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ABSTRACT

The vol une shadowi ng team achi eved a high-quality, accelerated
delivery of volune shadowi ng on OpenVMs AXP by appl yi ng

techni ques from academ ¢ and industry literature to Digital's
commercial setting. These techni ques were an assessnent of the
team process to identify deficiencies, formal inspections to
detect nost porting defects before testing, and principles of
experinmental design in the testing to efficiently isolate defects
and assure quality. This paper describes how a snmall team can
adopt new practices and i nprove product quality independent of
the | arger organi zati on and denmonstrates howthis led to a nore
enj oyabl e, productive, and predictable work environnent.

| NTRODUCTI ON

To achi eve VMscl uster support in the OpenVMS AXP version 1.5
operating system one year ahead of the original plan, OpenVMS
Engi neering had to forego early support of Volune Shadow ng Phase
Il (or "shadowi ng"). Shadowi ng is an OpenVMS systemi ntegrated
product that transparently replicates data on one or nore disk
storage devices. A shadow set is conposed of all the disks that
are shadowing (or mrroring) a given set of data. Each disk in a
shadow set is referred to as a shadow set nember. Should a
failure occur in the software, hardware, firmnare, or storage
nmedi a associated with one nenber of a shadow set, shadow ng can
access the data from anot her menber.

The ability to survive storage failures is quite inportant to
custoners of OpenVMS systens where data | oss or inaccessibility
is extremely costly. Such custonmers typically comnbi ne shadow ng
and VMsScl uster technologies to elininate single points of failure
and thereby increase data availability. For these custoners,

del ayed support for shadowi ng on the OpenVMS AXP system neant

ei ther foregoing the advanced capabilities of an Al pha AXP
processor within their VMsScluster systems or foregoing the
additional data availability that shadowi ng provides. To resolve
this dilemma, OpenVMS Engi neeri ng began a separate project to
rapidly port shadowing to the OpenVMS AXP system This project
had three overall goals.

o] Provi de performance and functionality equivalent to the
OpenVMs VAX system



o] Al l ow trouble-free interoperability across a
m xed- archi tecture VMScl uster system

o] Deliver to custoners at the earliest possible date

All three goals were net with the separate rel ease of

shadowi ng based on OpenVMS AXP version 1.5 in Novenber 1993, nore
than six nonths ahead of the original planned release for this
support.

In the followi ng sections, we describe how we achi eved t hese
goal s by reshapi ng our overall process, reworking our devel opnent
framework, and redirecting our testing. In the final section on
project results, we denonstrate how our inproved process assures
qual ity and increases productivity. This paper assunes
famliarity with the shadowi ng product and term nol ogy, which are
described fully in other publications.[1,2]

RESHAPI NG THE OVERALL PROCESS

Because the need was urgent and the project well-defined, we
could have leapt directly into porting the shadow ng code.
Instead, we took a step back to evaluate how best to deliver the
required functionality in the shortest tinme and how best to
verify success. Doing so neant taking control of our software
devel opnent process.

Ef fective software process is generally acknow edged as essentia
to delivering quality software products. The Capability Maturity
Model (CMM) devel oped by the Software Engineering Institute
enbodi es this viewpoint and suggests that evolving an entire
organi zation's process takes tine.[3,4] Gady and Caswell's
experience inplenenting a netrics programat Hewl ett-Packard
bears out this viewpoint.[5] Qur experience with the continuous
i mprovenent of software devel opment practices within Digital's
OpenVMS Engi neering does so as wel |

However, our engineering experience also suggests that the
current enphasis on evolving an entire organi zation's process
tends to overshadow the ability of a small group to accel erate
the adopti on of better engi neering practices. Wthin the context
of an individual software project, we believed that process could
be readily reshaped and enhanced in response to specific project
chal l enges. We further believed that such enhancenents could
significantly inprove project productivity and predictability.

I dentifying Process Chall enges
At the project's outset, we identified four mgjor challenges

that we believed the project faced: configuration conplexity,
defect isolation costs, beta test ineffectiveness, and resource



constraints.

Configuration Conplexity. Qur nost significant challenge was to
devise a process to efficiently validate the product's conpl ex
operating environment: a m xed-architecture VMScl uster system
conprising both Al pha AXP and VAX processors (or nodes).|[ 6]
Digital's VMscluster technology currently supports a
configuration of |oosely coupled, distributed systens conpri sing
as many as 96 AXP and VAX processors. These nodes nmmy comuni cate
over any conbination of four different systeminterconnects:
Comput er Interconnect (Cl), Digital Storage Systens |nterconnect
(Dssl), fiber distributed data interface (FDDI), and Ethernet.

VMScl ust er systens support two di sk storage architectures -- the
Digital Storage Architecture (DSA) and the snmall conputer systens
interface (SCSI) -- and dozens of disk nodels. Once ported,

shadowi ng woul d be required to provide a consistent view across
all nodes of as many as 130 shadow sets. Each shadow set may

i nvolve a different nmodel of disk and nay span different
controllers, interconnects, nodes, or processor architectures.
The potential nunber of configuration variations is exponenti al

Defect Isolation Costs. A second nmajor process challenge was to
contain the cost of isolating defects. A defect is defined to be
the underlying flaw in the OpenVMS software that prevents a

VMScl uster system from neeting custonmer needs. System software
defects can be triggered by VMsScluster hardware, firmwvare, and
software. Since few individuals possess the conmbined skills
necessary to troubl eshoot all three areas, defect isolation
normal Iy involves a team of professionals, which adds to the cost
of troubl eshooting VMScl uster operating system software.

Debuggi ng of shadowi ng code is difficult since it executes in the
restricted OpenVMS driver environnment: in kernel node at el evated
interrupt priority level. Shadowing is also witten nostly in
assenbly | anguage. To maintain shadow set consi stency across al
96 nodes of a VMscluster system nmuch of the shadow ng code

i nvol ves distributed algorithnms. Troubl eshooting distributed
algorithnms can greatly increase isolation costs, since a given
node failure is often only incidental to a hardware, firmnvare, or
software defect occurring earlier on another VMscluster node.

Many shadowi ng problemreports ultimately prove to contain
insufficient data for isolating the problem O her problem
reports describe user errors or hardware problens; sone are
duplicates. For example, Figure 1 shows the trend for Vol une
Shadowi ng Phase Il problens reported, problens resolved, and
defects renmoved between Decenber 1992 and April 1993. During this
period, only one defect was fixed for every ten problemreports
cl osed. Because this lowratio is not typical of npst OpenVMS
subsystens, it is not readily accommopdated by our traditiona
devel opnent process.

[Figure 1 (Problem Handling and Defect Renoval on VAX:
Decenber 1992 to April 1993) is not available in ASCII format.]



Beta Test I neffectiveness. A third process challenge was that
custoner beta testing had not contributed significantly to
shadowi ng defect detection. Justifiably, npost custonmers sinply
cannot risk incorporating beta test software into the kind of
conpl ex production systens that are nost |ikely to uncover
shadowi ng problens. Figure 2 shows the distribution of shadow ng
probl em reports received fromits inception in January 1990 to
January 1993. During these three years, only 8 percent of the
probl em reports came from custonmer beta test sites. |In contrast,
46 percent of the problemreports canme fromstress test and al pha
test sites within Digital, where testing was based on | arge,
conpl ex VMScl uster configurations.

[Figure 2 (Sources of Shadow ng Probl em Reports: January
1990 through January 1993) is not available in ASCII format.]

Resource Constraints. A fourth process challenge for the
shadowi ng port was conpetition for engineering resources. Only

t he devel opment and validation project |eaders could be assigned
full-time. The ongoi ng demands of supporting shadowi ng on OpenVMS
VAX precluded nenbers of the existing shadowi ng team from
participating in the port. Mst other engineering resources were
already comritted to the accel erated delivery of VMscluster
support in OpenVMS AXP version 1.5. As a consequence, the

maj ority of the shadow ng team conprised experienced OpenVMS
engi neers whose famliarity with shadowing was |inited, whose

i ndi vidual skill sets were often inconplete for this particular
project, and whose availability was staggered over the course of
the project. Mreover, the teamwas split between the United
States and Scotl and and, hence, separated by a six-hour tine

di fference.

Maki ng Process Enhancenents

To neet these chall enges, we believed our overall process
requi red enhancenents that would provide

o] I ndependent porting tasks within a coll aborative and
uni fyi ng devel opnent framework

o] Aggressive defect renmpval with an enphasis on containing
porting defects

o] Directed systemtesting that preceded | arge-scale stress
testing

o] Cl ear validation of shadowi ng's basic error-handling
capabilities

Figure 3 shows our reshaped process for the shadowi ng port. Each
step in the process is depicted in a square box starting with
pl anni ng and ending with the project conpletion review New steps



in the process are shaded gray. The npbst significant enhancenents
were the insertion of inspection and profile testing steps. To
eval uate our progress in renoving defects, we incorporated defect
proj ections for each devel opnent step into our release criteria.
To track this progress, we supplenented the organization's
probl em reporti ng database with a project-defect database.
Enmphasi zi ng error insertion during profile and acceptance test

al l onwed for validation of shadowi ng's error-handling
capabilities.

In meki ng these process enhancenents, we were careful to maintain
both consistency with prevailing industry practices and
conpatibility with current practices within OpenVMS Engi neeri ng.
We felt that adopting ideas proven in industry and having a
comon framework for communication within our organization would
i ncrease the probability of success for our enhancenents. How we
i mpl emented these enhancenents is described in the foll ow ng
sections.

[ Figure 3 (Enhanced Devel opnent and Validation Process)
is not available in ASCII format.]

Measuri ng Process Effectiveness

Est abl i shing Release Criteria. |In fornulating the rel ease
criteria for shadowi ng given in Table 1, we used Perry's
approach of

o] Establishing the quality factors that are inportant to
the product's success

o] Mappi ng the factors onto a set of corresponding
attributes that the software nust exhibit

o] Identifying netrics and threshold val ues for deternining
when these software attri butes are present[ 7]

Defining release criteria based on threshold val ues provi ded a
clear standard for judging rel ease readi ness i ndependent of the
proj ect schedule. These criteria spanned the devel opnment cycle in
order to provide a basis for verifying progress at each stage of
the project. The enphasis of npbst netrics for these criteria was
on containing and renovi ng defects. O her nmetrics were sel ected
to corroborate that high defect detection equated to high product
quality.

Table 1 Shadowi ng Rel ease Criteria

Quality Sof t war e Sof t war e Threshol d
Fact or Attribute Metric Val ue
Reliability Error tol erance Profile test conpletion 100%

Oper at i onal Def ects detected 240



accuracy I ncom ng problemreports Near O

Oper at i onal per week

consi stency Acceptance test with error 200 node-
i nsertion hour s

Integrity Data security Unr esol ved hi gh-severity None
def ects

Correctness Conpl et eness Code ported 100%

Modul e test conpl etion 100%

Code change rate per week O

Ef fici ency Processing tine Queue |/ O reads and wites Conparable
Thr oughput Copy and nerge operations to VAX
Usability Ease of training Docunmentation conpletion 100%
I nteroperability Backward Stress test conpletion 12, 000 node-
conmpatibility Unr esol ved hi gh- hour s
Transpar ent severity defects None
recovery
Mai ntai nability Self-descrip- Sour ce nodul es 100%

tiveness

restructured

Consi st ency

Tracki ng Defects. Projecting defect detection |evels for al
stages in the devel opment cycle was a departure fromthe
traditional practice of our devel opnent engi neers. Previously,
only the test engineers within OpenVMS Engi neering established a
defect goal prior to beginning their project work. Extending the
scope of this goal for shadowing resulted in a paradi gm shift
that perneated the entire team s thinking and encouraged each
menber to aggressively | ook for defects. Since all team nenbers
were nore conmmitted to neeting or exceeding the defect goal, they
were eager to provide detailed information on the circunstances
surroundi ng defect detection and renoval. This detail is often
lost in a traditional devel opnment project.

Because data on code nodification and defect renoval during an
OpenVMS port was not readily avail able, we derived our
projections as foll ows.



1. We determned how many |lines of code would be nodified
during the shadowi ng port. This estinmate was based on a
conpari son between the ported and origi nal sources for
anot her OpenVMS conponent of simlar conplexity. The
resulting estimate for shadowi ng changes was 2, 500
noncomrent source statenments (NCSS) out of a total of
roughly 19, 400.

2. W projected the rate at which these nodifications would
occur for shadowi ng. We based this projection on the
actual tinme spent porting, inspecting, and debugging the
code of a second OpenVMsS conponent of simlar conplexity.
We revised it upon reaching the first major porting
nmlestone to reflect our actual perfornmance. The revised
projection is shown by nmonth in Figure 4.

3. Using the results fromour first mlestone, we estinmated
that 250 defects would be introduced as a result of the
conplete port. This estinmate included not only defects
i ntroduced through code nodifications but also defects
i nduced in existing code by these nodifications.

4. W projected the schedul e of defect detection for each
stage of the devel opnent cycle. This projection assuned
that defects were distributed uniformy throughout the
code. Based again on the results of our first porting
m | estone, we estimated that our efficiency at renoving
the defects in this release (or defect yield) would be
roughly 60 percent through inspections and 25 percent
t hrough nodul e testing. W assuned that an additional 10
percent of the defects would be renoved during profile
and stress testing. A 95 percent overall yield for the
rel ease is consistent with the historic data shown in
Figure 2. It is also consistent with the highest levels
of defect renmoval efficiency observed in the industry
where formal code inspections, quality assurance, and
formal testing are practiced.[8] Figure 5 shows our
projections for renoving 240 defects (95 percent yield of
our estimte of 250 defects) by both nonth and net hod.

[Figure 4 (Projections of Code Changed by Month) is not available
in ASCII format.]

[Figure 5 (Projected Defect Detection by Mnth and Met hod)
is not available in ASCII format.]

Tracki ng defects was difficult within our |arger organization
because the problemreporting system used by OpenVMS Engi neeri ng
did not distinguish between defects, problemreports, and genera
comuni cation with test sites. To work around this shortcom ng,
we created a project database to track defects using

of f-the-shel f personal conputer (PC) software to |ink defects to
probl em reports.



REWORKI NG THE DEVELOPMENT FRAMEWORK

Only the devel opnent project |eader satisfied all the
requi renents for executing a rapid port of the shadow ng code:

o] Expertise in shadowi ng, VMScl uster systens, OpenVMS
drivers, the VAX assenbly | anguage, the AMACRO conpil er
(which conpil es VAX assenbly | anguage for execution on
Al pha AXP systens), and the Al pha AXP architecture[9]

o] Experi ence porting OpenVMs code fromthe VAX to the Al pha
AXP pl atfornf9]

o] Fam liarity with the defect history of shadow ng and the
fixes that were being concurrently applied to the VAX
shadow ng code

o] Availability throughout the duration of the project to
work on porting tasks at the sane time and the sanme place

To compensate for the | ack of these capabilities across all team
menbers and to inprove our ability to efficiently port the code
while mininmzing the nunber of defects introduced, we reworked
our devel opnent framework in two ways. First, we restructured the
nodul es to inprove their portability and nmaintainability. Second,
we inspected all porting changes and nost fixes to assure uniform
qual ity across both the project and the code.

Restructuri ng Mdul es

Exam ni ng the interconnecti ons between the shadowi ng nodul es in
the OpenVMS VAX software reveal ed a hi gh degree of

i nt erdependence based on content coupling.[10] Modul es
frequently branched between one another with one nodul e using
data or control information maintained in another nodule. These
nodul es al so exhi bited | ow cohesion with subroutines grouped
somewhat by | ogical ordering but primarily by conveni ence.[ 10]

Structured in this fashion, the shadowi ng nodul es were not only
nore difficult to maintain but also | ess separable into

i ndependent porting tasks. Moreover, differences between the VAX
and the Al pha AXP architectures, together with the transformation
of the VAX assenbly | anguage from a machi ne assenbly | anguage to
a conpil ed | anguage, precluded the continued use of content
coupling in the ported code.

To remedy these structural problens, we partitioned the shadow ng
code into functional pieces that could be ported, inspected, and
nodul e tested separately before being reintegrated for profile
and stress testing. Figure 6 shows both the original and the
rewor ked rel ati onshi ps between shadowi ng's source nodul es and its
functions. During restructuring, we enphasized not only greater



functi onal cohesion within the nodul es but also inproved coupling
based primarily on global data areas and I/ O interfaces. As a
consequence, nost shadow ng functions were directly dependent on
only one other function: mounting a single nenber. Once the port
of this function was conplete, all the others could be largely
ported in parallel. Where a particular nodul e was used by nore

t han one function, we coordinated our porting work using a schene
for marking the code to indicate portions that had not been
ported or tested.

[Figure 6 (Code Restructuring by Shadowi ng Functi on)
is not available in ASCII format.]

I nspecting Changes

We believed inspections would serve well as a tool for containing
our porting defects. Industry literature is replete with data on
the effectiveness of inspection as well as guidelines for its
use.[8,11,12] Since our code was now structured for paralle
porting activities, however, the project also needed a framework
for

o] I ntegrating engineers into the project

o] Coordi nati ng overl appi ng tasks

o] Col | aborating on technical problens

o] Sharing technical expertise and insights

o] Assuring that the engi neers who woul d mai ntai n shadow ng
understood all porting changes

We believed that group inspections could provide this
framewor k.

Tailoring the Inspection Process. Qur inspections differed from
the typical processes used for new code.[12] Only the changes
required to enable the VAX code to execute correctly on the Al pha
AXP platformwere made during the port. These changes were
scattered throughout the sources, primarily at subroutine entry
points. Wth our tine and engi neering resources quite

constrai ned, we chose to inspect only these changes and not the
entire code base. Because the project involved the port of an

exi sting, stable product, no new functionality was being

i ntroduced and therefore no functional or design specifications
were avail able. Instead, inspections were made using the VAX code
sources as a reference docunent.

I ntegrating Engi neeri ng Resources. Prior experience in OpenVMS
Engi neering i ndicated that engineers working on unfamliar
software could be very productive if they worked froma detail ed



speci fication and used inspections. Using the VAX sources as a
"specification" for the shadowi ng port provided such a focus.

I nspecting only code changes alleviated the need for team nenbers
to understand how a particul ar shadowi ng function worked in its
entirety. Sinply verifying that the algorithmin the ported
sources was the sane as that in the original VAX sources was
sufficient.

I nspections of ported code preceded both nodule testing and the

i ntegration of the porting changes into the overall shadow ng
code base. This assured that any differences in coding standards
or conventions were harnoni zed and any m sunderstandi ng of code
operation was corrected before the code underwent nodul e testing.
I nspections occurred before the engi neers who perforned the port
returned to their original duties wthin OpenVMS Engi neering. By
participating in these inspections, the engi neers who woul d

mai ntain the ported code understood exactly what was changed, in
case additional debug work was needed.

Shari ng Experience and Expertise. The inspection process

provi ded a forum for team nmenbers to share technical tips,
fol kl ore, background, and experience. Having such a forum enabl ed
the entire teamto | everage the diverse technical expertise of
its individual nenbers. The resulting technical synergy increased
the capacity of the teamto execute the porting work. It also |ed
to rapid cross-training between team nenbers so that everyone's
technical skills increased during the course of the project. This
teamwor k and i ncreased productivity led to nore enjoyabl e work
for the engi neers involved.

In retrospect, the use of inspections proved the greatest single
factor in enabling the project to neet its aggressive delivery
schedul e.

REDI RECTI NG THE TESTI NG

To detect both new and existing defects, shadowi ng has

hi storically undergone Iinmted functional testing followed by
extensive stress testing. The effectiveness of this testing has
been constrai ned, however, because it

o] Provi ded no neasurenent of actual code coverage

o] Lacked an automatic nmeans for forcing the execution of
error paths within shadow ng

o] Failed to target the scenarios in which nost shadow ng
failures occurred

To conmpensate for these shortcom ngs and inprove our ability to
efficiently detect defects, we fornulated profile testing: a
nmet hod of risk-directed testing that would foll ow nodul e testing



and precede | arge-scale stress testing.

Defining Profile Testing

Profile testing focuses on operating scenarios that pose the
greatest risk to a software product. Engi neering experience
clearly indicated that the highest-risk operating scenarios for
shadowi ng i nvol ved error handling during error recovery. Exanples
of such scenarios include nmedia failure after a node failure or
the unavailability of system nenory while handling nmedia failure.
Probl ems with such error handling have typically occurred only in
| arge and conpl ex VMScl uster systens. Test profiles are sinple,
clearly defined | oads and configurations designed to sinulate the
conpl ex error scenarios and |arge configurations traditionally
needed to detect shadow ng defects.

Fundanmental |y, profile testing is the application of the

princi ples of experinmental design to the challenge of "searching"
for defects in a large test donmain. Deriving profile tests begins
with a careful identification of operating conditions in which
the product has the greatest risk of failing. These conditions
are then reduced to a set of hardware and software variables (or
"factors") and a range of values for these factors. A test
profile is the unique conbination of factor values used in a test
run.

Combining a large set of test factors and factor val ues can
result in unmanageable conmplexity. For this reason, profile
testing uses orthogonal arrays to select factor conbinations for
testing. These arrays guarantee uniform coverage of the target
test domai n described by the test factors. Instead of selecting
tests based on an engineer's ingenuity, we used these arrays to
systematically select a subset of all possible factor

conbi nations. As a result, we uncovered nonobvi ous situations
that custoners often encounter. By relying on conmbinatorics
rather than randonmess to detect defects, the event sequences

| eading to a defect can be nore readily reproduced.

The foll owi ng sections show how we used this approach to design
and i nplenent profile testing for shadowi ng. They al so revea

that the cost-effectiveness of our testing inproved significantly
as a result.

Descri bing the Test Domain

Bot h AT&T and Hew ett-Packard have used operational profiles to
describe the test domain of conplex software systens.[13] Such
operational profiles were typically derived by nonitoring the
cust oner usage of the system and then nmethodically reducing this
usage to a set of frequencies for the occurrence of various
systems functions. These frequencies are then used to prioritize
systemtesting. For the purposes of validating shadowi ng, we
extended this notion of an operational profile by deconposing the



test domain into four distinct dinmensions that characterize
conpl ex software systens:

o] System confi guration

o] Sof tware resources

o] Oper ational sequences

o} Error events
The enphasis of our test profiles was not on how the system was
likely to operate, but rather on howit was likely to fail. For
our project, rapid characterization of the test domain was of
greater inportance than precise reproduction of it.
Identifying the Test Factors
Assessnent of shadowi ng's test dommin identified the factors that
characterized its high-risk operating scenarios. This assessnent
was based on a review by both test and devel opnent engi neers of
the product's functional conplexity, defect history, and code
structure as characterized by its cyclomatic conplexity.[14] The
resulting factors provided the basis for fornulating our test
profiles.
System Configuration. The follow ng key factors in system
configuration describe how a shadow set is fornmed and accessed
across the range of conponents and interconnects that VMsScl uster
systenms support.[6]

o] Nunmber of shadow set nenbers (MEMBCNT)

o] Devi ce MSCP servi ng ( MSCPSERV)

o] Controller sharing (SEPCTRL)

o] Emul at ed versus | ocal disk controller (SERVSYS)

o] Al pha AXP or VAX I/O load initiator (LOADSYS)

o] Location of the storage control bl ock (SCBBEG

o] Size limts for I/O transfers (DI FMBYT)

o] Controller time-out values (D FCTMO)

o] System di sk shadow set (SYSDI SK)

o] Di sk device type (DI SKTYPE)

Sof t ware Resources. Although running an application in OpenVMS
can involve conpeting for a wide range of finite system and



process resources, only two software resources initially appeared
significant for targeting error handling during error recovery
wi t hin the shadow ng product:

o] System nenory used for |/O operations
o] VMScl ust er comuni cation resource (send credits)

Operational Sequences. Shadow set nmenbership is controlled by

t he manager of an OpenVMS system [2] The manager initially forms
t he shadow set and then adds or renoves nenbers as needed.
Applications use these shadow sets for file creation and access.
During its use, a shadow set can require copy and merge
operations to maintain data consistency and correctness across
its menmbers. Profiles that target these activities involve
sequences of the follow ng key operations.

o] Merge, assisted nerge, copy, and assisted copy
0] Menmber nounts and di snounts
0] File creation and del etion

o] Random reads and writes; repeated reads of a "hot" bl ock
on the disk

Error Events. All conplex software systenms nust deal with error
events that destabilize its operation. For the shadow ng product,
however, reliably handling the follow ng set of errors represents
the essence of its value to OpenVMS custoners.

o] Renmoval of a VMScl uster node ( NODEERR)

o] Process cancel |l ati on ( PROCERR)

o] Controller failure (CTRLERR)

o] Di sk failure (DI SKERR)

o] Medi a failure (MEDI AERR)
Managi ng Test Conplexity
When the list of key factors for targeti ng shadowi ng's high-risk
operating scenari os was enunerated, the resulting test domain was
unmanageably conplex. If just two test values for each of 25
factors are assuned, the set of all possible conbinations was
2**25 or nore than 33 million test cases.
To reduce this conbinatorial conplexity to a nmanageable |evel, we
structured profiles in two test dinmensions, error event and
system configuration, using orthogonal arrays.[15,16] Colums in

t hese orthogonal arrays describe the test factors, and rows
descri be a bal anced and ort hogonal fraction of the full set of



factor combi nations. Because of their balance and orthogonality
across the test factors, such arrays provide a uniform coverage
of the test domain.

Figure 7 is a conposite table of error-event profiles created
using a D-optinmal array and shadow set configuration profiles
created using a standard array.[17,18] These two arrays forned
the base of our profile test design. Operational sequences were
applied (as described below) to 18 test profiles formed by
relating the error event and shadow set arrays as shown in Figure
7. These profiles were arranged into groups of three; each group
i ncluded two types of disks, a shadowed system di sk, and the
presence of each type of disk error. The test val ues assigned to
the factors SYSDI SK and DI SKTYPE as a result of this grouping are
shown in the two colums positioned between the arrays in Figure
7.

[Figure 7 (Set of Conposite Test Profiles) is not available in
ASClI | format.]

Not e that physically configuring the test environnent prevented
us, in sone instances, fromusing the prescribed assignnent of
factor values. As a consequence, only those factors whose col ums
are shaded in gray in Figure 7 retained their bal ance and
orthogonality during inplenentation of the test design.

At this point, profile test design is conplete. The use of
orthogonal arrays allowed us to reduce the tests to a manageabl e
nunber and at the same tinme have uni form coverage of all test
factors.

Configuring the Test Environnent
In addition to the shadow set profiles, the follow ng practica
constraints guided the configuration of a VMscluster system for

conducting our profile testing.

o] M ni m ze hardware requirenments and nmexim ze ease of test
execution

o] Configure profiles fromthe shadow set array in groups of
three to expedite test execution

o] Refl ect both anticipated custoner usage of shadow ng and
hi stori c usage as characterized in existing surveys of
VAXcl uster sites in the United States

o] Enabl e the formation of either one integrated or two
separate VMscl uster systems based on either the DSSI or
the CI system i nterconnect

o] Requi re no physical reconfiguration during testing

o] Mai ntai n a consi stent batch/print and user authorization



envi ronnment

o] Fol l ow the configuration guidelines set forth in
Digital's software product descriptions for OpenVMs,
VMScl ust er systens, and vol ume shadow ng for Al pha AXP
and VAX systens

Constructing a test configuration that reflected all these
constraints and supported the shadow set profiles in Figure 7 was
quite a challenge. As a result of having clear configuration

gui del i nes, however, we could re-create shadowi ng's high-risk
operating scenarios using substantially | ess hardware than
required for |arge-scale stress testing. Table 2 contrasts the
har dware requirenments of the two test approaches.

Table 2 VMscluster Configuration Size by Test Method

Profile Large-scal e
Testing Stress Testing
Syst ens 5 AXP 10 AXP
4 VAX 12 VAX
I nt erconnects 1 d 2 C
1 Et hernet 9 Et hernet
1 FDDI
Cl Storage 1 HSC 6 HSC
Controllers 1 HSJ 1 HSJ
Test Di sks 31 165
Shadow Set s 9 two- menber 23 two- nenber
9 t hree- nenber 5 t hr ee- nenber

The resulting test configuration for our profile testing was
formally described in a configuration diagram which appears in a
sinmplified formin Figure 8. During our testing, each profile
shown in Figure 7 was uniquely marked on this diagramto show
both the di sks conprising each shadow set and the nodes to | oad
them Taken together, Figures 7 and 8 proved quite useful in
transferring the task of executing a particular test profile from
one test engineer to another. In addition, devel opnment engi neers
found themto be invaluable tools for clarifying the fault | oads
and the configuration of a particular test profile.

[Figure 8 (Total System Configuration for Profile Testing)
is not available in ASCII format.]

To illustrate how we used these two tools, consider the first
three test profiles shown in Figure 7. These profiles,
respectively, define the configuration and |oadi ng of shadow sets



DSAl1, DSA2, and DSA3. Running these three profiles in paralle
woul d be difficult to describe precisely w thout these two tools.
As an exanple, profile 1 in Figure 7 indicates that DSAl nust
conprise two RZ devices that are not used as system di sks. At

| east one of these devices nmust be MSCP served. The two di sks
nmust share a controller and nust be accessed via an AXP node.
Both nmust have their storage control blocks |ocated at their
first logical block. As a result of their physical configuration
both nust have the sane size linmt on I/Otransfers and the sane
controller time-out value. Finally, this profile indicates that
anot her AXP node in the VMScluster system nmust | oad DSAl and t hat
this load nmust involve the sinmulation of fatal disk errors.

Devi ces DKA400 and DKA500 in Figure 8 satisfied these

requi renents; the load was to be applied from node MEBEHE

The conpl ete configuration for these three profiles is denoted by
the gray box in Figure 8, which requires only a small subset of
the total test configuration to execute

o] Two AXP systens ( MEBEHE and HEBEME)

o] One VAX syst em (VEBEYU)

0 One DSSI interconnect

0 One SCSI and 4 DSSI controllers

o] Two RZ26 di sks (DKA400 and DKA500)

0 Two RF72 disks (DI A301 and DI A202)

o] Two RF73 disks (DI A200 and DI A201)
Executing Test Profiles

Testing Tools. Executing the profile tests involved the use of
four Digital internal test tools (XQPXR, 10X, CTM Faulty Towers)
and two OpenVMS utilities (BACKUP and MONI TOR). XQPXR and | OX
both provided read and/or wite |oads to shadow sets with XQPXR
utilizing the file systemfor its I/O CTM provided a nmeans of

| oadi ng multiple subsystens across the VMscl uster system Faulty
Towers was used to inject faults into the VMScluster System
Communi cation Architecture (SCA) protocol tower during |oading to
create the error profiles shown in Figure 7. MONI TOR neasured the
| oads applied during profile testing. BACKUP was used to verify
that the data on shadow set members was consistent follow ng a
test run.

O all the test tools we used, Faulty Towers was both the nost
critical to our success and the nost innovative in sinulating
| arge-scal e VMscl uster environnents. Historically, |arge-scale
stress testing of shadowi ng has depended | argely on the
occurrence of random events or mmnual intervention to exercise
shadowi ng error paths. Because SCA underlies all comunication



within a VMScluster system Faulty Towers coul d instead
automatically force the exercise of these paths by sinulating
errors within the system The set of faults that Faulty Towers
provi ded cane from our exam nation of how VMScl uster systens,
especially large-scale systens, fail. This set included forcing
esoteric states throughout the VMScluster system sinulating
device errors, exhausting essential resources, breaking

VMScl ust er communi cation channels, and creating excessive I/0O or
| ocki ng | oads.

The fault | oads that Faulty Towers provi ded were predictable and
qui te repeat abl e. Wen problens occurred during test execution
the precise fault | oads involved could be readily reproduced to
accel erate the process of diagnosing the underlying defect and
verifying a proposed fix. Faulty Towers al so provi ded a neans of
easily tailoring, controlling, and nonitoring the automatic
insertion of faults during our profile testing. The result was
better coverage of error paths using a rmuch sinpler test

envi ronnent .

Stagi ng Test Inplenentation. To stage the introduction of
profile conplexity, we gradually increased the nunber of error
events applied to successive groupings of test profiles. W
began our testing with a sinple base profile to which further

| oad conplexity could be progressively added. This base profile
i nvolved only three two-nmenber shadow sets with just one of the
targeted error events occurring during each run. System | oad was
limted to reads and wites across the shadow sets. No system

di sks were shadowed in this base profile.

During the initial execution of the base profile, we tested
resource exhaustion. Wth each subsequent round of testing, we
systematically incorporated additional conplexity: nore test
configurations, three-nmenber shadow sets, shadowed system di sks,
conplex error profiles, and systemw de | oadi ng.

Operational Sequence for Profile Test Execution. Another

i mportant aspect of the profile testing was the use of a
prescri bed operational sequence during profile test execution
Thi s sequence is shown in Figure 9.

[Figure 9 (Operational Sequence for Profile Testing)
is not available in ASCII format.]

Profile test runs began with the mounting of a single shadow set
menber. The addition of a second or third menber caused the
initiation of a copy operation fromthe existing nenber to the
added device(s). The renmoval of a VMsScluster node that had a
shadow set mounted woul d cause shadowing to initiate a nmerge
operation on the shadow set. To nmintain consistency across our
test runs, we would nmanually add back into a shadow set any
menber (s) that were expelled due to the node renoval. At this



poi nt, shadowi ng is expected to progress sequentially through
copy and nerge operations to create a fully consistent shadow
set.

The /O required by these copy and nerge operations fornmed the
base | oad on the system User I/O to the shadow sets increnented
the effective |oad on the systemas did the disruption of I/0O due
to error events. During the period when user 1/0O and error events
were sustained at their heaviest levels, 1/O for copy operations
could stall entirely. Wnding down error insertion and user /0O
enabl ed copy and merge operations to conplete. At that time, the
shadow sets coul d be di smounted and the individual nenmbers
conpared for data consistency.

During the test execution sequence, each step represented a new
threshold at which failures were nore likely to occur. As testing
conti nued and the shadowi ng code stabilized, early test execution
sequences tended to generate fewer new defects. To find
addi ti onal defects, we increased the conplexity of the test
execution sequence, fault |oads, and configurations. The result
was a sustained effectiveness in defect detection throughout our
profile testing.

PROJIECT RESULTS

The process descri bed above enabled us to satisfy both the

qual ity and schedul e goals of our project to port shadowi ng to
the OpenVMS AXP system How significantly the process contributed
to this acconplishnment is shown below with data describing our

i mprovenents in process, product quality, and productivity.

| mprovi ng Process

I nspections and profile testing were our two key process
enhancenents. Data that tracked defect detection and product
stabilization during these steps underscores their contribution.

Tracki ng Defect Detection. The solid line in Figure 10 shows
defect detection by week throughout the Iife of the project. Note
that the solid line in the figure tracks very closely and, at
times, overlaps the dashed line used to indicate the inspection
time. Only high severity defects that resulted in a code change
are represented by these defect counts. The tinme period before
January 4 involved neither inspections nor testing; the tine
period after June 14 involved only testing. During March, porting
wor k st opped due to team nenbers being tenmporarily reassigned to
critical devel opnent tasks in support of OpenVMS AXP version 1.5.
Al lowing for that gap in March, the trend in defect detection
fromboth inspections and testing exhibited a steady decline from
m d- January through Cctober. This trend provides a strong

i ndi cation that the project was on schedul e and not deferring the
bul k of defect renobval to the latter, nore costly stages of



devel opnent .

The dashed line in Figure 10 shows the amount of time spent
weekly in inspections. It shows that the highest rates of defect
detection resulted from and were in rough proportion to, tine
spent in inspections. Early defect renoval using inspections
represented a nmarked change fromtraditional practices within
OpenVMS Engi neeri ng.

[Figure 10 (I nspection Tinme and Defect Detection) is not avail able
in ASCII format.]

Tracki ng Product Stabilization. The nmanner in which we designed
and i nplenented profile testing gave rise to a pair of netrics
for tracking both test effectiveness and product stabilization by
tracking test execution results. The first of these netrics was a
rati o between the test execution tinme as nmeasured in days of test
execution per VMscluster node (node-days) and the nunber of
probl em reports that resulted. The second was a ratio between the
nunber of problemreports subnmtted to devel opnent engi neers and
t he nunber of defects that were detected as a result.

Figure 11 shows these two netrics plotted weekly during the
course of our profile testing. The key to interpreting these
trends lies in contrasting the two ratios. For exanple, |ow
node- days/ probl em report acconpani ed by high

probl emreports/defect in July 1993 indicates test execution
errors as we |learned how to | oad and test shadowing in a

VMScl uster system |In |ate Septenber, high node-days/ problem
report with no defects indicates the execution of an ineffective
test profile. Near-zero curves in early July and early Septenber
i ndi cate when vacations were interrupting our testing.

[Figure 11 (Metrics for Evaluating Test Effectiveness and
Product Stabilization) is not available in ASCII format.]

During the two product stabilization periods indicated in Figure
11, the increase in node-days/problemreport acconpanied by a
near one-to-one ratio between problemreports and defects

i ndicates that the product was stabilizing in spite of sustained
test effectiveness. The first period preceded beta test; the
second preceded product rel ease.

Assuring Quality

Cont ai ni ng and renmovi ng defects were at the core of our rel ease
criteria. As Figure 12 shows, actual defect renoval during the
proj ect exceeded projections by 8 percent. By sel ecting our

def ect goal based on industry-standard defect densities and
exceeding this goal, we have assured quality in our product. O
the total defects actually renoved, 232 were in the shadow ng
code. This suggests a defect renoval rate of 12 defects per 1,000
NCSS for the shadowi ng code base, which is consistent with



i ndustry data reported by Schul neyer.[19]

[Figure 12 (Conparison of Projected and Actual Defect
Det ecti on and Renoval by Method) is not available in ASCII format.]

O the 176 defects renoved through inspections, 43 were found in
t he nonported shadowi ng code. This suggests a defect renmpval rate
for the ported code of 53 per 1,000 NCSS, which again falls
within the range reported by Schul meyer. The conbi nati on of
testing and inspections resulted in the renoval of 59 defects
fromthe unnodified shadowi ng code base. This represents a net
reduction of 3.5 defects per 1,000 NCSS within the unnodified
shadowi ng code as a result of the port!

The significance of this level of defect renpval as an indicator
of high quality was corroborated in two ways. First, all release
criteria were satisfied prior to releasing the ported shadow ng
product. Second, the character of defects detected during the
testing phase of the project changed. \Whereas nobst defects
detected in early test runs were introduced during the port,
virtually all defects detected in later test runs were residua
in the underlying code base. Again, renoving this latter type of
defect neant better overall quality for custoners running

nm xed- archi tecture VMScl uster systens.

Anot her aspect of quality was identifying those defects that
shoul d not be fixed but only contained. Because this project had
very limted scope, duration, and resources, we had to carefully
eval uate changes that could destabilize the entire product and
jeopardi ze its overall quality. The conparison of detected to
renmoved defects in Figure 12 shows that several problens fel

into this category. Many of these defects were triggered by
system operations that exceeded the fundanental design
limtations of the product. Sonme occurred in obscure error paths
that could only be exercised with our new test nmethods. Qthers
were due to new conbi nati ons of hardware possible in

m xed- architecture VMScl uster systens. |In each of these

i nstances, we assured that the scope of the defect was |imted,
its frequency low, and its inpact predictable. Wen necessary, we
constrai ned supported hardware configurations or system behavi or
so that the defect could not cause unrecoverable failures.
Finally, we fed back our anal yses of these defects into the
ongoi ng shadow ng support effort so that they could be removed in
future rel eases through appropriate redesign.

I ncreasing Productivity

The foll owi ng data shows how our enhanced process contributed to
the quality. This data shows the relative cost-effectiveness, and
hence i nproved productivity, achieved through inspections and
profile testing.

Engi neeri ng Costs. The proportion of total engineering hours
expended during each step of the project is depicted in Figure



13. This Figure indicates that only 15 percent of the hours
(inspections and nmodul e testing) resulted in the renoval of 85
percent of all defects. Inspections alone accounted for only 5
percent of the engineering hours but 68 percent of the defect
renoval !

[Figure 13 (Distribution of Total Engineering Hours by
Process Step) is not available in ASCII format.]

The actual cost for renoving defects by inspection averaged 1.7
engi neer hours per defect. During nodule testing, when engineers
wor ked individually to debug the functions they had ported, the
cost of defect renmpval junped to 15 engi neer hours per defect.
During integration testing, where the entire shadow ng driver was
tested in a conplex environnent, an average of 85 engi neer hours
was spent per defect exclusive of the tine spent to execute the
tests. Clearly, renoving the bulk of the defects fromthe ported
code prior to beginning testing of the integrated shadow ng
product dramatically reduced both the cost and tine required for
defect renoval .

Defect Yield. Assunming a 95 percent overall defect yield for
shadowi ng prior to release, the relative yield of inspections
during this project was 65 percent. Wen cal cul ated agai nst
defects found only in shadowi ng, the yield for inspections junps
to 75 percent--a very high renoval efficiency when conpared with
i ndustry data.[8] Relative defect yield was consistent with

i ndustry data for nodule testing at 16 percent, but |ow for
profile and stress testing at a conbined value of 6 percent.

G ven the high engineering cost shown above for renoving defects
during integration test of shadowing, this is in fact quite a
favorabl e result.

Test Cost-effectiveness. As Figure 13 indicates, testing

remai ned the nost costly portion of the project. Executing and
debuggi ng probl enms fromroughly 86,000 node- hours of stress,
performance, and profile testing accounted for 69 percent of the
project's total engineering hours. In fact, the ratio of engi neer
hours expended for test versus inplenentation was roughly 1.8

ti mes higher than Grady reports for 48 projects involving systens
software. [20] G ven the conplexity of the VMScluster systens
historically required to test shadowing, this ratio is no

surpri se.

Neverthel ess, our project's results indicate that profile testing
was significantly nmore cost-effective than | arge-scale stress
testing for detecting defects. Profile testing's overall ratio of
test engi neer days per defect was 25 percent better at 6.2 days
than stress testing's 8.3 days. Moreover, profile testing's
overall ratio of machine test tine per defect was nore than an
order of nmagnitude better at 7.4 node-days than stress testing's
95. 2 node-days!



This i nprovenent in cost-effectiveness was achieved with no | oss
in defect renoval capability. Wen conpared with | arge-scale
stress testing, profile testing of shadowi ng proved equally
effective overall at detecting defects. During the beta test
period for shadow ng, each of these test methods accounted for
roughly 20 percent of the defects detected when allow ng for
duplication between nethods. The nunber of problemreports per
defect was al so conparable with ratios of 2.4 for profile testing
and 2.0 for stress testing.

Figure 14 contrasts the cost-effectiveness of each nethod of
defect detection enployed during the validation of shadow ng.
Not e that because this chart uses a | og scale, any noticeable

di fference between bar heights is quite significant. This chart
bears out conventional w sdom on defect renoval: detection prior
to integration through the use of inspections and nodul e testing
is by far the nost cost-effective. It also suggests that profile
testing has a cost-effectiveness on the sanme order of nagnitude
as nodul e testing, while providing the sane defect detection

ef fectiveness as | arge-scale stress testing.

[Figure 14 (Relative Cost-effectiveness of Defect
Det ecti on Methods) is not available in ASCII format.]

CONCLUSI ONS

At the outset of the shadowi ng port, given its unique chall enges,
we believed that the existing devel opment process for OpenVMS
woul d not enable us to neet the project's goals. By taking charge
of our engineering process, however, we not only net those goals
but al so denonstrated that changes to the established process
could result in higher productivity from our engi neering
resources and better quality in the delivered product.

The vol une shadowi ng port from OpenVMS VAX to OpenVMS AXP was
successful in neeting an aggressive schedule and in delivering a
stabl e, high-quality product. There were two key process

i nnovations that led to our success. The first was the use of

i nspections to detect and renbve a | arge percentage of the
porting defects before any investment in testing. By finding a
majority of the defects (68 percent) at the | owest possible cost
(1.5 hours per defect), fewer overall resources were required.

The second key innovation was the use of profile testing to cover
a very large and conpl ex test donmin. Having a test strategy that
used wel | -defined and repeatable tests to target problemareas in
shadowi ng code allowed us to efficiently find defects and verify
fixes. Wth profile testing, we managed to achi eve the defect
detection effectiveness of large-scale integration testing at the
same relative cost as nodul e testing.

The results of our process innovations would not have been
realized if we had waited for our organization's process to



evolve up the CW | evel s. By changi ng the engineering process of
a small team we delivered high-quality software on schedul e and
at a | ower cost.

FUTURE DEVELOPMENTS

As a result of our project's acconplishments, OpenVMS Engi neering
is giving serious consideration to our practices. Many groups are
acknow edgi ng the gains possible when formal inspections are used
to contain defects. Moreover, the organization's problem
reporting systemis being upgraded to include nechanisns for
tracki ng defects that incorporate many of the fields used in our
defect tracki ng database.

OpenVMS Engi neering is also evaluating further use of the profile
testing nethodology in its testing efforts. As Figure 13

i ndi cated, inproving the effectiveness of our integration testing
may of fer the nost significant opportunity for reducing

engi neering costs and accel erating the schedul es of our software
rel eases. Since experinmental design principles were used in the
creation of the tests, statistical evaluation of the results is a
potentially exciting opportunity. An analysis of variance that
explores the relationship between test factors and defects could
i ndicate which test factors contribute significantly to defect
detection and which do not. This could give us a clear

statistical indication of where to direct our testing efforts and
devel opnent resources.
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