
 Performance of DEC Rdb Version 6.0 on AXP Systems

 by

 Lucien A. Dimino, Rabah Mediouni, T.K. Rengarajan,
 Michael S. Rubino, and Peter M. Spiro

ABSTRACT

The Alpha AXP family of processors provided a dramatic increase
in CPU speed. Even with slower processors, many database
applications were dominated by relatively slow I/O rates. To
maintain a balanced system, database software must incorporate
techniques that specifically address the disparity between CPU
speed and I/O performance. The DEC Rdb version 6.0 database
management system contains shorter code paths, fewer I/O
operations, and reduced stall times. These enhancements minimize
the effect of the I/O bottleneck and allow the AXP processor to
run at its intended higher speeds. Empirical performance results
show a marked improvement in I/O rates.

INTRODUCTION

The DEC Rdb for OpenVMS AXP product (hereafter in this paper
designated as DEC Rdb) is Digital's flagship database management
system.[1] The DEC Rdb relational database software competes
effectively in multiple data processing domains such as stock
exchanges, image-processing applications, telemedicine, and large
databases used for decision support or scientific applications.
Virtually all these application frameworks are demanding
increased processing power and increased I/O capabilities.

The Alpha AXP processor family represents a quantum jump in the
processing power of CPUs. It is designed to scale up to 1,000
times the current processing power in a decade.[2] On the other
hand, disk I/O latency is improving at a much slower rate than
CPU power. As a result, especially on an AXP platform, the total
time to execute a query is dominated by the time to perform the
disk I/O operations. This disparity between processor speed and
I/O latency is commonly called the I/O bottleneck or the I/O
gap.[3]

In this paper, we describe our efforts to improve the performance
of DEC Rdb on AXP systems. First we explain general porting steps
that ensure a foundation of good performance on Alpha AXP
systems. Then we describe our efforts to reduce the I/O
bottleneck. We present the performance enhancements to various
components of earlier versions of DEC Rdb and compare the
enhancements and new features of version 6.0. Finally, we discuss
the TPC-A transaction processing benchmark and present empirical
results that quantify the benefits of the optimizations.

PERFORMANCE GAINS DURING THE PORT TO OpenVMS

In this section, we recount some of the initial, general
performance modifications to the DEC Rdb software in the port
from the VAX VMS system to the OpenVMS AXP system. We briefly
discuss data alignment and reduction of the software subroutines
or PALcode calls.

The DEC Rdb engineering developers saw the opportunity for
increased performance through careful alignment and sizing of
data structures. We needed to develop a solution that would
exploit the performance gain of data alignment, yet still
maintain an easy migration path for our large base of customers
on VAX systems.

For the first release of DEC Rdb, all in-memory data structures
were naturally aligned. In addition, many in-memory byte and word
fields in these data structures were expanded to 32 bits of data
(longwords). Once the in-memory data structures were aligned, we
turned our attention to the on-disk data structures. The database
root file, which is also frequently accessed, was completely
aligned. New databases can be created with these aligned data
structures, and existing databases can be aligned during a
database convert operation on both VAX and AXP systems. This
operation takes only seconds.

We did not align the data on the database pages in the storage
area. Database pages contain the actual user data records. By
leaving this data unaligned, we did not force a database
unload/reload requirement on our customers. This factor and our
support of clusters for both the VAX and the Alpha AXP
architectures simplify migration from the VAX system to the AXP
system.

After we completed the port of DEC Rdb, we ran performance
benchmarks to determine which areas of the system could be
enhanced. By using an internal tool called IPROBE, we learned
that we could improve the performance of DEC Rdb by rewriting or
eliminating code paths in PALcode subroutines. From January 1993
through July 1993, we reduced PALcode cycles from 143k to 62.6k
per TPC-A transaction. Details of earlier performance
modifications have been discussed in this
Journal.[4]

PERFORMANCE ENHANCEMENTS

In this section, we describe how we improved the performance of
DEC Rdb by addressing I/O bottleneck and problems in the code
path.

The general strategy to combat the I/O gap in DEC Rdb was
twofold. The first step was to minimize I/O operations. We used
the "global buffers" of DEC Rdb to avoid read I/O requests. We

took advantage of the large physical memory available in modern
computers to cache interesting parts of the database in memory
and hence reduce the disk read I/O requests. The 64-bit Alpha AXP
architecture allows computers to easily use more than 4 gigabytes
(GB) of directly addressable memory. Write I/O requests are
avoided by using the fast commit feature of DEC Rdb. The
minimization of I/O activity is detailed in a technical report by
Lomet et al.[5]

The second step was to reduce the stall time for the I/O
operations that must be done. A reduced stall time allows DEC Rdb
software to continue processing the queries even when disk I/O
operations are in progress on its behalf. Two features of DEC Rdb
version 6.0, the asynchronous prefetch and the asynchronous batch
writes, reduce the stall time for the read and write I/O
requests, respectively.

Although this strategy handles the I/O gap, the write to the
after image journal (AIJ) becomes a limiting factor in
high-performance transaction processing (TP) systems. The stall
time for the AIJ write is reduced through the AIJ log server and
AIJ cache on electronic disk features of DEC Rdb version 6.0.

In the following sections, we discuss these features in detail.

Write I/O Requests

To read a new set of pages from the database on disk, the DEC Rdb
software selects a buffer in the buffer pool to be replaced. We
refer to this as the victim buffer.

Prior to DEC Rdb version 6.0, writes of updated database pages to
disk happened in synchronous batches. If the victim buffer is
marked, a synchronous batch write is launched. In addition to the
victim buffer, a number of least recently used (LRU) marked
buffers are collected. The number of buffers in the batch write
is specified as the BATCH_MAX parameter by users.

The list is then sorted by page numbers in order to perform
global disk head optimization. After this, asynchronous disk
write I/O requests are issued for all the marked buffers. In
these earlier versions, the DEC Rdb product then waits until all
the write I/O requests are completed. Although the individual
writes are issued asynchronously and may complete in parallel,
DEC Rdb waits synchronously for the entire batch write to
complete. No query processing happens during the batch write.
Figure 1 shows alternating synchronous batch writes and other
work. Writes to the same disk are executed one after another, and
writes to different disks are executed in parallel.

[Figure 1 (Alternating Synchronous Batch Writes and Other
Work) is not available in ASCII format.]

The synchronous batch leverages two important optimizations:
(1) parallelism between various disks and (2) disk head
optimizations implemented at various levels of the storage
hierarchy. The synchronous batch write feature reduced the
average stall time per disk write I/O. The extent of reduction
depends upon the degree to which the above two optimizations
happen, which in turn depends upon the physical database design
and application query behavior. In the TPC-A benchmark, the
synchronous batch writes reduced the average stall time for
the account write by 50 percent compared to synchronous
individual writes.

To further reduce stall time, we implemented asynchronous batch
writes (ABWs) in DEC Rdb version 6.0. With ABW, DEC Rdb now
maintains the last few buffers unmarked. The size of this clean
region of the buffer pool is specified by the user. As new pages
are read from the database, database buffers migrate toward the
end of the LRU chain of buffers. If a marked buffer were found in
the clean region, an ABW would be invoked.

Figure 2 shows asynchronous batch writes invoked periodically,
while other work continues. Processing does not explicitly wait
for any of the disk write I/O requests to complete. (There may be
implicit waits due to disk queuing effects.) Instead, processing
continues. If a buffer with a pending write is chosen as the
victim or if one of the buffers with pending writes is required
for further processing, DEC Rdb then waits for completion of the
pending writes. For applications with good temporal locality, it
is likely that the buffers with pending writes will not be
required for further processing.

Figure 2 also shows a rare instance in which other processing
stops, waiting for one of the asynchronous write I/O requests to
complete. Again, other processing includes stalls for disk read
I/O requests. It is also possible to start a new ABW when the
previous one has not yet completed.

[Figure 2 (Simultaneous Asynchronous Batch Writes and
Other Work) is not available in ASCII format.]

Read I/O Requests

Requests for database pages are often satisfied by a large global
buffer pool. This is true when the whole database fits in a large
memory, common on Alpha AXP systems. Under certain circumstances,
however, the buffer pool is not large enough to satisfy all
requests. Moreover, seldom-used data may be replaced by more
frequently used data in the buffer pool.

The essential strategy is to submit asynchronous disk read I/O
requests well before the data is really needed during query
processing. If the asynchronous prefetch (APF) request is made
far enough in advance of the actual request, the process will not

need to stall for the I/O. Critical to any prefetch strategy is
to reliably determine the desirable database pages for the
immediate future.

Fortunately, applications request data in sets of rows.
Therefore, based on user requests and the query optimizer
decisions, the database access patterns are known at the time
query execution starts. This allows the mechanism to prefetch the
data from the database into the buffer pool.

In DEC Rdb version 6.0, we implemented the mechanism to prefetch
data from the database based on requests from higher layers of
DEC Rdb. This is performed in an integrated manner in the buffer
pool with the usual page locking protection in a cluster. We also
implemented the policy to use asynchronous prefetch in the case
of sequential scans.

Sequential scans are quite common in databases for batch
applications producing large reports. They are also chosen by the
optimizer when a large number of records are selected from a
table for a query for processing.

The user can specify the parameter APF_DEPTH that controls the
number of buffers to be used for prefetching database pages,
hence the lead of prefetch ahead of the real fetches. With a
sufficient level of prefetch, it is quite possible to exploit the
parallelism in the disk subsystem as well as achieve close to the
spiral transfer rate of disks, as we describe in the following
test.

We placed one table in a mixed format area on an RA73 disk. The
database server process used 400 buffers of 6-kilobyte (kB) size,
and the APF_DEPTH parameter was set to 50 buffers. With these
settings, the sequential scan of a 1-GB area took 593 seconds.
This is equivalent to a transfer rate of 1.69 megabytes per
second (MB/s), compared to the rated spiral transfer rate of 1.8
MB/s for the disk.

We performed another test to determine the improvement with the
APF feature in DEC Rdb version 6.0. Again, we built a database
with one table in a mixed format area, but this time on a stripe
set of two RA92 disks. The database server process used 400
buffers of 3-kB size. The elapsed time to scan a 1-GB area in
version 5.1 was 6,512 seconds, and the transfer rate was 0.15
MB/s. In version 6.0 the elapsed time was 569 seconds, and the
transfer rate was 1.76 MB/s. An APF_DEPTH of 100 buffers was used
for version 6.0. We find that APF has made sequential scan 10
times faster in DEC Rdb version 6.0. Note that this performance
improvement can be made much better by using more disks in the
stripe set and by using more powerful processors.

Commit Time Processing

Although the disk I/O stalls are significantly reduced by the APF
and ABW in DEC Rdb version 6.0, the commit time processing
remains a significant wait.

Prior to version 6.0, DEC Rdb software used a cooperative
flushing protocol. Each database server produced the AIJ log
records and then used the lock manager to determine the group
committer. The group committer then formatted the AIJ log records
for all the servers and flushed the data to the AIJ file in one
disk write I/O. Each server thus competed for the AIJ lock in
order to become the group committer. Each server also had to
acquire the AIJ lock even to determine if it had committed.
Figure 3 shows this algorithm. DEC Rdb software also supports
timer-based tuning methods to increase the group size for group
commit.[6]

Figure 3 Cooperative Flushing Algorithm

Put AIJ data in shared memory

Get AIJ lock

if our data IS flushed
then begin

 Release AIJ lock

 return
 end

! We are the group committer

Format AIJ data in shared memory

Reserve space in AIJ file

Release AIJ lock

Write AIJ data to AIJ file

Indicate AIJ data is flushed for group members

AIJ Log Server. With DEC Rdb version 6.0, a dedicated process
called the AIJ log server (ALS) runs on every node of the cluster
to perform the task of processing group writes to the AIJ file
for all servers. The new algorithm is in two parts, one for the
database servers and another for the ALS. Figure 4 shows these
algorithms.

Figure 4 AIJ Log Server Process

(a) Database Server Algorithm:

Put AIJ data in shared memory

Until committed

 sleep ! Woken up after commit by ALS

(b) ALS Algorithm:

Get AIJ lock

loop begin

 Format AIJ data in shared memory

 Write AIJ data to AIJ file

 Indicate AIJ data is flushed for group members

 Wake up all committed processes

 end

Release AIJ lock

At commit time, database servers generate AIJ log records, store
them in shared memory, and go to "sleep." They are "woken up" by
the ALS when their commit records are successfully written to the
AIJ file. The ALS gathers the AIJ log records of all users,
formats them, writes them to the AIJ file, and then wakes up
servers waiting for commit. Thus, the ALS performs AIJ writes in
a continuous loop.

The ALS allows DEC Rdb version 6.0 to scale up to thousands of
transactions per second with one magnetic disk using the TPC-A
benchmark.

With the ALS, the average stall time for a server to commit is
1.5 times more than the time taken to perform one log write I/O.
This stall is of the order of 17 milliseconds with 5,400-rpm
disks. Note that this stall time is a function of disk
performance only and is independent of the workload. In a
high-throughput TP environment, where transaction times are very
short, this stall at commit time is still a significant wait.
Considering the speed of Alpha AXP processors, the commit stall
is many times more than the processing time for servers.

AIJ Cache on Electronic Disk. The AIJ cache on electronic disk
(ACE) is a feature of the ALS that also helps high-throughput TP
systems. ACE utilizes a small amount (less than 1 MB) of very low

latency, solid-state disk to reduce the commit stall time. Figure
5 shows the new ACE algorithm with ALS. The ACE file is on a
solid-state disk shared by all nodes of a cluster. The file is
partitioned for use by various ALS servers in the cluster.

Figure 5 ACE Algorithm

Get AIJ lock

loop begin

 Format AIJ data in shared memory

 Save AIJ block # and length of I/O
 in ACE header

 Write AIJ data and ACE header to ACE file
 ! 1ms

 Wake up all committed processes

 Write AIJ data to AIJ file ! 11ms

 Set flags to indicate AIJ data is flushed
 for group members

 end

Release AIJ lock

Basically, the data is first written to the ACE file, and the
servers are allowed to proceed to the next transaction. The data
is then flushed to the AIJ file in a second I/O. The write
to the ACE disk includes the virtual block number of the AIJ file
where the log data is supposed to be written. The ACE disk serves
as a write-ahead log for the AIJ write. By doubling the number of
disk writes per group, we reduced the response time for the
servers to 0.5 times the stall for AIJ write and 1.5 times the
stall for ACE write. This reduction in the stall time conversely
increases the CPU utilization of servers, thereby reducing the
number of servers required to saturate an AXP CPU.

Backup and Restore Operations

Simply stated, the way we traditionally perform backup does not
scale well with system capacity, rarely uses its resources
effectively, and is disruptive to other database activity. We
designed the backup and restore operations to resolve these
issues. Before we present that discussion, we first examine the
problems with the traditional database backup operation.

Traditional Backup Process. Using OpenVMS BACKUP as an example of

the traditional backup process, we find that a single backup
process performance does not scale with CPU performance, nor with
system aggregate throughput. Instead, it is limited by device
throughput. The only way to increase the performance is to
perform multiple backups concurrently. However, concurrent
backups executing on the same CPU interfere with one another to
some extent. Each additional backup process provides less than 90
percent of the performance of the previous one. Five OpenVMS
BACKUP operations executing on one CPU provide no greater
performance than four operations, each executing on its own CPU.
Consequently, five tape drives may provide only four times the
performance of a single drive.

The OpenVMS BACKUP operation is limited by the lesser of the disk
throughput and the tape throughput. Read performance for an RA73
disk may be as high as 1.8 MB/s, but OpenVMS BACKUP more
typically achieves between 0.8 and 1.0 MB/s. Performance for a
TA92 tape is 2.3 MB/s. Five tape drives, with an aggregate
throughput of 11.5 MB/s, and 25 disks, with an aggregate
throughput of 45.0 MB/s, can only be backed up at a rate of 4.0
MB/s (14.4 GB per hour).

Increasing the CPU capacity and aggregate throughput improves the
backup performance but not proportionally. Low device utilization
and nonlinear scaling mean that as the system capacity and
database size increase, the cost in system time and hardware for
a given level of backup performance becomes increasingly
burdensome.

The traditional backup process, such as provided by OpenVMS
BACKUP, is not coordinated with database activity. The database
activity must be prohibited during the backup. If it is not, the
restore operation will produce an inconsistent view of the data.
In the latter case, database activity journals are required to
return the database to consistency. Application of these journals
significantly reduces the performance of the restore process.

To maximize the performance of the traditional backup process,
the backup must consume a large portion of the entire throughput
of the disks being backed up. As a result, database activity and
backup activity severely impede each another when they compete
for these disks.

RMU BACKUP Operation. The RMU BACKUP operation resolves the
problems with the traditional backup operation. RMU BACKUP is
coordinated with database activity. It produces a consistent
image of the database at a point in time without restricting
database activity or requiring application of journals after the
restore operation.

The RMU BACKUP operation is a multithreaded process; therefore,
it backs up multiple disks to multiple tapes and eliminates the
limiting factor associated with throughput of a single disk or a
single tape drive. The aggregate of disk and tape throughputs

determines the performance of RMU. Because the aggregate disk
throughput is usually significantly higher than the aggregate
tape throughput, all the disks have spare throughput at all times
during RMU BACKUP. Consequently, the RMU BACKUP process and
database activity interfere to a much lesser extent than is the
case with traditional backup. Its multithreaded design also
scales linearly with CPU capacity, aggregate disk throughput, and
aggregate tape throughput.

The first steps of an RMU BACKUP are to evaluate the physical
mapping of the database to disk devices and to determine the
system I/O configuration. RMU then devises a plan to execute the
backup. The goals of this plan are to divide the data among the
tape drives equally, to prohibit interference between devices
sharing a common I/O path, and to minimize disk head movement.
The generated plan is a compromise because complete and accurate
configuration data is difficult to collect and costly to
assimilate. To implement the plan, RMU creates a network of
interacting threads. Each thread operates asynchronously,
performing asynchronous multibuffered I/O to its controlled
device. Interthread communication occurs through buffer exchange
and shared memory structures.

RMU uses the database page checksum to provide end-to-end error
detection between the database updater and the backup operation.
It uses a backup file block cyclic redundancy check (CRC) to
provide end-to-end error detection between the backup and the
restore operations. In addition, RMU uses XOR recovery blocks to
provide single error correction on restore. As a consequence, the
data being backed up must be processed four times, which has a
major effect on CPU usage. The first time is to evaluate the
database page checksum. The second time is to copy the data and
to exclude unused storage and redundant structures. Here we are
willing to expend extra CPU cycles to reduce the I/O load. The
third time is to generate an error detection code (CRC), and the
fourth time is to generate an XOR error recovery block.

The RMU BACKUP operation improves performance in other ways. It
does not back up redundant database structures, nor does it back
up allocated storage that does not contain accessible data. As a
result, the size of the backup file is significantly reduced, and
relative backup performance is improved. The incremental backup
feature selectively backs up only those database pages that have
been modified. This provides an additional, significant reduction
in backup file size relative to a file-oriented backup. These
reductions in backup file size further improve RMU BACKUP
performance relative to traditional backup.

The performance of the RMU RESTORE operation mirrors that of the
RMU BACKUP operation. In spite of this, a natural asymmetry
between the operations allows RMU BACKUP to outperform RMU
RESTORE by 20 percent to 25 percent. There are several reasons
for the asymmetry: the cost of allocating files, the asymmetry of
read versus write disk performance, the asymmetric response of

the I/O subsystem to read versus write I/O operations under heavy
load, and the need to re-create or initialize redundant data that
was not backed up by RMU BACKUP.

The RMU RESTORE operation can restore the entire database,
selected database files, and even selected pages within the
files. Restoring files or pages requires exclusive access to only
the objects being restored. This is the only restriction on
database activity during the restore operation.

We performed a test to illustrate the effectiveness and
scalability of RMU BACKUP with database size and system capacity.
Table 1 gives the results. This test also demonstrates the high
level of backup performance that can be provided on AXP systems
without the use of exotic or expensive technology. Although the
results are limited by the aggregate tape I/O performance, the
CPU does not appear to have sufficient excess capacity to justify
a test with a sixth tape drive.

Table 1 Backup Performance on AXP Systems

--
Configuration Type Amount
--
System DEC 7000 1

 Model 610
 (182 MHz)

Disks RA73 23
 RZ23 2

Controllers HSC95 6
 CIXCD 6
 KMC44 5

Tape drive TA92 5

Operating system OpenVMS V1.5
Database DEC Rdb V5.1
management
software

Database size of 48.8 GB
(71% Relational data or 34.7 GB)

--
Performance
--

Backup time 1:11:29
Backup rate 41.0 GB/hour

Sustained disk data rate of 455 kB/s per disk (25% utilization)

Sustained tape data rate of 2.3 MB/s per tape (100% utilization)

Restore time 1:32:49
Restore rate 31.6 GB/hour

Unfortunately, comparable numbers are not available for other
database products on comparable platforms. Nevertheless, when any
database system relies on the operating system's backup engine,
the expected performance limits are the same as the scenario
presented.

Sorting Mechanism

A sorting mechanism is a key component of a database system. For
example, the relational operations of join, select, and project,
which are executed to satisfy user queries, often sort records to
enable more efficient algorithms. Furthermore, selected records
must often be presented to the user in sorted order. Quite
literally, a faster sorting mechanism directly translates to
faster executing queries. Hence during the port to the Alpha AXP
platform, we also focused on ensuring that the DEC Rdb sorting
mechanism worked well with the Alpha AXP architecture. In the
case of the sort mechanism, we reduced I/O stalls and optimized
for processor cache hits rather than access main memory.

Prior to the port to Alpha AXP, DEC Rdb utilized only the
replacement-selection sort algorithm. For AXP systems, we have
modified the sort mechanism so that it can also utilize the
"quicksort" algorithm under the right conditions.[7] In fact, we
developed a modified quicksort that sorts (key prefix, pointer)
pairs. Our patented modification allows a better address locality
that exploits processor caching.[8] This is especially important
on the Alpha AXP platform since the penalty for addressing memory
is significant due to the relatively fast processor speed. The
quicksort algorithm also performs better than the
replacement-selection algorithm in a memory-rich environment,
which is the trend for Alpha AXP systems.

To summarize, if the required sort fits in main memory, DEC Rdb
version 6.0 utilizes the optimized quicksort algorithm; if the
sort requires temporary results on disk, DEC Rdb uses the
traditional replacement-selection sort algorithm. When writing
temporary results to disk, both sort algorithms also utilize
asynchronous I/O mechanisms to reduce I/O stalls.

The DEC Rdb version 6.0 implementation of the quicksort algorithm
is based on the AlphaSort algorithm developed at Digital's San
Francisco Systems Center. The AlphaSort algorithm achieved the
world-record sort of 7 seconds on an industry-standard sort
benchmark. This result is more than 3 times faster than the
previous sort record of 26 seconds on a CRAY Y-MP system.[8]

Multi-statement Procedures

Prior to the implementation of multi-statement procedures in DEC
Rdb, individual SQL statements were serially submitted to the
database engine for execution. This method of execution incurs
excessive code path because individual SQL statements must
traverse different layers before they reach the database engine.

When clients and servers communicate over a network, each SQL
statement incurs the additional overhead of two network I/O
operations. The result is a long transaction code path as well as
delays due to excessive network traffic. Figure 6 shows the
execution path that individual SQL statements traverse in both
the local and the remote cases.

[Figure 6 (SQL Statement Execution Flow) is not available in ASCII
format.]

Network overhead is a significant problem for client-server
applications. Without the services of the VAX ACMS TP monitor, 14
network I/O operations are required to complete a single TPC-A
transaction. Table 2 lists the TPC-A pseudocode needed to
complete one transaction.

Table 2 Individual SQL Statements for Single TPC-A Transaction

TPC-A Pseudocode Network I/O
 Operations

Start an update transaction 2
 Update a row in BRANCH table 2
 Update a row in TELLER table 2
 Update a row in ACCOUNT table 2
 Select Account_balance from ACCOUNT
 and display it on the terminal 2
Insert a row in the HISTORY table 2
Commit transaction 2

Total network I/O operations
per TPC-A transaction 14

Prior to DEC Rdb version 6.0, client applications accessing
remote servers relied on the services of the VAX ACMS TP monitor
to reduce the network overhead. With ACMS present on both the
client and the server, a message carrying a transaction request
is transferred to the server in one network I/O. As shown in
Figure 7, an ACMS server is then selected to execute the request,
and a message is returned to the client upon transaction

completion. This reduces the number of network I/O operations to
two per transaction. In simple applications such as TPC-A,
however, a TP monitor can be very intrusive. Measurements taken
on a VAX 6300 system running the TPC-A benchmark and using ACMS
revealed that the TP monitor consumes 20 percent to 25 percent of
the cycles on the back-end server.

[Figure 7 (Client-server Application with ACMS) is not available in
ASCII format.]

SQL multi-statement procedures in DEC Rdb version 6.0 address
both these performance issues. They reduce the transaction code
path by compounding a number of SQL statements in one BEGIN-END
procedure that fully adheres to the VAX and AXP procedure calling
standards. The BEGIN-END procedure is atomically submitted to the
database manager to compile once per database session and to
execute as often as the application requires for the duration of
that particular session.

When multiple SQL statements are bundled into a single BEGIN-END
block, only two network I/O operations are required between the
client and the remote server for each database request. Through
the DEC Rdb remote facility, which is an integral part of DEC
Rdb, client-server applications no longer need the services of a
TP monitor. Therefore many of the processing cycles that would
have been dedicated to the TP monitor are regained and applied
toward processing requests.

The DEC Rdb remote server is an ordinary VMS process that is
created upon the first remote request to the database. It has
less overhead than the TP monitor. The DEC Rdb remote server
remains attached to the database; it communicates with and acts
on behalf of its client for the duration of a database session.
Figure 8 shows our implementation of the TPC-A client-server
application with DEC Rdb version 6.0. With the implementation of
multi-statement procedures for the TPC-A transaction, we reduced
the code path approximately 20 percent to 25 percent.

[Figure 8 (Client-server Application with DEC Rdb Version
6.0) is not available in ASCII format.]

PERFORMANCE MEASUREMENT

In this section, we briefly describe a TPC-A transaction and the
TPC-A benchmark. We discuss our goals for TPC-A and recount our
progress. Finally, we present profiling and benchmark results.

TPC-A Transaction

The TPC-A transaction is a very simple database transaction: a
user debits or credits some amount of money from an account. In
database terms, that requires four updates within the database:
modify the user account balance, modify the branch account

balance, modify the teller account balance, and store a history
record. The resulting metric indicates how many transactions are
performed per second (TPS).[9]

In terms of complexity, the TPC-A transaction falls somewhere in
the middle range of benchmarks. In other words, the SPECmark
class of benchmarks is very simple and tends to stress processors
and caching behavior; the sorting benchmarks (e.g., AlphaSort)
expand the scope somewhat to test processors, caches, memory, and
I/O capabilities; the TPC-A benchmark tests all the above in
addition to stressing the database software (based on the
relatively simple transaction). Other benchmarks such as TPC-C
and TPC-D place even more emphasis on the database software,
thereby overshadowing the hardware ramifications. Hence the TPC-A
benchmark is a combined test of a processor and the database
software.

During the porting cycle, Digital was aware that the highest
result in the industry for a single-processor TPC-A benchmark was
approximately 185 TPS. Toward the end of the porting effort, we
worked for six to nine months to ensure that DEC Rdb had attained
optimal performance for the TPC-A transaction.

In April 1993, the DEC Rdb database system was officially audited
on a DEC 10000 AXP system at the world-record rate of 327.99 TPS.
As a result, DEC Rdb became the first database system to exceed
the 300 TPS mark on a single processor. A few weeks later, DEC
Rdb was again audited and achieved 527.73 TPS on a dual-processor
DEC 10000 AXP system. Thus, DEC Rdb became the first database
system to exceed 500 TPS on a dual-processor machine. Table 3
gives our results; the audits were performed by KPMG Peat
Marwick. The mean qualified throughput (MQTh) is the transaction
rate at steady state, and $K/tpsA is a measure of the price per
transaction for the hardware and software configuration.

Table 3 DEC Rdb TPC-A Benchmarks

Processor Cycle Time MQTh $K/tpsA

DEC 7000 AXP Model 610 5.5 ns 302.68 $6,643.00
DEC 7000 AXP Model 610 5.0 ns 327.99 $6,749.00
DEC 7000 AXP Model 620 5.0 ns 527.73 $6,431.00

Anatomy of the TPC-A Transaction

To understand how DEC Rdb achieves such fast transaction rates,
we need to examine the effects of the optimizations to the
software with respect to the execution of the TPC-A transaction.

To complete the four updates required by the TPC-A transaction,
DEC Rdb actually incurs two physical I/O operations and two lock
operations. More specifically, the branch and teller records are

located on a page that is cached in the database buffer pool;
therefore, these two records are updated extremely fast. The
update to the account record causes the account page/record to be
fetched from disk and then modified. A history record is then
stored on a page that also remains in the buffer pool.

Note that there are too many account records for all of them to
be cached in the buffer pool. Hence, the account fetch is the
operation that causes pages to cycle through the buffer pool and
eventually be flushed to disk. The ABW protocols described
previously are utilized to write groups of account pages back to
disk asynchronously. (The branch, teller, and history pages never
approach the end of the LRU queue.)

In regard to locking, the branch, teller, and history
pages/records are all governed by locks that are carried over
from one transaction to the next. There is no need to incur any
locks to update these records. The account page/record, which
must be fetched from disk, requires a new lock request.

At commit time, the after images of the record modifications are
submitted to the AIJ log. The new protocols allow the user
process to "sleep," while the ALS process flushes the AIJ records
to the AIJ file. After the ACE I/O has completed, which occurs
before the I/O to the AIJ file on disk, the user processes are
"woken up" to begin processing their next transactions.

As shown in Figures 9 and 10, the transaction is dominated by
stall times. Since the AXP processors are so fast, the branch,
teller, and history updates, and the two locks are a very small
fraction of the transaction duration. The synchronous account
read is a big expense. The batched asynchronous account writes
are interesting. Indeed, each transaction requires one account
read, which then causes one account write since the buffer pool
overflows. Because the account writes are batched into groups and
written asynchronously, however, there is no stall time required
in the path of the transaction.

[Figure 9 (Transaction Duration before Modifications)
is not available in ASCII format.]

[Figure 10 (Improved Transaction Duration due to
Performance Modifications) is not available in
ASCII format.]

Another critical performance metric in the TPC-A benchmark is
response time. Figure 11 shows the response times with an average
of about 1 second. Figure 12 shows the response time during the
steady-state period of the TPC-A experiment.

[Figure 11 (Response Time versus TPS) is not available in
ASCII format.]

[Figure 12 (TPC-A Measurement at Steady State) is not available in

ASCII format.]

Performance Profiling of DEC Rdb

In this section, we describe in more detail the instruction
profile (i.e., instruction counts, machine cycles, and processor
modes) generated during the TPC-A tests.

Performance profiling of DEC Rdb was obtained using Digital's
IPROBE tool, the RMU, and the VMS performance monitor. IPROBE is
an internal tool built to capture information from the two
processor counters that were established to count on-chip events
and interrupts after a threshold value was reached.

The TP1 benchmark, a back-end-only version of the TPC-A
benchmark, was used to measure DEC Rdb performance on a DEC 7000
AXP Model 610 configured with 5 KDM70 disk controllers and 20
RA70 disk devices. We relied on the IPROBE tool primarily to
generate PC (program counter) sampling and to track transaction
path length variations as new features were prototyped and
performance optimizations were added. We also used IPROBE to
verify cache efficiency and the instruction mix in TP
applications. We used the RMU to measure the maximum throughput
of the TP1 benchmark, the database and application behaviors.

Transaction Cycles Profile

We conducted experiments to determine the performance of
TP1 transactions. We used the DEC 7000 AXP Model 610 system (with
a 5.5-nanosecond processor) and the OpenVMS AXP version 1.5
operating system. With this configuration, DEC Rdb version 6.0
software achieved a maximum throughput of 334 TPS for the TP1
benchmark. More than 95 percent of the transactions completed in
less than 1 second.

Table 4 gives the distribution of the cycles per transaction and
the cycles in PALcode in the various CPU modes. The cycle count
per TP1 transaction was measured at 544,000 cycles. PALcode calls
represent approximately 13 percent of the overall cycle count. In
measurements taken with early OpenVMS AXP base levels, PALcode
calls represented 28 percent of the overall cycle count. The most
frequently called PALcode functions were misses in the data and
instruction translation buffers. Four major DEC Rdb images may
now be installed "/RESIDENT" to take advantage of granularity
hints and reduce misses in the instruction translation buffer.
Dual issuing remained low throughout the experiments we conducted
with various DEC Rdb and OpenVMS AXP base levels.

Table 4 Transaction Cycles in CPU Modes

 % Cycles in System Modes
 |---|

 Cycles per Interrupt Kernel Executive User
 Transaction

Cycles 544.0k 7.1 14.0 73.0 5.8
PALcode
 cycles 71.5k 13.0 18.0 61.4 7.3
Dual issues 19.0k 5.1 11.6 79.0 4.0

TP1 Transaction Path Length Profile

At the initial stage of the DEC Rdb port to the Alpha AXP
platform in January 1993, the TP1 transaction path length was
measured at 300,000 reduced instruction set computer (RISC)
instructions with the available OpenVMS AXP base levels. In April
1993, the TP1 transaction path length dropped to 189,000 RISC
instructions. As shown in Table 5, the TP1 transaction path
length is currently at 133,500 RISC instructions. That
measurement is 30 percent less than it was in April 1993. The
cycles per instruction were measured at 3.8.

Table 5 TP1 Transaction Path Length

 % Time in CPU Modes
 |----------------------------------|

MQTh Transaction Cycles Interrupt Kernel Executive User
 Path Length per In-

 struction

334 TP1 TPS 133.5k 3.8 4.8 11.3 79.9 3.4

SUMMARY

Based on current performance and future trends, the Alpha AXP
family of processors and platforms will provide superb servers
for high-end production systems. To keep pace with the phenomenal
increases in CPU speed, database systems must incorporate
features that reduce the I/O bottleneck. DEC Rdb version 6.0
software has incorporated a number of these features:
asynchronous page fetch, asynchronous batch write, multithreaded
backup and restore, multi-statement procedures, and AIJ log
server using electronic caches. These enhancements not only allow
optimal transaction processing performance but also permit
systems to deal with very large data sets.

ACKNOWLEDGMENTS

The development of DEC Rdb V6.0 was a team effort involving more
people than can be acknowledged here. We would, however, like to

recognize the significant contributions of Jay Feenan, Richard
Pledereder, and Scott Matsumoto for their design of the
multi-statement procedures feature of DEC Rdb and of Ed Fisher
for his work on the Rdb code generator.

REFERENCES

1. L. Hobbs and K. England, Rdb/VMS: A Comprehensive
 Guide (Burlington, MA: Digital Press, 1991).

2. R. Sites, "Alpha AXP Architecture," Digital Technical
 Journal, vol. 4, no. 4 (1992): 19-34.

3. J. Ousterhout and F. Douglas, "Beating the I/O Bottleneck: A
 Case for Log-Structured File Systems," Technical Report,
 University of California at Berkeley (1988).

4. J. Coffler, Z. Mohamed, and P. Spiro, "Porting Digital's
 Database Management Products to the Alpha AXP Platform,"
 Digital Technical Journal, vol. 4, no. 4
 (1992): 153-164.

5. D. Lomet, R. Anderson, T. Rengarajan, and P. Spiro,
 "How the Rdb/VMS Data Sharing System Became Fast," Technical
 Report CRL 92/4, Digital Equipment Corporation, Cambridge
 Research Laboratory (1992).

6. P. Spiro, A. Joshi, and T. Rengarajan, "Designing an
 Optimized Transaction Commit Protocol," Digital
 Technical Journal, vol. 3, no. 1 (Winter 1991):
 70-78.

7. E. Knuth, Sorting and Searching, The Art of Computer
 Programming (Reading, MA: Addison-Wesley Publishing
 Company, 1973).

8. C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet,
 "AlphaSort: A RISC Machine Sort," Technical Report 93.2,
 Digital Equipment Corporation, San Francisco Systems Center
 (1993).

9. J. Gray, The Benchmark Handbook (San Mateo, CA:
 Morgan Kaufmann Publishers, Inc., 1993).

TRADEMARKS

ACMS, Alpha AXP, AXP, DEC Rdb, Digital, KDM, OpenVMS, RA, TA,
VAX, and VMS are trademarks of Digital Equipment Corporation.

CRAY Y-MP is a registered trademark of Cray Research, Inc.

SPECmark is a registered trademark of the Standard Performance
Evaluation Council.

TPC-A is a trademark of the Transaction Processing Performance
Council.

BIOGRAPHIES

Lucien A. Dimino A principal software engineer, Lucien Dimino is
a member of the Database Systems Group. He is responsible for the
RMU relational database management utility. Formerly with AT&T
Bell Telephone Laboratories, he joined Digital in 1974. At
Digital he has worked in the areas of networking and
communications, transaction processing, manufacturing
productivity and automation, and database management. Lucien
received a B.S. in mathematics (1966) from City College of New
York and an M.S. in mathematics from Stevens Institute of
Technology.

Rabah Mediouni Rabah Mediouni joined Digital in 1980 and is
currently a principal engineer in the Rdb Consulting Group.
His responsibilities include consulting on database design and
tuning and performance characterization of new features in major
Rdb releases. He was responsible for the performance
characterization effort during the DEC Rdb port to the AXP
platforms. Prior to this, Rabah worked in the Mid-range Systems
Performance Group as a primary contributor to the VAX 8000 series
performance characterization project. Rabah received an M.S. in
computer science from Rivier College in 1985.

T. K. Rengarajan T. K. Rengarajan, a member of the Database
Systems Group since 1987, works on the KODA software kernel of
the DEC Rdb system. He has contributed in the areas of buffer
management, high availability, OLTP performance on Alpha AXP
systems, and multimedia databases. He designed high-performance
logging, recoverable latches, asynchronous batch writes, and
asynchronous prefetch features for DEC Rdb version 6.0. Ranga
holds M.S. degrees in computer-aided design and computer science
from the University of Kentucky and the University of Wisconsin,
respectively.

Michael S. Rubino Michael Rubino joined Digital in 1983 and is a
principal software engineer in the Database Systems Group. As the
Alpha program manager for database systems, his primary role is
the oversight of the porting of Rdb as well as other database
products from VAX to Alpha AXP. Prior to this work, Michael was
with VMS Engineering and contributed to the RMS and
RMS/journaling projects. Prior to that, he was the KODA (database
kernel) project leader. Michael received a B.S. in computer
science from the State University of New York at Stony Brook in
1983.

Peter M. Spiro Peter Spiro, a consulting software engineer, is
currently the technical director for the Rdb and DBMS software

product set. Peter's current focus is very large database issues
as they relate to the information highway. Peter joined Digital
in 1985, after receiving M.S. degrees in forest science and
computer science from the University of Wisconsin-Madison. He has
five patents related to database journaling and recovery, and he
has authored three papers for earlier issues of the Digital
Technical Journal. In his spare time, Peter is building a
birch bark canoe.

===
Copyright 1994 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

