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ABSTRACT

The Alpha AXP family of processors provided a dramatic increase 
in CPU speed. Even with slower processors, many database 
applications were dominated by relatively slow I/O rates. To 
maintain a balanced system, database software must incorporate 
techniques that specifically address the disparity between CPU 
speed and I/O performance. The DEC Rdb version 6.0 database 
management system contains shorter code paths, fewer I/O 
operations, and reduced stall times. These enhancements minimize 
the effect of the I/O bottleneck and allow the AXP processor to 
run at its intended higher speeds. Empirical performance results 
show a marked improvement in I/O rates.

INTRODUCTION

The DEC Rdb for OpenVMS AXP product (hereafter in this paper 
designated as DEC Rdb) is Digital's flagship database management 
system.[1] The DEC Rdb relational database software competes 
effectively in multiple data processing domains such as stock 
exchanges, image-processing applications, telemedicine, and large 
databases used for decision support or scientific applications. 
Virtually all these application frameworks are demanding 
increased processing power and increased I/O capabilities. 

The Alpha AXP processor family represents a quantum jump in the 
processing power of CPUs.  It is designed to scale up to 1,000 
times the current processing power in a decade.[2] On the other 
hand, disk I/O latency is improving at a much slower rate than 
CPU power. As a result, especially on an AXP platform, the total 
time to execute a query is dominated by the time to perform the 
disk I/O operations. This disparity between processor speed and 
I/O latency is commonly called the I/O bottleneck or the I/O 
gap.[3]

In this paper, we describe our efforts to improve the performance 
of DEC Rdb on AXP systems. First we explain general porting steps 
that ensure a foundation of good performance on Alpha AXP 
systems. Then we describe our efforts to reduce the I/O 
bottleneck. We present the performance enhancements to various 
components of earlier versions of DEC Rdb and compare the 
enhancements and new features of version 6.0. Finally, we discuss 
the TPC-A transaction processing benchmark and present empirical 
results that quantify the benefits of the optimizations.



PERFORMANCE GAINS DURING THE PORT TO OpenVMS

In this section, we recount some of the initial, general 
performance modifications to the DEC Rdb software in the port 
from the VAX VMS system to the OpenVMS AXP system. We briefly 
discuss data alignment and reduction of the software subroutines 
or PALcode calls. 

The DEC Rdb engineering developers saw the opportunity for 
increased performance through careful alignment and sizing of 
data structures. We needed to develop a solution that would 
exploit the performance gain of data alignment, yet still 
maintain an easy migration path for our large base of customers 
on VAX systems.

For the first release of DEC Rdb, all in-memory data structures 
were naturally aligned. In addition, many in-memory byte and word 
fields in these data structures were expanded to 32 bits of data 
(longwords). Once the in-memory data structures were aligned, we 
turned our attention to the on-disk data structures. The database 
root file, which is also frequently accessed, was completely 
aligned. New databases can be created with these aligned data 
structures, and existing databases can be aligned during a 
database convert operation on both VAX and AXP systems. This 
operation takes only seconds.

We did not align the data on the database pages in the storage 
area. Database pages contain the actual user data records. By 
leaving this data unaligned, we did not force a database 
unload/reload requirement on our customers. This factor and our 
support of clusters for both the VAX and the Alpha AXP 
architectures simplify migration from the VAX system to the AXP 
system.

After we completed the port of DEC Rdb, we ran performance 
benchmarks to determine which areas of the system could be 
enhanced. By using an internal tool called IPROBE, we learned 
that we could improve the performance of DEC Rdb by rewriting or 
eliminating code paths in PALcode subroutines. From January 1993 
through July 1993, we reduced PALcode cycles from 143k to 62.6k 
per TPC-A transaction. Details of earlier performance 
modifications have been discussed in this 
Journal.[4]

PERFORMANCE ENHANCEMENTS

In this section, we describe how we improved the performance of 
DEC Rdb by addressing I/O bottleneck and problems in the code 
path. 

The general strategy to combat the I/O gap in DEC Rdb was 
twofold. The first step was to minimize I/O operations. We used 
the "global buffers" of DEC Rdb to avoid read I/O requests. We 



took advantage of the large physical memory available in modern 
computers to cache interesting parts of the database in memory 
and hence reduce the disk read I/O requests. The 64-bit Alpha AXP 
architecture allows computers to easily use more than 4 gigabytes 
(GB) of directly addressable memory. Write I/O requests are 
avoided by using the fast commit feature of DEC Rdb. The 
minimization of I/O activity is detailed in a technical report by 
Lomet et al.[5] 

The second step was to reduce the stall time for the I/O 
operations that must be done. A reduced stall time allows DEC Rdb 
software to continue processing the queries even when disk I/O 
operations are in progress on its behalf. Two features of DEC Rdb 
version 6.0, the asynchronous prefetch and the asynchronous batch 
writes, reduce the stall time for the read and write I/O 
requests, respectively.

Although this strategy handles the I/O gap, the write to the 
after image journal (AIJ) becomes a limiting factor in 
high-performance transaction processing (TP) systems. The stall 
time for the AIJ write is reduced through the AIJ log server and 
AIJ cache on electronic disk features of DEC Rdb version 6.0.

In the following sections, we discuss these features in detail.

Write I/O Requests

To read a new set of pages from the database on disk, the DEC Rdb 
software selects a buffer in the buffer pool to be replaced. We 
refer to this as the victim buffer.

Prior to DEC Rdb version 6.0, writes of updated database pages to 
disk happened in synchronous batches. If the victim buffer is 
marked, a synchronous batch write is launched. In addition to the 
victim buffer, a number of least recently used (LRU) marked 
buffers are collected. The number of buffers in the batch write 
is specified as the BATCH_MAX parameter by users.

The list is then sorted by page numbers in order to perform 
global disk head optimization. After this, asynchronous disk 
write I/O requests are issued for all the marked buffers. In 
these earlier versions, the DEC Rdb product then waits until all 
the write I/O requests are completed. Although the individual 
writes are issued asynchronously and may complete in parallel, 
DEC Rdb waits synchronously for the entire batch write to 
complete. No query processing happens during the batch write.  
Figure 1 shows alternating synchronous batch writes and other 
work. Writes to the same disk are executed one after another, and 
writes to different disks are executed in parallel. 

[Figure 1 (Alternating Synchronous Batch Writes and Other 
Work) is not available in ASCII format.]



The synchronous batch leverages two important optimizations: 
(1) parallelism between various disks and (2) disk head 
optimizations implemented at various levels of the storage 
hierarchy. The synchronous batch write feature reduced the 
average stall time per disk write I/O. The extent of reduction 
depends upon the degree to which the above two optimizations 
happen, which in turn depends upon the physical database design 
and application query behavior. In the TPC-A benchmark, the 
synchronous batch writes reduced the average stall time for 
the account write by 50 percent compared to synchronous 
individual writes.

To further reduce stall time, we implemented asynchronous batch 
writes (ABWs) in DEC Rdb version 6.0. With ABW, DEC Rdb now 
maintains the last few buffers unmarked. The size of this clean 
region of the buffer pool is specified by the user. As new pages 
are read from the database, database buffers migrate toward the 
end of the LRU chain of buffers. If a marked buffer were found in 
the clean region, an ABW would be invoked.

Figure 2 shows asynchronous batch writes invoked periodically, 
while other work continues. Processing does not explicitly wait 
for any of the disk write I/O requests to complete. (There may be 
implicit waits due to disk queuing effects.) Instead, processing 
continues. If a buffer with a pending write is chosen as the 
victim or if one of the buffers with pending writes is required 
for further processing, DEC Rdb then waits for completion of the 
pending writes. For applications with good temporal locality, it 
is likely that the buffers with pending writes will not be 
required for further processing.

Figure 2 also shows a rare instance in which other processing 
stops, waiting for one of the asynchronous write I/O requests to 
complete. Again, other processing includes stalls for disk read 
I/O requests. It is also possible to start a new ABW when the 
previous one has not yet completed. 

[Figure 2 (Simultaneous Asynchronous Batch Writes and 
Other Work) is not available in ASCII format.]

Read I/O Requests 

Requests for database pages are often satisfied by a large global 
buffer pool. This is true when the whole database fits in a large 
memory, common on Alpha AXP systems. Under certain circumstances, 
however, the buffer pool is not large enough to satisfy all 
requests. Moreover, seldom-used data may be replaced by more 
frequently used data in the buffer pool.

The essential strategy is to submit asynchronous disk read I/O 
requests well before the data is really needed during query 
processing. If the asynchronous prefetch (APF) request is made 
far enough in advance of the actual request, the process will not 



need to stall for the I/O. Critical to any prefetch strategy is 
to reliably determine the desirable database pages for the 
immediate future.
    
Fortunately, applications request data in sets of rows. 
Therefore, based on user requests and the query optimizer 
decisions, the database access patterns are known at the time 
query execution starts. This allows the mechanism to prefetch the 
data from the database into the buffer pool.

In DEC Rdb version 6.0, we implemented the mechanism to prefetch 
data from the database based on requests from higher layers of 
DEC Rdb. This is performed in an integrated manner in the buffer 
pool with the usual page locking protection in a cluster. We also 
implemented the policy to use asynchronous prefetch in the case 
of sequential scans.

Sequential scans are quite common in databases for batch 
applications producing large reports. They are also chosen by the 
optimizer when a large number of records are selected from a 
table for a query for processing.

The user can specify the parameter APF_DEPTH that controls the 
number of buffers to be used for prefetching database pages, 
hence the lead of prefetch ahead of the real fetches. With a 
sufficient level of prefetch, it is quite possible to exploit the 
parallelism in the disk subsystem as well as achieve close to the 
spiral transfer rate of disks, as we describe in the following 
test.

We placed one table in a mixed format area on an RA73 disk. The 
database server process used 400 buffers of 6-kilobyte (kB) size, 
and the APF_DEPTH parameter was set to 50 buffers. With these 
settings, the sequential scan of a 1-GB area took 593 seconds. 
This is equivalent to a transfer rate of 1.69 megabytes per 
second (MB/s), compared to the rated spiral transfer rate of 1.8 
MB/s for the disk.

We performed another test to determine the improvement with the 
APF feature in DEC Rdb version 6.0. Again, we built a database 
with one table in a mixed format area, but this time on a stripe 
set of two RA92 disks. The database server process used 400 
buffers of 3-kB size. The elapsed time to scan a 1-GB area in 
version 5.1 was 6,512 seconds, and the transfer rate was 0.15 
MB/s. In version 6.0 the elapsed time was 569 seconds, and the 
transfer rate was 1.76 MB/s. An APF_DEPTH of 100 buffers was used 
for version 6.0. We find that APF has made sequential scan 10 
times faster in DEC Rdb version 6.0. Note that this performance 
improvement can be made much better by using more disks in the 
stripe set and by using more powerful processors.

Commit Time Processing



Although the disk I/O stalls are significantly reduced by the APF 
and ABW in DEC Rdb version 6.0, the commit time processing 
remains a significant wait. 

Prior to version 6.0, DEC Rdb software used a cooperative 
flushing protocol. Each database server produced the AIJ log 
records and then used the lock manager to determine the group 
committer. The group committer then formatted the AIJ log records 
for all the servers and flushed the data to the AIJ file in one 
disk write I/O. Each server thus competed for the AIJ lock in 
order to become the group committer. Each server also had to 
acquire the AIJ lock even to determine if it had committed. 
Figure 3 shows this algorithm. DEC Rdb software also supports 
timer-based tuning methods to increase the group size for group 
commit.[6]

Figure 3 Cooperative Flushing Algorithm

Put AIJ data in shared memory

Get AIJ lock

if      our data IS flushed
then begin

        Release AIJ lock

        return
        end

! We are the group committer

Format AIJ data in shared memory

Reserve space in AIJ file

Release AIJ lock

Write AIJ data to AIJ file

Indicate AIJ data is flushed for group members

AIJ Log Server.  With DEC Rdb version 6.0, a dedicated process 
called the AIJ log server (ALS) runs on every node of the cluster 
to perform the task of processing group writes to the AIJ file 
for all servers. The new algorithm is in two parts, one for the 
database servers and another for the ALS. Figure 4 shows these 
algorithms.

Figure 4 AIJ Log Server Process 



(a) Database Server Algorithm:

Put AIJ data in shared memory

Until   committed

        sleep       ! Woken up after commit by ALS

(b) ALS Algorithm:
    
Get AIJ lock

loop    begin

        Format AIJ data in shared memory

        Write AIJ data to AIJ file

        Indicate AIJ data is flushed for group members

        Wake up all committed processes

        end

Release AIJ lock

At commit time, database servers generate AIJ log records, store 
them in shared memory, and go to "sleep." They are "woken up" by 
the ALS when their commit records are successfully written to the 
AIJ file. The ALS gathers the AIJ log records of all users, 
formats them, writes them to the AIJ file, and then wakes up 
servers waiting for commit. Thus, the ALS performs AIJ writes in 
a continuous loop. 

The ALS allows DEC Rdb version 6.0 to scale up to thousands of 
transactions per second with one magnetic disk using the TPC-A 
benchmark.

With the ALS, the average stall time for a server to commit is 
1.5 times more than the time taken to perform one log write I/O. 
This stall is of the order of 17 milliseconds with 5,400-rpm 
disks. Note that this stall time is a function of disk 
performance only and is independent of the workload. In a 
high-throughput TP environment, where transaction times are very 
short, this stall at commit time is still a significant wait. 
Considering the speed of Alpha AXP processors, the commit stall 
is many times more than the processing time for servers.

AIJ Cache on Electronic Disk. The AIJ cache on electronic disk 
(ACE) is a feature of the ALS that also helps high-throughput TP 
systems. ACE utilizes a small amount (less than 1 MB) of very low 



latency, solid-state disk to reduce the commit stall time. Figure 
5 shows the new ACE algorithm with ALS. The ACE file is on a 
solid-state disk shared by all nodes of a cluster. The file is 
partitioned for use by various ALS servers in the cluster.

Figure 5 ACE Algorithm

Get AIJ lock

loop    begin

        Format AIJ data in shared memory

        Save AIJ block # and length of I/O
    in ACE header

        Write AIJ data and ACE header to ACE file
    ! 1ms

        Wake up all committed processes

        Write AIJ data to AIJ file    ! 11ms

        Set flags to indicate AIJ data is flushed
            for group members

        end

Release AIJ lock

Basically, the data is first written to the ACE file, and the 
servers are allowed to proceed to the next transaction. The data 
is then flushed to the AIJ file in a second I/O. The write 
to the ACE disk includes the virtual block number of the AIJ file 
where the log data is supposed to be written. The ACE disk serves 
as a write-ahead log for the AIJ write. By doubling the number of 
disk writes per group, we reduced the response time for the 
servers to 0.5 times the stall for AIJ write and 1.5 times the 
stall for ACE write. This reduction in the stall time conversely 
increases the CPU utilization of servers, thereby reducing the 
number of servers required to saturate an AXP CPU. 

Backup and Restore Operations

Simply stated, the way we traditionally perform backup does not 
scale well with system capacity, rarely uses its resources 
effectively, and is disruptive to other database activity. We 
designed the backup and restore operations to resolve these 
issues. Before we present that discussion, we first examine the 
problems with the traditional database backup operation. 

Traditional Backup Process. Using OpenVMS BACKUP as an example of 



the traditional backup process, we find that a single backup 
process performance does not scale with CPU performance, nor with 
system aggregate throughput. Instead, it is limited by device 
throughput. The only way to increase the performance is to 
perform multiple backups concurrently. However, concurrent 
backups executing on the same CPU interfere with one another to 
some extent. Each additional backup process provides less than 90 
percent of the performance of the previous one. Five OpenVMS 
BACKUP operations executing on one CPU provide no greater 
performance than four operations, each executing on its own CPU. 
Consequently, five tape drives may provide only four times the 
performance of a single drive.

The OpenVMS BACKUP operation is limited by the lesser of the disk 
throughput and the tape throughput. Read performance for an RA73 
disk may be as high as 1.8 MB/s, but OpenVMS BACKUP more 
typically achieves between 0.8 and 1.0 MB/s. Performance for a 
TA92 tape is 2.3 MB/s. Five tape drives, with an aggregate 
throughput of 11.5 MB/s, and 25 disks, with an aggregate 
throughput of 45.0 MB/s, can only be backed up at a rate of 4.0 
MB/s (14.4 GB per hour).

Increasing the CPU capacity and aggregate throughput improves the 
backup performance but not proportionally. Low device utilization 
and nonlinear scaling mean that as the system capacity and 
database size increase, the cost in system time and hardware for 
a given level of backup performance becomes increasingly 
burdensome.

The traditional backup process, such as provided by OpenVMS 
BACKUP, is not coordinated with database activity. The database 
activity must be prohibited during the backup. If it is not, the 
restore operation will produce an inconsistent view of the data. 
In the latter case, database activity journals are required to 
return the database to consistency. Application of these journals 
significantly reduces the performance of the restore process.

To maximize the performance of the traditional backup process, 
the backup must consume a large portion of the entire throughput 
of the disks being backed up. As a result, database activity and 
backup activity severely impede each another when they compete 
for these disks.

RMU BACKUP Operation. The RMU BACKUP operation resolves the 
problems with the traditional backup operation. RMU BACKUP is 
coordinated with database activity. It produces a consistent 
image of the database at a point in time without restricting 
database activity or requiring application of journals after the 
restore operation.  

The RMU BACKUP operation is a multithreaded process; therefore, 
it backs up multiple disks to multiple tapes and eliminates the 
limiting factor associated with throughput of a single disk or a 
single tape drive. The aggregate of disk and tape throughputs 



determines the performance of RMU. Because the aggregate disk 
throughput is usually significantly higher than the aggregate 
tape throughput, all the disks have spare throughput at all times 
during RMU BACKUP. Consequently, the RMU BACKUP process and 
database activity interfere to a much lesser extent than is the 
case with traditional backup. Its multithreaded design also 
scales linearly with CPU capacity, aggregate disk throughput, and 
aggregate tape throughput.

The first steps of an RMU BACKUP are to evaluate the physical 
mapping of the database to disk devices and to determine the 
system I/O configuration. RMU then devises a plan to execute the 
backup. The goals of this plan are to divide the data among the 
tape drives equally, to prohibit interference between devices 
sharing a common I/O path, and to minimize disk head movement. 
The generated plan is a compromise because complete and accurate 
configuration data is difficult to collect and costly to 
assimilate. To implement the plan, RMU creates a network of 
interacting threads. Each thread operates asynchronously, 
performing asynchronous multibuffered I/O to its controlled 
device. Interthread communication occurs through buffer exchange 
and shared memory structures.

RMU uses the database page checksum to provide end-to-end error 
detection between the database updater and the backup operation. 
It uses a backup file block cyclic redundancy check (CRC) to 
provide end-to-end error detection between the backup and the 
restore operations. In addition, RMU uses XOR recovery blocks to 
provide single error correction on restore. As a consequence, the 
data being backed up must be processed four times, which has a 
major effect on CPU usage. The first time is to evaluate the 
database page checksum. The second time is to copy the data and 
to exclude unused storage and redundant structures. Here we are 
willing to expend extra CPU cycles to reduce the I/O load. The 
third time is to generate an error detection code (CRC), and the 
fourth time is to generate an XOR error recovery block.

The RMU BACKUP operation improves performance in other ways. It 
does not back up redundant database structures, nor does it back 
up allocated storage that does not contain accessible data. As a 
result, the size of the backup file is significantly reduced, and 
relative backup performance is improved. The incremental backup 
feature selectively backs up only those database pages that have 
been modified. This provides an additional, significant reduction 
in backup file size relative to a file-oriented backup. These 
reductions in backup file size further improve RMU BACKUP 
performance relative to traditional backup.

The performance of the RMU RESTORE operation mirrors that of the 
RMU BACKUP operation. In spite of this, a natural asymmetry 
between the operations allows RMU BACKUP to outperform RMU 
RESTORE by 20 percent to 25 percent. There are several reasons 
for the asymmetry: the cost of allocating files, the asymmetry of 
read versus write disk performance, the asymmetric response of 



the I/O subsystem to read versus write I/O operations under heavy 
load, and the need to re-create or initialize redundant data that 
was not backed up by RMU BACKUP.

The RMU RESTORE operation can restore the entire database, 
selected database files, and even selected pages within the 
files. Restoring files or pages requires exclusive access to only 
the objects being restored. This is the only restriction on 
database activity during the restore operation.

We performed a test to illustrate the effectiveness and 
scalability of RMU BACKUP with database size and system capacity. 
Table 1 gives the results. This test also demonstrates the high 
level of backup performance that can be provided on AXP systems 
without the use of exotic or expensive technology. Although the 
results are limited by the aggregate tape I/O performance, the 
CPU does not appear to have sufficient excess capacity to justify 
a test with a sixth tape drive.

Table 1  Backup Performance on AXP Systems

------------------------------------------------------------
Configuration    Type Amount
------------------------------------------------------------
System    DEC 7000  1

   Model 610 
   (182 MHz) 

Disks    RA73 23  
   RZ23  2 

Controllers    HSC95  6  
   CIXCD  6  
   KMC44  5  

Tape drive    TA92  5 

Operating system   OpenVMS V1.5 
Database    DEC Rdb V5.1
management 
software

Database size of 48.8 GB 
(71% Relational data or 34.7 GB)

------------------------------------------------------------
Performance
------------------------------------------------------------        

Backup time     1:11:29   
Backup rate     41.0 GB/hour  

Sustained disk data rate of 455 kB/s per disk (25% utilization)

Sustained tape data rate of 2.3 MB/s per tape (100% utilization)



Restore time     1:32:49
Restore rate     31.6 GB/hour

Unfortunately, comparable numbers are not available for other 
database products on comparable platforms. Nevertheless, when any 
database system relies on the operating system's backup engine, 
the expected performance limits are the same as the scenario 
presented.

Sorting Mechanism

A sorting mechanism is a key component of a database system. For 
example, the relational operations of join, select, and project, 
which are executed to satisfy user queries, often sort records to 
enable more efficient algorithms. Furthermore, selected records 
must often be presented to the user in sorted order. Quite 
literally, a faster sorting mechanism directly translates to 
faster executing queries. Hence during the port to the Alpha AXP 
platform, we also focused on ensuring that the DEC Rdb sorting 
mechanism worked well with the Alpha AXP architecture. In the 
case of the sort mechanism, we reduced I/O stalls and optimized 
for processor cache hits rather than access main memory. 

Prior to the port to Alpha AXP, DEC Rdb utilized only the 
replacement-selection sort algorithm. For AXP systems, we have 
modified the sort mechanism so that it can also utilize the 
"quicksort" algorithm under the right conditions.[7] In fact, we 
developed a modified quicksort that sorts (key prefix, pointer) 
pairs. Our patented modification allows a better address locality 
that exploits processor caching.[8] This is especially important 
on the Alpha AXP platform since the penalty for addressing memory 
is significant due to the relatively fast processor speed. The 
quicksort algorithm also performs better than the 
replacement-selection algorithm in a memory-rich environment, 
which is the trend for Alpha AXP systems. 

To summarize, if the required sort fits in main memory, DEC Rdb 
version 6.0 utilizes the optimized quicksort algorithm; if the 
sort requires temporary results on disk, DEC Rdb uses the 
traditional replacement-selection sort algorithm. When writing 
temporary results to disk, both sort algorithms also utilize 
asynchronous I/O mechanisms to reduce I/O stalls.

The DEC Rdb version 6.0 implementation of the quicksort algorithm 
is based on the AlphaSort algorithm developed at Digital's San 
Francisco Systems Center. The AlphaSort algorithm achieved the 
world-record sort of 7 seconds on an industry-standard sort 
benchmark. This result is more than 3 times faster than the 
previous sort record of 26 seconds on a CRAY Y-MP system.[8] 



Multi-statement Procedures

Prior to the implementation of multi-statement procedures in DEC 
Rdb, individual SQL statements were serially submitted to the 
database engine for execution. This method of execution incurs 
excessive code path because individual SQL statements must 
traverse different layers before they reach the database engine.

When clients and servers communicate over a network, each SQL 
statement incurs the additional overhead of two network I/O 
operations. The result is a long transaction code path as well as 
delays due to excessive network traffic. Figure 6 shows the 
execution path that individual SQL statements traverse in both 
the local and the remote cases.

[Figure 6 (SQL Statement Execution Flow) is not available in ASCII
format.]

Network overhead is a significant problem for client-server 
applications. Without the services of the VAX ACMS TP monitor, 14 
network I/O operations are required to complete a single TPC-A 
transaction. Table 2 lists the TPC-A pseudocode needed to 
complete one transaction.

Table 2 Individual SQL Statements for Single TPC-A Transaction

TPC-A Pseudocode             Network I/O 
     Operations

Start an update transaction   2   
 Update a row in BRANCH table  2   
 Update a row in TELLER table  2   
 Update a row in ACCOUNT table 2   
 Select Account_balance from ACCOUNT            
  and display it on the terminal 2   
Insert a row in the HISTORY table 2   
Commit transaction        2 

Total network I/O operations 
per TPC-A transaction              14

Prior to DEC Rdb version 6.0, client applications accessing 
remote servers relied on the services of the VAX ACMS TP monitor 
to reduce the network overhead.  With ACMS present on both the 
client and the server, a message carrying a transaction request 
is transferred to the server in one network I/O. As shown in 
Figure 7, an ACMS server is then selected to execute the request, 
and a message is returned to the client upon transaction 



completion. This reduces the number of network I/O operations to 
two per transaction. In simple applications such as TPC-A, 
however, a TP monitor can be very intrusive. Measurements taken 
on a VAX 6300 system running the TPC-A benchmark and using ACMS 
revealed that the TP monitor consumes 20 percent to 25 percent of 
the cycles on the back-end server.

[Figure 7 (Client-server Application with ACMS) is not available in 
ASCII format.]

SQL multi-statement procedures in DEC Rdb version 6.0 address 
both these performance issues. They reduce the transaction code 
path by compounding a number of SQL statements in one BEGIN-END 
procedure that fully adheres to the VAX and AXP procedure calling 
standards. The BEGIN-END procedure is atomically submitted to the 
database manager to compile once per database session and to 
execute as often as the application requires for the duration of 
that particular session. 

When multiple SQL statements are bundled into a single BEGIN-END 
block, only two network I/O operations are required between the 
client and the remote server for each database request. Through 
the DEC Rdb remote facility, which is an integral part of DEC 
Rdb, client-server applications no longer need the services of a 
TP monitor. Therefore many of the processing cycles that would 
have been dedicated to the TP monitor are regained and applied 
toward processing requests.

The DEC Rdb remote server is an ordinary VMS process that is 
created upon the first remote request to the database. It has 
less overhead than the TP monitor. The DEC Rdb remote server 
remains attached to the database; it communicates with and acts 
on behalf of its client for the duration of a database session. 
Figure 8 shows our implementation of the TPC-A client-server 
application with DEC Rdb version 6.0. With the implementation of 
multi-statement procedures for the TPC-A transaction, we reduced 
the code path approximately 20 percent to 25 percent.  

[Figure 8 (Client-server Application with DEC Rdb Version 
6.0) is not available in ASCII format.]

PERFORMANCE MEASUREMENT
    
In this section, we briefly describe a TPC-A transaction and the 
TPC-A benchmark. We discuss our goals for TPC-A and recount our 
progress. Finally, we present profiling and benchmark results.

TPC-A Transaction
 

The TPC-A transaction is a very simple database transaction: a 
user debits or credits some amount of money from an account. In 
database terms, that requires four updates within the database: 
modify the user account balance, modify the branch account 



balance, modify the teller account balance, and store a history 
record. The resulting metric indicates how many transactions are 
performed per second (TPS).[9] 

In terms of complexity, the TPC-A transaction falls somewhere in 
the middle range of benchmarks. In other words, the SPECmark 
class of benchmarks is very simple and tends to stress processors 
and caching behavior; the sorting benchmarks (e.g., AlphaSort) 
expand the scope somewhat to test processors, caches, memory, and 
I/O capabilities; the TPC-A benchmark tests all the above in 
addition to stressing the database software (based on the 
relatively simple transaction). Other benchmarks such as TPC-C 
and TPC-D place even more emphasis on the database software, 
thereby overshadowing the hardware ramifications. Hence the TPC-A 
benchmark is a combined test of a processor and the database 
software. 

During the porting cycle, Digital was aware that the highest 
result in the industry for a single-processor TPC-A benchmark was 
approximately 185 TPS. Toward the end of the porting effort, we 
worked for six to nine months to ensure that DEC Rdb had attained 
optimal performance for the TPC-A transaction. 

In April 1993, the DEC Rdb database system was officially audited 
on a DEC 10000 AXP system at the world-record rate of 327.99 TPS. 
As a result, DEC Rdb became the first database system to exceed 
the 300 TPS mark on a single processor. A few weeks later, DEC 
Rdb was again audited and achieved 527.73 TPS on a dual-processor 
DEC 10000 AXP system. Thus, DEC Rdb became the first database 
system to exceed 500 TPS on a dual-processor machine. Table 3 
gives our results; the audits were performed by KPMG Peat 
Marwick. The mean qualified throughput (MQTh) is the transaction 
rate at steady state, and $K/tpsA is a measure of the price per 
transaction for the hardware and software configuration.  

Table 3 DEC Rdb TPC-A Benchmarks

Processor        Cycle Time MQTh $K/tpsA

DEC 7000 AXP Model 610     5.5 ns 302.68  $6,643.00      
DEC 7000 AXP Model 610     5.0 ns 327.99  $6,749.00
DEC 7000 AXP Model 620      5.0 ns 527.73 $6,431.00

Anatomy of the TPC-A Transaction

To understand how DEC Rdb achieves such fast transaction rates, 
we need to examine the effects of the optimizations to the 
software with respect to the execution of the TPC-A transaction.

To complete the four updates required by the TPC-A transaction, 
DEC Rdb actually incurs two physical I/O operations and two lock 
operations. More specifically, the branch and teller records are 



located on a page that is cached in the database buffer pool; 
therefore, these two records are updated extremely fast. The 
update to the account record causes the account page/record to be 
fetched from disk and then modified. A history record is then 
stored on a page that also remains in the buffer pool. 

Note that there are too many account records for all of them to 
be cached in the buffer pool. Hence, the account fetch is the 
operation that causes pages to cycle through the buffer pool and 
eventually be flushed to disk. The ABW protocols described 
previously are utilized to write groups of account pages back to 
disk asynchronously. (The branch, teller, and history pages never 
approach the end of the LRU queue.)

In regard to locking, the branch, teller, and history 
pages/records are all governed by locks that are carried over 
from one transaction to the next. There is no need to incur any 
locks to update these records. The account page/record, which 
must be fetched from disk, requires a new lock request.

At commit time, the after images of the record modifications are 
submitted to the AIJ log. The new protocols allow the user 
process to "sleep," while the ALS process flushes the AIJ records 
to the AIJ file. After the ACE I/O has completed, which occurs 
before the I/O to the AIJ file on disk, the user processes are 
"woken up" to begin processing their next transactions.

As shown in Figures 9 and 10, the transaction is dominated by 
stall times. Since the AXP processors are so fast, the branch, 
teller, and history updates, and the two locks are a very small 
fraction of the transaction duration. The synchronous account 
read is a big expense. The batched asynchronous account writes 
are interesting. Indeed, each transaction requires one account 
read, which then causes one account write since the buffer pool 
overflows. Because the account writes are batched into groups and 
written asynchronously, however, there is no stall time required 
in the path of the transaction. 

[Figure 9 (Transaction Duration before Modifications) 
is not available in ASCII format.]

[Figure 10 (Improved Transaction Duration due to 
Performance Modifications) is not available in 
ASCII format.]

Another critical performance metric in the TPC-A benchmark is 
response time. Figure 11 shows the response times with an average 
of about 1 second. Figure 12 shows the response time during the 
steady-state period of the TPC-A experiment.

[Figure 11 (Response Time versus TPS) is not available in 
ASCII format.]

[Figure 12 (TPC-A Measurement at Steady State) is not available in 



ASCII format.]

Performance Profiling of DEC Rdb 
       
In this section, we describe in more detail the instruction 
profile (i.e., instruction counts, machine cycles, and processor 
modes) generated during the TPC-A tests.

Performance profiling of DEC Rdb was obtained using Digital's 
IPROBE tool, the RMU, and the VMS performance monitor. IPROBE is 
an internal tool built to capture information from the two 
processor counters that were established to count on-chip events 
and interrupts after a threshold value was reached.

The TP1 benchmark, a back-end-only version of the TPC-A 
benchmark, was used to measure DEC Rdb performance on a DEC 7000 
AXP Model 610 configured with 5 KDM70 disk controllers and 20 
RA70 disk devices. We relied on the IPROBE tool primarily to 
generate PC (program counter) sampling and to track transaction 
path length variations as new features were prototyped and 
performance optimizations were added. We also used IPROBE to 
verify cache efficiency and the instruction mix in TP 
applications. We used the RMU to measure the maximum throughput 
of the TP1 benchmark, the database and application behaviors.  

Transaction Cycles Profile

We conducted experiments to determine the performance of 
TP1 transactions. We used the DEC 7000 AXP Model 610 system (with 
a 5.5-nanosecond processor) and the OpenVMS AXP version 1.5 
operating system. With this configuration, DEC Rdb version 6.0 
software achieved a maximum throughput of 334 TPS for the TP1 
benchmark. More than 95 percent of the transactions completed in 
less than 1 second. 

Table 4 gives the distribution of the cycles per transaction and 
the cycles in PALcode in the various CPU modes. The cycle count 
per TP1 transaction was measured at 544,000 cycles. PALcode calls 
represent approximately 13 percent of the overall cycle count. In 
measurements taken with early OpenVMS AXP base levels, PALcode 
calls represented 28 percent of the overall cycle count. The most 
frequently called PALcode functions were misses in the data and 
instruction translation buffers. Four major DEC Rdb images may 
now be installed "/RESIDENT" to take advantage of granularity 
hints and reduce misses in the instruction translation buffer. 
Dual issuing remained low throughout the experiments we conducted 
with various DEC Rdb and OpenVMS AXP base levels.

Table 4 Transaction Cycles in CPU Modes              

                                      % Cycles in System Modes
                              |-----------------------------------------|  



      Cycles per      Interrupt     Kernel     Executive     User 
      Transaction      

Cycles        544.0k           7.1         14.0       73.0        5.8  
PALcode 
 cycles        71.5k          13.0         18.0       61.4        7.3
Dual issues    19.0k           5.1         11.6       79.0        4.0     

TP1 Transaction Path Length Profile

At the initial stage of the DEC Rdb port to the Alpha AXP 
platform in January 1993, the TP1 transaction path length was 
measured at 300,000 reduced instruction set computer (RISC) 
instructions with the available OpenVMS AXP base levels. In April 
1993, the TP1 transaction path length dropped to 189,000 RISC 
instructions. As shown in Table 5, the TP1 transaction path 
length is currently at 133,500 RISC instructions. That 
measurement is 30 percent less than it was in April 1993. The 
cycles per instruction were measured at 3.8. 

Table 5 TP1 Transaction Path Length

                                              % Time in CPU Modes
                  |----------------------------------|

MQTh         Transaction   Cycles    Interrupt  Kernel  Executive   User
             Path Length   per In-

        struction

334 TP1 TPS  133.5k        3.8       4.8        11.3     79.9        3.4     

SUMMARY 

Based on current performance and future trends, the Alpha AXP 
family of processors and platforms will provide superb servers 
for high-end production systems. To keep pace with the phenomenal 
increases in CPU speed, database systems must incorporate 
features that reduce the I/O bottleneck. DEC Rdb version 6.0 
software has incorporated a number of these features: 
asynchronous page fetch, asynchronous batch write, multithreaded 
backup and restore, multi-statement procedures, and AIJ log 
server using electronic caches. These enhancements not only allow 
optimal transaction processing performance but also permit 
systems to deal with very large data sets.
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