
 Improving Process to Increase Productivity
 While Assuring Quality: A Case Study
 of the Volume Shadowing Port to OpenVMS AXP

 by

 William L. Goleman, Robert G. Thomson, Paul J. Houlihan

ABSTRACT

The volume shadowing team achieved a high-quality, accelerated
delivery of volume shadowing on OpenVMS AXP by applying
techniques from academic and industry literature to Digital's
commercial setting. These techniques were an assessment of the
team process to identify deficiencies, formal inspections to
detect most porting defects before testing, and principles of
experimental design in the testing to efficiently isolate defects
and assure quality. This paper describes how a small team can
adopt new practices and improve product quality independent of
the larger organization and demonstrates how this led to a more
enjoyable, productive, and predictable work environment.

INTRODUCTION

To achieve VMScluster support in the OpenVMS AXP version 1.5
operating system one year ahead of the original plan, OpenVMS
Engineering had to forego early support of Volume Shadowing Phase
II (or "shadowing"). Shadowing is an OpenVMS system-integrated
product that transparently replicates data on one or more disk
storage devices. A shadow set is composed of all the disks that
are shadowing (or mirroring) a given set of data. Each disk in a
shadow set is referred to as a shadow set member. Should a
failure occur in the software, hardware, firmware, or storage
media associated with one member of a shadow set, shadowing can
access the data from another member.

The ability to survive storage failures is quite important to
customers of OpenVMS systems where data loss or inaccessibility
is extremely costly. Such customers typically combine shadowing
and VMScluster technologies to eliminate single points of failure
and thereby increase data availability. For these customers,
delayed support for shadowing on the OpenVMS AXP system meant
either foregoing the advanced capabilities of an Alpha AXP
processor within their VMScluster systems or foregoing the
additional data availability that shadowing provides. To resolve
this dilemma, OpenVMS Engineering began a separate project to
rapidly port shadowing to the OpenVMS AXP system. This project
had three overall goals.

 o Provide performance and functionality equivalent to the
 OpenVMS VAX system

 o Allow trouble-free interoperability across a
 mixed-architecture VMScluster system

 o Deliver to customers at the earliest possible date

All three goals were met with the separate release of
shadowing based on OpenVMS AXP version 1.5 in November 1993, more
than six months ahead of the original planned release for this
support.

In the following sections, we describe how we achieved these
goals by reshaping our overall process, reworking our development
framework, and redirecting our testing. In the final section on
project results, we demonstrate how our improved process assures
quality and increases productivity. This paper assumes
familiarity with the shadowing product and terminology, which are
described fully in other publications.[1,2]

RESHAPING THE OVERALL PROCESS

Because the need was urgent and the project well-defined, we
could have leapt directly into porting the shadowing code.
Instead, we took a step back to evaluate how best to deliver the
required functionality in the shortest time and how best to
verify success. Doing so meant taking control of our software
development process.

Effective software process is generally acknowledged as essential
to delivering quality software products. The Capability Maturity
Model (CMM) developed by the Software Engineering Institute
embodies this viewpoint and suggests that evolving an entire
organization's process takes time.[3,4] Grady and Caswell's
experience implementing a metrics program at Hewlett-Packard
bears out this viewpoint.[5] Our experience with the continuous
improvement of software development practices within Digital's
OpenVMS Engineering does so as well.

However, our engineering experience also suggests that the
current emphasis on evolving an entire organization's process
tends to overshadow the ability of a small group to accelerate
the adoption of better engineering practices. Within the context
of an individual software project, we believed that process could
be readily reshaped and enhanced in response to specific project
challenges. We further believed that such enhancements could
significantly improve project productivity and predictability.

Identifying Process Challenges

At the project's outset, we identified four major challenges
that we believed the project faced: configuration complexity,
defect isolation costs, beta test ineffectiveness, and resource

constraints.

Configuration Complexity. Our most significant challenge was to
devise a process to efficiently validate the product's complex
operating environment: a mixed-architecture VMScluster system
comprising both Alpha AXP and VAX processors (or nodes).[6]
Digital's VMScluster technology currently supports a
configuration of loosely coupled, distributed systems comprising
as many as 96 AXP and VAX processors. These nodes may communicate
over any combination of four different system interconnects:
Computer Interconnect (CI), Digital Storage Systems Interconnect
(DSSI), fiber distributed data interface (FDDI), and Ethernet.
VMScluster systems support two disk storage architectures -- the
Digital Storage Architecture (DSA) and the small computer systems
interface (SCSI) -- and dozens of disk models. Once ported,
shadowing would be required to provide a consistent view across
all nodes of as many as 130 shadow sets. Each shadow set may
involve a different model of disk and may span different
controllers, interconnects, nodes, or processor architectures.
The potential number of configuration variations is exponential.

Defect Isolation Costs. A second major process challenge was to
contain the cost of isolating defects. A defect is defined to be
the underlying flaw in the OpenVMS software that prevents a
VMScluster system from meeting customer needs. System software
defects can be triggered by VMScluster hardware, firmware, and
software. Since few individuals possess the combined skills
necessary to troubleshoot all three areas, defect isolation
normally involves a team of professionals, which adds to the cost
of troubleshooting VMScluster operating system software.

Debugging of shadowing code is difficult since it executes in the
restricted OpenVMS driver environment: in kernel mode at elevated
interrupt priority level. Shadowing is also written mostly in
assembly language. To maintain shadow set consistency across all
96 nodes of a VMScluster system, much of the shadowing code
involves distributed algorithms. Troubleshooting distributed
algorithms can greatly increase isolation costs, since a given
node failure is often only incidental to a hardware, firmware, or
software defect occurring earlier on another VMScluster node.

Many shadowing problem reports ultimately prove to contain
insufficient data for isolating the problem. Other problem
reports describe user errors or hardware problems; some are
duplicates. For example, Figure 1 shows the trend for Volume
Shadowing Phase II problems reported, problems resolved, and
defects removed between December 1992 and April 1993. During this
period, only one defect was fixed for every ten problem reports
closed. Because this low ratio is not typical of most OpenVMS
subsystems, it is not readily accommodated by our traditional
development process.

[Figure 1 (Problem Handling and Defect Removal on VAX:
December 1992 to April 1993) is not available in ASCII format.]

Beta Test Ineffectiveness. A third process challenge was that
customer beta testing had not contributed significantly to
shadowing defect detection. Justifiably, most customers simply
cannot risk incorporating beta test software into the kind of
complex production systems that are most likely to uncover
shadowing problems. Figure 2 shows the distribution of shadowing
problem reports received from its inception in January 1990 to
January 1993. During these three years, only 8 percent of the
problem reports came from customer beta test sites. In contrast,
46 percent of the problem reports came from stress test and alpha
test sites within Digital, where testing was based on large,
complex VMScluster configurations.

[Figure 2 (Sources of Shadowing Problem Reports: January
1990 through January 1993) is not available in ASCII format.]

Resource Constraints. A fourth process challenge for the
shadowing port was competition for engineering resources. Only
the development and validation project leaders could be assigned
full-time. The ongoing demands of supporting shadowing on OpenVMS
VAX precluded members of the existing shadowing team from
participating in the port. Most other engineering resources were
already committed to the accelerated delivery of VMScluster
support in OpenVMS AXP version 1.5. As a consequence, the
majority of the shadowing team comprised experienced OpenVMS
engineers whose familiarity with shadowing was limited, whose
individual skill sets were often incomplete for this particular
project, and whose availability was staggered over the course of
the project. Moreover, the team was split between the United
States and Scotland and, hence, separated by a six-hour time
difference.

Making Process Enhancements

To meet these challenges, we believed our overall process
required enhancements that would provide

 o Independent porting tasks within a collaborative and
 unifying development framework

 o Aggressive defect removal with an emphasis on containing
 porting defects

 o Directed system testing that preceded large-scale stress
 testing

 o Clear validation of shadowing's basic error-handling
 capabilities

Figure 3 shows our reshaped process for the shadowing port. Each
step in the process is depicted in a square box starting with
planning and ending with the project completion review. New steps

in the process are shaded gray. The most significant enhancements
were the insertion of inspection and profile testing steps. To
evaluate our progress in removing defects, we incorporated defect
projections for each development step into our release criteria.
To track this progress, we supplemented the organization's
problem-reporting database with a project-defect database.
Emphasizing error insertion during profile and acceptance test
allowed for validation of shadowing's error-handling
capabilities.

In making these process enhancements, we were careful to maintain
both consistency with prevailing industry practices and
compatibility with current practices within OpenVMS Engineering.
We felt that adopting ideas proven in industry and having a
common framework for communication within our organization would
increase the probability of success for our enhancements. How we
implemented these enhancements is described in the following
sections.

[Figure 3 (Enhanced Development and Validation Process)
is not available in ASCII format.]

Measuring Process Effectiveness

Establishing Release Criteria. In formulating the release
criteria for shadowing given in Table 1, we used Perry's
approach of

 o Establishing the quality factors that are important to
 the product's success

 o Mapping the factors onto a set of corresponding
 attributes that the software must exhibit

 o Identifying metrics and threshold values for determining
 when these software attributes are present[7]

Defining release criteria based on threshold values provided a
clear standard for judging release readiness independent of the
project schedule. These criteria spanned the development cycle in
order to provide a basis for verifying progress at each stage of
the project. The emphasis of most metrics for these criteria was
on containing and removing defects. Other metrics were selected
to corroborate that high defect detection equated to high product
quality.

Table 1 Shadowing Release Criteria

Quality Software Software Threshold
Factor Attribute Metric Value

Reliability Error tolerance Profile test completion 100%
 Operational Defects detected 240

 accuracy Incoming problem reports Near 0
 Operational per week
 consistency Acceptance test with error 200 node-

 insertion hours

--
Integrity Data security Unresolved high-severity None

 defects
__

Correctness Completeness Code ported 100%
 Module test completion 100%
 Code change rate per week 0

__
Efficiency Processing time Queue I/O reads and writes Comparable

 Throughput Copy and merge operations to VAX

__

Usability Ease of training Documentation completion 100%

__
Interoperability Backward Stress test completion 12,000 node-

 compatibility Unresolved high- hours
 Transparent severity defects None
 recovery

__

Maintainability Self-descrip- Source modules 100%
 tiveness restructured

 Consistency
__

Tracking Defects. Projecting defect detection levels for all
stages in the development cycle was a departure from the
traditional practice of our development engineers. Previously,
only the test engineers within OpenVMS Engineering established a
defect goal prior to beginning their project work. Extending the
scope of this goal for shadowing resulted in a paradigm shift
that permeated the entire team's thinking and encouraged each
member to aggressively look for defects. Since all team members
were more committed to meeting or exceeding the defect goal, they
were eager to provide detailed information on the circumstances
surrounding defect detection and removal. This detail is often
lost in a traditional development project.

Because data on code modification and defect removal during an
OpenVMS port was not readily available, we derived our
projections as follows.

 1. We determined how many lines of code would be modified
 during the shadowing port. This estimate was based on a
 comparison between the ported and original sources for
 another OpenVMS component of similar complexity. The
 resulting estimate for shadowing changes was 2,500
 noncomment source statements (NCSS) out of a total of
 roughly 19,400.

 2. We projected the rate at which these modifications would
 occur for shadowing. We based this projection on the
 actual time spent porting, inspecting, and debugging the
 code of a second OpenVMS component of similar complexity.
 We revised it upon reaching the first major porting
 milestone to reflect our actual performance. The revised
 projection is shown by month in Figure 4.

 3. Using the results from our first milestone, we estimated
 that 250 defects would be introduced as a result of the
 complete port. This estimate included not only defects
 introduced through code modifications but also defects
 induced in existing code by these modifications.

 4. We projected the schedule of defect detection for each
 stage of the development cycle. This projection assumed
 that defects were distributed uniformly throughout the
 code. Based again on the results of our first porting
 milestone, we estimated that our efficiency at removing
 the defects in this release (or defect yield) would be
 roughly 60 percent through inspections and 25 percent
 through module testing. We assumed that an additional 10
 percent of the defects would be removed during profile
 and stress testing. A 95 percent overall yield for the
 release is consistent with the historic data shown in
 Figure 2. It is also consistent with the highest levels
 of defect removal efficiency observed in the industry
 where formal code inspections, quality assurance, and
 formal testing are practiced.[8] Figure 5 shows our
 projections for removing 240 defects (95 percent yield of
 our estimate of 250 defects) by both month and method.

[Figure 4 (Projections of Code Changed by Month) is not available
in ASCII format.]

[Figure 5 (Projected Defect Detection by Month and Method)
is not available in ASCII format.]

Tracking defects was difficult within our larger organization
because the problem reporting system used by OpenVMS Engineering
did not distinguish between defects, problem reports, and general
communication with test sites. To work around this shortcoming,
we created a project database to track defects using
off-the-shelf personal computer (PC) software to link defects to
problem reports.

REWORKING THE DEVELOPMENT FRAMEWORK

Only the development project leader satisfied all the
requirements for executing a rapid port of the shadowing code:

 o Expertise in shadowing, VMScluster systems, OpenVMS
 drivers, the VAX assembly language, the AMACRO compiler
 (which compiles VAX assembly language for execution on
 Alpha AXP systems), and the Alpha AXP architecture[9]

 o Experience porting OpenVMS code from the VAX to the Alpha
 AXP platform[9]

 o Familiarity with the defect history of shadowing and the
 fixes that were being concurrently applied to the VAX
 shadowing code

 o Availability throughout the duration of the project to
 work on porting tasks at the same time and the same place

To compensate for the lack of these capabilities across all team
members and to improve our ability to efficiently port the code
while minimizing the number of defects introduced, we reworked
our development framework in two ways. First, we restructured the
modules to improve their portability and maintainability. Second,
we inspected all porting changes and most fixes to assure uniform
quality across both the project and the code.

Restructuring Modules

Examining the interconnections between the shadowing modules in
the OpenVMS VAX software revealed a high degree of
interdependence based on content coupling.[10] Modules
frequently branched between one another with one module using
data or control information maintained in another module. These
modules also exhibited low cohesion with subroutines grouped
somewhat by logical ordering but primarily by convenience.[10]

Structured in this fashion, the shadowing modules were not only
more difficult to maintain but also less separable into
independent porting tasks. Moreover, differences between the VAX
and the Alpha AXP architectures, together with the transformation
of the VAX assembly language from a machine assembly language to
a compiled language, precluded the continued use of content
coupling in the ported code.

To remedy these structural problems, we partitioned the shadowing
code into functional pieces that could be ported, inspected, and
module tested separately before being reintegrated for profile
and stress testing. Figure 6 shows both the original and the
reworked relationships between shadowing's source modules and its
functions. During restructuring, we emphasized not only greater

functional cohesion within the modules but also improved coupling
based primarily on global data areas and I/O interfaces. As a
consequence, most shadowing functions were directly dependent on
only one other function: mounting a single member. Once the port
of this function was complete, all the others could be largely
ported in parallel. Where a particular module was used by more
than one function, we coordinated our porting work using a scheme
for marking the code to indicate portions that had not been
ported or tested.

[Figure 6 (Code Restructuring by Shadowing Function)
is not available in ASCII format.]

Inspecting Changes

We believed inspections would serve well as a tool for containing
our porting defects. Industry literature is replete with data on
the effectiveness of inspection as well as guidelines for its
use.[8,11,12] Since our code was now structured for parallel
porting activities, however, the project also needed a framework
for

 o Integrating engineers into the project

 o Coordinating overlapping tasks

 o Collaborating on technical problems

 o Sharing technical expertise and insights

 o Assuring that the engineers who would maintain shadowing
 understood all porting changes

We believed that group inspections could provide this
framework.

Tailoring the Inspection Process. Our inspections differed from
the typical processes used for new code.[12] Only the changes
required to enable the VAX code to execute correctly on the Alpha
AXP platform were made during the port. These changes were
scattered throughout the sources, primarily at subroutine entry
points. With our time and engineering resources quite
constrained, we chose to inspect only these changes and not the
entire code base. Because the project involved the port of an
existing, stable product, no new functionality was being
introduced and therefore no functional or design specifications
were available. Instead, inspections were made using the VAX code
sources as a reference document.

Integrating Engineering Resources. Prior experience in OpenVMS
Engineering indicated that engineers working on unfamiliar
software could be very productive if they worked from a detailed

specification and used inspections. Using the VAX sources as a
"specification" for the shadowing port provided such a focus.
Inspecting only code changes alleviated the need for team members
to understand how a particular shadowing function worked in its
entirety. Simply verifying that the algorithm in the ported
sources was the same as that in the original VAX sources was
sufficient.

Inspections of ported code preceded both module testing and the
integration of the porting changes into the overall shadowing
code base. This assured that any differences in coding standards
or conventions were harmonized and any misunderstanding of code
operation was corrected before the code underwent module testing.
Inspections occurred before the engineers who performed the port
returned to their original duties within OpenVMS Engineering. By
participating in these inspections, the engineers who would
maintain the ported code understood exactly what was changed, in
case additional debug work was needed.

Sharing Experience and Expertise. The inspection process
provided a forum for team members to share technical tips,
folklore, background, and experience. Having such a forum enabled
the entire team to leverage the diverse technical expertise of
its individual members. The resulting technical synergy increased
the capacity of the team to execute the porting work. It also led
to rapid cross-training between team members so that everyone's
technical skills increased during the course of the project. This
teamwork and increased productivity led to more enjoyable work
for the engineers involved.

In retrospect, the use of inspections proved the greatest single
factor in enabling the project to meet its aggressive delivery
schedule.

REDIRECTING THE TESTING

To detect both new and existing defects, shadowing has
historically undergone limited functional testing followed by
extensive stress testing. The effectiveness of this testing has
been constrained, however, because it

 o Provided no measurement of actual code coverage

 o Lacked an automatic means for forcing the execution of
 error paths within shadowing

 o Failed to target the scenarios in which most shadowing
 failures occurred

To compensate for these shortcomings and improve our ability to
efficiently detect defects, we formulated profile testing: a
method of risk-directed testing that would follow module testing

and precede large-scale stress testing.

Defining Profile Testing

Profile testing focuses on operating scenarios that pose the
greatest risk to a software product. Engineering experience
clearly indicated that the highest-risk operating scenarios for
shadowing involved error handling during error recovery. Examples
of such scenarios include media failure after a node failure or
the unavailability of system memory while handling media failure.
Problems with such error handling have typically occurred only in
large and complex VMScluster systems. Test profiles are simple,
clearly defined loads and configurations designed to simulate the
complex error scenarios and large configurations traditionally
needed to detect shadowing defects.

Fundamentally, profile testing is the application of the
principles of experimental design to the challenge of "searching"
for defects in a large test domain. Deriving profile tests begins
with a careful identification of operating conditions in which
the product has the greatest risk of failing. These conditions
are then reduced to a set of hardware and software variables (or
"factors") and a range of values for these factors. A test
profile is the unique combination of factor values used in a test
run.

Combining a large set of test factors and factor values can
result in unmanageable complexity. For this reason, profile
testing uses orthogonal arrays to select factor combinations for
testing. These arrays guarantee uniform coverage of the target
test domain described by the test factors. Instead of selecting
tests based on an engineer's ingenuity, we used these arrays to
systematically select a subset of all possible factor
combinations. As a result, we uncovered nonobvious situations
that customers often encounter. By relying on combinatorics
rather than randomness to detect defects, the event sequences
leading to a defect can be more readily reproduced.

The following sections show how we used this approach to design
and implement profile testing for shadowing. They also reveal
that the cost-effectiveness of our testing improved significantly
as a result.

Describing the Test Domain

Both AT&T and Hewlett-Packard have used operational profiles to
describe the test domain of complex software systems.[13] Such
operational profiles were typically derived by monitoring the
customer usage of the system and then methodically reducing this
usage to a set of frequencies for the occurrence of various
systems functions. These frequencies are then used to prioritize
system testing. For the purposes of validating shadowing, we
extended this notion of an operational profile by decomposing the

test domain into four distinct dimensions that characterize
complex software systems:

 o System configuration

 o Software resources

 o Operational sequences

 o Error events

The emphasis of our test profiles was not on how the system was
likely to operate, but rather on how it was likely to fail. For
our project, rapid characterization of the test domain was of
greater importance than precise reproduction of it.

Identifying the Test Factors

Assessment of shadowing's test domain identified the factors that
characterized its high-risk operating scenarios. This assessment
was based on a review by both test and development engineers of
the product's functional complexity, defect history, and code
structure as characterized by its cyclomatic complexity.[14] The
resulting factors provided the basis for formulating our test
profiles.

System Configuration. The following key factors in system
configuration describe how a shadow set is formed and accessed
across the range of components and interconnects that VMScluster
systems support.[6]

 o Number of shadow set members (MEMBCNT)

 o Device MSCP serving (MSCPSERV)

 o Controller sharing (SEPCTRL)

 o Emulated versus local disk controller (SERVSYS)

 o Alpha AXP or VAX I/O load initiator (LOADSYS)

 o Location of the storage control block (SCBBEG)

 o Size limits for I/O transfers (DIFMBYT)

 o Controller time-out values (DIFCTMO)

 o System disk shadow set (SYSDISK)

 o Disk device type (DISKTYPE)

Software Resources. Although running an application in OpenVMS
can involve competing for a wide range of finite system and

process resources, only two software resources initially appeared
significant for targeting error handling during error recovery
within the shadowing product:

 o System memory used for I/O operations

 o VMScluster communication resource (send credits)

Operational Sequences. Shadow set membership is controlled by
the manager of an OpenVMS system.[2] The manager initially forms
the shadow set and then adds or removes members as needed.
Applications use these shadow sets for file creation and access.
During its use, a shadow set can require copy and merge
operations to maintain data consistency and correctness across
its members. Profiles that target these activities involve
sequences of the following key operations.

 o Merge, assisted merge, copy, and assisted copy

 o Member mounts and dismounts

 o File creation and deletion

 o Random reads and writes; repeated reads of a "hot" block
 on the disk

Error Events. All complex software systems must deal with error
events that destabilize its operation. For the shadowing product,
however, reliably handling the following set of errors represents
the essence of its value to OpenVMS customers.

 o Removal of a VMScluster node (NODEERR)

 o Process cancellation (PROCERR)

 o Controller failure (CTRLERR)

 o Disk failure (DISKERR)

 o Media failure (MEDIAERR)

Managing Test Complexity

When the list of key factors for targeting shadowing's high-risk
operating scenarios was enumerated, the resulting test domain was
unmanageably complex. If just two test values for each of 25
factors are assumed, the set of all possible combinations was
2**25 or more than 33 million test cases.

To reduce this combinatorial complexity to a manageable level, we
structured profiles in two test dimensions, error event and
system configuration, using orthogonal arrays.[15,16] Columns in
these orthogonal arrays describe the test factors, and rows
describe a balanced and orthogonal fraction of the full set of

factor combinations. Because of their balance and orthogonality
across the test factors, such arrays provide a uniform coverage
of the test domain.

Figure 7 is a composite table of error-event profiles created
using a D-optimal array and shadow set configuration profiles
created using a standard array.[17,18] These two arrays formed
the base of our profile test design. Operational sequences were
applied (as described below) to 18 test profiles formed by
relating the error event and shadow set arrays as shown in Figure
7. These profiles were arranged into groups of three; each group
included two types of disks, a shadowed system disk, and the
presence of each type of disk error. The test values assigned to
the factors SYSDISK and DISKTYPE as a result of this grouping are
shown in the two columns positioned between the arrays in Figure
7.

[Figure 7 (Set of Composite Test Profiles) is not available in
ASCII format.]

Note that physically configuring the test environment prevented
us, in some instances, from using the prescribed assignment of
factor values. As a consequence, only those factors whose columns
are shaded in gray in Figure 7 retained their balance and
orthogonality during implementation of the test design.

At this point, profile test design is complete. The use of
orthogonal arrays allowed us to reduce the tests to a manageable
number and at the same time have uniform coverage of all test
factors.

Configuring the Test Environment

In addition to the shadow set profiles, the following practical
constraints guided the configuration of a VMScluster system for
conducting our profile testing.

 o Minimize hardware requirements and maximize ease of test
 execution

 o Configure profiles from the shadow set array in groups of
 three to expedite test execution

 o Reflect both anticipated customer usage of shadowing and
 historic usage as characterized in existing surveys of
 VAXcluster sites in the United States

 o Enable the formation of either one integrated or two
 separate VMScluster systems based on either the DSSI or
 the CI system interconnect

 o Require no physical reconfiguration during testing

 o Maintain a consistent batch/print and user authorization

 environment

 o Follow the configuration guidelines set forth in
 Digital's software product descriptions for OpenVMS,
 VMScluster systems, and volume shadowing for Alpha AXP
 and VAX systems

Constructing a test configuration that reflected all these
constraints and supported the shadow set profiles in Figure 7 was
quite a challenge. As a result of having clear configuration
guidelines, however, we could re-create shadowing's high-risk
operating scenarios using substantially less hardware than
required for large-scale stress testing. Table 2 contrasts the
hardware requirements of the two test approaches.

Table 2 VMScluster Configuration Size by Test Method

 Profile Large-scale
 Testing Stress Testing

Systems 5 AXP 10 AXP
 4 VAX 12 VAX

Interconnects 1 CI 2 CI
 1 Ethernet 9 Ethernet
 1 FDDI

CI Storage 1 HSC 6 HSC
Controllers 1 HSJ 1 HSJ

Test Disks 31 165

Shadow Sets 9 two-member 23 two-member
 9 three-member 5 three-member

The resulting test configuration for our profile testing was
formally described in a configuration diagram, which appears in a
simplified form in Figure 8. During our testing, each profile
shown in Figure 7 was uniquely marked on this diagram to show
both the disks comprising each shadow set and the nodes to load
them. Taken together, Figures 7 and 8 proved quite useful in
transferring the task of executing a particular test profile from
one test engineer to another. In addition, development engineers
found them to be invaluable tools for clarifying the fault loads
and the configuration of a particular test profile.

[Figure 8 (Total System Configuration for Profile Testing)
is not available in ASCII format.]

To illustrate how we used these two tools, consider the first
three test profiles shown in Figure 7. These profiles,
respectively, define the configuration and loading of shadow sets

DSA1, DSA2, and DSA3. Running these three profiles in parallel
would be difficult to describe precisely without these two tools.
As an example, profile 1 in Figure 7 indicates that DSA1 must
comprise two RZ devices that are not used as system disks. At
least one of these devices must be MSCP served. The two disks
must share a controller and must be accessed via an AXP node.
Both must have their storage control blocks located at their
first logical block. As a result of their physical configuration,
both must have the same size limit on I/O transfers and the same
controller time-out value. Finally, this profile indicates that
another AXP node in the VMScluster system must load DSA1 and that
this load must involve the simulation of fatal disk errors.
Devices DKA400 and DKA500 in Figure 8 satisfied these
requirements; the load was to be applied from node MEBEHE.

The complete configuration for these three profiles is denoted by
the gray box in Figure 8, which requires only a small subset of
the total test configuration to execute

 o Two AXP systems (MEBEHE and HEBEME)

 o One VAX system (WEBEYU)

 o One DSSI interconnect

 o One SCSI and 4 DSSI controllers

 o Two RZ26 disks (DKA400 and DKA500)

 o Two RF72 disks (DIA301 and DIA202)

 o Two RF73 disks (DIA200 and DIA201)

Executing Test Profiles

Testing Tools. Executing the profile tests involved the use of
four Digital internal test tools (XQPXR, IOX, CTM, Faulty Towers)
and two OpenVMS utilities (BACKUP and MONITOR). XQPXR and IOX
both provided read and/or write loads to shadow sets with XQPXR
utilizing the file system for its I/O. CTM provided a means of
loading multiple subsystems across the VMScluster system. Faulty
Towers was used to inject faults into the VMScluster System
Communication Architecture (SCA) protocol tower during loading to
create the error profiles shown in Figure 7. MONITOR measured the
loads applied during profile testing. BACKUP was used to verify
that the data on shadow set members was consistent following a
test run.

Of all the test tools we used, Faulty Towers was both the most
critical to our success and the most innovative in simulating
large-scale VMScluster environments. Historically, large-scale
stress testing of shadowing has depended largely on the
occurrence of random events or manual intervention to exercise
shadowing error paths. Because SCA underlies all communication

within a VMScluster system, Faulty Towers could instead
automatically force the exercise of these paths by simulating
errors within the system. The set of faults that Faulty Towers
provided came from our examination of how VMScluster systems,
especially large-scale systems, fail. This set included forcing
esoteric states throughout the VMScluster system, simulating
device errors, exhausting essential resources, breaking
VMScluster communication channels, and creating excessive I/O or
locking loads.

The fault loads that Faulty Towers provided were predictable and
quite repeatable. When problems occurred during test execution,
the precise fault loads involved could be readily reproduced to
accelerate the process of diagnosing the underlying defect and
verifying a proposed fix. Faulty Towers also provided a means of
easily tailoring, controlling, and monitoring the automatic
insertion of faults during our profile testing. The result was
better coverage of error paths using a much simpler test
environment.

Staging Test Implementation. To stage the introduction of
profile complexity, we gradually increased the number of error
events applied to successive groupings of test profiles. We
began our testing with a simple base profile to which further
load complexity could be progressively added. This base profile
involved only three two-member shadow sets with just one of the
targeted error events occurring during each run. System load was
limited to reads and writes across the shadow sets. No system
disks were shadowed in this base profile.

During the initial execution of the base profile, we tested
resource exhaustion. With each subsequent round of testing, we
systematically incorporated additional complexity: more test
configurations, three-member shadow sets, shadowed system disks,
complex error profiles, and system-wide loading.

Operational Sequence for Profile Test Execution. Another
important aspect of the profile testing was the use of a
prescribed operational sequence during profile test execution.
This sequence is shown in Figure 9.

[Figure 9 (Operational Sequence for Profile Testing)
is not available in ASCII format.]

Profile test runs began with the mounting of a single shadow set
member. The addition of a second or third member caused the
initiation of a copy operation from the existing member to the
added device(s). The removal of a VMScluster node that had a
shadow set mounted would cause shadowing to initiate a merge
operation on the shadow set. To maintain consistency across our
test runs, we would manually add back into a shadow set any
member(s) that were expelled due to the node removal. At this

point, shadowing is expected to progress sequentially through
copy and merge operations to create a fully consistent shadow
set.

The I/O required by these copy and merge operations formed the
base load on the system. User I/O to the shadow sets incremented
the effective load on the system as did the disruption of I/O due
to error events. During the period when user I/O and error events
were sustained at their heaviest levels, I/O for copy operations
could stall entirely. Winding down error insertion and user I/O
enabled copy and merge operations to complete. At that time, the
shadow sets could be dismounted and the individual members
compared for data consistency.

During the test execution sequence, each step represented a new
threshold at which failures were more likely to occur. As testing
continued and the shadowing code stabilized, early test execution
sequences tended to generate fewer new defects. To find
additional defects, we increased the complexity of the test
execution sequence, fault loads, and configurations. The result
was a sustained effectiveness in defect detection throughout our
profile testing.

PROJECT RESULTS

The process described above enabled us to satisfy both the
quality and schedule goals of our project to port shadowing to
the OpenVMS AXP system. How significantly the process contributed
to this accomplishment is shown below with data describing our
improvements in process, product quality, and productivity.

Improving Process

Inspections and profile testing were our two key process
enhancements. Data that tracked defect detection and product
stabilization during these steps underscores their contribution.

Tracking Defect Detection. The solid line in Figure 10 shows
defect detection by week throughout the life of the project. Note
that the solid line in the figure tracks very closely and, at
times, overlaps the dashed line used to indicate the inspection
time. Only high severity defects that resulted in a code change
are represented by these defect counts. The time period before
January 4 involved neither inspections nor testing; the time
period after June 14 involved only testing. During March, porting
work stopped due to team members being temporarily reassigned to
critical development tasks in support of OpenVMS AXP version 1.5.
Allowing for that gap in March, the trend in defect detection
from both inspections and testing exhibited a steady decline from
mid-January through October. This trend provides a strong
indication that the project was on schedule and not deferring the
bulk of defect removal to the latter, more costly stages of

development.

The dashed line in Figure 10 shows the amount of time spent
weekly in inspections. It shows that the highest rates of defect
detection resulted from, and were in rough proportion to, time
spent in inspections. Early defect removal using inspections
represented a marked change from traditional practices within
OpenVMS Engineering.

[Figure 10 (Inspection Time and Defect Detection) is not available
in ASCII format.]

Tracking Product Stabilization. The manner in which we designed
and implemented profile testing gave rise to a pair of metrics
for tracking both test effectiveness and product stabilization by
tracking test execution results. The first of these metrics was a
ratio between the test execution time as measured in days of test
execution per VMScluster node (node-days) and the number of
problem reports that resulted. The second was a ratio between the
number of problem reports submitted to development engineers and
the number of defects that were detected as a result.

Figure 11 shows these two metrics plotted weekly during the
course of our profile testing. The key to interpreting these
trends lies in contrasting the two ratios. For example, low
node-days/problem report accompanied by high
problem-reports/defect in July 1993 indicates test execution
errors as we learned how to load and test shadowing in a
VMScluster system. In late September, high node-days/problem
report with no defects indicates the execution of an ineffective
test profile. Near-zero curves in early July and early September
indicate when vacations were interrupting our testing.

[Figure 11 (Metrics for Evaluating Test Effectiveness and
Product Stabilization) is not available in ASCII format.]

During the two product stabilization periods indicated in Figure
11, the increase in node-days/problem report accompanied by a
near one-to-one ratio between problem reports and defects
indicates that the product was stabilizing in spite of sustained
test effectiveness. The first period preceded beta test; the
second preceded product release.

Assuring Quality

Containing and removing defects were at the core of our release
criteria. As Figure 12 shows, actual defect removal during the
project exceeded projections by 8 percent. By selecting our
defect goal based on industry-standard defect densities and
exceeding this goal, we have assured quality in our product. Of
the total defects actually removed, 232 were in the shadowing
code. This suggests a defect removal rate of 12 defects per 1,000
NCSS for the shadowing code base, which is consistent with

industry data reported by Schulmeyer.[19]

[Figure 12 (Comparison of Projected and Actual Defect
Detection and Removal by Method) is not available in ASCII format.]

Of the 176 defects removed through inspections, 43 were found in
the nonported shadowing code. This suggests a defect removal rate
for the ported code of 53 per 1,000 NCSS, which again falls
within the range reported by Schulmeyer. The combination of
testing and inspections resulted in the removal of 59 defects
from the unmodified shadowing code base. This represents a net
reduction of 3.5 defects per 1,000 NCSS within the unmodified
shadowing code as a result of the port!

The significance of this level of defect removal as an indicator
of high quality was corroborated in two ways. First, all release
criteria were satisfied prior to releasing the ported shadowing
product. Second, the character of defects detected during the
testing phase of the project changed. Whereas most defects
detected in early test runs were introduced during the port,
virtually all defects detected in later test runs were residual
in the underlying code base. Again, removing this latter type of
defect meant better overall quality for customers running
mixed-architecture VMScluster systems.

Another aspect of quality was identifying those defects that
should not be fixed but only contained. Because this project had
very limited scope, duration, and resources, we had to carefully
evaluate changes that could destabilize the entire product and
jeopardize its overall quality. The comparison of detected to
removed defects in Figure 12 shows that several problems fell
into this category. Many of these defects were triggered by
system operations that exceeded the fundamental design
limitations of the product. Some occurred in obscure error paths
that could only be exercised with our new test methods. Others
were due to new combinations of hardware possible in
mixed-architecture VMScluster systems. In each of these
instances, we assured that the scope of the defect was limited,
its frequency low, and its impact predictable. When necessary, we
constrained supported hardware configurations or system behavior
so that the defect could not cause unrecoverable failures.
Finally, we fed back our analyses of these defects into the
ongoing shadowing support effort so that they could be removed in
future releases through appropriate redesign.

Increasing Productivity

The following data shows how our enhanced process contributed to
the quality. This data shows the relative cost-effectiveness, and
hence improved productivity, achieved through inspections and
profile testing.

Engineering Costs. The proportion of total engineering hours
expended during each step of the project is depicted in Figure

13. This Figure indicates that only 15 percent of the hours
(inspections and module testing) resulted in the removal of 85
percent of all defects. Inspections alone accounted for only 5
percent of the engineering hours but 68 percent of the defect
removal!

[Figure 13 (Distribution of Total Engineering Hours by
Process Step) is not available in ASCII format.]

The actual cost for removing defects by inspection averaged 1.7
engineer hours per defect. During module testing, when engineers
worked individually to debug the functions they had ported, the
cost of defect removal jumped to 15 engineer hours per defect.
During integration testing, where the entire shadowing driver was
tested in a complex environment, an average of 85 engineer hours
was spent per defect exclusive of the time spent to execute the
tests. Clearly, removing the bulk of the defects from the ported
code prior to beginning testing of the integrated shadowing
product dramatically reduced both the cost and time required for
defect removal.

Defect Yield. Assuming a 95 percent overall defect yield for
shadowing prior to release, the relative yield of inspections
during this project was 65 percent. When calculated against
defects found only in shadowing, the yield for inspections jumps
to 75 percent--a very high removal efficiency when compared with
industry data.[8] Relative defect yield was consistent with
industry data for module testing at 16 percent, but low for
profile and stress testing at a combined value of 6 percent.
Given the high engineering cost shown above for removing defects
during integration test of shadowing, this is in fact quite a
favorable result.

Test Cost-effectiveness. As Figure 13 indicates, testing
remained the most costly portion of the project. Executing and
debugging problems from roughly 86,000 node-hours of stress,
performance, and profile testing accounted for 69 percent of the
project's total engineering hours. In fact, the ratio of engineer
hours expended for test versus implementation was roughly 1.8
times higher than Grady reports for 48 projects involving systems
software.[20] Given the complexity of the VMScluster systems
historically required to test shadowing, this ratio is no
surprise.

Nevertheless, our project's results indicate that profile testing
was significantly more cost-effective than large-scale stress
testing for detecting defects. Profile testing's overall ratio of
test engineer days per defect was 25 percent better at 6.2 days
than stress testing's 8.3 days. Moreover, profile testing's
overall ratio of machine test time per defect was more than an
order of magnitude better at 7.4 node-days than stress testing's
95.2 node-days!

This improvement in cost-effectiveness was achieved with no loss
in defect removal capability. When compared with large-scale
stress testing, profile testing of shadowing proved equally
effective overall at detecting defects. During the beta test
period for shadowing, each of these test methods accounted for
roughly 20 percent of the defects detected when allowing for
duplication between methods. The number of problem reports per
defect was also comparable with ratios of 2.4 for profile testing
and 2.0 for stress testing.

Figure 14 contrasts the cost-effectiveness of each method of
defect detection employed during the validation of shadowing.
Note that because this chart uses a log scale, any noticeable
difference between bar heights is quite significant. This chart
bears out conventional wisdom on defect removal: detection prior
to integration through the use of inspections and module testing
is by far the most cost-effective. It also suggests that profile
testing has a cost-effectiveness on the same order of magnitude
as module testing, while providing the same defect detection
effectiveness as large-scale stress testing.

[Figure 14 (Relative Cost-effectiveness of Defect
Detection Methods) is not available in ASCII format.]

CONCLUSIONS

At the outset of the shadowing port, given its unique challenges,
we believed that the existing development process for OpenVMS
would not enable us to meet the project's goals. By taking charge
of our engineering process, however, we not only met those goals
but also demonstrated that changes to the established process
could result in higher productivity from our engineering
resources and better quality in the delivered product.

The volume shadowing port from OpenVMS VAX to OpenVMS AXP was
successful in meeting an aggressive schedule and in delivering a
stable, high-quality product. There were two key process
innovations that led to our success. The first was the use of
inspections to detect and remove a large percentage of the
porting defects before any investment in testing. By finding a
majority of the defects (68 percent) at the lowest possible cost
(1.5 hours per defect), fewer overall resources were required.

The second key innovation was the use of profile testing to cover
a very large and complex test domain. Having a test strategy that
used well-defined and repeatable tests to target problem areas in
shadowing code allowed us to efficiently find defects and verify
fixes. With profile testing, we managed to achieve the defect
detection effectiveness of large-scale integration testing at the
same relative cost as module testing.

The results of our process innovations would not have been
realized if we had waited for our organization's process to

evolve up the CMM levels. By changing the engineering process of
a small team, we delivered high-quality software on schedule and
at a lower cost.

FUTURE DEVELOPMENTS

As a result of our project's accomplishments, OpenVMS Engineering
is giving serious consideration to our practices. Many groups are
acknowledging the gains possible when formal inspections are used
to contain defects. Moreover, the organization's problem
reporting system is being upgraded to include mechanisms for
tracking defects that incorporate many of the fields used in our
defect tracking database.

OpenVMS Engineering is also evaluating further use of the profile
testing methodology in its testing efforts. As Figure 13
indicated, improving the effectiveness of our integration testing
may offer the most significant opportunity for reducing
engineering costs and accelerating the schedules of our software
releases. Since experimental design principles were used in the
creation of the tests, statistical evaluation of the results is a
potentially exciting opportunity. An analysis of variance that
explores the relationship between test factors and defects could
indicate which test factors contribute significantly to defect
detection and which do not. This could give us a clear
statistical indication of where to direct our testing efforts and
development resources.

ACKNOWLEDGMENTS

The success and the final form of the our software development
process were a direct consequence of the diverse skills and
unflagging efforts of the shadowing team members involved in its
implementation: Susan Azibert, Kathryn Begley, Nick Carr, Susan
Carr, Mary Ellen Connell, Tom Frederick, Paula Fitts, Kimilee
Gile, Greg Jordan, Bruce Kelsey, Maria Leng, Richard Marshall,
Kathy Morse, Brian Porter, Mike Stams, Barbara Upham, and Paul
Weiss. Support from Howard Hayakawa, manager of the VMScluster
group, provided the opportunity for us to initiate such
extensive process enhancements in the context of a critical
project for OpenVMS.

REFERENCES

1. S. Davis, "Design of VMS Volume Shadowing Phase
 II--Host-based Shadowing," Digital Technical
 Journal, vol. 3, no. 3 (Summer 1991): 7-15.

2. Volume Shadowing for OpenVMS (Maynard, MA:
 Digital Equipment Corporation, November 1993).

3. M. Paulk, B. Curtis, M. Chrissis, and C. Weber,
 Capability Maturity Model for Software

 V1.1 (Pittsburgh, PA: Carnegie-Mellon University,
 Software Engineering Institute, Technical Report,
 CMU/SEI-93-TR-24 ESC-TR-93-177, February 1993).

4. W. Humphrey, Managing the Software
 Process (Reading, MA: Addison-Wesley Publishing
 Company, 1989/1990).

5. R. Grady and D. Caswell, Software Metrics:
 Establishing a Company-Wide Program (Englewood
 Cliffs, NJ: Prentice-Hall, 1987): 112.

6. VMScluster Systems for OpenVMS (Maynard, MA:
 Digital Equipment Corporation, March 1994).

7. W. Perry, Quality Assurance for Information Systems:
 Methods, Tools, and Techniques (Boston: QED Technical
 Publishing Group, 1991): 541-563.

8. C. Jones, Applied Software Measurement (New
 York: McGraw-Hill, Inc., 1991): 174-176, 275-280.

9. N. Kronenberg, T. Benson, W. Cardoza, R. Jagannathan, and B.
 Thomas, "Porting OpenVMS from VAX to Alpha AXP,"
 Digital Technical Journal, vol. 4, no. 4
 (Special Issue 1992): 111-120.

10. R. Pressman, Software Engineering: A Practitioner's
 Approach (New York: McGraw Hill, 1992): 334-338.

11. M. Fagan, "Design and Code Inspections to Reduce Errors in
 Program Development," IBM Systems Journal, vol.
 15, no. 3 (1976): 182-211.

12. D. Freedman and G. Weinberg, Handbook of Walkthroughs,
 Inspections, and Technical Reviews: Evaluating Programs,
 Projects, and Products (New York: Dorset House
 Publishing, 1990).

13. J. Musa, "Operation Profiles in Software Reliability
 Engineering," IEEE Software (New York: IEEE,
 March 1993): 14-32.

14. T. McCabe and C. Butler, "Design Complexity Measurement and
 Testing," Communications of ACM, vol. 32, no.
 12 (December 1989): 1415-1425.

15. G. Taguchi and M. Phadke, "Quality Engineering Through
 Design Optimization," Conference Record, vol. 3
 (IEEE Communications Society GLOBECOM Meeting, November
 1984): 1106-1113.

16. T. Pao, M. Phadke, and C. Sherrerd, "Computer Response Time
 Optimization Using Orthogonal Array Experiments,"

 Conference Record, vol. 2 (IEEE International
 Communications Conference, June 1985): 890-895.

17. S. Schmidt and R. Launsby, Understanding Industrial
 Designed Experiments (Colorado Springs: Air Academy
 Press, 1989): 3-1 to 3-32.

18. SAS/QC Software, Version 6 (Cary, NC: SAS
 Institute, Inc., 1992).

19. G. Schulmeyer, Zero Defect Software (New York:
 McGraw-Hill, Inc., 1990): 73.

20. R. Grady, Practical Software Metrics for Project
 Management and Process Improvement (Englewood Cliffs,
 NJ: Prentice-Hall, 1992): 42.

TRADEMARKS

The following are trademarks of Digital Equipment Corporation:
Alpha AXP, AXP, CI, HSC, OpenVMS AXP, OpenVMS VAX, VAX, VMS, and
VMScluster.

AT&T is a registered trademark of American Telephone and
Telegraph Company.

Hewlett-Packard is a trademark of Hewlett-Packard Corporation.

BIOGRAPHIES

William L. Goleman Principal software engineer Bill Goleman led
the project to port the Volume Shadowing Phase II product to
OpenVMS AXP. He is currently involved in planning OpenVMS I/O
subsystem strategies. Bill joined Digital's Software Services
organization in 1981. He worked in the Ohio Valley District and
then moved to VMS Engineering in 1985. Since then Bill has worked
on the MSCP server, local area VAXcluster, mixed-architecture
clusters, volume shadowing, and the port of cluster I/O
components to OpenVMS AXP. Bill received a B.S. in computer
science from Ohio State University in 1979.

Paul J. Houlihan As a principal engineer with OpenVMS AXP
Engineering, Paul Houlihan participated in the port of OpenVMS
software components from the VAX to the Alpha AXP architecture,
including volume shadowing, the tape class driver, and the system
communication services layer. Paul's recent focus has been on the
OpenVMS I/O subsystem and software quality. He is the creator of
Faulty Towers, a test tool that injects software faults into
VMScluster systems. Paul received a B.A. in computer science and
a B.A. in political science from the University of Wisconsin at
Madison.

Robert G. Thomson A senior software engineer in the OpenVMS AXP

Group, Robert Thomson led the validation of volume shadowing's
port to the Alpha AXP platform. During the OpenVMS port, he
measured quality and contributed to functional verification, for
which he was co-recipient of an Alpha AXP Achievement Award.
Since joining Digital in 1986, Robert has also contributed to
improvements in system availability measurement and in symmetric
multiprocessing and backup performance. He has a patent and three
published papers based on this work. Robert holds an M.S. in
computer engineering from Boston University.

===
Copyright 1994 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

