
 DEC TP WORKcenter:
 A Software Process Case Study

 by

 Ernesto Guerrieri and Bruce J. Taylor

ABSTRACT

DEC TP WORKcenter is Digital's object-based production system
development environment for Application Control and Management
System TP applications. Goals for the DEC TP WORKcenter project
were to meet customers' requirements, to provide superior product
quality, and to maintain schedule predictability. Modern software
process techniques helped to achieve an appropriate balance in
resolving the inevitable conflicts between project goals. A
critical analysis of each software process shows its effect on
the engineering team, the product, and the project schedule.
Changes to the process were implemented based on the team's
experience and quality metrics. Recommendations to other project
teams are offered based on the conclusions drawn from the DEC TP
WORKcenter project.

INTRODUCTION

The DEC TP WORKcenter product is an interactive production system
application development environment specifically customized for
Application Control and Management System (ACMS) transaction
processing (TP) applications.[1] Development of the DEC TP
WORKcenter object-based development environment started in 1991
in response to requests from a number of Digital's ACMS
customers. They wanted a tool that could help them to

 o Perform configuration management of ACMS application
 components

 o Track ACMS application components

 o Obtain a more efficient build mechanism for ACMS
 applications

The product development team consisted of a team leader, an
architect, six software engineers, a quality engineer, two test
engineers, and two documentation writers. The average experience
of the team was seven to eight years of industrial experience
(with at least three members having over ten years of experience)
in a wide variety of software industries, including
defense-oriented developments. This breadth of experience was
important in the creation and adoption of the development
process.

The key goals of the project were to provide

 o Customer-defined product requirements

 o Compliance with the product requirements specification

 o A high-quality product

 o Delivery on schedule

For the customer satisfaction goal, we describe our use of
Contextual Inquiry, Quality Function Deployment, conceptual
modeling, and rapid prototyping. We also describe a formal
requirements documentation technique to analyze requirements and
guide later software phases.

For the quality goal, we describe the use of the requirements
document, the interface and design review process, and the use of
inspections. We mention functional testing as guided by the
requirements document.

For the schedule goal, we discuss the organization of the team
into working groups and the use of the requirements document to
ensure coverage of a requirements matrix.

Finally, we describe several management processes for balancing
conflicting goals and assessing project dependencies and risks
through process metrics. From this experience, we have formulated
a collection of recommendations that we feel are true not only
for the DEC TP WORKcenter project but for all projects.

THEME

Every engineer on the DEC TP WORKcenter development team had
experience with formal or semiformal software development
processes. The positive experiences came from projects that were
developed smoothly and without incident. The negative experiences
stemmed from projects that ended in disaster in spite of (or
because of) formal development methodologies. The entire
engineering team, however, was enthusiastic about formal
policies, as long as the team could be in control of the process.
The team's unofficial motto was

 "Use the process, but
 don't let the process use you."

Throughout the development cycle, we looked for formal techniques
to control various parts of our work, and then tried to adapt
these techniques to the particular requirements and capabilities
of our development team. In some instances, we were able to
install a formal mechanism with little or no modification; but
for most cases, we had to refine the mechanism, using the

following steps.

 1. Document the mechanism.

 2. Test it on a realistic sample task.

 3. Collect objective measures of how well it worked.

 4. Adapt the mechanism.

 5. Repeat until satisfied.

We never used complex metrics, software physics, or deep
analysis; the key to any success was to keep the process simple
and to continually adapt it to fit the nature of the task and the
team. Once we were satisfied with the process, we tried to apply
it uniformly and consistently across the product development.

DESIGN REQUIREMENTS

Because the DEC TP WORKcenter product was the result of a
customer-driven process, we were faced with a number of
challenges, which can be categorized into the following three
areas.

 o Gathering customer requirements efficiently, accurately,
 and objectively

 o Capturing and integrating the requirements of several
 customers into a single, coherent specification

 o Recording the requirements specification so that it could
 be used as a reference during design and testing phases

With the help of Digital's Software Engineering Technology Center
(SETC), we focused on two techniques for gathering requirements:
Quality Function Deployment and Contextual Inquiry. Furthermore,
we utilized a formal requirements specification document to
capture the results of these techniques. We also utilized
prototypes to validate our understanding with the customers and
documented this in another document, the DEC TP WORKcenter
Conceptual Model.

Quality Function Deployment

Quality Function Deployment (QFD) is an exercise in forming
consensus among team members (including customers and development
partners) for identifying key requirements.[2,3] In a previous
project, QFD techniques had been performed for many of the same
functionalities of the DEC TP WORKcenter product. We evaluated
the validity of the data and results of QFDs for that project to
determine if they could be applied to the overlapping features in

the DEC TP WORKcenter product. This method allowed us to take
advantage of valid QFD data and results without incurring the
cost of producing them.

Apart from the reuse of valid QFD results, we found QFDs to be a
fairly expensive way to gather requirements. The QFD techniques
involve a great deal of preparation, customer participation, and
analysis. The results, however, justified the effort expended. We
emerged from the QFD process with a prioritized list of
requirements. For each requirement, we also identified (1) how
well the current products satisfy the requirements, and (2) how
well the competition satisfies the requirements.

All of these factors were expressed as numbers and could be
readily ranked for importance, cost, and benefit. Once the
requirements were ranked, we determined the features to be
included in the product based on resources and projected market
dates. These decisions were then validated by the customers who
had been involved in the initial requirements gathering.

Recommendation: Reuse QFD data. Existing QFD data (either QFD
input data and/or requirements resulting from the QFD) may be
reused upon assessment of their validity.

Contextual Inquiry

Acting on the advice of the SETC, we used Contextual Inquiries
(CIs) to gather requirements.[4,5] CIs are structured visits to
selected customer sites to record exactly how the customer
develops ACMS applications today, and exactly how a proposed
solution could improve the customer's productivity. This
technique involved a great deal of analysis and was an expensive
way to gather requirements. We feel it was worth the cost because
it gave us confidence in our requirements list. We were able to
compare the requirements against actual customer activities to
determine:

 1. Those requirements on the list that would not be used by
 the customers

 2. Those customer activities that would not be supported by
 the product as described in the requirements list

Both the CI and QFD techniques yielded firm, objective
requirements specifications that could be compared, ranked, and
further analyzed.

In retrospect, the CIs that had the most impact were the ones
that were properly documented for future reference immediately
after the CI visit.

Recommendation: Document Contextual Inquiry Data. In order to
trace information to the CI and/or reuse its data, the CI visit
needs to be formally documented.

Requirements Specification

We needed an effective way to capture and combine the product
requirements into a formal specification that could be used as a
benchmark for development. Several engineers on the team had a
background in programming for the Department of Defense and were
familiar with the DoD-STD-2167A development process.[6] These
engineers convinced the team that the process is beneficial if it
is simplified and streamlined.

Accordingly, the team analyzed the DoD-STD-2167A Software
Requirements Specification format and modified the format to the
project's needs. As a result, the team produced a requirements
specification document that matched the scope of the project,
reflected the background of the team members, and traced the
origin of the customer requirements. The final document was 40
pages of semiformal prose and has remained current for the
duration of the project.

We have used the requirements document as an important data
source in later development phases. During software design, we
compared design features to the requirements document to
eliminate unnecessary design frills and to detect requirements
that were not met. We referred to the requirements specification
to develop a test suite for complete testing of all product
features. To ensure the use of the requirements specification,
the documentation should be kept as short as possible, as concise
as possible, and as descriptive as necessary.

Recommendation: Customize the requirements specification. The
level of formality of the requirements specification should
reflect the purpose of the document. Furthermore, it should be as
short as possible, as concise as possible, and as descriptive as
necessary.

Prototypes and Conceptual Model

While we were preparing the requirements specification, we also
built two prototypes of the human interface for the DEC TP
WORKcenter environment. The first prototype existed only on paper
as a series of Motif windows that illustrated how we imagined the
main functions of the DEC TP WORKcenter would operate. We showed
this paper prototype to customers, asked for their feedback, and
made extensive modifications based on their reactions. We
repeated this process at least three times. In retrospect, it was
an expensive way to refine the interface, but it gave us
confidence that we were building the correct interface to our

product. This paper prototype was captured in a formal document
called the DEC TP WORKcenter Conceptual Model and would later
support the DEC TP WORKcenter Functional Specification and the user
interface design.

To demonstrate that the product was practical and to get some
initial performance results, we also constructed an executable
prototype of a few product functions. This activity was valuable
in demonstrating feasibility, but it had two unfortunate side
effects. First, it distracted the team from the design process,
which caused the schedule to slip. Second, we did not have the
sense to discard the prototype after it served its purpose. The
engineering prototype suddenly became the first base-level code
and entered the main line of development. Eventually, we had to
rewrite most of the prototype code, which was a more costly
procedure than starting with a clean design. The engineering
prototype can be a valuable step if it has a well-defined purpose
and if it is discarded when that purpose is served.

Recommendation: Restrict prototype usage. The engineering
prototype can be a valuable step in product development, if it
has a well-defined purpose and if it is restricted to that
purpose.

DESIGN PHASE

We used several techniques during the design phase, including

 o Feature-based working groups

 o Electronic design notebook

 o Layered approach to object-oriented design

 o Detail-level design header files

The feature-based working groups allowed the team to develop the
high-level design in parallel in a concentrated period of time.
The output of each feature-based working group was kept in an
electronic design notebook and formed the evolving high-level
design. Once the high-level design was completed, the team
reviewed the design to validate consistency and integrity to
product requirements and between interacting or dependent product
features.

A layered approach to the object model was used to describe the
design of the product. The layered approach allowed for easy
separation of the object-oriented design from the object-oriented
features of the product. After the high-level design was
completed, header files were used to define the detail design of
the product.

Feature-based Working Group Technique

During the design phase, we defined the major features of the
product and determined which requirements affected which feature.
We then formed feature-based working groups (FBWGs) to develop
the design of each feature with respect to its associated product
requirements. Team members participated in the FBWG of interest
to them, and a designated responsible individual (DRI) led each
FBWG. Since the number of team members was less than the number
of working groups, team members participated in more than one
FBWG. There were approximately twice as many features as there
were team members. Consequently, each team member was a DRI of
approximately two FBWGs and participated as a member of
approximately six other FBWGs. Once membership of the various
FBWGs was established, the FBWGs met, depending upon the
availability of the members. Meeting conflicts were avoided by
tracking FBWG meetings on a white board.

Table 1 illustrates the team members' participation in the
various FBWGs for the DEC TP WORKcenter project. The columns in
Table 1 represent the various FBWGs, and the rows represent the
project team members. The entries in the table indicate the role
that a specific team member played in the specific FBWG. The load
column indicates the overall role (number of FBWG DRI roles,
number of FBWG member roles) the team member played across all
FBWGs.

Table 1 Feature-based Working Group Matrix

Team Load WG WG WG WG WG WG WG WG WG WG WG WG WG WG WG WG WG WG WG
Member D/P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Engineer 1 1/11 P . . P D P P . P P P P . P P
Engineer 2 2/5 . . . D . D . . P . P . . . P
Engineer 3 2/8 P . . . P P D D P P P
Engineer 4 2/9 P P . . P . . . P D . P . P . . D P .
Engineer 5 4/8 D P D . P . P P D D
Engineer 6 1/9 . P . P P P . . . P P . D . P P . . .
Engineer 7 1/2 P . . D
Engineer 8 3/4 D . . D P D .
Engineer 9 2/7 P D P D P . P P
Documentation
 Writer 1 0/1 P . . .
Documentation
 Writer 2 1/3 . P P D . . .

Notes:

D -- Designated responsible individual for the WG
P -- Participant in the WG

Dependencies or interactions between product features needed to
be managed. If a team member's participation overlapped with the
interacting features, that person provided a means of
communicating among the associated FBWGs. Otherwise, the
corresponding DRIs provided this exchange of information. Also,
the project leader and the architect attempted to attend all
meetings to guarantee consistency across the various FBWGs. This
allowed us to resolve many issues consistently, but we would have
benefited from a more formal mechanism for settling design
disputes.

The FBWGs continued to a lesser extent during the detail-level
design, but the issues were narrower in nature and were dealt
with by the FBWG DRI and the affected component DRIs.

In conclusion, the FBWGs provided clear assignment of
responsibility and guaranteed that the design was covered by more
than one team member. Due to their parallel nature, the FBWGs had
no adverse affect on the schedule. Unfortunately, even for small
groups, the FBWG generated too much specialization of knowledge.

Recommendation: Adapt the design process. The design process
should be adapted to meet the schedule and resource constraints.

Electronic Project Notebook

The minutes and draft/final design of each FBWG were recorded in
an electronic project notebook. The electronic project notebook
provided a means of communicating the evolving design of the
product among the team members. Once entered into the notebook,
the information was made available to the team. Also, the entries
posted in the notebook during the day were collected and mailed
electronically to the team members every night so that the team
remained current on all design issues and decisions. This proved
an efficient method for communicating the information to the
entire team as well as for recording the information for later
use.

Without a goal to produce a formal design document, the team
members were not as careful in documenting their design.
Furthermore, the design was dispersed over a set of notebook
entries that created issues in two areas:

 o Configuration management: Which notes formed the current
 set of design notes?

 o Inspection difficulty: Which version of a design note was
 a source document?

The electronic project notebook was not limited to the design
phase but was used to record and exchange information throughout
the phases of the product development life cycle.

Recommendation: Capture project information. The electronic
project notebook is an easy way to share knowledge and exchange
ideas, issues, solutions, futures, etc., about a project.

Recommendation: Generate formal design specifications. Although
the electronic project notebook contained the design, it is not a
substitute for a formal design specification.

Layered Approach to Object-oriented Design

Since the product would be object-based, we used object-oriented
design (OOD) techniques. Due to the inexperience of some team
members, the distinction between abstraction levels was not
always clear. To allow the team to recognize the different
abstraction levels, we used different languages for the two
levels of abstraction. At the product level, object-oriented
terminology was used. At the product architecture level, a
constrained layered model was used in which the constraints
allowed a simple mapping into an object-oriented model.

The following constraints were applied to the various layers in
the model.

 1. Each layer provides one and only one specific type of
 resource.

 2. Each layer provides a set of services to manipulate that
 resource.

 3. The resource and/or its services may use other layers to
 provide needed resources and services.

These rules allowed the team to distinguish between the design of
the product and the data model of the objects manipulated by both
the product and its object-based operations. Although this
layered approach to OOD was formulated to make use of the team's
background, the resulting design was not a pure OOD.

Recommendation: Understand the purpose for modifying a process.
Although the layered approach to OOD attempts to bridge
traditional design methods to OOD methods, it should represent
only a phase in a planned transition to OOD techniques.

Detail-level Design Header Files

During the detail-level design stage, we refined the various
layers required to implement the resources and services to
support the product features. This included determining the final

interface of each layer, defining the resource controlled by the
layer, and describing the functionality of the services provided
by each layer.

To optimize consistency and effort, the detail-level design was
represented as a C header file that provides the services of a
layer implemented in a C module. Furthermore, if a module
represents an object, then the header file consists of the
visible operations that can be performed on the object.

The header files were placed under configuration control while
issues and resolutions concerning a layer were recorded in the
electronic design notebook.

Since several features required the services of a specific layer
(later implemented as a C module or component), we captured the
relationships in a feature/component matrix. Table 2 gives the
feature/component matrix for the DEC TP WORKcenter product. The
columns in Table 2 indicate the various product features, and the
rows indicate the components of the product. An entry in the
matrix indicates that the component implements or supports part
of the product feature.

Table 2 Feature/Component Matrix

Compo- Features
nents 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 1 3
 2 . . 3 3 3 3 3 3 . 3 . 3 . 3
 3 . . 3 3 3 3 3 3 . 3 . 3 . 3 3 . . .
 4 . 2 2 1+ 2+ 3 3 2+ . 3 2+ 3 2 . . . 2+ D
 5 . 3 3 3 3 3 3 3 . 3 3 3 3 3 . . D
 6 . 2 2 2+ 2+ 3 3 2+ . 3 2+ 3 2 3 D
 7 . 2 2+
 8 . . 2 2+ 2+ 3 3 2+ . 3 2+ 3 D
 9 3 2+
 10 3
 11 2+
 12 2+
 13 . . 1 2
 14 . . 1+ 1+ 2+ 3 3 2+ 2 3 2 2+
 15 2 . 1+ 1+ 2+ 3 3 2+ 2+ 3 2 2+
 16 . .
 17 3
 18 1+ . . . 2+
 19 1+ . . .
 20 1+
 21 2 3
 22 2+ 2+ . 2+ . .
 23 2+ . .
 24 3 . . . 3 . 3 .

Notes:

1 : Base Level 1
1+ : Base Levels 1 and 2
2 : Base Level 2
2+ : Base Levels 2 and 3
3 : Base Level 3
D : Deferred

A DRI was assigned to each header file to coordinate the needs of
the various features on that layer. The component DRI met with
several FBWG DRIs to ascertain the needs of each feature and
present a satisfactory interface. On the other hand, each FBWG
DRI needed to coordinate with several component DRIs to provide
the capability for the associated feature.

Recommendation: Share information across development phases. The
use of header files as part of the detail-level design provided
(1) a centralized location for all interface information about a
module, (2) no redundancy of interface information, and (3) an
up-to-date interface in the corresponding code.

Design Reviews

The entire team reviewed the high-level design for consistency
across the various product features and for integrity of the
dependencies between features. Due to time constraints and the
amount of design information, this review was inefficient and was
not formally completed. Marathon high-level design review did not
work since it was too intense and too long. We concluded that the
review process must be streamlined.

The detail-level design was represented as C header files.
Consequently, they were targets for code inspection.

Recommendation: Review the design in manageable pieces. Divide
the high-level design into modules so that its review is
manageable.

CODE INSPECTIONS

Although inspections were used for the requirements document and
the data model design, most of the inspections occurred during
the DEC TP WORKcenter coding phase. The technique was modified to
deal with time constraints and the amount of coding, and to gain
the acceptance of the team on the usefulness of inspections.
Basically, we defined a formal inspection and a semiformal
inspection.

The formal inspections follow the guidelines as described by
Fagan.[7,8] The semiformal inspections had the following
restrictions:

 1. Only two engineers participated in the inspection.

 2. The moderator was also the reader.

 3. The author was also the recorder.

The following criteria were established to decide which type of
inspection would be performed.

 1. Complex code was formally inspected.

 2. Critical code was formally inspected.

 3. Remaining code was informally inspected.

The complexity of the module was determined by computing the
McCabe cyclomatic complexity of the module.[9,10] The threshold
for complex code was initially set at 7 and would be periodically
adjusted based on feedback on the effectiveness of the
inspections. Note that the literature has usually determined 10
to be this threshold. At 7, approximately 17 percent of the code
was considered complex. This may be attributed to either the
tendency of modules to represent objects in the design or the use
of the X Window System and Motif as the graphical user interface.

The project leader determined the critical code according to the
nature of the code or intermodule dependencies in the system.
This information was available from the detail-level design. One
example is DEC TP WORKcenter parsers, where the flow of control
is based on pattern triggers rather than on sequential execution
of statements. Consequently, the DEC TP WORKcenter parsers were
deemed to be complex.

All remaining code was inspected using semiformal techniques. To
discourage the engineers from artificially constraining their
code to be noncomplex, the project leader could randomly choose
code for formal inspections (this was never needed).

As another refinement to the inspection process, we reduced and
adapted the set of codes used to characterize a defect according
to the type of document being inspected. This technique allowed
us to accelerate the inspection and continue to capture the
information of interest.

In another attempt to refine the inspection process, the recorder
defined the defect codes. This accelerated the semiformal
inspections but slowed the formal inspections.

Recommendation: Understand the purpose for modifying a process

(revisited). Under schedule or resource constraints, consciously
decide how to formally relax the inspection process and
understand the consequences.

Recommendation: Choose tools to support the process. Given
unbiased criteria to select the level of inspection, choose the
appropriate tools to support the decision process.

SCHEDULING

Project scheduling played an important role in managing the
project. Scheduling tools associated with personal computers
(such as program evaluation and review technique [PERT], critical
path method [CPM], precedence network, and resource leveling
capabilities) were used to manage the schedule. Tasks were
classified as either process-related or product-feature-related.
The process-related tasks covered activities such as Digital's
Phase Review Process or customer interactions. The
product-feature-related tasks were activities directly related to
the design, implementation, and testing of product features.

One distinction of the DEC TP WORKcenter product is that most of
the product-feature-related schedule was determined from the
feature/component matrix (see Table 2). When a specific feature
was planned to be added into the product, the components
supporting that feature were also scheduled to be added. The
entries in the matrix in Table 2 indicate in which code base
level the component implements or supports the product feature.

The engineer(s) assigned to a task submitted an estimate of the
time needed to accomplish the task to the project management. If
the estimates were considered unreasonable based on past
engineering experiences, an in-depth analysis was performed to
understand the discrepancy. These discrepancies were due to
either a misunderstanding by the project management of the
complexity of the task or an inefficient solution plan by the
engineer to build upon existing components or processes.

Recommendation: Share information across development phases
(revisited). Use requirements analysis and design information to
define the schedule.

Recommendation: Get team support for the schedule. For any
schedule, obtain commitment from the team.

Efficiency Factor

We also calculated an efficiency factor to account for activities
that would lower the efficiency of engineers in performing their

tasks. These activities included periodic mail reading, attending
non-project-related meetings, sick time, jury duty, and code
inspections. We revised all work estimates to reflect the
engineer's efficiency factor. Initially, the efficiency factor
for most of the engineers was calculated to be 60 percent.
Although the efficiency factor was intended to achieve the most
realistic schedule possible, it was the cause of several
problems:

 o The efficiency-related activities were counted twice if
 the engineer's estimates included these activities.

 o There is an assumption that the efficiency-related
 activities are spread uniformly over all tasks. This is
 true for repetitive activities that occurred within the
 resolution of the tasks being estimated, but other
 efficiency-related activities occurred rarely (e.g., sick
 time) or were associated with a specific phase of the
 project (e.g., code inspections).

As a result, the schedules needed to be refined and adjusted
frequently.

Recommendation: Understand the factors that impact the schedule.
The efficiency factor attempts to capture those separate
activities that were not worthwhile but impact the efficiency of
other activities.

Unplanned Tasks

During the initial phase of the project, the project management
recognized that schedule predictability was highly influenced by
unplanned tasks. To better understand the nature of unplanned
tasks, the project management participated in a Software Metrics
In Action (SMIA) course offered by the SETC. The SMIA course was
applied to our problem of unplanned tasks over the next phase of
the project. To our surprise, we concluded that, no matter how
well one plans, one always has an additional 20 to 25 percent of
unplanned tasks. This included new tasks, existing tasks that
took longer, and existing tasks that were completed.

Recommendation: Understand the impact of unplanned activities.
No matter how well one plans, one always has an additional 20 to
25 percent of unplanned tasks. This includes new tasks, existing
tasks that took longer, and existing tasks that were completed.

Milestones

The difficulties of estimating tasks and the existence of
unplanned tasks would sometimes render the schedule invalid.

Milestones within the project schedule allowed the team to meet
the associated deadlines. Milestones also caused two events
that affected the project:

 o Unplanned tasks were prioritized against planned tasks,
 causing readjustment of milestones based on the
 prioritization criteria.

 o Engineers became more efficient, causing the efficiency
 rating to be revised and allowing some of the unplanned
 tasks to be included without impacting the schedule.

Recommendation: Define milestones. The team works best when
well-defined milestones for goals are established.

Feature "Hit List"

Toward the end of the design phase, we determined that the
planned date for completion could not be met unless we reduced
the functionality of the product. We created a feature "hit list"
in the electronic project notebook in which we listed the
candidates for elimination from the product. The feature hit list
was used in a Pugh process to determine, in a structured manner
and with group consensus, the features to be eliminated in order
to meet the projected market date.[11]

Some of the features that we eliminated through our hit-list
technique originated in the QFD process. During field test
training, customer feedback indicated that some of the eliminated
features were needed for a viable product. This event caused us
to reevaluate and readjust the projected market date in order to
include the missing features. Thus, we reaffirmed the validity of
the results supporting our customer satisfaction goal.

Furthermore, the readjustment of the projected market date had
high management visibility, but the utilization of the customer
satisfaction processes permitted us to adequately document the
rationale for and justification of the readjustment.

Recommendation: Manage and adapt the change process. When making
a change that is visible to the customer and/or management, one
needs (1) a formal process for defining the change, (2) consensus
among the team, (3) traceability to facts supporting the original
decision and its change, (4) impact analysis of change, and (5)
agreement from customer and/or management.

FINAL PHASE

In the final stages of the DEC TP WORKcenter product development,
we conducted field tests at customer sites, identified defects,

and determined the final changes to be made to the product.

Field Test Advocacy Program

During field test, we took a proactive approach in our
relationship with the customer field test sites. Under our Field
Test Advocacy Program, an engineer is assigned to monitor the
progress and to resolve any issues or problems at the customer's
field test site. The engineer monitors the customer's software
problem reports (SPRs) in the field test SPR database to
understand (or be aware of) any patterns in SPRs.

In one example, a customer raised a series of feature suggestions
that were all attempts to use the DEC TP WORKcenter environment
for an unsupported object type. Although the suggested features
would be useful, they would not be as important if the main
feature was provided. Monitoring customer SPRs provided us with
an understanding of how the customer was testing and assured the
customer that the engineering team understood the customer's
concerns.

Recommendation: Adopt useful processes. Adopt processes in which
the benefits outweigh the costs, but understand the time frame of
both.

Tracking Defects and Monitoring Fixes

As the product was being developed, all (internal and external)
problems were tracked using a problem tracking tool. Every
problem was entered into the problem database and given a unique
identifier. This allowed the engineer to associate a fix with the
corresponding problem identifier. Furthermore, the problem
tracking tool allowed us to monitor the defect identification and
fix rate on the project. Figure 1 shows both the number of
problems entered over time as well as the problems fixed over
time.[12] Interesting points in the graph are the slopes,
plateaus, change in slope, and vertical distance between the two
lines.

The tracking tool also allowed us to verify that the priority of
the fixes was consistent to the severity of the problem. Figure 2
shows the same graph for the two highest severity classes and
indicates that the problems with the highest severity classes
were monitored closely and fixed immediately.

Tracking the problems worked well to identify issues during the
DEC TP WORKcenter product development. More analysis, however,
was needed to understand trends as soon as possible.

Recommendation: Adopt processes to collect valuable metrics.

Understand the rationale for adopting a metric and set up a
process that achieves the goal of the metric.

MUST-DO Lists

As we approached major code freeze dates, we prioritized the
defects to be fixed and compared them to our MUST-DO criteria.
Usually the criteria consisted of the following.

 o The defect was a priority 1 or 2.

 o The defect impeded testing efforts of critical
 functionality.

 o The defect represented a regression from a previous
 stable version of the product.

The defects were added to the MUST-DO list if they met the
criteria. This list indicated backlogs of defects that needed to
be resolved prior to declaring a code freeze. Figures 3 and 4
show MUST-DO count patterns prior to reaching code freeze. The
solid line (total) indicates the outstanding MUST-DO items over
time.

Recommendation: Define valuable metrics (or focus on important
issues). The MUST-DO list helps prioritize the tasks that require
focus during a specific activity and provide well-defined goals
for the team.

Product Stability

Once the product had reached feature freeze, a change control
board was put in place to guarantee the stability of the product
and to avoid any major regression that would impact the schedule.
The board approved the inclusion of any defect fix after (1)
review or inspection of the code modifications, and (2) adequate
testing.

Furthermore, we monitored the defect discovery rate to determine
if it was stable enough to warrant a code freeze.[12] In this
case, we measured a running total of the number of MUST-DO items
added over the last five days. Figures 3 and 4 show this metric.
The broken line (five-day cumulative) indicates the five-day
running total and measures if the changes are stabilizing.

Recommendation: One can always improve. It is never too late to
set up a change control board to reduce the introduction of new
problems and regressions.

CONCLUSIONS

The DEC TP WORKcenter object-based development environment
(version 1) was developed over approximately 24 months. During
this time, we were presented with a variety of situations that
could have impacted our project goals. This paper presents
several of the processes that the team adopted to meet the
project goals. Table 3 summarizes the recommendations based on
our experiences on adopting processes to support our goals. In
retrospect, we see that the project functioned smoothly when all
of the following conditions were met.

 o Everyone understood what development phase was in
 progress.

 o We identified a set of processes to govern each phase.

 o We adapted the process to suit the project team.

 o We adapted the process to the realities of the project
 schedule.

 o All the team members understood and accepted the process.

 o We followed the process conscientiously.

In short, the entire experience of the DEC TP WORKcenter project
can be summed up as:

 o Software development processes should be as simple as
 possible.

 o The team should formally adapt the processes to its own
 needs.

 o The team should understand the consequences of modifying
 the process.

Although these rules of thumb do not ensure a smooth, productive
project, the DEC TP WORKcenter team found them to contribute to a
successful conclusion.

Our recommendations can be adopted by any project team; however,
the team would benefit by taking part in a similar process of
identifying its goals and supporting them with appropriate
processes.

Table 3 Recommendations Based on the DEC TP WORKcenter Development Project

 1. Reuse QFD data.

 2. Document Contextual Inquiry data.

 3. Customize requirements specification.

 4. Restrict prototype usage.

 5. Adapt the design process.

 6. Capture project information.

 7. Generate formal design specification.

 8. Understand the purpose for modifying a process.

 9. Share information across development phases.

10. Review design in manageable pieces.

11. Choose tools to support process.

12. Get team support for the schedule.

13. Understand the factors that impact the schedule.

14. Understand the impact of unplanned activities.

15. Define milestones.

16. Manage and adapt the change process.

17. Adopt useful processes.

18. Adopt processes to collect valuable metrics.

19. Define valuable metrics (or focus on important issues).

20. One can always improve.

ACKNOWLEDGMENTS

The authors would like to acknowledge the members of the DEC TP
WORKcenter team, past and present, that helped define and adopt
the various processes presented in this paper. Also, the detailed
comments from the many reviewers were very helpful.

REFERENCES

 1. T. Speer and M. Storm, "Digital's Transaction Processing
 Monitors," Digital Technical Journal, vol. 3, no. 1 (Winter
 1991): 18-32.

 2. J. Hauser and D. Clausing, "The House of Quality," Harvard
 Business Review, vol. 66, no. 3 (May-June 1988): 63-73.

 3. L. Cohen, "Quality Function Deployment: An Application
 Perspective from Digital Equipment Corporation," National
 Productivity Review, vol. 7, no. 3 (Summer 1988): 197-208.

 4. K. Holtzblatt and S. Jones, "Contextual Inquiry: Principles
 and Practice," Technical Report DEC-TR 729 (Maynard, MA:
 Digital Equipment Corporation, 1990).

 5. D. Wixon, K. Holtzblatt, and S. Knox, "Contextual Design: An
 Emergent View of System Design," Technical Report DEC-TR 686
 (Maynard, MA: Digital Equipment Corporation, 1990).

 6. "Military Standard Defense System Software Development,"
 Technical Report DoD-STD-2167A (Washington, D.C.: U.S.
 Department of Defense, 1988).

 7. M. Fagan, "Design and Code Inspections to Reduce Errors in
 Program Development," IBM Systems Journal, vol. 15, no. 3
 (1976): 219-248.

 8. M. Fagan, "Advances in Software Inspections," IEEE
 Transactions on Software Engineering, vol. SE-12, no. 7
 (July 1986): 744-751.

 9. T. McCabe, "A Software Complexity Measure," IEEE
 Transactions on Software Engineering, vol. SE-2, no. 6
 (December 1976): 308-320.

10. T. McCabe and C. Butler, "Design Complexity Measurement and
 Testing," Communications of the ACM, vol. 32, no. 12
 (December 1989): 1415-1425.

11. S. Pugh, Total Design: Integrated Methods for Successful
 Product Engineering (Reading, MA: Addison-Wesley, 1991).

12. R. Grady, Practical Software Metrics for Project Management
 and Process Improvement (Englewood Cliffs, NJ:
 Prentice-Hall, 1992).

TRADEMARKS

ACMS, DEC TP WORKcenter, and Digital are trademarks of Digital
Equipment Corporation.

Motif is a registered trademark of Open Software Foundation, Inc.

X Window System is a trademark of the Massachusetts Institute of
Technology.

BIOGRAPHIES

Ernesto Guerrieri Ernesto Guerrieri, a principal software engineer

in the Production Systems Group, is the TP WORKcenter project
leader. He is an adjunct professor at Boston University. Prior to
joining Digital in 1990, he was employed by SofTech, Inc., where
he was the chief designer and developer of reusable Ada products
for information systems development (RAPID) center library. He
holds a Ph.D. in software engineering from Rensselaer Polytechnic
Institute and an M.S.C.S. from the University of Pisa. Ernesto
has published various papers in software engineering. He is a
member of ACM, IEEE Computer Society, and Sigma Xi.

Bruce J. Taylor A principal software engineer, Bruce Taylor is
the software architect of the TP WORKcenter project. Prior to
joining Digital in 1991, Bruce worked in CASE tool development at
Intermetrics, Inc. He designed the repository database for the
SLCSE software development environment and has published many
papers on the use of database technology in the software
development environment. He has a B.A. in English and an M.A. in
computer science from Duke University. His current research
interests include repository support for complete software
life-cycle environments and software quality strategies.

===
Copyright 1993 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

