, 1989).

13. E. Yourdon, The Decline and Fall of the American Programmer
 (Englewood Cliffs, NJ: Yourdon Press, Prentice-Hall, 1992).

14. O. Kolacek, "Quality Cost --- A Place for Financial Impact,"
 Transactions of the 1976 Annual Conference of ASQC,
 Milwaukee, WI (1976): 131.

15. B. Curtis, "The Superior Software Organization," Software
 Process Improvement Network Meeting, Boston, MA (January
 1993).

16. L. Putnam, "The Economic Value of Moving up the SEI Scale,"
 Technical Report QSMTR93-01 (McLean, VA: Quantitative
 Software Management, Inc., 1993).

17. J. Neilsen, Usability Engineering (New York: Academic Press,
 1993): 4.

18. S. Knox, Newsletter of Continuous Improvement for Networked
 Systems Management, vol. 2 (Maynard, MA: Digital Equipment
 Corporation, April 1993).

19. C. Jones, "Software Metrics and Total Quality Management,"
 Case Outlook, vol. 6, no. 4 (1992): 1-11.

TRADEMARKS

The following are trademarks of Digital Equipment Corporation:
POLYCENTER and VAX RALLY.

BIOGRAPHY

Stephen T. Knox Steve Knox is a principal software engineer with
the Software Engineering Technology Center. Currently, he is
assigned to the Networked Systems Management organization to
improve software and development processes. Steve came to Digital
in 1989 from Tektronix, Inc., to further develop the Contextual
Inquiry process. A quality engineer certified by the American
Society of Quality Control, Steve received the 1991 High
Performance Systems Technical Leader Award. He holds an M.S.

(1986) in psychology from Portland State University.

===
Copyright 1993 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

