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ABSTRACT

The volume shadowing team achieved a high-quality, accelerated 
delivery of volume shadowing on OpenVMS AXP by applying 
techniques from academic and industry literature to Digital's 
commercial setting. These techniques were an assessment of the 
team process to identify deficiencies, formal inspections to 
detect most porting defects before testing, and principles of 
experimental design in the testing to efficiently isolate defects 
and assure quality. This paper describes how a small team can 
adopt new practices and improve product quality independent of 
the larger organization and demonstrates how this led to a more 
enjoyable, productive, and predictable work environment.

INTRODUCTION

To achieve VMScluster support in the OpenVMS AXP version 1.5 
operating system one year ahead of the original plan, OpenVMS 
Engineering had to forego early support of Volume Shadowing Phase 
II (or "shadowing"). Shadowing is an OpenVMS system-integrated 
product that transparently replicates data on one or more disk 
storage devices. A shadow set is composed of all the disks that 
are shadowing (or mirroring) a given set of data. Each disk in a 
shadow set is referred to as a shadow set member. Should a 
failure occur in the software, hardware, firmware, or storage 
media associated with one member of a shadow set, shadowing can 
access the data from another member.

The ability to survive storage failures is quite important to 
customers of OpenVMS systems where data loss or inaccessibility 
is extremely costly. Such customers typically combine shadowing 
and VMScluster technologies to eliminate single points of failure 
and thereby increase data availability. For these customers, 
delayed support for shadowing on the OpenVMS AXP system meant 
either foregoing the advanced capabilities of an Alpha AXP 
processor within their VMScluster systems or foregoing the 
additional data availability that shadowing provides. To resolve 
this dilemma, OpenVMS Engineering began a separate project to 
rapidly port shadowing to the OpenVMS AXP system. This project 
had three overall goals. 
        
    o Provide performance and functionality equivalent to the 
        OpenVMS VAX system



    o   Allow trouble-free interoperability across a 
        mixed-architecture VMScluster system

    o Deliver to customers at the earliest possible date

All three goals were met with the separate release of 
shadowing based on OpenVMS AXP version 1.5 in November 1993, more 
than six months ahead of the original planned release for this 
support. 
            
In the following sections, we describe how we achieved these 
goals by reshaping our overall process, reworking our development 
framework, and redirecting our testing. In the final section on 
project results, we demonstrate how our improved process assures 
quality and increases productivity. This paper assumes 
familiarity with the shadowing product and terminology, which are 
described fully in other publications.[1,2]

RESHAPING THE OVERALL PROCESS

Because the need was urgent and the project well-defined, we 
could have leapt directly into porting the shadowing code. 
Instead, we took a step back to evaluate how best to deliver the 
required functionality in the shortest time and how best to 
verify success. Doing so meant taking control of our software 
development process.

Effective software process is generally acknowledged as essential 
to delivering quality software products. The Capability Maturity 
Model (CMM) developed by the Software Engineering Institute 
embodies this viewpoint and suggests that evolving an entire 
organization's process takes time.[3,4]  Grady and Caswell's 
experience implementing a metrics program at Hewlett-Packard 
bears out this viewpoint.[5]  Our experience with the continuous 
improvement of software development practices within Digital's 
OpenVMS Engineering does so as well. 

However, our engineering experience also suggests that the 
current emphasis on evolving an entire organization's process 
tends to overshadow the ability of a small group to accelerate 
the adoption of better engineering practices. Within the context 
of an individual software project, we believed that process could 
be readily reshaped and enhanced in response to specific project 
challenges. We further believed that such enhancements could 
significantly improve project productivity and predictability.

Identifying Process Challenges

At the  project's outset, we identified four major challenges 
that we believed the project faced: configuration complexity, 
defect isolation costs, beta test ineffectiveness, and resource 



constraints.

Configuration Complexity.  Our most significant challenge was to  
devise a process to efficiently validate the product's complex 
operating environment: a mixed-architecture VMScluster system 
comprising  both Alpha AXP and VAX processors (or nodes).[6]  
Digital's  VMScluster technology currently supports a 
configuration of loosely coupled, distributed systems comprising 
as many as 96 AXP and VAX processors. These nodes may communicate 
over any combination of four different system interconnects: 
Computer Interconnect (CI), Digital Storage Systems Interconnect 
(DSSI), fiber distributed data interface (FDDI), and Ethernet. 
VMScluster systems support two disk storage architectures -- the 
Digital Storage Architecture (DSA) and the small computer systems 
interface (SCSI) -- and dozens of disk models. Once ported, 
shadowing would be required to provide a consistent view across 
all nodes of as many as 130 shadow sets. Each shadow set may 
involve a different model of disk and may span different 
controllers, interconnects, nodes, or processor architectures. 
The potential number of configuration variations is exponential. 

Defect Isolation Costs.  A second major process challenge was to 
contain the cost of isolating defects. A defect is defined to be 
the underlying flaw in the OpenVMS software that prevents a 
VMScluster system from meeting customer needs. System software 
defects can be triggered by VMScluster hardware, firmware, and 
software. Since few individuals possess the combined skills 
necessary to troubleshoot all three areas, defect isolation 
normally involves a team of professionals, which adds to the cost 
of troubleshooting VMScluster operating system software. 

Debugging of shadowing code is difficult since it executes in the 
restricted OpenVMS driver environment: in kernel mode at elevated 
interrupt priority level. Shadowing is also written mostly in 
assembly language. To maintain shadow set consistency across all 
96 nodes of a VMScluster system, much of the shadowing code 
involves distributed algorithms. Troubleshooting distributed 
algorithms can greatly increase isolation costs, since a given 
node failure is often only incidental to a hardware, firmware, or 
software defect occurring earlier on another VMScluster node. 

Many shadowing problem reports ultimately prove to contain 
insufficient data for isolating the problem. Other problem 
reports describe user errors or hardware problems; some are 
duplicates. For example, Figure 1 shows the trend for Volume 
Shadowing Phase II problems reported, problems resolved, and 
defects removed between December 1992 and April 1993. During this 
period, only one defect was fixed for every ten problem reports 
closed. Because this low ratio is not typical of most OpenVMS 
subsystems, it is not readily accommodated by our traditional 
development process. 

[Figure 1 (Problem Handling and Defect Removal on VAX: 
December 1992 to April 1993) is not available in ASCII format.] 



Beta Test Ineffectiveness.  A third process challenge was that  
customer beta testing had not contributed significantly to  
shadowing defect detection. Justifiably, most customers simply  
cannot risk incorporating beta test software into the kind of  
complex production systems that are most likely to uncover  
shadowing problems. Figure 2 shows the distribution of shadowing  
problem reports received from its inception in January 1990 to 
January 1993. During these three years, only 8 percent of the  
problem reports came from customer beta test sites. In contrast,  
46 percent of the problem reports came from stress test and alpha  
test sites within Digital, where testing was based on large,  
complex VMScluster configurations.

[Figure 2 (Sources of Shadowing Problem Reports: January 
1990 through January 1993) is not available in ASCII format.]  

Resource Constraints.  A fourth process challenge for the 
shadowing port was competition for engineering resources. Only 
the development and validation project leaders could be assigned 
full-time. The ongoing demands of supporting shadowing on OpenVMS 
VAX precluded members of the existing shadowing team from 
participating in the port. Most other engineering resources were 
already committed to the accelerated delivery of VMScluster 
support in OpenVMS AXP version 1.5. As a consequence, the 
majority of the shadowing team comprised experienced OpenVMS 
engineers whose familiarity with shadowing was limited, whose 
individual skill sets were often incomplete for this particular 
project, and whose availability was staggered over the course of 
the project. Moreover, the team was split between the United 
States and Scotland and, hence, separated by a six-hour time 
difference. 

Making Process Enhancements

To meet these challenges, we believed our overall process 
required enhancements that would provide

    o Independent porting tasks within a collaborative and 
        unifying development framework

    o Aggressive defect removal with an emphasis on containing 
        porting defects 

    o Directed system testing that preceded large-scale stress 
        testing 

    o Clear validation of shadowing's basic error-handling 
        capabilities 

Figure 3 shows our reshaped process for the shadowing port. Each  
step in the process is depicted in a square box starting with  
planning and ending with the project completion review. New steps  



in the process are shaded gray. The most significant enhancements 
were the insertion of inspection and profile testing steps. To 
evaluate our progress in removing defects, we incorporated defect 
projections for each development step into our release criteria. 
To track this progress, we supplemented the organization's 
problem-reporting database with a project-defect database. 
Emphasizing error insertion during profile and acceptance test 
allowed for validation of shadowing's error-handling 
capabilities. 

In making these process enhancements, we were careful to maintain 
both consistency with prevailing industry practices and 
compatibility with current practices within OpenVMS Engineering. 
We felt that adopting ideas proven in industry and having a 
common framework for communication within our organization would 
increase the probability of success for our enhancements. How we 
implemented these enhancements is described in the following 
sections.

[Figure 3 (Enhanced Development and Validation Process) 
is not available in ASCII format.]

Measuring Process Effectiveness

Establishing Release Criteria.  In formulating the release 
criteria for shadowing given in Table 1, we used Perry's  
approach of

    o Establishing the quality factors that are important to 
        the product's success
     
    o Mapping the factors onto a set of corresponding 
        attributes that the software must exhibit

    o Identifying metrics and threshold values for determining 
        when these software attributes are present[7]

Defining release criteria based on threshold values provided a 
clear standard for judging release readiness independent of the 
project schedule. These criteria spanned the development cycle in 
order to provide a basis for verifying progress at each stage of 
the project. The emphasis of most metrics for these criteria was 
on containing and removing defects. Other metrics were selected 
to corroborate that high defect detection equated to high product 
quality.

Table 1  Shadowing Release Criteria

Quality          Software          Software                   Threshold 
Factor           Attribute         Metric                     Value

Reliability  Error tolerance   Profile test completion    100%
 Operational    Defects detected       240 



  accuracy    Incoming problem reports   Near 0
 Operational     per week
  consistency    Acceptance test with error 200 node-

                                    insertion                  hours
     

------------------------------------------------------------------------
Integrity  Data security    Unresolved high-severity   None

      defects
________________________________________________________________________

Correctness  Completeness    Code ported       100%
    Module test completion     100%
    Code change rate per week  0

________________________________________________________________________
Efficiency  Processing time   Queue I/O reads and writes Comparable

 Throughput    Copy and merge operations   to VAX

________________________________________________________________________

Usability  Ease of training  Documentation completion   100%

________________________________________________________________________
Interoperability Backward    Stress test completion     12,000 node-

  compatibility    Unresolved high-            hours 
 Transparent        severity defects          None
  recovery

________________________________________________________________________

Maintainability  Self-descrip-    Source modules       100%
  tiveness     restructured

          Consistency         
________________________________________________________________________

Tracking Defects.  Projecting defect detection levels for all 
stages in the development cycle was a departure from the 
traditional practice of our development engineers. Previously, 
only the test engineers within  OpenVMS Engineering established a 
defect goal prior to beginning their project work.  Extending the 
scope of this goal for shadowing resulted in a paradigm shift 
that permeated the entire team's thinking and encouraged each 
member to aggressively look for defects. Since all team members 
were more committed to meeting or exceeding the defect goal, they 
were eager to provide detailed information on the circumstances 
surrounding defect detection and removal. This detail is often 
lost in a traditional development project. 

Because data on code modification and defect removal during an 
OpenVMS port was not readily available, we derived our 
projections as follows. 



    1. We determined how many lines of code would be modified 
        during the shadowing port. This estimate was based on a 
        comparison between the ported and original sources for 
        another OpenVMS component of similar complexity.  The 
        resulting estimate for shadowing changes was 2,500 
        noncomment source statements (NCSS) out of a total of 
        roughly 19,400. 

    2. We projected the rate at which these modifications would 
        occur for shadowing. We based this projection on the 
        actual time spent porting, inspecting, and debugging the 
        code of a second OpenVMS component of similar complexity. 
        We revised it upon reaching the first major porting 
        milestone to reflect our actual performance. The revised 
        projection is shown by month in Figure 4. 

    3. Using the results from our first milestone, we estimated 
        that 250 defects would be introduced as a result of the 
        complete port. This estimate included not only defects 
        introduced through code modifications but also defects 
        induced in existing code by these modifications. 

    4. We projected the schedule of defect detection for each 
        stage of the development cycle. This projection assumed 
        that defects were distributed uniformly throughout the 
        code. Based again on the results of our first porting  
        milestone, we estimated that our efficiency at removing 
        the defects in this release (or defect yield) would be 
        roughly 60 percent through inspections and 25 percent 
        through module testing. We assumed that an additional 10 
        percent of the defects would be removed during profile 
        and stress testing. A 95 percent overall yield for the 
        release is consistent with the historic data shown in 
        Figure 2. It is also consistent with the highest levels 
        of defect removal efficiency observed in the industry 
        where formal code inspections, quality assurance, and 
        formal testing are practiced.[8]  Figure 5 shows our 
        projections for removing 240 defects (95 percent yield of 
        our estimate of 250 defects) by both month and method.

[Figure 4 (Projections of Code Changed by Month) is not available 
in ASCII format.]

[Figure 5 (Projected Defect Detection by Month and Method) 
is not available in ASCII format.]
 
Tracking defects was difficult within our larger organization 
because the problem reporting system used by OpenVMS Engineering 
did not distinguish between defects, problem reports, and general 
communication with test sites. To work around this shortcoming, 
we created a project database to track defects using 
off-the-shelf personal computer (PC) software to link defects to 
problem reports.



REWORKING THE DEVELOPMENT FRAMEWORK

Only the development project leader satisfied all the 
requirements for executing a rapid port of the shadowing code:

    o Expertise in shadowing, VMScluster systems, OpenVMS 
        drivers, the VAX assembly language, the AMACRO compiler 
        (which compiles VAX assembly language for execution on 
        Alpha AXP systems), and the Alpha AXP architecture[9]

    o Experience porting OpenVMS code from the VAX to the Alpha 
        AXP platform[9]
    
    o Familiarity with the defect history of shadowing and the 
        fixes that were being concurrently applied to the VAX  
        shadowing code

    o Availability throughout the duration of the project to 
        work on porting tasks at the same time and the same place

To compensate for the lack of these capabilities across all team 
members and to improve our ability to efficiently port the code 
while minimizing the number of defects introduced, we reworked 
our development framework in two ways. First, we restructured the  
modules to improve their portability and maintainability. Second,  
we inspected all porting changes and most fixes to assure uniform  
quality across both the project and the code.

Restructuring Modules

Examining the interconnections between the shadowing modules in 
the OpenVMS VAX software revealed a high degree of 
interdependence based on content coupling.[10]  Modules 
frequently branched between one another with one module using 
data or control information maintained in another module. These 
modules also exhibited low cohesion with subroutines grouped 
somewhat by logical ordering but primarily by convenience.[10] 

Structured in this fashion, the shadowing modules were not only 
more difficult to maintain but also less separable into 
independent porting tasks. Moreover, differences between the VAX 
and the Alpha AXP architectures, together with the transformation 
of the VAX assembly language from a machine assembly language to 
a compiled language, precluded the continued use of content 
coupling in the ported code. 

To remedy these structural problems, we partitioned the shadowing 
code into functional pieces that could be ported, inspected, and 
module tested separately before being reintegrated for profile 
and stress testing. Figure 6 shows both the original and the 
reworked relationships between shadowing's source modules and its 
functions. During restructuring, we emphasized not only greater 



functional cohesion within the modules but also improved coupling 
based primarily on global data areas and I/O interfaces. As a 
consequence, most shadowing functions were directly dependent on 
only one other function: mounting a single member. Once the port 
of this function was complete, all the others could be largely 
ported in parallel. Where a particular module was used by more 
than one function, we coordinated our porting work using a scheme 
for marking the code to indicate portions that had not been 
ported or tested. 

[Figure 6 (Code Restructuring by Shadowing Function) 
is not available in ASCII format.]

Inspecting Changes

We believed inspections would serve well as a tool for containing 
our porting defects. Industry literature is replete with data on 
the effectiveness of inspection as well as guidelines for its 
use.[8,11,12]  Since our code was now structured for parallel 
porting activities, however, the project also needed a framework 
for 

    o Integrating engineers into the project 

    o Coordinating overlapping tasks 

    o Collaborating on technical problems 

    o Sharing technical expertise and insights 

    o Assuring that the engineers who would maintain shadowing 
        understood all porting changes

          
We believed that group inspections could provide this 
framework.

Tailoring the Inspection Process.  Our inspections differed from 
the typical processes used for new code.[12]  Only the changes 
required to enable the VAX code to execute correctly on the Alpha 
AXP platform were made during the port. These changes were 
scattered throughout the sources, primarily at subroutine entry 
points. With our time and engineering resources quite 
constrained, we chose to inspect only these changes and not the 
entire code base. Because the project involved the port of an 
existing, stable product, no new functionality was being 
introduced and therefore no functional or design specifications 
were available. Instead, inspections were made using the VAX code 
sources as a reference document. 

Integrating Engineering Resources.  Prior experience in OpenVMS 
Engineering indicated that engineers working on unfamiliar 
software could be very productive if they worked from a detailed 



specification and used inspections. Using the VAX sources as a 
"specification" for the shadowing port provided such a focus. 
Inspecting only code changes alleviated the need for team members 
to understand how a particular shadowing function worked in its 
entirety. Simply verifying that the algorithm in the ported 
sources was the same as that in the original VAX sources was 
sufficient. 

Inspections of ported code preceded both module testing and the 
integration of the porting changes into the overall shadowing 
code base. This assured that any differences in coding standards 
or conventions were harmonized and any misunderstanding of code 
operation was corrected before the code underwent module testing.  
Inspections occurred before the engineers who performed the port 
returned to their original duties within OpenVMS Engineering. By 
participating in these inspections, the engineers who would 
maintain the ported code understood exactly what was changed, in 
case additional debug work was needed.

Sharing Experience and Expertise.  The inspection process 
provided a forum for team members to share technical tips, 
folklore, background, and experience. Having such a forum enabled 
the entire team to leverage the diverse technical expertise of 
its individual members. The resulting technical synergy increased 
the capacity of the team to execute the porting work. It also led 
to rapid cross-training between team members so that everyone's 
technical skills increased during the course of the project. This 
teamwork and increased productivity led to more enjoyable work 
for the engineers involved. 

In retrospect, the use of inspections proved the greatest single 
factor in enabling the project to meet its aggressive delivery 
schedule. 

REDIRECTING THE TESTING

To detect both new and existing defects, shadowing has 
historically undergone limited functional testing followed by 
extensive stress testing. The effectiveness of this testing has 
been constrained, however, because it
         
    o Provided no measurement of actual code coverage

    o Lacked an automatic means for forcing the execution of 
        error paths within shadowing

    o Failed to target the scenarios in which most shadowing 
        failures occurred

To compensate for these shortcomings and improve our ability to 
efficiently detect defects, we formulated profile testing: a 
method of risk-directed testing that would follow module testing 



and precede large-scale stress testing. 

Defining Profile Testing

Profile testing focuses on operating scenarios that pose the 
greatest risk to a software product. Engineering experience 
clearly indicated that the highest-risk operating scenarios for 
shadowing involved error handling during error recovery. Examples 
of such scenarios include media failure after a node failure or 
the unavailability of system memory while handling media failure. 
Problems with such error handling have typically occurred only in 
large and complex VMScluster systems. Test profiles are simple, 
clearly defined loads and configurations designed to simulate the 
complex error scenarios and large configurations traditionally 
needed to detect shadowing defects. 

Fundamentally, profile testing is the application of the 
principles of experimental design to the challenge of "searching" 
for defects in a large test domain. Deriving profile tests begins 
with a careful identification of operating conditions in which 
the product has the greatest risk of failing. These conditions 
are then reduced to a set of hardware and software variables (or  
"factors") and a range of values for these factors. A test 
profile is the unique combination of factor values used in a test 
run. 

Combining a large set of test factors and factor values can  
result in unmanageable complexity.  For this reason, profile  
testing uses orthogonal arrays to select factor combinations for  
testing. These arrays guarantee uniform coverage of the target  
test domain described by the test factors. Instead of selecting 
tests based on an engineer's ingenuity, we used these arrays to 
systematically select a subset of all possible factor 
combinations. As a result, we uncovered nonobvious situations 
that customers often encounter. By relying on combinatorics 
rather than randomness to detect defects, the event sequences 
leading to a defect can be more readily reproduced. 

The following sections show how we used this approach to design 
and implement profile testing for shadowing. They also reveal 
that the cost-effectiveness of our testing improved significantly 
as a result. 

Describing the Test Domain

Both AT&T and Hewlett-Packard have used operational profiles to  
describe the test domain of complex software systems.[13]  Such 
operational profiles were typically derived by monitoring the  
customer usage of the system and then methodically reducing this  
usage to a set of frequencies for the occurrence of various 
systems functions. These frequencies are then used to prioritize 
system testing. For the purposes of validating shadowing, we  
extended this notion of an operational profile by decomposing the 



test domain into four distinct dimensions that characterize  
complex software systems:

    o System configuration

    o Software resources

    o Operational sequences

    o Error events

The emphasis of our test profiles was not on how the system was 
likely to operate, but rather on how it was likely to fail. For 
our project, rapid characterization of the test domain was of 
greater importance than precise reproduction of it.

Identifying the Test Factors

Assessment of shadowing's test domain identified the factors that 
characterized its high-risk operating scenarios. This assessment 
was based on a review by both test and development engineers of 
the product's functional complexity, defect history, and code 
structure as characterized by its cyclomatic complexity.[14] The 
resulting factors provided the basis for formulating our test 
profiles.

System Configuration.  The following key factors in system 
configuration describe how a shadow set is formed and accessed 
across the range of components and interconnects that VMScluster 
systems support.[6]

    o Number of shadow set members (MEMBCNT)

    o Device MSCP serving (MSCPSERV)
        
    o Controller sharing (SEPCTRL)

    o Emulated versus local disk controller (SERVSYS) 
    
    o Alpha AXP or VAX I/O load initiator (LOADSYS)
    
    o Location of the storage control block (SCBBEG)
    
    o Size limits for I/O transfers (DIFMBYT)

    o Controller time-out values (DIFCTMO)
        
    o System disk shadow set (SYSDISK)
    
    o Disk device type (DISKTYPE)

Software Resources.  Although running an application in OpenVMS  
can involve competing for a wide range of finite system and  



process resources, only two software resources initially appeared  
significant for targeting error handling during error recovery 
within the shadowing product:

    o System memory used for I/O operations

    o VMScluster communication resource (send credits)

Operational Sequences.  Shadow set membership is controlled by 
the manager of an OpenVMS system.[2]  The manager initially forms 
the shadow set and then adds or removes members as needed. 
Applications use these shadow sets for file creation and access. 
During its use, a shadow set can require copy and merge 
operations to maintain data consistency and correctness across 
its members. Profiles that target these activities involve 
sequences of the following key operations. 

    o Merge, assisted merge, copy, and assisted copy

    o Member mounts and dismounts

    o File creation and deletion

    o Random reads and writes; repeated reads of a "hot" block 
        on the disk

Error Events.  All complex software systems must deal with error 
events that destabilize its operation. For the shadowing product, 
however, reliably handling the following set of errors represents 
the essence of its value to OpenVMS customers.
        
    o Removal of a VMScluster node (NODEERR)
        
    o Process cancellation (PROCERR)

    o Controller failure (CTRLERR)
        
    o Disk failure (DISKERR)
        
    o Media failure (MEDIAERR)

Managing Test Complexity

When the list of key factors for targeting shadowing's high-risk 
operating scenarios was enumerated, the resulting test domain was 
unmanageably complex. If just two test values for each of 25 
factors are assumed, the set of all possible combinations was 
2**25 or more than 33 million test cases. 

To reduce this combinatorial complexity to a manageable level, we 
structured profiles in two test dimensions, error event and 
system configuration, using orthogonal arrays.[15,16]  Columns in 
these orthogonal arrays describe the test factors, and rows 
describe a balanced and orthogonal fraction of the full set of 



factor combinations. Because of their balance and orthogonality 
across the test factors, such arrays provide a uniform coverage 
of the test domain.

Figure 7 is a composite table of error-event profiles created 
using a D-optimal array and shadow set configuration profiles 
created using a standard array.[17,18] These two arrays formed 
the base of our profile test design. Operational sequences were 
applied (as described below) to 18 test profiles formed by 
relating the error event and shadow set arrays as shown in Figure 
7. These profiles were arranged into groups of three; each group 
included two types of disks, a shadowed system disk, and the 
presence of each type of disk error. The test values assigned to 
the factors SYSDISK and DISKTYPE as a result of this grouping are 
shown in the two columns positioned between the arrays in Figure 
7. 

[Figure 7 (Set of Composite Test Profiles) is not available in 
ASCII format.]

Note that physically configuring the test environment prevented 
us, in some instances, from using the prescribed assignment of 
factor values. As a consequence, only those factors whose columns 
are shaded in gray in Figure 7 retained their balance and 
orthogonality during implementation of the test design. 

At this point, profile test design is complete. The use of 
orthogonal arrays allowed us to reduce the tests to a manageable 
number and at the same time have uniform coverage of all test 
factors.

Configuring the Test Environment

In addition to the shadow set profiles, the following practical 
constraints guided the configuration of a VMScluster system for 
conducting our profile testing.
          
    o Minimize hardware requirements and maximize ease of test 
        execution

    o Configure profiles from the shadow set array in groups of 
        three to expedite test execution

    o Reflect both anticipated customer usage of shadowing and 
        historic usage as characterized in existing surveys of 
        VAXcluster sites in the United States

    o Enable the formation of either one integrated or two 
        separate VMScluster systems based on either the DSSI or 
        the CI system interconnect

    o Require no physical reconfiguration during testing

    o Maintain a consistent batch/print and user authorization 



        environment

    o Follow the configuration guidelines set forth in 
        Digital's software product descriptions for OpenVMS, 
        VMScluster systems, and volume shadowing for Alpha AXP 
        and VAX systems 
 
Constructing a test configuration that reflected all these 
constraints and supported the shadow set profiles in Figure 7 was 
quite a challenge. As a result of having clear configuration 
guidelines, however, we could re-create shadowing's high-risk 
operating scenarios using substantially less hardware than 
required for large-scale stress testing. Table 2 contrasts the 
hardware requirements of the two test approaches. 

Table 2  VMScluster Configuration Size by Test Method

   Profile             Large-scale
                   Testing             Stress Testing

Systems    5 AXP        10 AXP 
   4 VAX        12 VAX 

Interconnects    1 CI        2 CI
   1 Ethernet        9 Ethernet
          1 FDDI

CI Storage    1 HSC        6 HSC
Controllers    1 HSJ        1 HSJ

Test Disks    31        165

Shadow Sets    9 two-member        23 two-member
   9 three-member      5 three-member

The resulting test configuration for our profile testing was 
formally described in a configuration diagram, which appears in a 
simplified form in Figure 8.  During our testing, each profile 
shown in Figure 7 was uniquely marked on this diagram to show 
both the disks comprising each shadow set and the nodes to load 
them. Taken together, Figures 7 and 8 proved quite useful in 
transferring the task of executing a particular test profile from 
one test engineer to another. In addition, development engineers 
found them to be invaluable tools for clarifying the fault loads 
and the configuration of a particular test profile. 

[Figure 8 (Total System Configuration for Profile Testing) 
is not available in ASCII format.] 

To illustrate how we used these two tools, consider the first  
three test profiles shown in Figure 7. These profiles, 
respectively, define the configuration and loading of shadow sets 



DSA1, DSA2, and DSA3.  Running these three profiles in parallel 
would be difficult to describe precisely without these two tools. 
As an example, profile 1 in Figure 7 indicates that DSA1 must 
comprise two RZ devices that are not used as system disks. At 
least one of these devices must be MSCP served. The two disks 
must share a controller and must be accessed via an AXP node. 
Both must have their storage control blocks located at their 
first logical block. As a result of their physical configuration, 
both must have the same size limit on I/O transfers and the same 
controller time-out value. Finally, this profile indicates that 
another AXP node in the VMScluster system must load DSA1 and that 
this load must involve the simulation of fatal disk errors. 
Devices DKA400 and DKA500 in Figure 8 satisfied these 
requirements; the load was to be applied from node MEBEHE. 

The complete configuration for these three profiles is denoted by 
the gray box in Figure 8, which requires only a small subset of 
the total test configuration to execute

    o Two AXP systems (MEBEHE and HEBEME) 

    o One VAX system (WEBEYU)

    o One DSSI interconnect

    o One SCSI and 4 DSSI controllers
 
    o Two RZ26 disks (DKA400 and DKA500)

    o Two RF72 disks (DIA301 and DIA202)

    o Two RF73 disks (DIA200 and DIA201)

Executing Test Profiles

Testing Tools.  Executing the profile tests involved the use of 
four Digital internal test tools (XQPXR, IOX, CTM, Faulty Towers) 
and two OpenVMS utilities (BACKUP and MONITOR). XQPXR and IOX 
both provided read and/or write loads to shadow sets with XQPXR 
utilizing the file system for its I/O. CTM provided a means of 
loading multiple subsystems across the VMScluster system. Faulty 
Towers was used to inject faults into the VMScluster System 
Communication Architecture (SCA) protocol tower during loading to 
create the error profiles shown in Figure 7. MONITOR measured the 
loads applied during profile testing. BACKUP was used to verify 
that the data on shadow set members was consistent following a 
test run. 

Of all the test tools we used, Faulty Towers was both the most 
critical to our success and the most innovative in simulating 
large-scale VMScluster environments. Historically, large-scale 
stress testing of shadowing has depended largely on the 
occurrence of random events or manual intervention to exercise 
shadowing error paths. Because SCA underlies all communication 



within a VMScluster system, Faulty Towers could instead 
automatically force the exercise of these paths by simulating 
errors within the system. The set of faults that Faulty Towers 
provided came from our examination of how VMScluster systems, 
especially large-scale systems, fail. This set included forcing 
esoteric states throughout the VMScluster system, simulating 
device errors, exhausting essential resources, breaking 
VMScluster communication channels, and creating excessive I/O or 
locking loads. 

The fault loads that Faulty Towers provided were predictable and 
quite repeatable. When problems occurred during test execution, 
the precise fault loads involved could be readily reproduced to 
accelerate the process of diagnosing the underlying defect and 
verifying a proposed fix. Faulty Towers also provided a means of 
easily tailoring, controlling, and monitoring the automatic 
insertion of faults during our profile testing. The result was 
better coverage of error paths using a much simpler test 
environment. 

Staging Test Implementation.  To stage the introduction of 
profile complexity, we gradually increased the number of error 
events  applied to successive groupings of test profiles. We 
began our testing with a simple base profile to which further 
load complexity  could be progressively added. This base profile 
involved only  three two-member shadow sets with just one of the 
targeted error  events occurring during each run. System load was 
limited to reads  and writes across the shadow sets. No system 
disks were shadowed  in this base profile. 

During the initial execution of the base profile, we tested 
resource exhaustion.  With each subsequent round of testing, we 
systematically incorporated additional complexity: more test 
configurations,  three-member shadow sets, shadowed system disks, 
complex error profiles, and system-wide loading. 

Operational Sequence for Profile Test Execution.  Another 
important aspect of the profile testing was the use of a 
prescribed operational sequence during profile test execution. 
This sequence is shown in Figure 9.

[Figure 9 (Operational Sequence for Profile Testing) 
is not available in ASCII format.]            

Profile test runs began with the mounting of a single shadow set 
member. The addition of a second or third member caused the 
initiation of a copy operation from the existing member to the 
added device(s). The removal of a VMScluster node that had a 
shadow set mounted would cause shadowing to initiate a merge 
operation on the shadow set. To maintain consistency across our 
test runs, we would manually add back into a shadow set any 
member(s) that were expelled due to the node removal. At this 



point, shadowing is expected to progress sequentially through 
copy and merge operations to create a fully consistent shadow 
set. 

The I/O required by these copy and merge operations formed the 
base load on the system. User I/O to the shadow sets incremented 
the effective load on the system as did the disruption of I/O due 
to error events. During the period when user I/O and error events 
were sustained at their heaviest levels, I/O for copy operations 
could stall entirely. Winding down error insertion and user I/O 
enabled copy and merge operations to complete. At that time, the 
shadow sets could be dismounted and the individual members 
compared for data consistency. 

During the test execution sequence, each step represented a new 
threshold at which failures were more likely to occur. As testing 
continued and the shadowing code stabilized, early test execution 
sequences tended to generate fewer new defects. To find 
additional defects, we increased the complexity of the test 
execution sequence, fault loads, and configurations. The result 
was a sustained effectiveness in defect detection throughout our 
profile testing.

PROJECT RESULTS

The process described above enabled us to satisfy both the  
quality and schedule goals of our project to port shadowing to  
the OpenVMS AXP system. How significantly the process contributed 
to this  accomplishment is shown below with data describing our  
improvements in process, product quality, and productivity.

                  
Improving Process

Inspections and profile testing were our two key process 
enhancements. Data that tracked defect detection and product 
stabilization during these steps underscores their contribution.

Tracking Defect Detection.  The solid line in Figure 10 shows 
defect detection by week throughout the life of the project. Note 
that the solid line in the figure tracks very closely and, at 
times, overlaps the dashed line used to indicate the inspection 
time. Only high severity defects that resulted in a code change 
are represented by these defect counts. The time period before 
January 4 involved neither inspections nor testing; the time 
period after June 14 involved only testing. During March, porting 
work stopped due to team members being temporarily reassigned to 
critical development tasks in support of OpenVMS AXP version 1.5. 
Allowing for that gap in March, the trend in defect detection 
from both inspections and testing exhibited a steady decline from 
mid-January through October. This trend provides a strong 
indication that the project was on schedule and not deferring the 
bulk of defect removal to the latter, more costly stages of 



development. 

The dashed line in Figure 10 shows the amount of time spent 
weekly in inspections. It shows that the highest rates of defect 
detection resulted from, and were in rough proportion to, time 
spent in inspections. Early defect removal using inspections 
represented a marked change from traditional practices within 
OpenVMS Engineering.

[Figure 10 (Inspection Time and Defect Detection) is not available 
in ASCII format.]

Tracking Product Stabilization.  The manner in which we designed 
and implemented profile testing gave rise to a pair of metrics 
for tracking both test effectiveness and product stabilization by 
tracking test execution results. The first of these metrics was a 
ratio between the test execution time as measured in days of test 
execution per VMScluster node (node-days) and the number of 
problem reports that resulted. The second was a ratio between the 
number of problem reports submitted to development engineers and 
the number of defects that were detected as a result. 

Figure 11 shows these two metrics plotted weekly during the 
course of our profile testing. The key to interpreting these 
trends lies in contrasting the two ratios. For example, low 
node-days/problem report accompanied by high 
problem-reports/defect in July 1993 indicates test execution 
errors as we learned how to load and test shadowing in a 
VMScluster system. In late September, high node-days/problem 
report with no defects indicates the execution of an ineffective 
test profile. Near-zero curves in early July and early September 
indicate when vacations were interrupting our testing. 

[Figure 11 (Metrics for Evaluating Test Effectiveness and 
Product Stabilization) is not available in ASCII format.]

During the two product stabilization periods indicated in Figure 
11, the increase in node-days/problem report accompanied by a 
near one-to-one ratio between problem reports and defects 
indicates that the product was stabilizing in spite of sustained 
test effectiveness. The first period preceded beta test; the 
second preceded product release. 

Assuring Quality

Containing and removing defects were at the core of our release 
criteria. As Figure 12 shows, actual defect removal during the 
project exceeded projections by 8 percent. By selecting our 
defect goal based on industry-standard defect densities and 
exceeding this goal, we have assured quality in our product. Of 
the total defects actually removed, 232 were in the shadowing 
code. This suggests a defect removal rate of 12 defects per 1,000 
NCSS for the shadowing code base, which is consistent with 



industry data reported by Schulmeyer.[19]     

[Figure 12 (Comparison of Projected and Actual Defect 
Detection and Removal by Method) is not available in ASCII format.]

Of the 176 defects removed through inspections, 43 were found in 
the nonported shadowing code. This suggests a defect removal rate 
for the ported code of 53 per 1,000 NCSS, which again falls 
within the range reported by Schulmeyer. The combination of 
testing and inspections resulted in the removal of 59 defects 
from the unmodified shadowing code base. This represents a net 
reduction of 3.5 defects per 1,000 NCSS within the unmodified 
shadowing code as a result of the port!

The significance of this level of defect removal as an indicator 
of high quality was corroborated in two ways. First, all release 
criteria were satisfied prior to releasing the ported shadowing 
product. Second, the character of defects detected during the 
testing phase of the project changed. Whereas most defects 
detected in early test runs were introduced during the port, 
virtually all defects detected in later test runs were residual 
in the underlying code base. Again, removing this latter type of 
defect meant better overall quality for customers running 
mixed-architecture VMScluster systems. 

Another aspect of quality was identifying those defects that 
should not be fixed but only contained. Because this project had 
very limited scope, duration, and resources, we had to carefully 
evaluate changes that could destabilize the entire product and 
jeopardize its overall quality. The comparison of detected to 
removed defects in Figure 12 shows that several problems fell 
into this category. Many of these defects were triggered  by 
system operations that exceeded the fundamental design 
limitations of the product. Some occurred in obscure error paths 
that could only be  exercised with our new test methods. Others 
were due to new combinations of hardware possible in 
mixed-architecture VMScluster systems. In each of these 
instances, we assured that the scope of the defect was limited, 
its frequency low, and its impact predictable. When necessary, we 
constrained supported hardware configurations or system behavior 
so that the defect could not cause unrecoverable failures. 
Finally, we fed back our analyses of these defects into the 
ongoing shadowing support effort so that they could be removed in 
future releases through appropriate redesign.

Increasing Productivity

The following data shows how our enhanced process contributed to 
the quality. This data shows the relative cost-effectiveness, and 
hence improved productivity, achieved through inspections and 
profile testing.

Engineering Costs.  The proportion of total engineering hours 
expended during each step of the project is depicted in Figure 



13. This Figure indicates that only 15 percent of the hours 
(inspections and module testing) resulted in the removal of 85 
percent of all defects. Inspections alone accounted for only 5 
percent of the engineering hours but 68 percent of the defect 
removal! 

[Figure 13 (Distribution of Total Engineering Hours by 
Process Step) is not available in ASCII format.]

The actual cost for removing defects by inspection averaged 1.7 
engineer hours per defect. During module testing, when engineers 
worked individually to debug the functions they had ported, the 
cost of defect removal jumped to 15 engineer hours per defect. 
During integration testing, where the entire shadowing driver was 
tested in a complex environment, an average of 85 engineer hours 
was spent per defect exclusive of the time spent to execute the 
tests. Clearly, removing the bulk of the defects from the ported 
code prior to beginning testing of the integrated shadowing 
product dramatically reduced both the cost and time required for 
defect removal. 

Defect Yield.  Assuming a 95 percent overall defect yield for 
shadowing prior to release, the relative yield of inspections 
during this project was 65 percent. When calculated against 
defects found only in shadowing, the yield for inspections jumps 
to 75 percent--a very high removal efficiency when compared with 
industry data.[8] Relative defect yield was consistent with 
industry data for module testing at 16 percent, but low for 
profile and stress testing at a combined value of 6 percent. 
Given the high engineering cost shown above for removing defects 
during integration test of shadowing, this is in fact quite a 
favorable result.

Test Cost-effectiveness.  As Figure 13 indicates, testing 
remained the most costly portion of the project. Executing and 
debugging problems from roughly 86,000 node-hours of stress, 
performance, and profile testing accounted for 69 percent of the 
project's total engineering hours. In fact, the ratio of engineer 
hours expended for test versus implementation was roughly 1.8 
times higher than Grady reports for 48 projects involving systems 
software.[20] Given the complexity of the VMScluster systems 
historically required to test shadowing, this ratio is no 
surprise. 

Nevertheless, our project's results indicate that profile testing 
was significantly more cost-effective than large-scale stress 
testing for detecting defects. Profile testing's overall ratio of 
test engineer days per defect was 25 percent better at 6.2 days 
than stress testing's 8.3 days. Moreover, profile testing's 
overall ratio of machine test time per defect was more than an 
order of magnitude better at 7.4 node-days than stress testing's 
95.2 node-days!



This improvement in cost-effectiveness was achieved with no loss 
in defect removal capability. When compared with large-scale 
stress testing, profile testing of shadowing proved equally 
effective overall at detecting defects. During the beta test 
period for shadowing, each of these test methods accounted for 
roughly 20 percent of the defects detected when allowing for 
duplication between methods. The number of problem reports per 
defect was also comparable with ratios of 2.4 for profile testing 
and 2.0 for stress testing. 

Figure 14 contrasts the cost-effectiveness of each method of 
defect detection employed during the validation of shadowing. 
Note that because this chart uses a log scale, any noticeable 
difference between bar heights is quite significant. This chart 
bears out conventional wisdom on defect removal: detection prior 
to integration through the use of inspections and module testing 
is by far the most cost-effective. It also suggests that profile 
testing has a cost-effectiveness on the same order of magnitude 
as module testing, while providing the same defect detection 
effectiveness as large-scale stress testing.

[Figure 14 (Relative Cost-effectiveness of Defect 
Detection Methods) is not available in ASCII format.]

CONCLUSIONS

At the outset of the shadowing port, given its unique challenges, 
we believed that the existing development process for OpenVMS 
would not enable us to meet the project's goals. By taking charge 
of our engineering process, however, we not only met those goals 
but also demonstrated that changes to the established process 
could result in higher productivity from our engineering 
resources and better quality in the delivered product.

The volume shadowing port from OpenVMS VAX to OpenVMS AXP was 
successful in meeting an aggressive schedule and in delivering a 
stable, high-quality product. There were two key process 
innovations that led to our success. The first was the use of 
inspections to detect and remove a large percentage of the 
porting defects before any investment in testing. By finding a 
majority of the defects (68 percent) at the lowest possible cost 
(1.5 hours per defect), fewer overall resources were required. 

The second key innovation was the use of profile testing to cover 
a very large and complex test domain. Having a test strategy that 
used well-defined and repeatable tests to target problem areas in 
shadowing code allowed us to efficiently find defects and verify 
fixes. With profile testing, we managed to achieve the defect 
detection effectiveness of large-scale integration testing at the 
same relative cost as module testing. 

The results of our process innovations would not have been  
realized if we had waited for our organization's process to  



evolve up the CMM levels. By changing the engineering process of  
a small team, we delivered high-quality software on schedule and 
at a lower cost.

FUTURE DEVELOPMENTS

As a result of our project's accomplishments, OpenVMS Engineering 
is giving serious consideration to our practices. Many groups are 
acknowledging the gains possible when formal inspections are used 
to contain defects. Moreover, the organization's problem 
reporting system is being upgraded to include mechanisms for 
tracking defects that incorporate many of the fields used in our 
defect tracking database. 

OpenVMS Engineering is also evaluating further use of the profile 
testing methodology in its testing efforts. As Figure 13 
indicated, improving the effectiveness of our integration testing 
may offer the most significant opportunity for reducing 
engineering costs and accelerating the schedules of our software 
releases. Since experimental design principles were used in the 
creation of the tests, statistical evaluation of the results is a 
potentially exciting opportunity. An analysis of variance that 
explores the relationship between test factors and defects could 
indicate which test factors contribute significantly to defect 
detection and which do not. This could give us a clear 
statistical indication of where to direct our testing efforts and 
development resources.
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