
 GIGAswitch System: A High-performance Packet-switching Platform

 by

 Robert J. Souza, P. G. Krishnakumar, Cüneyt M. Özveren,
 Robert J. Simcoe, Barry A. Spinney, Robert E. Thomas,
 Robert J. Walsh

ABSTRACT

The GIGAswitch system is a high-performance packet-switching
platform built on a 36-port 100 Mb/s crossbar switching fabric.
The crossbar is data link independent and is capable of making
6.25 million connections per second. Digital's first GIGAswitch
system product uses 2-port FDDI line cards to construct a 22-port
IEEE 802.1d FDDI bridge. The FDDI bridge implements distributed
forwarding in hardware to yield forwarding rates in excess of
200,000 packets per second per port. The GIGAswitch system is
highly available and provides robust operation in the presence of
overload.

INTRODUCTION

The GIGAswitch system is a multiport packet-switching platform
that combines distributed forwarding hardware and crossbar
switching to attain very high network performance. When a packet
is received, the receiving line card decides where to forward the
packet autonomously. The ports on a GIGAswitch system are fully
interconnected with a custom-designed, very large-scale
integration (VLSI) crossbar that permits up to 36 simultaneous
conversations. Data flows through 100 megabits per second (Mb/s)
point-to-point connections, rather than through any shared media.
Movement of unicast packets through the GIGAswitch system is
accomplished completely by hardware.

The GIGAswitch system can be used to eliminate network hierarchy
and concomitant delay. It can aggregate traffic from local area
networks (LANs) and be used to construct workstation farms. The
use of LAN and wide area network (WAN) line cards make the
GIGAswitch system suitable for building, campus, and metropolitan
interconnects. The GIGAswitch system provides robustness and
availability features useful in high-availability applications
like financial networks and enterprise backbones.

In this paper, we present an overview of the switch architecture
and discuss the principles influencing its design. We then
describe the implementation of an FDDI bridge on the GIGAswitch
system platform and conclude with the results of performance
measurements made during system test.

GIGAswitch SYSTEM ARCHITECTURE

The GIGAswitch system implements Digital's architecture for
switched packet networks. The architecture allows fast, simple
forwarding by mapping 48-bit addresses to a short address when a
packet enters the switch, and then forwarding packets based on
the short address. A header containing the short address, the
time the packet was received, where it entered the switch, and
other information is prepended to a packet when it enters the
switch. When a packet leaves the switch, the header is removed,
leaving the original packet. The architecture also defines
forwarding across multiple GIGAswitch systems and specifies an
algorithm for rapidly and efficiently arbitrating for crossbar
output ports. This arbitration algorithm is implemented in the
VLSI, custom-designed GIGAswitch port interface (GPI) chip.

HARDWARE OVERVIEW

Digital's first product to use the GIGAswitch platform is a
modular IEEE 802.1d fiber distributed data interface (FDDI)
bridge with up to 22 ports.[1] The product consists of four
module types: the FDDI line card (FGL), the switch control
processor (SCP), the clock card, and the crossbar
interconnection. The modules plug into a backplane in a 19-inch,
rack-mountable cabinet, which is shown in Figure 1. The power and
cooling systems provide N+1 redundancy, with
provision for battery operation.

[Figure 1 (The GIGAswitch System) is not available in ASCII
format.]

The first line card implemented for the GIGAswitch system is a
two-port FDDI line card (FGL-2). A four-port version (FGL-4) is
currently under design, as is a multifunction asynchronous
transfer mode (ATM) line card. FGL-2 provides connection to a
number of different FDDI physical media using media-specific
daughter cards. Each port has a lookup table for network
addresses and associated hardware lookup engine and queue
manager. The SCP provides a number of centralized functions,
including

 o Implementation of protocols (Internet protocol [IP],
 simple network management protocol [SNMP], and IEEE
 802.1d spanning tree) above the media access control
 (MAC) layer

 o Learning addresses in cooperation with the line cards

 o Maintaining loosely consistent line card address
 databases

 o Forwarding multicast packets and packets to unknown
 destinations

 o Switch configuration

 o Network management through both the SNMP and the
 GIGAswitch system out-of-band management port

The clock card provides system clocking and storage for
management parameters, and the crossbar switch module contains
the crossbar proper. The power system controller in the power
subsystem monitors the power supply front-end units, fans, and
cabinet temperature.

DESIGN ISSUES

Building a large high-performance system requires a seemingly
endless series of design decisions and trade-offs. In this
section, we discuss some of the major issues in the design and
implementation of the GIGAswitch system.

Multicasting

Although very high packet-forwarding rates for unicast packets
are required to prevent network bottlenecks, considerably lower
rates achieve the same result for multicast packets in extended
LANs. Processing multicast packets on a host is often done in
software. Since a high rate of multicast traffic on a LAN can
render the connected hosts useless, network managers usually
restrict the extent of multicast packets in a LAN with filters.
Measuring extended LAN backbones yields little multicast traffic.

The GIGAswitch system forwards unicast traffic in a distributed
fashion. Its multicast forwarding implementation, however, is
centralized, and software forwards most of the multicast traffic.
The GIGAswitch system can also limit the rate of multicast
traffic emitted by the switch. The reduced rate of traffic
prevents lower-speed LANs attached to the switch through bridges
from being rendered inoperable by high multicast rates.

Badly behaved algorithms using multicast protocols can render an
extended LAN useless. Therefore, the GIGAswitch system allocates
internal resources so that forward progress can be made in a LAN
with badly behaved traffic.

Switch Fabric

The core of the GIGAswitch system is a 100 Mb/s full-duplex
crossbar with 36 input ports and 36 output ports, each with a
6-bit data path (36 X 36 X 6). The crossbar is formed from
three 36 X 36 X 2 custom VLSI crossbar chips. Each crossbar
input is paired with a corresponding output to form a
dual-simplex data path. The GIGAswitch system line cards and SCP
are fully interconnected through the crossbar. Data between
modules and the crossbar can flow in both directions

simultaneously.

Using a crossbar as the switch connection (rather than, say, a
high-speed bus) allows cut-through forwarding: a packet can be
sent through the crossbar as soon as enough of it has been
received to make a forwarding decision. The crossbar allows an
input port to be connected to multiple output ports
simultaneously; this property is used to implement multicast. The
6-bit data path through the crossbar provides a raw data-path
speed of 150 Mb/s using a 25 megahertz (MHz) clock. (Five bits
are used to encode each 4-bit symbol; an additional bit provides
parity.)

Each crossbar chip has about 87,000 gates and is implemented
using complementary metal-oxide semiconductor (CMOS) technology.
The crossbar was designed to complement the FDDI data rate;
higher data rates can be accommodated through the use of hunt
groups, which are explained later in this section. The maximum
connection rate for the crossbar depends on the switching
overhead, i.e., the efficiency of the crossbar output port
arbitration and the connection setup and tear-down mechanisms.

Crossbar ports in the GIGAswitch system have both physical and
logical addresses. Physical port addresses derive from the
backplane wiring and are a function of the backplane slot in
which a card resides. Logical port addresses are assigned by the
SCP, which constructs a logical-to-physical address mapping when
a line card is initialized. Some of the logical port number space
is reserved; logical port 0, for example, is always associated
with the current SCP.

Arbitration Algorithm. With the exception of some maintenance
functions, crossbar output port arbitration uses logical
addresses. The arbitration mechanism, called take-a-ticket, is
similar to the system used in delicatessens. A line card that has
a packet to send to a particular output port obtains a ticket
from that port indicating its position in line. By observing the
service of those before it, the line card can determine when its
turn has arrived and instruct the crossbar to make a connection
to the output port.

The distributed arbitration algorithm is implemented by GPI chips
on the line cards and SCP. The GPI is a custom-designed CMOS VLSI
chip with approximately 85,000 transistors. Ticket and connection
information are communicated among GPIs over a bus in the switch
backplane. Although it is necessary to use backplane bus cycles
for crossbar connection setup, an explicit connection tear down
is not performed. This reduces the connection setup overhead and
doubles the connection rate. As a result, the GIGAswitch system
is capable of making 6.25 million connections per second.

Hunt Groups. The GPI allows the same logical address to be
assigned to many physical ports, which together form a hunt
group. To a sender, a hunt group appears to be a single

high-bandwidth port. There are no restrictions on the size and
membership of a hunt group; the members of a hunt group can be
distributed across different line cards in the switch. When
sending to a hunt group, the take-a-ticket arbitration mechanism
dynamically distributes traffic across the physical ports
comprising the group, and connection is made to the first free
port. No extra time is required to perform this arbitration and
traffic distribution. A chain of packets traversing a hunt group
may arrive out of order. Since some protocols are intolerant of
out-of-order delivery, the arbitration mechanism has provisions
to force all packets of a particular protocol type to take a
single path through the hunt group.

Hunt groups are similar to the channel groups described by
Pattavina, but without restrictions on group membership.[2] Hunt
groups in the GIGAswitch system also differ from channel groups
in that their use introduces no additional switching overhead.
Hardware support for hunt groups is included in the first version
of the GIGAswitch system; software for hunt groups is in
development at this writing.

Address Lookup

A properly operating bridge must be able to receive every packet
on every port, look up several fields in the packet, and decide
whether to forward or filter (drop) that packet. The worst-case
packet arrival rate on FDDI is over 440,000 packets per second
per port. Since three fields are looked up per packet, the FDDI
line card needs to perform approximately 1.3 million lookups per
second per port; 880,000 of these are for 48-bit quantities. The
48-bit lookups must be done in a table containing 16K entries in
order to accommodate large LANs. The lookup function is
replicated per port, so the requisite performance must be
obtained in a manner that minimizes cost and board area. The
approach used to look up the fields in the received packet
depends upon the number of values in the field.

Content addressable memory (CAM) technology currently provides
approximately 1K entries per CAM chip. This makes them
impractical for implementing the 16K address lookup table but
suitable for the smaller protocol field lookup. Earlier Digital
bridge products use a hardware binary search engine to look up
48-bit addresses. Binary search requires on average 13 reads for
a 16K address set; fast, expensive random access memory (RAM)
would be needed for the lookup tables to minimize the forwarding
latency.

To meet our lookup performance goals at reasonable cost, the
FDDI-to-GIGAswitch network controller (FGC) chip on the line
cards implements a highly optimized hash algorithm to look up the
destination and source address fields. This lookup makes at most
four reads from the off-chip static RAM chips that are also used
for packet buffering.

The hash function treats each 48-bit address as a 47-degree
polynomial in the Galois field of order 2, GF(2).[3] The hashed
address is obtained by the equation:

 M(X) X A(X) mod G(X)

where G(X) is the irreducible polynomial, X**48 + X**36 + X**25 +
X**10 + 1; M(X) is a nonzero, 47-degree programmable hash multiplier
with coefficients in GF(2); and A(X) is the address expressed as a
47-degree polynomial with coefficients in GF(2).

The bottom 16 bits of the hashed address is then used as an index
into a 64K-entry hash table. Each hash table entry can be empty
or can hold a pointer to another table plus a size between 1 to
7, indicating the number of addresses that collide in this hash
table entry (i.e., addresses whose bottom 16 bits of their hash
are equal). In the case of a size of 1, either the pointer points
to the lookup record associated with this address, or the address
is not in the tables but happens to collide with a known address.
To determine which is true, the remaining upper 32 bits of the
hashed address is compared to the previously computed upper 32
bits of the hash of the known address stored in the lookup
record. One of the properties of this hash function is that it is
a one-to-one and onto mapping from the set of 48-bit values to
the same set. As long as the lookup table records are not shared
by different hash buckets, comparing the upper 32 bits is
sufficient and leaves an additional 16 bits of information to be
associated with this known address.

In the case where 1<size<7, the pointer stored in
the hash bucket points to the first entry in a balanced binary
tree of depth 1, 2, or 3. This binary tree is an array sorted by
the upper 32 hash remainder bits. No more than three memory reads
are required to find the lookup record associated with this
address, or to determine that the address is not in the database.

When more than seven addresses collide in the same hash bucket--a
very rare occurrence--the overflow addresses are stored in the
GIGAswitch content-addressable memory (GCAM). If several dozen
overflow addresses are added to the GCAM, the system determines
that it has a poor choice of hash multipliers. It then initiates
a re-hashing operation, whereby the SCP module selects a better
48-bit hash multiplier and distributes it to the FGLs. The FGLs
then rebuild their hash table and lookup tables using this new
hash multiplier value. The new hash multiplier is stored in
nonvolatile memory.

Packet Buffering

The FDDI line card provides both input and output packet
buffering for each FDDI port. Output buffering stores packets
when the outgoing FDDI link is busy. Input buffering stores
packets during switch arbitration for the desired destination

port. Both input and output buffers are divided into separate
first-in, first-out (FIFO) queues for different traffic types.

Switches that have a single FIFO queue per input port are subject
to the phenomenon known as head-of-line blocking. Head-of-line
blocking occurs when the packet at the front of the queue is
destined for a port that is busy, and packets deeper in the queue
are destined for ports that are not busy.

The effect of head-of-line blocking for fixed-size packets that
have uniformly distributed output port destinations can be
closely estimated by a simple probability model based on
independent trials. This model gives a maximum achievable mean
utilization, U ~ 1 -- 1/e = 63.2 percent, for switches with more
than 20 duplex ports. Utilization increases for smaller switches
(or for smaller active parts of larger switches) and is approximately
75 percent for 2 active ports. The independent trial assumption has
been removed, and the actual mean utilization has been computed.[4]
It is approximately 60 percent for large numbers of active ports.

Hunt groups also affect utilization. The benefits of hunt groups
on head-of-line blocking can be seen by extending the simple
independent-trial analysis. The estimated mean utilization is

[Equation here. Please see postscript version.]

where n is the number of groups, and g is the hunt group size.
In other words, all groups are the same size in this model, and
the total number of switch ports is (n X g). This result is plotted
in Figure 2 along with simulation results that remove the independent
trial assumption. The simulation results agree with the analysis above
for the case of only one link in each hunt group. Note that adding a
link to a hunt group increases the efficiency of each member of the
group in addition to adding bandwidth. These analytical and simulation
results, documented in January 1988, also agree with the simulation
results reported by Pattavina.[2]

[Figure 2 (Effect of Hunt Groups on Utilization) is not available in
ASCII format.]

The most important factor in head-of-line blocking is the
distribution of traffic within the switch. When all traffic is
concentrated to a single output, there is zero head-of-line
blocking because traffic behind the head of the line cannot move
any more easily than the head of the line can move. To study this
effect, we extended the simple independent-trial model. We
estimated the utilization when the traffic from a larger set of
inputs (for example, a larger set of workstations) is uniformly
distributed to a smaller set of outputs (for example, a smaller
set of file servers). The result is

[Equation here. Please see postscript version.]

where c is the mean concentration factor of input ports to output

ports, and n is the number of outputs. This yields a utilization
of 86 percent when an average of two inputs send to each output,
and a utilization of 95 percent when three inputs send to each
output. Note that utilization increases further for smaller
numbers of active ports or if hunt groups are used.

Other important factors in head-of-line blocking are the nature
of the links and the traffic distribution on the links. Standard
FDDI is a simplex link. Simulation studies of a GIGAswitch system
model were conducted to determine the mean utilization of a set
of standard FDDI links. They have shown that utilization reaches
100 percent, despite head-of-line blocking, when approximately 50
Mb/s of fixed-size packets traffic, uniformly distributed to all
FDDI links in the set, is sent into the switch from each FDDI.
The reason is that almost 50 percent of the FDDI bandwidth is
needed to sink data from the switch; hence the switch data path
is only at 50 percent of capacity when the FDDI links are 100
percent utilized. This result also applies to duplex T3 (45 Mb/s)
and all slower links. In these situations, the switch operates at
well below capacity, with little internal queuing.

A number of techniques can be used to reduce the effect of
head-of-line blocking on link efficiency. These include
increasing the speed of the switching fabric and using more
complicated queuing mechanisms such as per-port output queues or
adding lookahead to the queue service. All these techniques raise
the cost and complexity of the switch; some of them can actually
reduce performance for normal traffic. Since our studies led us
to believe that head-of-line blocking occurs rarely in a
GIGAswitch system, and if it does, hunt groups are an effective
means for reducing head-of-line blocking, we chose not to
implement more costly and complex solutions.

Robustness under Overload

The network must remain stable even when the GIGAswitch system is
severely stressed. Stability requires timely participation in the
802.1d spanning tree when the packet forwarding loads approach
the worst-case maximum. The techniques used to guarantee forward
progress on activities like the spanning tree include
preallocation of memory to databases and packets, queuing
methods, operating system design, and scheduling techniques.
Solutions that provide only robustness are insufficient; they
must also preserve high throughput in the region of overload.

Switch Control Processor Queuing and Quota Strategies. The SCP is
the focal point for many packets, including (1) packets to be
flooded, (2) 802.1d control packets, (3) intrabox intercard
command (ICC) packets, and (4) SNMP packets.[5] Some of these
packets must be processed in a timely manner. The 802.1d control
packets are part of the 802.1d algorithms and maintain a stable
network topology. The ICCs ensure correct forwarding and
filtering of packets by collecting and distributing information

to the various line cards. The SNMP packets provide monitoring
and control of the GIGAswitch system.

Important packets must be distinguished and processed even when
the GIGAswitch system is heavily loaded. The aggregate forwarding
rate for a GIGAswitch system fully populated with FGL-2 line
cards is about 4 million packets per second. This is too great a
load for the SCP CPU to handle on its own. The FDDI line cards
place important packets in a separate queue for expedient
processing. Special hardware on the SCP is used to avoid loss of
important packets.

The crossbar access control (XAC) hardware on the SCP is designed
to avoid the loss of any important packet under overload. To
distinguish the packets, the XAC parses each incoming packet. By
preallocating buffer memory to each packet type, and by having
the hardware and software cooperate to maintain a strict
accounting of the buffers used by each packet type, the SCP can
guarantee reception of each packet type.

Arriving packets allocated to an exhausted buffer quota are
dropped by the XAC. For instance, packets to be flooded arrive
due to external events and are not rate limited before they reach
the SCP. These packets may be dropped if the SCP is overloaded.
Some buffer quotas, such as those for ICC packets, can be sized
so that packets are never dropped. Since software is not involved
in the decision to preserve important packets or to drop
excessive loads, high throughput is maintained during periods of
overload. In practice, when the network topology is stable, the
SCP is not overloaded and packets passing through the SCP for
bridging are not dropped, even on networks with thousands of
stations. This feature is most important during power-up or
topology-change transients, to ensure the network progresses to
the stable state.

If the SCP simply processed packets in FIFO order, reception of
each packet type would be ensured, but timely processing of
important packets might not. Therefore, the first step in any
packet processing is to enqueue the packet for later processing.
(Packets may be fully processed and the buffers reclaimed if the
amount of work to do is no greater than the enqueue/dequeue
overhead.) Since the operating system scheduler services each
queue in turn, splitting into multiple queues allows the
important packets to bypass the less important packets.

Multiple queues are also used on the output port of the SCP.
These software output queues are serviced to produce a hardware
output queue that is long enough to amortize device driver entry
overheads, yet short enough to bound the service time for the
last packet inserted. Bounding the hardware queue service time
ensures that the important 802.1d control packets convey timely
information for the distributed spanning tree algorithms. These
considerations yield the queuing diagram shown in Figure 3.

[Figure 3 (Packet Queuing on the SCP) is not available in
ASCII format.]

At time t1, packets arriving in nonempty quotas are transferred
by direct memory access (DMA) into dynamic RAM. They enter the
hardware-received packet queue. At time t2, software processes
the received packet queue, limiting the per-packet processing to
simple actions like the enqueuing of the packet to a task or
process. At time t3, the packet contents are examined and the
proper protocol actions executed. This may involve the forwarding
of the arriving packet or the generation of new packets. At time
t4, packets are moved from the software output queues to the
short hardware output queue. At time t5, the packet is
transferred by DMA into the crossbar.

Limiting Malicious Influences. Using packet types and buffer
quotas, the SCP can distinguish important traffic, like bridge
control messages, when it is subjected to an overload of bridge
control, unknown destination addresses, and multicast messages.
Such simple distinctions would not, however, prevent a malicious
station from consuming all the buffers for multicast packets and
allowing starvation of multicast-based protocols. Some of these
protocols, like the IP address resolution protocol (ARP), become
important when they are not allowed to function.[6]

To address this problem, the SCP also uses the incoming port to
classify packets. A malicious station can wreak havoc on its own
LAN whether or not the GIGAswitch system is present. By
classifying packets by incoming port, we guarantee some buffers
for each of the other interfaces and thus ensure communication
among them. The malicious station is reduced to increasing the
load of nuisance background traffic. Region t4 of Figure 3
contains the layer of flooding output queues that sort flooded
packets by source port. When forwarding is done by the SCP bridge
code, packets from well-behaved networks can bypass those from
poorly behaved networks.

Fragmentation of resources introduced by the fine-grained packet
classification could lead to small buffer quotas and unnecessary
packet loss. To compensate for these possibilities, we provided
shared resource pools of buffers and high-throughput, low-latency
packet forwarding in the SCP.

Guaranteeing Forward Progress. If an interrupt-driven activity is
offered unlimited load and is allowed to attempt to process the
unlimited load, a "livelock" condition, where only that activity
executes, can result. Limiting the rate of interrupts allows the
operating system scheduler access to the CPU, so that all parts
of the system can make forward progress in a timely manner.

On the SCP, limiting the interrupt rate is accomplished in two
ways. One is to mask the propagation of an interrupt by combining
it with a software-specified pulse. After an interrupt is

serviced, it is inhibited for the specified time by triggering
the start of the pulse. At the cost of hardware complexity,
software is given a method for quick, single-instruction,
fine-grained rate limiting. Another method, suitable for less
frequently executed code paths like error handling, is to use
software timers and interrupt mask registers to limit the
frequency of an interrupt. Limiting the interrupt rate also has
the beneficial effect of amortizing interrupt overhead across the
events aggregated behind each interrupt.

Noninterrupt software inhibits interrupts as part of critical
section processing. If software inhibits interrupts for too long,
interrupt service code cannot make forward progress. By
convention, interrupts are inhibited for a limited time.

Interrupt servicing can be divided into two types. In the first
type, a fixed sequence of actions is taken, and limiting the
interrupt rate is sufficient to limit interrupt execution time.
Most error processing falls into this category. In the second
type, for all practical purposes, an unbounded response is
required. For example, if packets arrive faster than driver
software can process them, then interrupt execution time can
easily become unacceptable. Therefore, we need a mechanism to
bound the service time. In the packet I/O interrupt example, the
device driver polls the microsecond clock to measure service time
and thereby terminate device driver processing when a bound is
reached. If service is prematurely terminated, then the hardware
continues to post the interrupt, and service is renewed when the
rate-limiting mechanism allows the next service period to begin.

Interrupt rate limiting can lead to lower system throughput if
the CPU is sometimes idle. This can be avoided by augmenting
interrupt processing with polled processing when idle cycles
remain after all activities have had some minimal fair share of
the CPU.

Reliability and Availability

Network downtime due to switch failures, repairs, or upgrades of
the GIGAswitch system is low. Components in the GIGAswitch system
that could be single points of failure are simple and thus more
reliable. Complex functions (logic and firmware) are placed on
modules that were made redundant. A second SCP, for example,
takes control if the first SCP in the GIGAswitch system fails. If
a LAN is connected to ports on two different FDDI line cards, the
802.1d spanning tree places one of the ports in backup state;
failure of the operational port causes the backup port to come
on-line.

The GIGAswitch system allows one to "hot-swap" (i.e., insert or
remove without turning off power) the line cards, SCP, power
supply front-ends, and fans. The GIGAswitch system may be powered
from station batteries, as is telephone equipment, to remove
dependency on the AC mains.

MODULE DETAILS

In the next section, we describe the functions of the clock card,
the switch control processor, and the FDDI line card.

Clock Card

The clock card generates the system clocks for the modules and
contains a number of centralized system functions. These
functions were placed on the clock card, rather than the
backplane, to ensure that the backplane, which is difficult to
replace, is passive and thus more reliable. These functions
include storing the set of 48-bit IEEE 802 addresses used by the
switch and arbitration of the backplane bus that is used for
connection setup.

Management parameters are placed in a stable store in flash
electrically erasable programmable read-only memory (EEPROM) on
the clock card, rather than on SCP modules. This simplifies the
task of coordinating updates to the management parameters among
the SCP modules. The SCP module controlling the box is selected
by the clock card, rather than by a distributed (and more
complex) election algorithm run by the SCPs.

The clock card maintains and distributes the system-wide time,
communicated to the SCP and line cards through shared-memory
mailboxes on their GPI chips. Module insertion and removal are
discovered by the clock card, which polls the slots in the
backplane over the module identification bus interconnecting the
slots. The clock card controls whether power is applied to or
removed from a given slot, usually under command of the SCP. The
clock card also provides a location for the out-of-band
management RS-232 port, although the out-of-band management code
executes on the SCP.

Placing this set of functionality on the clock card does not
dramatically increase complexity of that module or reduce its
reliability. It does, however, significantly reduce the
complexity and increase the reliability of the system as a whole.

Switch Control Processor

The SCP module contains a MIPS R3000A CPU with 64-kilobyte (kB)
instruction and data caches, write buffer, 16-megabyte (MB) DRAM,
2-MB flash memory, and crossbar access control hardware. Figure 4
shows a diagram of the SCP. The large DRAM provides buffering for
packets forwarded by the SCP and contains the switch address
databases. The XAC provides robust operation in the face of
overload and an efficient packet flooding mechanism for highly
populated GIGAswitch systems. The XAC is implemented using two
field-programmable gate arrays with auxiliary RAM and support
logic. A major impetus for choosing the MIPS processor was

software development and simulation tools available at the time.

[Figure 4 (Switch Control Processor) is not available in
ASCII format.]

We input address traces from simulations of the SCP software to a
cache simulation that also understood the access cost for the
various parts of the memory hierarchy beyond the cache. Using the
execution time predicted by the cache simulation, we were able to
evaluate design trade-offs. For compiler-generated code, loads
and stores accounted for about half the executed instructions;
therefore cache size and write buffer depth are important. For
example, some integrated versions of the MIPS R3000 processor
would not perform well in our application. Simulation also
revealed that avoiding stale data in the cache by triggering
cache refills accounted for more than one third of the data cache
misses. Consequently, an efficient mechanism to update the cache
memory is important. It is not important, however, that all DMA
input activity updates the cache. A bridge can forward a packet
by looking at only small portions of it in low-level network
headers.

Cache simulation results were also used to optimize software
components. Layers of software were removed from the typical
packet-processing code paths, and some commonly performed
operations were recoded in assembly language, which yielded
tighter code and fewer memory references.

The conventional MIPS method for forcing the cache to be updated
from memory incurs three steps of overhead.[7] One step is linear
in the amount of data to be accessed, and the other two are
inefficient for small amounts of data. During the linear time
step, the information to be invalidated is specified using a
memory operation per tag while the cache is isolated from memory.
This overhead is avoided on the SCP by tag-bit manipulations that
cause read memory operations to update the cache from DRAM. No
additional instructions are required to access up-to-date
information, and the method is optimal for any amount of data.

FDDI Line Card

The FGL contains one FDDI port subsystem per port (two for FGL-2
and four for FGL-4) and a processor subsystem. The FDDI port
systems, shown in Figure 5, are completely independent. The
process for sending a packet from one FDDI LAN to another is the
same, whether or not the two FDDI ports are on the same FGL
module or not. The processor subsystem consists of a Motorola
68302 microprocessor with 1 MB of DRAM, 512 kB of read-only
memory (ROM), and 256 kB of flash memory. The processor subsystem
is used for initial configuration and setup, diagnostics, error
logging, and firmware functions. The FGL reused much firmware
from other network products, including the DECNIS 600 FDDI line
card firmware; station management functions are provided by the
Common Node Software.[8]

[Figure 5 (FDDI Line Card for Two Ports) is not available in
ASCII format.]

The FGL uses daughter cards, called ModPMDs, to implement a
variety of physical media attachments, including single- and
multiple-mode fiber usable for distances of up to 2 and 20
kilometers, respectively, and unshielded, twisted-pair (UTP)
copper wire, usable up to 100 meters. Both the FGL-2 and the
FGL-4 can support four ModPMDs. The FGL-2 can support one or two
attachments per FDDI LAN and appear as a single attachment
station (SAS), dual attachment station (DAS), or M-port,
depending upon the number of ModPMD cards present and management
settings. The FGL-4 supports only SAS configurations. The Digital
VLSI FDDI chip set was used to implement the protocols for the
FDDI physical layer and MAC layer. Each FDDI LAN can be either an
ANSI standard 100 Mb/s ring or a full-duplex (200 Mb/s)
point-to-point link, using Digital's full-duplex FDDI
extensions.[9]

The heart of the FGL is the bridge forwarding component, which
consists of two chips designed by Digital: the FDDI-to-GIGAswitch
network controller (FGC) chip and the GIGAswitch content
addressable memory (GCAM) chip. It also contains a set of
medium-speed static RAM chips used for packet storage and lookup
tables.

The GCAM provides a 256-entry associative memory for looking up
various packet fields. It is used to match 1-byte FDDI packet
control fields, 6-byte destination and source addresses, 1-byte
destination service access point (DSAP) fields, and 5-byte
subnetwork access protocol service access point (SNAP SAP)
protocol identifiers. The GCAM chip has two data interfaces: a
16-bit interface used by the processor and an 8-bit, read-only
interface that is used for on-the-fly matching of packet fields.
The FGC can initiate a new lookup in GCAM every 80 nanoseconds.

The FGC chip is a large (approximately 250,000 transistors),
240-pin, 1.0-micrometer gate array that provides all the
high-performance packet queuing and forwarding functions on an
FGL. It also controls the packet flow to and from the crossbar
and to and from the FDDI data link chip set. It queues inbound
and outbound packets, splitting them by type into queues of a
size determined by firmware at start-up time. The FGC looks up
various FDDI packet fields (1) to determine whether or not to
forward a packet and which port to use, (2) to determine whether
the packet contains a new source address and to note when each
source address was last heard, and (3) to map packet types to
classes used for filtering. It also provides a number of packet
and byte counters. The FGC chip is also used in the FDDI line
card for the DECNIS multiprotocol router.

FDDI BRIDGE IMPLEMENTATION

In the next section, we describe the implementation of an FDDI
bridge on the GIGAswitch system platform.

Packet Flow

Figure 6 shows the interconnection of modules in a GIGAswitch
system. Only one port of each FDDI line card is shown; hardware
is replicated for other ports. Note that the line cards and SCP
each have dual-simplex 100 Mb/s connections to the crossbar;
traffic can flow in both directions simultaneously.

[Figure 6 (GIGAswitch System Modules) is not available in
ASCII format.]

The FGC hardware on the GIGAswitch system line card looks up the
source address, destination addresses, and protocol type (which
may include the frame control [FC], DSAP, SNAP SAP, etc. fields)
of each packet received. The result of the lookup may cause the
packet to be filtered or dropped. If the packet is to be
forwarded, a small header is prepended and the packet is placed
on a queue of packets destined for the crossbar. Buffers for
bridge control traffic are allocated from a separate pool so that
bridge control traffic cannot be starved by data traffic. Bridge
control traffic is placed in a separate queue for expedient
processing.

Most packets travel through the crossbar to another line card,
which transmits the packet on the appropriate FDDI ring. If the
output port is free, the GIGAswitch system will forward a packet
as soon as enough of the packet has been received to make a
forwarding decision. This technique, referred to as cut-through
forwarding, significantly reduces the latency of the GIGAswitch
system.

Some packets are destined for the SCP. These are network
management packets, multicast (and broadcast) packets, and
packets with unknown destination addresses. The SCP is
responsible for coordinating the switch-wide resources necessary
to forward multicast and unknown destination address packets.

Learning and Aging

A transparent bridge receives all packets on every LAN connected
to it and notes the bridge port on which each source address was
seen. In this way, the bridge learns the 48-bit MAC addresses of
nodes in a network. The SCP and line cards cooperate to build a
master table of 48-bit address-to-port mappings on the SCP. They
maintain a loose consistency between the master address table on
the SCP and the per-port translation tables on the line cards.

When a line card receives a packet from a source address that is
not in its translation table, it forwards a copy of the packet to
the SCP. The SCP stores the mapping between the received port and

the 48-bit address in the master address table and informs all
the line cards of the new address. The SCP also polls the line
cards at regular intervals to learn new addresses, since it is
possible for the packet copy to be dropped on arrival at the SCP.
The FGC hardware on the line card notes when an address has been
seen by setting a source-seen bit in the addresses' translation
table entry.

Since stations in an extended LAN may move, bridges remove
addresses from their forwarding tables if the address has not
been heard from for a management-specified time through a process
called aging. In the GIGAswitch system, the line card connected
to a LAN containing an address is responsible for aging the
address. Firmware on FGL scans the translation table and
time-stamps entries that have the source-seen bit set. A second
firmware task scans the table, placing addresses that have not
been seen for a specified time on a list that is retrieved at
regular intervals by the SCP. Aged addresses are marked but not
removed from the table unless it is full; this reduces the
overhead if the address appears again.

The GIGAswitch system should respond quickly when an address
moves from one port of the switch to another. Many addresses may
move nearly simultaneously if the LAN topology changes. The fact
that an address is now noticed on a new port can be used to
optimize the address aging process. A firmware task on FGL scans
the translation table for addresses that have been seen but are
not owned by this port and places them on a list. The SCP then
retrieves the list and quickly causes the address to be owned by
the new port.

Multicast to Multiple Interfaces

The SCP, rather than the line cards, sends a packet out multiple
ports. This simplifies the line cards and provides centralized
information about packet flooding in order to avoid overloading
remote lower-speed LANs with flooded packets. The SCP allows
network management to specify rate limits for unknown
destinations and for multicast destination traffic.

Flooding a packet requires replicating the packet and
transmitting the replicas on a set of ports. During the design of
the flooding mechanism, we needed to decide whether the
replication would take place on the SCP, in hardware or software,
or on the line cards. The design criteria included (1) the amount
of crossbar bandwidth that is consumed by the flooding and (2)
the effect of the flooding implementation on the forwarding
performance of unicast packets.

The size of the switch and the filters that are specified also
affected this decision. If the typical switch is fully populated
with line cards and has no filters set, then one incoming
multicast packet is flooded out a large number of ports. If a

switch has few cards and filters are used to isolate the LANs,
then an incoming multicast packet may not have to be sent out any
port.

Since the crossbar design allows many outputs to be connected to
a single input, a single copy of a packet sent into the crossbar
can be received by multiple FDDI ports simultaneously. This
improves the effective bandwidth of the SCP connection to the
crossbar since fewer iterations of information are required. The
queuing mechanisms used to send multicast connection information
over the backplane allow each line card port using the multicast
crossbar facility to receive a copy no more than one packet time
after it is ready to do so.

We decided to implement flooding using special hardware on the
SCP. The DMA transfers the packet once into a private memory, and
all iterations proceed from that memory, thus removing contention
at the SCP's DRAM. The multicast hardware repeatedly transmits
the packet into the crossbar until the backplane queuing
mechanisms signal that all relevant ports have received a copy.

INTEGRATION AND TEST

GIGAswitch system software development and test were performed in
parallel with hardware development. Most of the SCP software was
developed before reliable SCP hardware was available and before
integration of the various modules could proceed in a GIGAswitch
system. The simulation of hardware included the SCP's complete
memory map, a simplified backplane, a simplified clock card, and
FDDI line cards. At run time, the programmer could choose between
line card models connected to real networks or real GIGAswitch
system FGLs. Instruction and data address references were
extracted from the instruction interpreter that understood the
SCP memory map.

FGL testing initially proceeded in standalone mode without other
GIGAswitch system modules. The FGL firmware provided a test
mechanism that allowed ICC packets to be received and transmitted
over a serial port on the module. This facility was used to test
ICC processing by sending ICC packets from a host computer over a
serial line. The next level of testing used pairs of FGLs in a
GIGAswitch system backplane. To emulate the SCP hardware, one FGL
ran debug code that sent ICC packets through the crossbar.

Initial testing of SCP/FGL interaction used the FGL's serial ICC
interface to connect an FGL to SCP software emulated on
workstations. This interface allowed SCP and FGL firmware to
communicate with ICC packets and permitted testing of SCP and FGL
interactions before the SCP hardware was ready.

NETWORK MANAGEMENT

The GIGAswitch system is manageable via the SNMP protocol. SNMP
uses get and get-next messages to examine and traverse the
manageable objects in the GIGAswitch system. SNMP uses set
messages to control the GIGAswitch system.

A single SNMP set message can manipulate multiple objects in the
GIGAswitch system. The objects should change atomically as a
group, with all of them modified or none of them modified from
the viewpoint of the management station. If the management
station indicates that the GIGAswitch system reported an error,
there are no dangling side effects. This is most advantageous if
the management station maps a single form or command line to a
single SNMP set message.

The SCP software achieves atomicity by checking individual object
values, cross-checking object values, modifying object values
with logging, and recording commit/abort transactional boundaries
in a phased process. As each object value is modified, the new
value is logged. If all modifications succeed, a commit boundary
is recorded and the SNMP reply is sent. If any modification
fails, all preceding modifications for this set operation are
rolled back, an abort boundary is recorded, and the SNMP reply is
sent.

MEASURED PERFORMANCE

Measuring the performance of a GIGAswitch system requires a
significant amount of specialized equipment. We made our
performance measurements using proprietary FDDI testers
constructed at Digital. Under the control of a workstation, the
testers can send, receive, and compare packets at the full FDDI
line rate. We used 21 testers in conjunction with commercial LAN
analyzers to measure performance of the GIGAswitch system.

The forwarding rate was measured by injecting a stream of
minimum-size packets from a single input port to a single output
port. This test yields a forwarding rate of 227,000 packets per
second. The forwarding rate in this test is limited because
connection requests are serialized when the (single) output port
is busy. The arbitration mechanism allows connections to ports
that are not busy to be established in parallel with ongoing
packet transmissions. Modifying the test so that one input port
sends packets to three output ports increases the aggregate
forwarding rate to 270,000 packets per second. We also measured
the aggregate forwarding rate of a 22-port GIGAswitch system to
be approximately 3.8 million minimum-sized FDDI packets per
second. At very high packet rates, small differences in internal
timing due to synchronization or traffic distribution can
exaggerate differences in the forwarding rate. The difference
between 270,000 packets per second and 227,000 packets per second
is less than 9 byte times per packet at 100 Mb/s.

For the GIGAswitch system, the forwarding latency is measured

from first bit in to first bit out of the box. Forwarding latency
is often measured from last bit in to first bit out, but that
method hides any delays associated with packet reception. The
forwarding latency was measured by injecting a stream of small
packets into the switch at a low rate, evenly spaced in time. The
forwarding latency was determined to be approximately 14
microseconds, or approximately 175 byte times at 100 Mb/s. This
measurement illustrates the result of applying distributed,
dedicated hardware to the forwarding path. It includes two 48-bit
addresses and a protocol type lookup on the incoming line card,
the output filtering decision on the outbound line card, and the
delays due to connection latency, data movement, and
synchronization.

The GIGAswitch system filters minimum-sized packets from a
multiple-access FDDI ring at the line rate, which is
approximately 440,000 packets per second per port. Filtering is
necessary to reject traffic that should not be forwarded through
the switch.

By design, the GIGAswitch system flooding rate is lower than the
rate for unicast traffic. We measured the flooding rate to be
2,700 packets per second. Note that a multicast rate of
r implies transmission of (s X r) packets by the switch, where s is
the number of ports currently on the bridge spanning tree.

Measurement of GIGAswitch system flooding rates on real networks
within Digital and at field test sites indicates that the switch
is not a bottleneck for multicast traffic.

CONCLUSIONS

The GIGAswitch system is a general-purpose, packet-switching
platform that is data link independent. Many issues were
considered and techniques were used in its design to achieve
robustness and high performance. The performance of the switch is
among the highest in the industry. A peak switching rate of 6.25
million variable-size packets per second includes support for
large hunt groups with no loss in performance. Digital's first
product to include a GIGAswitch system was a 22-port IEEE 802.1d
FDDI bridge. Shipment to general customers started in June 1993.
A four-port FDDI line card (FGL-4) is in development. A two-port
GIGAswitch system line card (AGL-2) using ATM is planned for
shipment in May 1994. This card uses modular daughter cards to
provide interfaces to synchronous optical network (SONET) STS-3c,
synchronous digital hierarchy (SDH) STM-1, DS-3, or E3
transmission media.

The GIGAswitch system can be extended to include other data links
such as high-speed serial interface (HSSI), fast Ethernet, and
Fibre Channel. High-performance routing is also possible.

The GIGAswitch system has been used successfully in a wide

variety of application areas, including workstation farms,
high-energy physics, and both LAN and metropolitan area network
(MAN) backbones. One or more GIGAswitch systems can be used to
construct a large-scale WAN backbone that is surrounded by
routers to isolate individual LANs from the WAN backbone. A
GIGAswitch system network can be configured to provide the
bandwidth needed to support thousands of conventional LAN users
as well as emerging applications such as large-scale video
conferencing, multimedia, and distributed computing.

ACKNOWLEDGMENT

Our thanks to the following engineers who contributed to the
GIGAswitch system architecture and product: Vasmi Abidi, Dennis
Ament, Desireé Awiszio, Juan Becerra, Dave Benson, Chuck Benz,
Denise Carr, Paul Clark, Jeff Cooper, Bill Cross, John Dowell,
Bob Eichmann, John Forecast, Ernie Grella, Martin Griesmer, Tim
Haynes, Chris Houghton, Steve Kasischke, Dong Kim, Jeanne
Klauser, Tim Landreth, Rene Leblanc, Mark Levesque, Michael
Lyons, Doug MacIntyre, Tim Martin, Paul Mathieu, Lynne McCormick,
Joe Mellone, Mike Pettengill, Nigel Poole, Dennis Racca, Mike
Segool, Mike Shen, Ray Shoop, Stu Soloway, Dick Somes, Blaine
Stackhouse, Bob Thibault, George Varghese, Greg Waters, Carl
Windnagle, and Mike Wolinski.

REFERENCES

1. Local and Metropolitan Area Networks: Media Access
 Control (MAC) Bridges (New York: Institute of
 Electrical and Electronics Engineers, Inc., IEEE Standard
 802.1D-1990).

2. A. Pattavina, "Multichannel Bandwidth Allocation in a
 Broadband Packet Switch," IEEE Journal on Selected
 Areas in Communication, vol. 6, no. 9 (December
 1988): 1489-1499.

3. W. Gilbert, Modern Algebra with Applications
 (New York: John Wiley, 1976).

4. M. Karol, M. Hluchyj, and S. Morgan, "Input Versus Output
 Queueing on a Space-Division Packet Switch," IEEE
 Transactions on Communication, vol. COM-35, no. 12
 (December 1987): 1347-1356.

5. J. Case, M. Fedor, M. Schoffstall, and J. Davin, "A Simple
 Network Management Protocol (SNMP)," Internet
 Engineering Task Force, RFC 1157 (August 1990).

6. D. Plummer, "An Ethernet Address Resolution Protocol,"
 Internet Engineering Task Force, RFC 826
 (November 1982).

7. G. Kane, MIPS RISC Architecture (Englewood
 Cliffs, NJ: Prentice-Hall, 1989).

8. P. Ciarafella, D. Benson, and D. Sawyer, "An Overview of the
 Common Node Software;" Digital Technical Journal,
 vol. 3, no. 2 (Spring 1991): 42-52.

9. H. Yang, B. Spinney, and S. Towning, "FDDI Data Link
 Development," Digital Technical Journal, vol.
 3, no. 2 (Spring 1991): 31-41.

TRADEMARKS

DECNIS 600, Digital, and GIGAswitch are trademarks of Digital
Equipment Corporation.

MIPS is a trademark of MIPS Computer Systems, Inc.

Motorola is a registered trademark of Motorola, Inc.

BIOGRAPHIES

P.G. Krishnakumar A principal engineer in Digital's High
Performance Networks Group, P. G. Krishnakumar is currently the
project leader for the Ethernet-ATM bridge firmware. Prior to
this, he worked on the GIGAswitch firmware and performance
analysis of the CI and storage systems. He has also worked in the
Tape and Optical Systems and the High Availability Systems
Groups. He received a B.Tech. in electrical engineering from the
Institute of Technology-BHU, India, an M.S. in operation research
and statistics, and an M.S. in computer engineering, both from
Rensselaer Polytechnic Institute.

Cüneyt M. Özveren Cüneyt Özveren joined Digital in 1990 and
is a principal engineer in the Networks Engineering Advanced
Development Group. He is currently working on all-optical
networks and ATM architecture. His previous work included the
architecture, design, and implementation of the SCP hardware in
GIGAswitch. He received a Ph.D. (1989) in electrical engineering
and computer science from MIT and an M.S. (1989) from MIT's Sloan
School of Management. His research included the analysis and
control of large-scale dynamic systems, with applications to
communication systems, manufacturing, and economics.

Robert J. Simcoe Robert Simcoe is a consulting engineer in the
High Performance Networks Group and is responsible for ATM switch
products. Prior to this, he worked in Network Engineering
Advanced Development on the GIGAswitch and SONET/ATM. He has also
worked on chip designs, from MicroVAX and Scorpio FPUs to
high-speed switching for network switches. Prior to joining
Digital in 1983, he designed ICs and small systems for General
Electric; before that, he designed secure communications devices
for the National Security Agency. He has published several papers

and holds 14 patents.

Robert J. Souza Bob Souza is a consulting engineer in the
Networks Engineering Advanced Development Group. He was the
project leader for the GIGAswitch SCP module. Since joining
Digital in 1982, Bob has worked on the DEMPR Ethernet repeater
for MicroSystems Advanced Development and has coimplemented an
RPC system for Corporate Research at Project Athena. He is the
author of several tools for sequential network design, a number
of papers, and several patents. Bob received a Ph.D. in computer
science from the University of Connecticut.

Barry A. Spinney Barry Spinney is a consulting engineer in the
Network Engineering Advanced Development Group. Since joining
Digital in 1985, Barry has been involved in the specification
and/or design of FDDI chip sets (MAC, RMC, and FCAM chips) and
the GIGAswitch chips (FGC, GCAM, GPI, and CBS chips). He also
contributed to the GIGAswitch system architecture and led the
GIGAswitch FDDI line card design (chips, hardware, and firmware).
He holds a B.S. in mathematics and computer science from the
University of Waterloo and an M.S.C.S. from the University of
Toronto. Barry is a member of IEEE.

Robert E. Thomas Bob Thomas received a Ph.D. in computer science
from the University of California, Irvine. He has worked on
fine-grained dataflow multiprocessor architectures at the MIT Lab
for Computer Science. After joining Digital in 1983, Bob
pioneered the development of a cell-based network switching
architecture and deadlock-free routing. He is a coinventor of the
high-speed crossbar arbitration method for GIGAswitch and was
co-project leader of the AToM-3 gate array and the
ATM/SONET/T3/E3 interface card. Bob is currently hardware project
leader for a 622-Mbs ATM PCI adapter.

Robert J. Walsh Bob Walsh has published papers on TCP/IP
networking, on radiosity and ray-tracing algorithms for 3-D
shaded graphics, and on graphics rendering with parallel
processors. He has a patent pending on language constructs and
translation for programming parallel machines. Bob has extensive
operating system experience for uniprocessors (UNIX V.6, 4.1BSD,
and follow-ons) and switch-based parallel processors (BBN's
Butterfly and Digital's GIGAswitch). He received A.B., S.M., and
Ph.D. degrees from Harvard University.

===
Copyright 1994 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

