Performance of DEC Rdb Version 6.0 on AXP Systens

by

Lucien A. Dimno, Rabah Medi ouni, T.K Rengarajan
M chael S. Rubino, and Peter M Spiro

ABSTRACT

The Al pha AXP fanily of processors provided a dramatic increase
in CPU speed. Even with slower processors, many database
applications were dom nated by relatively slow I/Orates. To

mai ntai n a bal anced system database software nust incorporate
techni ques that specifically address the disparity between CPU
speed and I/ O performance. The DEC Rdb version 6.0 database
managenent system contains shorter code paths, fewer /0O
operations, and reduced stall tinmes. These enhancenents mnim ze
the effect of the 1/0 bottl eneck and all ow the AXP processor to
run at its intended higher speeds. Enpirical performance results
show a marked i nprovenent in I/O rates.

| NTRODUCTI ON

The DEC Rdb for OpenVMsS AXP product (hereafter in this paper
designated as DEC Rdb) is Digital's flagshi p database managenent
system [1] The DEC Rdb rel ati onal database software conpetes
effectively in multiple data processing domai ns such as stock
exchanges, image-processing applications, tel emedicine, and |arge
dat abases used for decision support or scientific applications.
Virtually all these application frameworks are demandi ng

i ncreased processing power and increased |/O capabilities.

The Al pha AXP processor fam |y represents a quantumjunp in the
processi ng power of CPUs. It is designed to scale up to 1,000

times the current processing power in a decade.[2] On the other
hand, disk I/O latency is inproving at a nmuch slower rate than

CPU power. As a result, especially on an AXP platform the tota
time to execute a query is dom nated by the time to performthe
disk 1/O operations. This disparity between processor speed and
/O latency is commonly called the 1/0O bottleneck or the I/0O

gap. [3]

In this paper, we describe our efforts to inprove the performance
of DEC Rdb on AXP systens. First we explain general porting steps
that ensure a foundation of good performance on Al pha AXP
systenms. Then we describe our efforts to reduce the I/0O

bottl eneck. We present the performance enhancenents to various
conponents of earlier versions of DEC Rdb and conpare the
enhancenents and new features of version 6.0. Finally, we discuss
the TPC- A transaction processing benchmark and present enpirica
results that quantify the benefits of the optinizations.

PERFORMANCE GAI NS DURI NG THE PORT TO OpenVMs

In this section, we recount sonme of the initial, genera
performance nodifications to the DEC Rdb software in the port
fromthe VAX VMS systemto the OpenVMS AXP system We briefly

di scuss data alignnent and reduction of the software subroutines
or PALcode calls.

The DEC Rdb engi neering devel opers saw t he opportunity for

i ncreased performance through careful alignnment and sizing of
data structures. We needed to develop a solution that would
exploit the performance gain of data alignnment, yet stil

mai ntain an easy migration path for our |arge base of custoners
on VAX systens.

For the first release of DEC Rdb, all in-nmenory data structures
were naturally aligned. In addition, many in-nmenory byte and word
fields in these data structures were expanded to 32 bits of data
(longwords). Once the in-nmenory data structures were aligned, we
turned our attention to the on-disk data structures. The dat abase
root file, which is also frequently accessed, was conpletely

al i gned. New dat abases can be created with these aligned data
structures, and existing databases can be aligned during a

dat abase convert operation on both VAX and AXP systens. This
operation takes only seconds.

We did not align the data on the database pages in the storage
area. Database pages contain the actual user data records. By

| eaving this data unaligned, we did not force a database

unl oad/ rel oad requirenent on our custoners. This factor and our
support of clusters for both the VAX and the Al pha AXP
architectures sinplify migration fromthe VAX systemto the AXP
system

After we conpleted the port of DEC Rdb, we ran performance
benchmarks to deterni ne which areas of the system could be
enhanced. By using an internal tool called | PROBE, we |earned
that we could inprove the performance of DEC Rdb by rewiting or
elimnating code paths in PALcode subroutines. From January 1993
t hrough July 1993, we reduced PALcode cycles from 143k to 62. 6k
per TPC-A transaction. Details of earlier performance

nodi fications have been discussed in this

Jour nal . [4]

PERFORMANCE ENHANCEMENTS

In this section, we describe how we inproved the performance of
DEC Rdb by addressing I/ O bottl eneck and problens in the code
pat h.

The general strategy to conmbat the I/O gap in DEC Rdb was
twofold. The first step was to mnimze |/O operations. W used
the "global buffers" of DEC Rdb to avoid read I/O requests. W

t ook advantage of the | arge physical nenory available in nodern
conputers to cache interesting parts of the database in nmenory
and hence reduce the disk read I/0O requests. The 64-bit Al pha AXP
architecture allows conputers to easily use nore than 4 gi gabytes
(GB) of directly addressable nmenory. Wite I/O requests are

avoi ded by using the fast conmit feature of DEC Rdb. The
mnimzation of 1/0O activity is detailed in a technical report by
Lomet et al.[5]

The second step was to reduce the stall tinme for the I/0O
operations that nmust be done. A reduced stall tinme allows DEC Rdb
software to continue processing the queries even when disk 1/0
operations are in progress on its behalf. Two features of DEC Rdb
version 6.0, the asynchronous prefetch and the asynchronous batch
wites, reduce the stall tinme for the read and wite 1/0O
requests, respectively.

Al t hough this strategy handles the 1/O gap, the wite to the
after inmage journal (AlJ) becones a linmting factor in

hi gh- performance transaction processing (TP) systens. The stal
time for the AIJ wite is reduced through the AlJ |og server and
Al'J cache on electronic disk features of DEC Rdb version 6.0.

In the followi ng sections, we discuss these features in detail

Wite |I/0O Requests

To read a new set of pages fromthe database on disk, the DEC Rdb
software selects a buffer in the buffer pool to be replaced. W
refer to this as the victimbuffer

Prior to DEC Rdb version 6.0, wites of updated database pages to
di sk happened in synchronous batches. If the victimbuffer is

mar ked, a synchronous batch wite is launched. In addition to the
victimbuffer, a nunber of |east recently used (LRU) marked
buffers are collected. The nunber of buffers in the batch wite
is specified as the BATCH MAX paraneter by users.

The list is then sorted by page nunbers in order to perform

gl obal disk head optim zation. After this, asynchronous disk
write 1/Orequests are issued for all the marked buffers. In
these earlier versions, the DEC Rdb product then waits until al
the wite I/O requests are conpl eted. Although the individua
writes are issued asynchronously and may conplete in parall el
DEC Rdb waits synchronously for the entire batch wite to
conplete. No query processing happens during the batch write.
Figure 1 shows alternating synchronous batch wites and ot her
work. Wites to the same di sk are executed one after another, and
writes to different disks are executed in parallel

[Figure 1 (Alternating Synchronous Batch Wites and O her
Work) is not available in ASCII format.]

The synchronous batch | everages two i nportant optim zations:
(1) parallelismbetween various disks and (2) disk head

optim zations inplemented at various |levels of the storage

hi erarchy. The synchronous batch wite feature reduced the
average stall tine per disk wite 1/0O The extent of reduction
depends upon the degree to which the above two optinizations
happen, which in turn depends upon the physical database design
and application query behavior. In the TPC-A benchmark, the
synchronous batch writes reduced the average stall time for
the account write by 50 percent conpared to synchronous

i ndi vidual writes.

To further reduce stall tinme, we inplenmented asynchronous batch
writes (ABW) in DEC Rdb version 6.0. Wth ABW DEC Rdb now

mai ntai ns the |ast few buffers unmarked. The size of this clean
region of the buffer pool is specified by the user. As new pages
are read fromthe database, database buffers mgrate toward the
end of the LRU chain of buffers. If a marked buffer were found in
the clean region, an ABWwoul d be i nvoked.

Figure 2 shows asynchronous batch wites invoked periodically,
whil e other work continues. Processing does not explicitly wait
for any of the disk wite 1/O requests to conplete. (There may be
implicit waits due to disk queuing effects.) Instead, processing
continues. If a buffer with a pending wite is chosen as the
victimor if one of the buffers with pending wites is required
for further processing, DEC Rdb then waits for conpletion of the
pending wites. For applications with good tenporal locality, it
is likely that the buffers with pending wites will not be
required for further processing.

Figure 2 also shows a rare instance in which other processing
stops, waiting for one of the asynchronous wite |I/O requests to
conpl ete. Again, other processing includes stalls for disk read
I/Orequests. It is also possible to start a new ABW when t he
previ ous one has not yet conpl eted.

[Figure 2 (Sinultaneous Asynchronous Batch Wites and
O her Wrk) is not available in ASCII format.]

Read |/ O Requests

Requests for database pages are often satisfied by a | arge gl oba
buffer pool. This is true when the whol e database fits in a |large
menory, common on Al pha AXP systems. Under certain circunstances,
however, the buffer pool is not |arge enough to satisfy al
requests. Moreover, seldomused data may be replaced by nore
frequently used data in the buffer pool

The essential strategy is to submit asynchronous disk read 1/0
requests well before the data is really needed during query
processing. |If the asynchronous prefetch (APF) request is nmde
far enough in advance of the actual request, the process will not

need to stall for the I/O Critical to any prefetch strategy is
to reliably determ ne the desirabl e database pages for the
i medi ate future.

Fortunately, applications request data in sets of rows.

Therefore, based on user requests and the query optim zer
deci si ons, the database access patterns are known at the tine
gquery execution starts. This allows the nmechanismto prefetch the
data fromthe database into the buffer pool.

In DEC Rdb version 6.0, we inplenented the nmechanismto prefetch
data fromthe database based on requests from higher |ayers of
DEC Rdb. This is perfornmed in an integrated manner in the buffer
pool with the usual page | ocking protection in a cluster. W also
i mpl emented the policy to use asynchronous prefetch in the case
of sequential scans.

Sequential scans are quite common in databases for batch
applications producing |arge reports. They are al so chosen by the
optim zer when a | arge nunber of records are selected froma
table for a query for processing.

The user can specify the paranmeter APF_DEPTH that controls the
nunber of buffers to be used for prefetching database pages,
hence the | ead of prefetch ahead of the real fetches. Wth a
sufficient level of prefetch, it is quite possible to exploit the
parallelismin the disk subsystemas well as achieve close to the
spiral transfer rate of disks, as we describe in the follow ng
test.

We placed one table in a nmixed format area on an RA73 di sk. The
dat abase server process used 400 buffers of 6-kilobyte (kB) size,
and the APF_DEPTH paraneter was set to 50 buffers. Wth these
settings, the sequential scan of a 1-GB area took 593 seconds.
This is equivalent to a transfer rate of 1.69 negabytes per
second (MB/s), conpared to the rated spiral transfer rate of 1.8
MB/ s for the disk.

We performed another test to determ ne the inprovenent with the
APF feature in DEC Rdb version 6.0. Again, we built a database
with one table in a mixed fornmat area, but this tine on a stripe
set of two RA92 di sks. The database server process used 400
buffers of 3-kB size. The elapsed tine to scan a 1-GB area in
version 5.1 was 6,512 seconds, and the transfer rate was 0.15
MB/s. In version 6.0 the el apsed tinme was 569 seconds, and the
transfer rate was 1.76 MB/s. An APF_DEPTH of 100 buffers was used
for version 6.0. W find that APF has made sequential scan 10
times faster in DEC Rdb version 6.0. Note that this perfornmance
i mprovenent can be nade much better by using nmore disks in the
stripe set and by using nore powerful processors.

Commit Tine Processing

Al t hough the disk I1/O stalls are significantly reduced by the APF
and ABWin DEC Rdb version 6.0, the commt tine processing
remains a significant wait.

Prior to version 6.0, DEC Rdb software used a cooperative
flushing protocol. Each database server produced the AlJ | og
records and then used the | ock manager to determ ne the group
committer. The group committer then formatted the AlJ | og records
for all the servers and flushed the data to the AlJ file in one
disk wite 1/0O Each server thus conpeted for the AlIJ lock in
order to becone the group conmitter. Each server also had to
acquire the AlJ lock even to deternmine if it had conmtted.
Figure 3 shows this algorithm DEC Rdb software al so supports
timer-based tuning nmethods to increase the group size for group
comit.[6]

Figure 3 Cooperative Flushing Algorithm

Put AlJ data in shared nenory

Get AlJ | ock

i f our data IS flushed
t hen begin

Rel ease AlJ | ock

return
end

I W are the group conmitter

Format AlJ data in shared nmenory

Reserve space in AlJ file

Rel ease AlJ | ock

Wite AlJ data to AlJ file

Indicate AlJ data is flushed for group nenbers

AlJ Log Server. Wth DEC Rdb version 6.0, a dedicated process
called the AlJ | og server (ALS) runs on every node of the cluster
to performthe task of processing group wites to the AlJ file
for all servers. The new algorithmis in tw parts, one for the

dat abase servers and anot her for the ALS. Figure 4 shows these
al gorithms.

Figure 4 AlJ Log Server Process

(a) Database Server Algorithm
Put AlJ data in shared nenory
Unti | conmitted

sl eep I Woken up after commit by ALS

(b) ALS Al gorithm
Get AlJ lock
| oop begin
Format AlJ data in shared nmenory
Wite AlJ data to AlJ file
Indicate AlJ data is flushed for group nenbers
Wake up all committed processes
end

Rel ease AlJ | ock

At commit time, database servers generate AlJ |log records, store
themin shared nmenory, and go to "sleep." They are "woken up" by
the ALS when their comrt records are successfully witten to the
AlJ file. The ALS gathers the AlJ log records of all users,
formats them wites themto the AlJ file, and then wakes up
servers waiting for commt. Thus, the ALS perforns AlJ wites in
a continuous | oop.

The ALS allows DEC Rdb version 6.0 to scale up to thousands of
transacti ons per second with one magnetic di sk using the TPC-A
benchmar k.

Wth the ALS, the average stall tinme for a server to comrit is
1.5 tinmes nmore than the time taken to performone log wite 1/0O.
This stall is of the order of 17 milliseconds with 5,400-rpm

di sks. Note that this stall tine is a function of disk
performance only and is independent of the workload. In a

hi gh-t hroughput TP environnment, where transaction tinmes are very
short, this stall at comrit tinme is still a significant wait.
Consi dering the speed of Al pha AXP processors, the conmit stal
is many tinmes nore than the processing tinme for servers.

AlJ Cache on Electronic Disk. The AlJ cache on el ectronic disk
(ACE) is a feature of the ALS that al so hel ps hi gh-throughput TP
systenms. ACE utilizes a small anpunt (less than 1 MB) of very |ow

| atency, solid-state disk to reduce the conmt stall tine. Figure
5 shows the new ACE algorithmwth ALS. The ACE file is on a
solid-state disk shared by all nodes of a cluster. The file is
partitioned for use by various ALS servers in the cluster

Figure 5 ACE Al gorithm
Get AlJ lock
| oop begin
Format AlJ data in shared nmenory

Save AlJ block # and length of 1/0
i n ACE header

Wite AlJ data and ACE header to ACE file
I 1ns

Wake up all committed processes
Wite AlJ data to AlJ file I 11ms

Set flags to indicate AlJ data is flushed
for group nenbers

end

Rel ease AlJ | ock

Basically, the data is first witten to the ACE file, and the
servers are allowed to proceed to the next transaction. The data
is then flushed to the AIJ file in a second I/O. The wite

to the ACE disk includes the virtual block nunber of the AIJ file
where the |l og data is supposed to be witten. The ACE di sk serves
as a wite-ahead log for the AIJ wite. By doubling the nunber of
disk writes per group, we reduced the response tine for the
servers to 0.5 tines the stall for AlJ wite and 1.5 tinmes the
stall for ACE wite. This reduction in the stall time conversely
i ncreases the CPU utilization of servers, thereby reducing the
nunber of servers required to saturate an AXP CPU

Backup and Restore Operations

Sinply stated, the way we traditionally perform backup does not
scale well with system capacity, rarely uses its resources
effectively, and is disruptive to other database activity. W
desi gned the backup and restore operations to resolve these

i ssues. Before we present that discussion, we first exam ne the
problenms with the traditional database backup operation.

Tradi ti onal Backup Process. Using OpenVMs BACKUP as an exanpl e of

the traditional backup process, we find that a single backup
process performance does not scale with CPU performance, nor with
system aggregate throughput. Instead, it is limted by device

t hroughput. The only way to increase the performance is to
perform mul ti pl e backups concurrently. However, concurrent
backups executing on the same CPU interfere with one another to
sonme extent. Each additional backup process provides |ess than 90
percent of the performance of the previous one. Five OpenVMS
BACKUP operations executing on one CPU provide no greater
performance than four operations, each executing on its own CPU
Consequently, five tape drives may provide only four tinmes the
performance of a single drive.

The OpenVMS BACKUP operation is limted by the | esser of the disk
t hroughput and the tape throughput. Read performance for an RA73
di sk nmay be as high as 1.8 MB/s, but OpenVMS BACKUP nore
typically achieves between 0.8 and 1.0 MB/s. Performance for a
TA92 tape is 2.3 MB/s. Five tape drives, with an aggregate

t hroughput of 11.5 MB/s, and 25 disks, with an aggregate

t hroughput of 45.0 MB/s, can only be backed up at a rate of 4.0
MB/s (14.4 GB per hour).

I ncreasing the CPU capacity and aggregate throughput inproves the
backup performance but not proportionally. Low device utilization
and nonlinear scaling nean that as the system capacity and

dat abase size increase, the cost in systemtine and hardware for
a given level of backup perfornmance becones increasingly

bur densone.

The traditional backup process, such as provided by OpenVMS
BACKUP, is not coordinated with database activity. The database
activity nust be prohibited during the backup. If it is not, the
restore operation will produce an inconsistent view of the data.
In the latter case, database activity journals are required to
return the database to consistency. Application of these journals
significantly reduces the performance of the restore process.

To maxi m ze the performance of the traditional backup process,

t he backup must consunme a | arge portion of the entire throughput
of the disks being backed up. As a result, database activity and
backup activity severely inpede each anot her when they conpete
for these disks.

RMU BACKUP Operation. The RMJ BACKUP operation resolves the
problems with the traditional backup operation. RMJ BACKUP is
coordi nated with database activity. It produces a consi stent

i mmge of the database at a point in tine without restricting

dat abase activity or requiring application of journals after the
restore operation.

The RMJ BACKUP operation is a multithreaded process; therefore,
it backs up multiple disks to nmultiple tapes and elininates the
limting factor associated with throughput of a single disk or a
single tape drive. The aggregate of disk and tape throughputs

deternines the performance of RMJ. Because the aggregate disk

t hroughput is usually significantly higher than the aggregate
tape throughput, all the disks have spare throughput at all tines
duri ng RMJ BACKUP. Consequently, the RMJ BACKUP process and

dat abase activity interfere to a nmuch | esser extent than is the
case with traditional backup. Its nmultithreaded design al so
scales linearly with CPU capacity, aggregate di sk throughput, and
aggregat e tape throughput.

The first steps of an RMJU BACKUP are to eval uate the physica
mappi ng of the database to di sk devices and to determnine the
system | /O configuration. RMJ then devises a plan to execute the
backup. The goals of this plan are to divide the data anobng the
tape drives equally, to prohibit interference between devices
sharing a common |/ O path, and to minim ze di sk head novenent.
The generated plan is a conpromni se because conpl ete and accurate
configuration data is difficult to collect and costly to
assimlate. To inplenent the plan, RMJ creates a network of
interacting threads. Each thread operates asynchronously,
perform ng asynchronous nmultibuffered I/Oto its controlled
device. Interthread conmmunication occurs through buffer exchange
and shared nmenory structures.

RMU uses the database page checksumto provide end-to-end error
detection between the database updater and the backup operation
It uses a backup file block cyclic redundancy check (CRC) to
provi de end-to-end error detection between the backup and the
restore operations. In addition, RMJ uses XOR recovery bl ocks to
provi de single error correction on restore. As a consequence, the
dat a bei ng backed up must be processed four tinmes, which has a
maj or effect on CPU usage. The first tinme is to evaluate the

dat abase page checksum The second tinme is to copy the data and
to exclude unused storage and redundant structures. Here we are
willing to expend extra CPU cycles to reduce the I/0O |load. The
third tine is to generate an error detection code (CRC), and the
fourth time is to generate an XOR error recovery bl ock

The RMJ BACKUP operation inproves performance in other ways. It
does not back up redundant database structures, nor does it back
up allocated storage that does not contain accessible data. As a
result, the size of the backup file is significantly reduced, and
rel ati ve backup performance is inproved. The increnental backup
feature selectively backs up only those database pages that have
been nodified. This provides an additional, significant reduction
in backup file size relative to a file-oriented backup. These
reductions in backup file size further inprove RMJ BACKUP
performance relative to traditional backup

The performance of the RMJ RESTORE operation mirrors that of the
RMU BACKUP operation. In spite of this, a natural asymretry

bet ween the operations all ows RMJ BACKUP to out perform RMJ
RESTORE by 20 percent to 25 percent. There are several reasons
for the asymmetry: the cost of allocating files, the asymretry of
read versus wite disk performance, the asymetric response of

the I/O subsystemto read versus wite |I/O operations under heavy
| oad, and the need to re-create or initialize redundant data that
was not backed up by RMJ BACKUP

The RMJ RESTORE operation can restore the entire database,

sel ected database files, and even sel ected pages within the
files. Restoring files or pages requires exclusive access to only
the objects being restored. This is the only restriction on

dat abase activity during the restore operation.

We perfornmed a test to illustrate the effectiveness and
scalability of RMJU BACKUP wi th database size and system capacity.
Table 1 gives the results. This test also denonstrates the high

| evel of backup performance that can be provided on AXP systens
wi t hout the use of exotic or expensive technol ogy. Although the
results are limted by the aggregate tape 1/0O performance, the
CPU does not appear to have sufficient excess capacity to justify
atest with a sixth tape drive.

Tabl e 1 Backup Performance on AXP Systens

Configuration Type Amount
System DEC 7000 1
Model 610
(182 MHz)
Di sks RA73 23
Rz23 2
Controllers HSC95 6
Cl XCD 6
KMC44 5
Tape drive TA92 5
Operating system OpenVMs V1.5
Dat abase DEC Rdb V5.1
managemnent
sof t war e

Dat abase size of 48.8 GB
(71% Rel ational data or 34.7 GB)

Backup tine 1:11:29
Backup rate 41. 0 GB/ hour

Sust ai ned di sk data rate of 455 kB/s per disk (25% utilization)

Sust ai ned tape data rate of 2.3 MB/s per tape (100% utilization)

Restore tine 1:32: 49
Restore rate 31.6 GB/ hour

Unfortunately, conparable nunbers are not available for other

dat abase products on conparable platforns. Neverthel ess, when any
dat abase systemrelies on the operating system s backup engine,
the expected performance limts are the sanme as the scenario
present ed.

Sorting Mechani sm

A sorting nechanismis a key conponent of a database system For
exanpl e, the relational operations of join, select, and project,
whi ch are executed to satisfy user queries, often sort records to
enable nore efficient algorithns. Furthernore, selected records
nmust often be presented to the user in sorted order. Quite
literally, a faster sorting nechanismdirectly translates to
faster executing queries. Hence during the port to the Al pha AXP
platform we also focused on ensuring that the DEC Rdb sorting
mechani sm worked well with the Al pha AXP architecture. In the
case of the sort mechanism we reduced |/O stalls and optim zed
for processor cache hits rather than access main nmenory.

Prior to the port to Al pha AXP, DEC Rdb utilized only the

repl acenent-sel ection sort algorithm For AXP systens, we have
nodi fied the sort nechanismso that it can also utilize the

"qui cksort" algorithmunder the right conditions.[7] In fact, we
devel oped a nodified quicksort that sorts (key prefix, pointer)
pairs. Qur patented nodification allows a better address locality
that exploits processor caching.[8] This is especially inportant
on the Al pha AXP platform since the penalty for addressing nmenory
is significant due to the relatively fast processor speed. The
qui cksort algorithm al so perforns better than the

repl acenent-sel ection algorithmin a nmenory-rich environment,
which is the trend for Al pha AXP systens.

To summarize, if the required sort fits in main nmenory, DEC Rdb
version 6.0 utilizes the optinmized quicksort algorithm if the
sort requires tenporary results on disk, DEC Rdb uses the
traditional replacenment-selection sort algorithm Wen witing
tenporary results to disk, both sort algorithns also utilize
asynchronous 1/ 0O mechani sns to reduce 1/0 stalls.

The DEC Rdb version 6.0 inplenentation of the quicksort algorithm
is based on the Al phaSort al gorithm devel oped at Digital's San
Franci sco Systens Center. The Al phaSort al gorithm achieved the
worl d-record sort of 7 seconds on an industry-standard sort
benchmark. This result is nore than 3 tines faster than the

previ ous sort record of 26 seconds on a CRAY Y-MP system[8]

Mul ti-statenment Procedures

Prior to the inplenmentation of multi-statenent procedures in DEC
Rdb, individual SQ. statenments were serially subnitted to the
dat abase engi ne for execution. This nmethod of execution incurs
excessive code path because individual SQ statenents nust
traverse different |layers before they reach the database engine.

When clients and servers conmuni cate over a network, each SQ
statement incurs the additional overhead of two network /O
operations. The result is a long transaction code path as well as
del ays due to excessive network traffic. Figure 6 shows the
execution path that individual SQL statements traverse in both
the local and the renpte cases.

[Figure 6 (SQL Statenment Execution Flow) is not available in ASCl
format.]

Net work overhead is a significant problem for client-server
applications. Wthout the services of the VAX ACMS TP nonitor, 14
network 1/O operations are required to conplete a single TPC-A
transaction. Table 2 lists the TPC-A pseudocode needed to

conpl ete one transaction.

Tabl e 2 Individual SQ. Statements for Single TPC-A Transaction

TPC- A Pseudocode Network /0O
Operations

Start an update transaction 2
Update a row i n BRANCH t abl e 2
Update a row in TELLER table 2
Update a row i n ACCOUNT table 2
Sel ect Account _bal ance from ACCOUNT

and display it on the term nal 2

Insert a rowin the H STORY table 2

Conmit transaction 2

Total network |/O operations

per TPC- A transaction 14

Prior to DEC Rdb version 6.0, client applications accessing
renote servers relied on the services of the VAX ACMS TP nonitor
to reduce the network overhead. Wth ACMS present on both the
client and the server, a nmessage carrying a transaction request
is transferred to the server in one network I/O As shown in
Figure 7, an ACMS server is then selected to execute the request,
and a nessage is returned to the client upon transaction

conpletion. This reduces the nunmber of network I/O operations to
two per transaction. In sinple applications such as TPC-A,
however, a TP nonitor can be very intrusive. Masurenents taken
on a VAX 6300 system runni ng the TPC-A benchmark and usi ng ACVS
reveal ed that the TP nonitor consunes 20 percent to 25 percent of
the cycles on the back-end server.

[Figure 7 (Client-server Application with ACMS) is not available in
ASClI | format.]

SQL multi-statenment procedures in DEC Rdb version 6.0 address
both these perfornmance issues. They reduce the transacti on code
pat h by conmpoundi ng a nunmber of SQL statenments in one BEG N-END
procedure that fully adheres to the VAX and AXP procedure calling
standards. The BEG N-END procedure is atonmically submtted to the
dat abase nmnager to conpil e once per database session and to
execute as often as the application requires for the duration of
that particul ar session.

When nmultiple SQL statenents are bundled into a single BEGA N-END
bl ock, only two network |/ O operations are required between the
client and the renpte server for each database request. Through
the DEC Rdb renote facility, which is an integral part of DEC
Rdb, client-server applications no |onger need the services of a
TP monitor. Therefore many of the processing cycles that woul d
have been dedicated to the TP nonitor are regai ned and applied
toward processing requests.

The DEC Rdb renote server is an ordinary VMS process that is
created upon the first renpte request to the database. It has

| ess overhead than the TP nonitor. The DEC Rdb renote server
remai ns attached to the database; it conmunicates with and acts
on behalf of its client for the duration of a database session
Figure 8 shows our inplenmentation of the TPC-A client-server
application with DEC Rdb version 6.0. Wth the inplenmentation of
nmul ti-statenent procedures for the TPC-A transaction, we reduced
the code path approximtely 20 percent to 25 percent.

[Figure 8 (Client-server Application with DEC Rdb Version
6.0) is not available in ASCI| fornmat.]

PERFORMANCE MEASUREMENT

In this section, we briefly describe a TPC-A transaction and the
TPC- A benchmar k. We di scuss our goals for TPC-A and recount our
progress. Finally, we present profiling and benchmark results.

TPC- A Transaction

The TPC-A transaction is a very sinple database transaction: a
user debits or credits some amount of noney from an account. In
dat abase terms, that requires four updates within the database:
nodi fy the user account bal ance, nodify the branch account

bal ance, nodify the teller account balance, and store a history
record. The resulting nmetric indicates how many transactions are
performed per second (TPS).[9]

In terns of conplexity, the TPC-A transaction falls sonewhere in
the m ddl e range of benchmarks. In other words, the SPECmark

cl ass of benchmarks is very sinple and tends to stress processors
and cachi ng behavi or; the sorting benchmarks (e.g., Al phaSort)
expand the scope sonmewhat to test processors, caches, nmenory, and
I/ O capabilities; the TPC-A benchnmark tests all the above in
addition to stressing the database software (based on the
relatively sinple transaction). O her benchmarks such as TPC-C
and TPC-D pl ace even nore enphasis on the database software

t her eby overshadowi ng the hardware ranifications. Hence the TPC-A
benchmark is a conbined test of a processor and the database
sof t war e.

During the porting cycle, Digital was aware that the highest
result in the industry for a single-processor TPC-A benchmark was
approximately 185 TPS. Toward the end of the porting effort, we
wor ked for six to nine nonths to ensure that DEC Rdb had attained
opti mal performance for the TPC-A transaction.

In April 1993, the DEC Rdb dat abase systemwas officially audited
on a DEC 10000 AXP system at the world-record rate of 327.99 TPS.
As a result, DEC Rdb becane the first database systemto exceed
the 300 TPS mark on a single processor. A few weeks |ater, DEC
Rdb was again audited and achi eved 527.73 TPS on a dual - processor
DEC 10000 AXP system Thus, DEC Rdb becane the first database
systemto exceed 500 TPS on a dual - processor machi ne. Table 3
gives our results; the audits were perforned by KPMG Peat

Marwi ck. The nean qualified throughput (MJTh) is the transaction
rate at steady state, and $K/tpsA is a neasure of the price per
transaction for the hardware and software configuration

Tabl e 3 DEC Rdb TPC- A Benchmar ks

Processor Cycle Time MQJTh $K/ t psA

DEC 7000 AXP Mbdel 610 5.5 ns 302.68 $6, 643.00
DEC 7000 AXP Mbdel 610 5.0 ns 327.99 $6, 749.00
DEC 7000 AXP Mbdel 620 5.0 ns 527.73 $6, 431.00

Anat oy of the TPC-A Transaction

To understand how DEC Rdb achi eves such fast transaction rates,
we need to examine the effects of the optim zations to the
software with respect to the execution of the TPC-A transaction.

To conmpl ete the four updates required by the TPC-A transaction,
DEC Rdb actually incurs two physical |1/0O operations and two | ock
operations. Mdre specifically, the branch and teller records are

| ocated on a page that is cached in the database buffer pool
therefore, these two records are updated extrenely fast. The
update to the account record causes the account page/record to be
fetched fromdisk and then nodified. A history record is then
stored on a page that also remains in the buffer pool

Note that there are too many account records for all of themto
be cached in the buffer pool. Hence, the account fetch is the
operation that causes pages to cycle through the buffer pool and
eventual ly be flushed to disk. The ABW protocols descri bed
previously are utilized to wite groups of account pages back to
di sk asynchronously. (The branch, teller, and history pages never
approach the end of the LRU queue.)

In regard to |l ocking, the branch, teller, and history
pages/records are all governed by |ocks that are carried over
fromone transaction to the next. There is no need to incur any
| ocks to update these records. The account page/record, which
nmust be fetched fromdi sk, requires a new | ock request.

At commit time, the after inages of the record nodifications are
subnmtted to the AlJ log. The new protocols allow the user
process to "sleep," while the ALS process flushes the AlJ records
to the AIJ file. After the ACE I/ O has conpl eted, which occurs
before the I/Oto the AIJ file on disk, the user processes are
"woken up" to begin processing their next transactions.

As shown in Figures 9 and 10, the transaction is dom nated by
stall tinmes. Since the AXP processors are so fast, the branch
teller, and history updates, and the two | ocks are a very snall
fraction of the transaction duration. The synchronous account
read is a big expense. The batched asynchronous account wites
are interesting. Indeed, each transaction requires one account
read, which then causes one account write since the buffer poo
overfl ows. Because the account wites are batched into groups and
written asynchronously, however, there is no stall tinme required
in the path of the transaction.

[Figure 9 (Transaction Duration before Mdifications)
is not available in ASCII format.]

[Figure 10 (I nproved Transaction Duration due to
Performance Modifications) is not available in
ASClI | format.]

Anot her critical performance netric in the TPC-A benchmark is
response tine. Figure 11 shows the response tinmes with an average
of about 1 second. Figure 12 shows the response tinme during the
st eady-state period of the TPC-A experinent.

[Figure 11 (Response Tine versus TPS) is not available in
ASClI | format.]

[Figure 12 (TPC-A Measurenent at Steady State) is not available in

ASClI | format.]

Performance Profiling of DEC Rdb

In this section, we describe in nore detail the instruction
profile (i.e., instruction counts, machine cycles, and processor
nodes) generated during the TPC-A tests.

Performance profiling of DEC Rdb was obtained using Digital's

| PROBE tool, the RMJ, and the VMS performance nonitor. |PROBE is
an internal tool built to capture information fromthe two
processor counters that were established to count on-chip events
and interrupts after a threshold val ue was reached.

The TP1 benchmark, a back-end-only version of the TPC-A
benchmark, was used to neasure DEC Rdb performance on a DEC 7000
AXP Model 610 configured with 5 KDM7O di sk controllers and 20
RA70 di sk devices. We relied on the IPROBE tool primarily to
generate PC (program counter) sanpling and to track transaction
path |l ength variations as new features were prototyped and
performance optim zati ons were added. W al so used | PROBE to
verify cache efficiency and the instruction mx in TP
applications. W used the RMJ to nmeasure the maxi mum t hr oughput
of the TPl benchmark, the database and application behaviors.

Transaction Cycles Profile

We conducted experinents to deternine the perfornmance of

TP1 transactions. W used the DEC 7000 AXP Model 610 system (with
a 5. 5-nanosecond processor) and the OpenVMs AXP version 1.5
operating system Wth this configuration, DEC Rdb version 6.0
sof tware achi eved a maxi mum t hroughput of 334 TPS for the TPl
benchmark. Mre than 95 percent of the transactions conpleted in
| ess than 1 second.

Tabl e 4 gives the distribution of the cycles per transaction and
the cycles in PALcode in the various CPU nodes. The cycle count
per TPl transaction was nmeasured at 544,000 cycles. PALcode calls
represent approximately 13 percent of the overall cycle count. In
measurenents taken with early OpenVMS AXP base | evel s, PALcode
calls represented 28 percent of the overall cycle count. The npst
frequently call ed PALcode functions were nisses in the data and
instruction translation buffers. Four najor DEC Rdb i nages may
now be installed "/RESIDENT" to take advantage of granularity
hints and reduce misses in the instruction translation buffer

Dual issuing renmained | ow throughout the experinments we conducted
wi th various DEC Rdb and OpenVMs AXP base | evels.

Tabl e 4 Transaction Cycles in CPU Mdes

% Cycles in System Modes

Cycl es per I nterrupt Ker nel Executive User
Transaction

Cycl es 544, 0k 7.1 14.0 73.0 5.8
PALcode

cycles 71. 5k 13.0 18.0 61. 4 7.3
Dual issues 19. 0k 5.1 11.6 79.0 4.0

TP1 Transaction Path Length Profile

At the initial stage of the DEC Rdb port to the Al pha AXP
platformin January 1993, the TPl transaction path | ength was
measured at 300, 000 reduced instruction set conputer (RISC)
instructions with the avail abl e OpenVMS AXP base levels. In Apri
1993, the TP1 transaction path | ength dropped to 189, 000 RI SC
instructions. As shown in Table 5, the TP1 transaction path
length is currently at 133,500 RISC instructions. That
measurenent is 30 percent less than it was in April 1993. The
cycles per instruction were neasured at 3. 8.

Table 5 TP1 Transaction Path Length

% Tinme in CPU Modes

MQTh Transaction Cycl es Interrupt Kernel Executive User
Path Length per |n-
struction
334 TP1 TPS 133.5k 3.8 4.8 11.3 79.9 3.4
SUMMARY

Based on current performance and future trends, the Al pha AXP
fam ly of processors and platforns will provide superb servers
for high-end production systens. To keep pace with the phenonena
i ncreases in CPU speed, database systens nust incorporate
features that reduce the 1/0O bottl eneck. DEC Rdb version 6.0
software has incorporated a nunmber of these features:
asynchronous page fetch, asynchronous batch wite, nultithreaded
backup and restore, mnulti-statenment procedures, and AlJ | og
server using electronic caches. These enhancenents not only all ow
optimal transaction processing performnce but also permt
systenms to deal with very |large data sets.

ACKNOW.EDGVENTS

The devel opment of DEC Rdb V6.0 was a team effort involving nore
peopl e than can be acknow edged here. W woul d, however, like to

recogni ze the significant contributions of Jay Feenan, Richard
Pl edereder, and Scott Matsumpto for their design of the
mul ti-statenment procedures feature of DEC Rdb and of Ed Fi sher

for his work on the Rdb code generat or
REFERENCES
1. L. Hobbs and K. England, Rdb/VMs: A Conprehensive

Gui de (Burlington, MA: Digital Press, 1991).

R Sites, "Alpha AXP Architecture," Digital Technica
Journal, vol. 4, no. 4 (1992): 19-34.

J. Qusterhout and F. Douglas, "Beating the 1/0O Bottl eneck: A
Case for Log-Structured File Systens," Technical Report,
University of California at Berkeley (1988).

J. Coffler, Z Mhanmed, and P. Spiro, "Porting Digital's
Dat abase Managenent Products to the Al pha AXP Platform"
Digital Technical Journal, vol. 4, no. 4

(1992): 153-164.

D. Lonmet, R Anderson, T. Rengarajan, and P. Spiro,

"How t he Rdb/VMsS Data Sharing System Becane Fast," Technica
Report CRL 92/4, Digital Equi pnent Corporation, Canbridge
Research Laboratory (1992).

P. Spiro, A Joshi, and T. Rengaraj an, "Designing an
Optim zed Transaction Conmit Protocol," Digita
Techni cal Journal, vol. 3, no. 1 (Wnter 1991):
70-78.

E. Knuth, Sorting and Searching, The Art of Conputer
Programm ng (Readi ng, MA: Addi son-Wesl ey Publi shing
Conpany, 1973).

C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gay, and D. Lonet,
"Al phaSort: A RI SC Machine Sort," Technical Report 93.2,

Di gi tal Equi pnrent Corporation, San Francisco Systenms Center
(1993).

J. Gray, The Benchnmark Handbook (San Mateo, CA:
Mor gan Kauf mann Publishers, Inc., 1993).

TRADEMARKS

ACMS, Al pha AXP, AXP, DEC Rdb, Digital, KDM OpenVMS, RA, TA,
VAX, and VMs are tradenmarks of Digital Equi prent Corporation

CRAY Y-MP is a registered trademark of Cray Research, |nc.

SPECmark is a registered trademark of the Standard Performance
Eval uati on Counci l

TPC-A is a trademark of the Transacti on Processing Performance
Counci |

Bl OGRAPHI ES

Lucien A. Dimino A principal software engineer, Lucien Dimno is
a nmenber of the Database Systens Group. He is responsible for the
RMU rel ati onal database managenent utility. Formerly with AT&T
Bel | Tel ephone Laboratories, he joined Digital in 1974. At

Digital he has worked in the areas of networking and

communi cations, transaction processing, manufacturing
productivity and autonmati on, and database nanagenent. Lucien
received a B.S. in mathematics (1966) from City Coll ege of New
York and an MS. in mathematics from Stevens Institute of

Technol ogy.

Rabah Medi ouni Rabah Medi ouni joined Digital in 1980 and is
currently a principal engineer in the Rdb Consulting G oup

Hi s responsibilities include consulting on database design and
tuni ng and performance characterizati on of new features in mgjor
Rdb rel eases. He was responsible for the performance
characterization effort during the DEC Rdb port to the AXP
platforns. Prior to this, Rabah worked in the M d-range Systens
Performance Group as a primary contributor to the VAX 8000 series
performance characterization project. Rabah received an MS. in
conmput er science fromRivier College in 1985.

T. K. Rengarajan T. K. Rengarajan, a nmenber of the Database
Systens Group since 1987, works on the KODA software kernel of
the DEC Rdb system He has contributed in the areas of buffer
managenment, high availability, OLTP performance on Al pha AXP
systens, and multinedi a dat abases. He desi gned hi gh-perfornmance
| oggi ng, recoverable | atches, asynchronous batch wites, and
asynchronous prefetch features for DEC Rdb version 6.0. Ranga
hol ds M'S. degrees in conputer-aided design and conputer science
fromthe University of Kentucky and the University of Wsconsin,
respectively.

M chael S. Rubino M chael Rubino joined Digital in 1983 and is a
princi pal software engineer in the Database Systens Group. As the
Al pha program manager for database systens, his primary role is
the oversight of the porting of Rdb as well as other database
products from VAX to Al pha AXP. Prior to this work, M chael was
with VMS Engi neering and contributed to the RMS and

RMS/ j ournaling projects. Prior to that, he was the KODA (database
kernel) project |leader. Mchael received a B.S. in conputer
science fromthe State University of New York at Stony Brook in
1983.

Peter M Spiro Peter Spiro, a consulting software engineer, is
currently the technical director for the Rdb and DBMS software

product set. Peter's current focus is very |large database issues
as they relate to the information highway. Peter joined Digita

in 1985, after receiving MS. degrees in forest science and
conmput er science fromthe University of Wsconsin-Mdi son. He has
five patents related to database journaling and recovery, and he
has authored three papers for earlier issues of the Digita
Technical Journal. In his spare tinme, Peter is building a

bi rch bark canoe.

Copyright 1994 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permtted. All rights reserved.

