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ABSTRACT

The CRAY T3D system is the first massively parallel processor 
from Cray Research. The implementation entailed the design of 
system software, hardware, languages, and tools. A study of 
representative applications influenced these designs. The paper 
focuses on the programming model, the physically distributed, 
logically shared memory interconnect, and the integration of 
Digital's DECchip 21064 Alpha AXP microprocessor in this 
interconnect. Additional topics include latency-hiding and 
synchronization hardware, libraries, operating system, and tools.

INTRODUCTION

Today's fastest scientific and engineering computers, namely 
supercomputers, fall into two basic categories: parallel vector 
processors (PVPs) and massively parallel processors (MPPs). 
Systems in both categories deliver tens to hundreds of billions 
of floating-point operations per second (GFLOPS) but have memory 
interconnects that differ significantly. After presenting a brief 
introduction on PVPs to provide a context for MPPs, this paper 
focuses on the design of MPPs from Cray Research.

PVPs have dominated supercomputing design since the commercial 
success of the CRAY-1 supercomputer in the 1970s. Modern PVPs, 
such as the CRAY C90 systems from Cray Research, continue to 
provide the highest sustained performance on a wide range of 
codes. As shown in Figure 1, PVPs use dozens of powerful custom 
vector processors on a high-bandwidth, low-latency, shared-memory 



interconnect. The vector processors are on one side of the 
interconnect with hundreds to thousands of memories on the other 
side. The interconnect has uniform memory access, i.e., the 
latency and bandwidth are uniform from all processors to any word 
of memory.

[Figure 1 (Memory Interconnection Architectures) in not available 
in ASCII format.]

MPPs implement a memory architecture that is radically different 
from that of PVPs. MPPs can deliver peak performance an order of 
magnitude faster than PVP systems but often sustain performance 
lower than PVPs. A major challenge in MPP design is to enable a 
wide range of applications to sustain performance levels higher 
than on PVPs.

MPPs typically use hundreds to thousands of fast commercial 
microprocessors with the processors and memories paired into 
distributed processing elements (PEs). The MPP memory 
interconnects have tended to be slower than the high-end PVP 
memory interconnects. The MPP interconnects have nonuniform 
memory access, i.e., the access speed (latency and bandwidth) 
from a processor to its local memory tends to be faster than the 
access speed to remote memories. 

The processing speed and memory bandwidth of each microprocessor 
are substantially lower than those of a vector processor. Even 
so, the sum of the speeds of hundreds or thousands of 
microprocessors can often exceed the aggregate speed of dozens of 
vector processors by an order of magnitude. Therefore, a goal for 
MPP design is to raise the efficiency of hundreds of 
microprocessors working in parallel to a point where they perform 
more useful work than can be performed on the traditional PVPs. 
Improving the microprocessor interconnection network will broaden 
the spectrum of MPP applications that have faster 
times-to-solution than on PVPs.

A key architectural feature of the CRAY T3D system is the use of 
physically distributed, logically shared memory 
(distributed-shared memory). The memory is physically distributed 
in that each PE contains a processor and a local dynamic 
random-access memory (DRAM); accesses to local memory are faster 
than accesses to remote memories. The memory is shared in that 
any processor can read or write any word in any of the remote PEs 
without the assistance or knowledge of the remote processors or 
the operating system. Cray Research provides a shell of circuitry 
around the processor that allows the local processor to issue 
machine instructions to read remote memory locations. 
Distributed-shared memory is a significant advance in balancing 
the ratio between remote and local memory access speeds. This 
balance, in conjunction with new programming methods that exploit 
this new capability, will increase the number of applications 
that can run efficiently on MPPs and simplify the programming 
tasks. 



The CRAY T3D design process followed a top-down flow. Initially, 
a small team of Cray Research applications specialists, software 
engineers, and hardware designers worked together to conduct a 
performance analysis of target applications. The team extracted 
key algorithmic performance traits and analyzed the performance 
sensitivity of MPP designs to these traits. This activity was 
accomplished with the invaluable assistance and advice of a 
select set of experienced MPP users, whose insights into the 
needs of high-performance computing profoundly affected the 
design. The analysis identified key fundamental operations and 
hardware/software features required to execute parallel programs 
with high performance. A series of discussions on engineering 
trade-offs, software reusability issues, interconnection design 
studies and simulations, programming model designs, and 
performance considerations led to the final design.
  
The resulting system architecture is a distributed memory, shared 
address space, multiple instruction, multiple data (MIMD) 
multiprocessor. Special latency-hiding and synchronization 
hardware facilitates communication and remote memory access over 
a fast, three-dimensional (3-D) torus interconnection network. 
The majority of the remote memory accesses complete in less than 
1 microsecond, which is one to two orders of magnitude faster 
than on most other MPPs.[1,2,3] 

A fundamental challenge for the CRAY T3D system (and for other 
MPP systems) is usability. By definition, an MPP with high 
usability would sustain higher performance than traditional PVP 
systems for a wide range of codes and would allow the programmer 
to achieve this high performance with a reasonable effort. 
Several elements in the CRAY T3D system combine to achieve this 
goal.  

    o   The distributed-shared memory interconnect allows 
        efficient, random, single-word access from any processor 
        to any word of memory.

    o   Cray's distributed memory, Fortran programming model with 
        implicit remote addressing is called CRAFT. It provides a 
        standard, high-level interface to this hardware and 
        reduces the effort needed to arrive at near-optimum 
        performance for many problem domains.[4]  

    o   The heterogeneous architecture allows problems to be 
        distributed between an MPP and its PVP host, with the 
        highly parallel portions on the MPP and the serial or 
        moderately parallel portions on the PVP host. This 
        heterogeneous capability greatly increases the range of 
        algorithms that will work efficiently. It also enables 
        stepwise MPP program development, which lets the 
        programmer move code from the PVP to the MPP in stages.

    o   The CRAY T3D high-speed I/O capabilities provide a close 



        coupling between the MPP and the PVP host. These 
        capabilities sustain the thousands of megabytes per 
        second of disk, tape, and network I/O that tend to 
        accompany problems that run at GFLOPS.

The remainder of this paper is divided into four sections.  The 
first section discusses the results of the applications analysis 
and its critical impact on the CRAY T3D design, including a 
summary of critical MPP functionality. The second section 
characterizes the system software. The software serves multiple 
purposes; it presents the MPP functionality to the programmer, 
maps the applications to the hardware, and serves as the 
interface to the scientist. In the third section, the hardware 
design is laid out in some detail, including microprocessor 
selection and the design issues for the Cray shell circuitry that 
surrounds the core microprocessor and implements the memory 
system, the interconnection network, and the synchronization 
capabilities. The fourth section presents benchmark results. A 
brief summary and references conclude the paper.  

THE IMPACT OF APPLICATIONS ON DESIGN 

As computing power increases, computer simulations increasingly 
use complex and irregular geometries. These simulations can 
involve multiple materials with differing properties. A common 
trend is to improve verisimilitude, i.e., the semblance of 
reality, through increasingly accurate mathematical descriptions 
of natural laws.  

Consequently, the resolution of models is improving. The use of 
smaller grid sizes and shorter time scales resolves detail. 
Models that use irregular and unstructured grids to accommodate 
geometries may be dynamically adapted by the computer programs as 
the simulation evolves. The algorithms increasingly use implicit 
time stepping.

A naive single instruction, multiple data (SIMD) processor design 
cannot efficiently deal with the simulation trends and resulting 
model characteristics. Performing the same operation at each 
point of space in lockstep can be extremely wasteful. Dynamic 
methods are necessary to concentrate the computation where 
variables are changing rapidly and to minimize the computational 
complexity. The most general form of parallelism, MIMD, is 
needed. In a MIMD processor, multiple independent streams of 
instructions act on multiple independent data.  

With these characteristics and trends in mind, the design team 
chose the kernels of a collection of applications to represent 
target applications for the CRAY T3D system. The algorithms and 
computational methods incorporated in these kernels were intended 
to span a broad set of applications, including applications that 
had not demonstrated good performance on existing MPPs. These 
kernels included seismic convolution, a partial multigrid method, 



matrix multiplication, transposition of multidimensional arrays, 
the free Lagrange method, an explicit two-dimensional Laplace 
solver, a conjugate gradient algorithm, and an integer sort. The 
design team exploited the parallelism intrinsic to these kernels 
by coding them in a variety of ways to reflect different demands 
on the underlying hardware and software. For example, the team 
generated different memory reference patterns ranging from local 
to nearest neighbor to global, with regular and irregular 
patterns, including hot spots. (Hot spots can occur when many 
processors attempt to reference a particular DRAM page 
simultaneously.)

To explore design trade-offs and to evaluate practical 
alternatives, the team ran different parallel implementations of 
the chosen kernel on a parameterized system-level simulator. The 
parameters characterized machine size, the nature of the 
processors, the memory system, messages and communication 
channels, and the communications network itself. The simulator 
measured rates and durations of events during execution of the 
kernel implementations. These measurements influenced the choices 
of the hardware and the programming model.  

The results showed a clear relationship between the scalability 
of the applications and the speed of accessing the remote 
memories. For these algorithms to scale to run on hundreds or 
thousands of processors, a high-bandwidth, low-latency 
interprocessor interconnect was imperative. This finding led the 
designers to choose a distributed-shared memory, 3-D torus 
interconnect with very fast remote memory access speeds, as 
mentioned in the previous section.

The study also indicated that a special programming model would 
be necessary to avoid remote memory accesses when possible and to  
hide the memory latency for the remaining remote accesses. This 
finding led to the design of the CRAFT programming model, which 
uses hardware in the interconnect to asynchronously fetch and 
store data from and to remote PEs. This model helps programmers 
to distribute the data among the shared memories and to align the 
work with this distributed data. Thus, they can minimize remote 
references and exploit the locality of reference intrinsic to 
many applications.

The simulations also showed that the granularity of parallel work 
has a significant impact on both performance and the ease of 
programming. Performing work in parallel necessarily incurs a 
work-distribution overhead that must be amortized by the amount 
of work that gets done by each processor. Fine-grained 
parallelism eases the programming burden by allowing the 
programmer to avoid gathering the parallel work into large 
segments. As the amount of work per iteration decreases, however, 
the relative overhead of work distribution increases, which 
lowers the efficiency of doing the work in parallel. Balancing 
these constraints contributed to the decisions to include a 
variety of fast synchronization mechanisms, such as a separate 



synchronization network to minimize the overhead of fine-grained 
parallelism.

SOFTWARE 

Cray Research met several times a year with a group of 
experienced MPP users, who indicated that software on existing 
MPPs was unstable and difficult to use. The users believed that 
Cray Research needed to provide clear mechanisms for getting to 
the raw power of the underlying hardware while not diverging too 
far from existing programming practices. The users wished to port 
codes from workstations, PVPs, and other MPPs. They wanted to 
minimize the porting effort while maximizing the resulting 
performance. The group indicated a strong need for stability, 
similar to the stability of existing CRAY Y-MP systems. They 
emphasized the need to preserve their software investments across 
generations of hardware improvements.

Reusing Stable Software

To meet these goals, Cray Research decided to reuse its existing 
supercomputing software where possible, to acquire existing tools 
from other MPPs where appropriate, and to write new software when 
needed. The developers designed the operating system to reuse 
Cray's existing UNICOS operating system, which is a superset of 
the standard UNIX operating system. The bulk of the operating 
system runs on stable PVP hosts with only microkernels running on 
the MPP processors. This design enabled Cray Research to quickly 
bring the CRAY T3D system to market. The resulting system had a 
minimal number of software changes and retained the maximum 
stability and the rich functionality of the existing UNICOS 
supercomputing operating system. The extensive disk, tape, and 
network I/O capabilities of the PVP host provide the hundreds of 
megabytes per second of I/O throughput required by the large 
MPPs. This heterogeneous operating system is called UNICOS MAX.

The support tools (editors, compilers, loaders, debuggers, 
performance analyzers) reside on the host and create code for 
execution on the MPP itself. The developers reused the existing 
Cray Fortran 77 (CF77) and Cray Standard C compilers, with 
modified front ends to support the MPP programming models and 
with new code generators to support the DECchip 21064 Alpha AXP 
microprocessors. They also reused and extended the heart of the 
compiling systems -- the dependency-graph-analysis and 
optimization module.

The CRAFT Programming Model 

The CRAFT programming model extends the Fortran 77 and Fortran 90 
languages to support existing popular MPP programming methods 
(message passing and data parallelism) and to add a new method 



called work sharing. The programmer can combine explicit and 
implicit interprocessor communication methods in one program, 
using techniques appropriate to each algorithm. This support for 
existing MPP and PVP programming paradigms eases the task of 
porting existing MPP and PVP codes.

The CRAFT language designers chose directives such that codes 
written using the CRAFT model run correctly on machines that do 
not support the directives. CRAFT-derived codes produce identical 
results on sequential machines, which ignore the CRAFT 
directives. Exceptions are hardware limitations (e.g., differing 
floating-point formats), nondeterministic behavior in the user's 
program (e.g., timing-dependent logic), and the use of 
MPP-specific intrinsic functions (i.e., intrinsics not available 
on the sequential machines).

A message-passing library and a shared memory access library 
(SMAL) provide interfaces for explicit interprocessor 
communication. The message-passing library is Parallel Virtual 
Machine (PVM), a public domain set of portable message-passing 
primitives developed at the Oak Ridge National Laboratory and the 
University of Tennessee.[5] The widely used PVM is currently 
available on all Cray systems. SMAL provides a function call 
interface to the distributed-shared memory hardware. This 
provides a simple interface to the programmer for shared memory 
access to any word of memory in the global address space. These 
two methods provide a high degree of control over the 
communication but require a significant programming effort; a 
programmer must code each communication explicitly.

The CRAFT model supports implicit data-parallel programming with 
Fortran 90 array constructs and intrinsics. Programmers often 
prefer this style when developing code on SIMD MPPs.

The CRAFT model provides an additional implicit programming 
method called work sharing. This method simplifies the task of 
distributing the data and work across the PEs. Programmers need 
not explicitly state which processors will have which specific 
parts of a distributed data array. Similarly, they need not 
specify which PEs will perform which parts of the work. Instead, 
they use high-level mechanisms to distribute the data and to 
assist the compiler in aligning the work with the data. This 
technique allows the programmers to maximize the locality of 
reference with minimum effort.

In work sharing, programmers use the SHARED directives to block 
the data across the distributed memories. They distribute work by 
placing DO SHARED directives in front of DO loops or by using 
Fortran 90 array statements. The compiler aligns the work with 
the data and doles out each iteration of a loop to the PE where 
most of the data associated with the work resides. Not all data 
needs to be local to the processor.

The hardware and the programming model can accommodate 



communication-intensive programs. The compiler attempts to 
prefetch data that resides in remote PEs, i.e., it tends to copy 
remote data to local temporaries before the data is needed. By 
prefetching multiple individual words over the fast interconnect, 
the compiler can mask the latency of remote memory references. 
Thus, locality of reference, although still important, is less 
imperative than on traditional MPP systems. The ability to fetch 
individual words provides a very fine-grained communication 
capability that supports random or strided access to remote 
memories.  

The programming model is built on concepts that are also 
available in Fortran D, Vienna Fortran, and the proposed 
High-performance Fortran (HPF) language definition.[6,7,8] (Cray 
Research participates in the HPF Forums.) These models are based 
on Mehrotra's original Kali language definition and on some 
concepts introduced for the ILLIAC IV parallel computer by 
Millstein.[9,10]  

Libraries 

Libraries for MPP systems can be considered to consist of two 
parts: (1) the system support libraries for I/O, memory 
allocation, stack management, mathematical functions (e.g., SIN 
and COS), etc., and (2) the scientific libraries for Basic Linear 
Algebra Subroutines (BLAS), real and complex fast Fourier 
transforms, dense matrix routines, structured sparse matrix 
routines, and convolution routines. Cray Research used its 
current expertise in these areas, plus some third-party 
libraries, to develop high-performance MPP libraries with all 
these capabilities.  

Tools 

A wide variety of support tools is available to aid application 
developers working on the CRAY T3D system. Included in the Cray 
tool set are loaders, simulators, an advanced emulation 
environment, a full-featured MPP debugger, and tools that support 
high-level performance tuning.  

Performance Analysis.  A key software tool is the MPP Apprentice, 
a performance analysis tool based in part on ideas developed by 
Cray Research for its ATExpert tool.[11] The MPP Apprentice tool 
has expert system capabilities to guide users in evaluating their 
data and work distributions and in suggesting ways to enhance the 
overall algorithm, application, and program performance.   

The MPP Apprentice processes compiler and run-time data and 
provides graphical displays that relate performance 
characteristics to a particular subprogram, code block, and line 
in the user's original source code. The user can select a code 



block and obtain many different kinds of detailed information. 
Specific information on the amount of each type of overhead, such 
as synchronization constructs and communication time, let the 
user know precisely how and where time is being spent. The user 
can see exactly how many floating-point instructions, global 
memory references, or other types of instructions occur in a 
selected code block.  

Debugging.  Cray Research supplies the Cray TotalView tool, a 
window-oriented multiprocessor symbolic debugger based on the 
TotalView product from Bolt Beranek and Newman Inc. The Cray 
TotalView tool is capable of debugging multiple-process, 
multiple-processor programs, as well as single-process programs, 
and provides a large repertoire of features for debugging 
programs written in Fortran, C, or assembly language.  

An important feature of the debugger is its window-oriented 
presentation of information. Besides displaying information, the 
interface allows the user to edit information and take other 
actions, such as modifying the values of the variables.  

The debugger offers the following full range of functions for 
controlling processes:

    o   Set and clear breakpoints (at the source or machine 
        level) 

    o   Set and clear conditional breakpoints and evaluation 
        points 

    o   Start, stop, resume, delete, and restart processes
 
    o   Attach to existing processes 

    o   Examine core files 

    o   Single-step source lines through a program, including 
        stepping across function calls  

Emulator.  Cray Research has implemented an emulator that allows 
the user to execute MPP programs before gaining access to a CRAY 
T3D system by emulating CRAY T3D codes on any CRAY Y-MP system.  
The emulator supports Fortran programs that use the CRAFT model, 
including message-passing and data-parallel constructs, and C 
programs that use message passing. Because it provides feedback 
on data locality, work distribution, program correctness, and 
performance comparisons, the emulator is useful for porting and 
developing new codes for the CRAY T3D system.  

HARDWARE 



A macro- and microarchitecture design was chosen to resolve the 
conflict of maximizing hardware performance improvements between 
generations of MPPs while preserving software investments. This 
architecture allows Cray Research to choose the fastest 
microprocessor for each generation of Cray MPPs. The 
macroarchitecture implements the memory system and the 
interconnection network with a set of Cray proprietary chips 
(shell circuitry) that supports switching, synchronization, 
latency-hiding, and communication capabilities. The 
macroarchitecture will undergo only modest changes over a 
three-generation life cycle of the design. Source code 
compatibility will be maintained. The microarchitecture will 
allow the instruction set to change while preserving the 
macroarchitecture.  

Macroarchitecture 

The CRAY T3D macroarchitecture has characteristics that are both 
visible and available to the programmer. These characteristics 
include

    o   Distributed memory

    o   Global address space

    o   Fast barrier synchronization, e.g., forcing all 
        processors to wait at the end of a loop until all other 
        processors have reached the end of the loop

    o   Support for dynamic loop distribution, e.g., distributing 
        the work in a loop across the processors in a manner that 
        minimizes the number of remote memory references

    o   Hardware messaging support

    o   Support for fast memory locks

Memory Organization 

The CRAY T3D system has a distributed-shared memory built from 
DRAM parts. Any PE can directly address any other PE's memory, 
within the constraints imposed by security and partitioning. The 
physical address of a data element in the MPP has two parts: a PE 
number and an offset within the PE, as shown in Figure 2.  

Figure 2  Memory Layout

       +------------+ +------------+ +------------+       +------------+
       | OFFSET 0   | | OFFSET 0   | | OFFSET 0   |       | OFFSET 0   |
       +------------+ +------------+ +------------+       +------------+      



       | OFFSET 1   | | OFFSET 1   | | OFFSET 1   |       | OFFSET 1   |
       +------------+ +------------+ +------------+       +------------+      
       | OFFSET 2   | | OFFSET 2   | | OFFSET 2   |       | OFFSET 2   |      
       +------------+ +------------+ +------------+       +------------+      
       |      .     | |      .     | |      .     |       |      .     |      
       |      .     | |      .     | |      .     | . . . |      .     |      
       |      .     | |      .     | |      .     |       |     .     |  
       +------------+ +------------+ +------------+       +------------+      
       | OFFSET M-1 | |OFFSET M-1  | | OFFSET M-1 |       | OFFSET M-1 |
       +------------+ +------------+ +------------+       +------------+
            PE 0          PE 1            PE 2                PE N-1

       KEY:
       PE  PROCESSING ELEMENT
       M   NUMBER OF WORDS PER PROCESSING ELEMENT
       N   NUMBER OF PROCESSING ELEMENTS

CRAY T3D memory is distributed among the PEs. Each processor has 
a favored low-latency, high-bandwidth path to its local memory 
and a longer-latency, lower-bandwidth path to memory associated 
with other processors (referred to as remote or global memory).  

Data Cache.  The data cache resident on Digital's DECchip 21064 
Alpha AXP microprocessor is a write-through, direct-mapped, 
read-allocate cache. CRAY T3D hardware does not automatically 
maintain the coherence of the data cache relative to remote 
memory. The CRAFT programming model manages this coherence and 
guarantees the integrity of the data.

Local and Remote Memory.  Each PE contains 16 or 64 megabytes of 
local DRAM with a latency of 13 to 38 clock cycles (87 to 253 
nanoseconds) and a bandwidth of up to 320 megabytes per second. 
Remote memory is directly addressable by the processor, with a 
latency of 1 to 2 microseconds and a bandwidth of over 100 
megabytes per second (as measured in software). All memory is 
directly accessible; no action is required by remote processors 
to formulate responses to remote requests. The total size of 
memory in the CRAY T3D system is the number of PEs times the size 
of each PE's local memory. In a typical 1,024-processor system, 
the total memory size would be 64 gigabytes.

3-D Torus Interconnection Network  

The CRAY T3D system uses a 3-D torus for the interconnection 
network. A 3-D torus is a cube with the opposing faces connected. 
Connecting the faces provides dual paths (one clockwise and one 
counterclockwise) in each of the three dimensions. These 
redundant paths increase the resiliency of the system, increase 
the bandwidth, and shorten the average distance through the 



torus. The three dimensions keep the distances short; the length 
of any one dimension grows as the cube root of the number of 
nodes. (See Figure 3.)

[Figure 3 (CRAY T3D System) is not available in ASCII format.]

When evaluated within the constraints of real-world packaging 
limits and wiring capabilities, the 3-D torus provided the 
highest global bandwidth and lowest global latency of the many 
interconnection networks studied.[1,2,3] Using three dimensions 
was optimum for systems with hundreds or thousands of processors.  
Reducing the system to two dimensions would reduce hardware costs 
but would substantially decrease the global bandwidth, increase 
the network congestion, and increase the average latency. Adding 
a fourth dimension would add bandwidth and reduce the latency, 
but not enough to justify the increased cost and packaging 
complexity.

Network Design  

The CRAY T3D network router is implemented using emitter-coupled 
logic (ECL) gate arrays with approximately 10,000 gates per chip.  
The router is dimension sliced, which results in a network node 
composed of three switch chips of identical design -- one each 
for X-, Y-, and Z-dimension routing. The router implements a 
dimension-order, wormhole routing algorithm with four virtual 
channels that avoid potential deadlocks between the torus cycle 
and the request and response cycles.

Every network node has two PEs. The PEs are independent, having 
separate memories and data paths; they share only the bandwidth 
of the network and the block transfer engine (described in detail 
later in the paper). A 1,024-PE system would therefore have a 
512-node network configured as a 3-D torus with XYZ dimensions of 
8 x 8 x 8.

The network moves data in packets with payload sizes of either 
one or four 64-bit words. Efficient transport of single-word 
payloads is essential for sparse or strided access to remote 
data, whereas the 4-word payload minimizes overhead for dense 
data access.

For increased fault tolerance, the CRAY T3D system also provides 
spare compute nodes that are used if nodes fail. There are two 
redundant PEs for every 128 PEs. A redundant node can be 
electronically switched to replace a failed compute node by 
rewriting the routing tag lookup table. 

Latency of the switch is very low. A packet entering a switch 
chip requires only 1 clock cycle (6.67 nanoseconds at 150 
megahertz [MHz]) to select its output path and to exit. The time 
spent on the physical wires is not negligible and must also be 
included in latency calculations. In a CRAY T3D system, all 



network interconnection wires are either 1 or 1.5 clock cycles 
long. Each hop through the network requires 1 clock cycle for the 
switch plus 1 to 1.5 clock cycles for the physical wire. Turning 
a corner is similar to routing within a dimension. The time 
required is 3 clock cycles: 1 clock cycle inside the first chip, 
1 clock cycle for the connection between chips, and 1 clock cycle 
for the second chip, after which the packet is on the wires in 
the next dimension.  

The result is an interconnection network with low latency. As 
stated previously in the Memory Organization subsection, the 
latency for a 1,024-PE system, including the hardware and 
software overhead, is between 1 and 2 microseconds.

Each channel into a switch chip is 16 bits wide and runs at 150 
MHz, for a raw bandwidth of 300 megabytes per second. Seven 
channels enter and seven channels exit a network node: one 
channel to and one channel from the compute resource, i.e., the 
pair of local PEs, and six two-way connections to the nearest 
network neighbors in the north, south, east, west, up, and down 
directions. All fourteen channels are independent. For example, 
one packet may be traversing a node from east to west at the same 
time another packet is traversing the same node from west to east 
or north to south, etc.  

The bandwidth can be measured in many ways. For example, the 
bandwidth through a node is 4.2 gigabytes per second (300 
megabytes per second times 14). A common way to measure system 
bandwidth is to bisect the system and measure the bandwidth 
between the two resulting partitions. This bisection bandwidth 
for a 1,024-PE CRAY T3D torus network is 76 gigabytes per second.

Microarchitecture -- The Core Microprocessor  

The CRAY T3D system employs Digital's DECchip 21064 Alpha AXP 
microprocessor as the core of the processing element. Among the 
criteria for choosing this reduced instruction set computer 
(RISC) microprocessor were computational performance, memory 
latency and bandwidth, power, schedule, vendor track record, 
cache size, and programmability. Table 1, the Alpha Architecture 
Reference Manual, and the DECchip 21064-AA Microprocessor 
Hardware Reference Manual provide details on the Alpha AXP 
microprocessor.[12,13]
   

Table 1  CRAY T3D Core Microprocessor Specifications

Characteristic               Specification

Microprocessor               Digital's DECchip 21064 Alpha AXP 
                               microprocessor
Clock cycle                  6.67 nanoseconds
Bidirectional data bus       128 bits data, 28 check bits



Data error protection        SECDED
Address bus                  34 bits
Issue rate                   2 instructions/clock cycle
Internal data cache          8K bytes (256 32-byte lines)
Internal instruction cache   8K bytes (256 32-byte lines)
Latency: data cache hit      3 clock cycles
Bandwidth: data cache hit    64 bits/clock cycle
Floating-point unit          IEEE floating-point and     
                               floating-point--to--integer
Floating-point registers     32 (64 bits each)
Integer execution unit       Integer arithmetic, shift, logical,     
                               compare
Integer registers            32 (64 bits each)
Integrated circuit           CMOS, 14.1 mm x 16.8 mm
Pin count                    431 (229 signal)
Typical power dissipation    -23 watts

For use in a shared address space MPP, all commercially available 
microprocessors contemporaneous with the DECchip 21064 device 
have three major weaknesses in common:[14]

    1.  Limited address space

    2.  Little or no latency-hiding capability 

    3.  Few or no synchronization primitives 

These limitations arise naturally from the desktop workstation 
and personal computer environments for which microprocessors have 
been optimized. A desktop system has a memory that is easily 
addressed by 32 or fewer bits. Such a system possesses a large 
board-level cache to reduce the number of memory references that 
result in the long latencies associated with DRAM. The system 
usually is a uniprocessor, which requires little support for 
multiple processor synchronization. Cray Research designed a 
shell of circuitry around the core DECchip 21064 Alpha AXP 
microprocessor in the CRAY T3D system to extend the 
microprocessor's capabilities in the three areas.    

Address Extension  

The Alpha AXP microprocessor has a 43-bit virtual address space 
that is translated in the on-chip data translation look-aside 
buffer (DTB) to a 34-bit address space that is used to address 
physical bytes of DRAM. Thirty-four bits can address up to 16 
gigabytes (2**34 bytes). Since the CRAY T3D system has up to 128 
gigabytes (2**37 bytes) of distributed-shared memory, at least 37 
bits of physical address are required. In addition, several more 
address bits are needed to control caching and to facilitate 
control of the memory-mapped mechanisms that implement the 
external MPP shell. The CRAY T3D system uses a 32-entry register 
set called the DTB Annex to extend the number of physical address 



bits beyond the 34 provided by the microprocessor.  

Shell circuitry always checks the virtual PE number. If the 
number matches that of the local PE, the shell performs a local 
memory reference instead of a remote reference.

Latency-hiding Mechanisms  

As with most other microprocessors, the external interface of the 
DECchip 21064 is not pipelined; only one memory reference may be 
pending at any one time. Although merely an annoyance for local 
accesses, this behavior becomes a severe performance restriction 
for remote accesses, with their longer latencies, unless external 
mechanisms are added to extend the processor's memory pipeline.

The CRAY T3D system provides three mechanisms for hiding the 
startup time (latency) of remote references: (1) the prefetch 
queue, (2) the remote processor store, and (3) the block transfer 
engine. As shown in Table 2, each mechanism has its own 
strengths. The compilers, communication libraries, and operating 
system choose among these mechanisms according to the specific 
remote reference requirements. Typically, the prefetch queue and 
the remote processor store are the most effective mechanisms for 
fine-grained communication, whereas the block transfer engine is 
strongest for moving large blocks of data.

 
Table 2  Latency-hiding Attributes 

                                  Remote         Block
                   Prefetch       Processor      Transfer
                   Queue          Store          Engine

Source             Memory         Register       Memory

Destination        Local queue    Memory         Memory

Data Size          1 word         1-4 words      Up to 256K words

Startup            18-47          6-53           >480
(6.67-nanosecond 
clock cycles)

Latency            80             40             40-80
(nanoseconds)

The Prefetch Queue.  The DECchip 21064 instruction set includes 
an operation code FETCH that permits a compiler to provide a 
"hint" to the hardware of upcoming memory activity. Originally, 



the FETCH instruction was intended to trigger a prefetch to the 
external secondary cache. The CRAY T3D shell hardware uses FETCH 
to initiate a single-word remote memory read that will fill a 
slot reserved by the hardware in an external prefetch queue.  

The prefetch queue is first in, first out (FIFO) memory that acts 
as an external memory pipeline. As the processor issues each 
FETCH instruction, the shell hardware reserves a location in the 
queue for the return data and sends a memory read request packet 
to the remote node. When the read data returns to the requesting 
processor, the shell hardware writes the data into the reserved 
slot in the queue.  

The processor retrieves data from the FIFO queue by executing a 
load instruction from a memory-mapped register that represents 
the head of the queue. If the data has not yet returned from the 
remote node, the processor will stall while waiting for the queue 
slot to be filled.  

The data prefetch queue is able to store up to 16 words, that is, 
the processor can issue up to 16 FETCH instructions before 
executing any load instructions to remove (pop) the data from the 
head of the queue. Repeated load instructions from the 
memory-mapped location that addresses the head of the queue will 
return successive elements in the order in which they were 
fetched.  

The Remote Processor Store.  The DECchip 21064 stores to remote 
memory do not need to wait for a response, so a large number of 
store operations can be outstanding at any time. This is an 
effective communication mechanism when the producer of the data 
knows which PEs will immediately need to use the data. 

The Alpha AXP microprocessor has four 4-word write buffers on 
chip that try to accumulate a cache line (4 words) of data before 
performing the actual external store. This feature increases the 
network packet payload size and the effective bandwidth.  

The CRAY T3D system increments a counter in the PE shell 
circuitry each time the DECchip 21064 microprocessor issues a 
remote store and decrements the counter each time a write 
operation completes. For synchronization purposes, the processor 
can read this counter to determine when all of its writes have 
completed.

The Block Transfer Engine.  The block transfer engine (BLT) is an 
asynchronous direct memory access controller used to redistribute 
data between local and remote memory. To facilitate 
reorganization of sparse or randomly organized data, the BLT 
includes scatter-gather capabilities in addition to constant 
strides. The BLT operates independently of the processors at a 
node, in essence appearing as another processor in contention for 



memory, data path, and switch resources. Cray Research has a 
patent pending for a centrifuge unit in the BLT that accelerates 
the address calculations in the CRAFT programming model.   

The processor initiates BLT activity by storing individual 
request information (for example, starting address, length, and 
stride) in the memory-mapped control registers. The overhead 
associated with this setup work is noticeable (tens of 
microseconds), which makes the BLT most effective for large data 
block moves.  

Synchronization

The CRAY T3D system provides hardware primitives that facilitate 
synchronization at various levels of granularity and support both 
control parallelism and data parallelism. Table 3 presents the 
characteristics of these synchronization primitives. 

Table 3  Synchronization Primitives

Primitive               Granularity    Parallelism

Barrier                 Coarse         Control                   
Fetch-and-increment     Medium         Both
Lightweight messaging   Medium         Both
Atomic swap             Fine           Data

Barrier.  The CRAY T3D has specialized barrier hardware in the 
form of 16 parallel logical AND trees that permit multiple 
barriers to be pipelined and the resource to be partitioned. When 
all PEs in the partition have reached the barrier and have set 
the same bit to a one, the AND function is satisfied and the 
barrier bit in each PE's barrier register is cleared by hardware, 
thus signaling the processors to continue.

The barrier has a second mode, called eureka mode, that supports 
search operations. A eureka is simply a logical OR instead of a 
logical AND and can be satisfied by any one processor.  

The barrier mechanism in the CRAY T3D system is quite fast. Even 
for the largest configuration (i.e., 2,048 PEs), a barrier 
propagates in less than 50 clock cycles (about 330 nanoseconds), 
which is roughly the latency of a local DRAM read.

Fetch and Increment.  The CRAY T3D system has specialized 
fetch-and-increment hardware as part of a shared register set 
that automatically increments the contents each time the register 



is read. Fetch-and-increment hardware is useful for distributing 
control with fine granularity. For example, it can be used as a 
global array index, shared by multiple processors, where each 
processor increments the index to determine which element in an 
array to process next. Each element can be guaranteed to be 
processed exactly once, with minimal control overhead.

Messaging.  A messaging facility in the CRAY T3D system enables 
the passing of packets of data from one processor to another 
without having an explicit destination address in the target PE's 
memory. A message is a special cache-line-size write that has as 
its destination a predefined queue area in the memory of the 
receiving PE. The shell circuitry manages the queue pointers, 
providing flow control mechanisms to guarantee the correct 
delivery of the messages. The shell circuitry interrupts the 
target processor after a message is stored. 

Atomic Swap.  Atomic swap registers are provided for the exchange 
of data with a memory location that may be remote. The swap is an 
atomic operation, that is, reading the data from the memory 
location and overwriting the data with the swap data from the 
processor is an indivisible operation. As with ordinary memory 
reads, swap latency can be hidden using the prefetch queue.

I/O

System I/O is performed through multiple Cray high-speed channels 
that connect the CRAY T3D system to a host CRAY Y-MP system or to 
standard Cray I/O subsystems. These channels provide hundreds of 
megabytes per second of throughput to the wide array of 
peripheral devices and networks already supported on Cray 
Research mainframes. Cray has demonstrated individual high-speed 
channels that can transfer over 100 megabytes per second in each 
direction, simultaneously. There are two high-speed channels for 
every 128 processors in a CRAY T3D system.

BENCHMARK RESULTS 

The following benchmarks show results as of May 1994, six months 
after the release of the CRAY T3D product. The results indicate 
that in this short span of time, the CRAY T3D system 
substantially outperformed other MPPs.

As shown in Figure 4, a CRAY T3D system with 256 processors 
delivered the fastest execution of all eight NAS Parallel 
Benchmarks on any MPP of any size.[15] (The NAS Parallel 
Benchmarks are eight codes specified by the Numerical Aerodynamic 
Simulation [NAS] program at NASA/Ames Research Center. NAS chose 
these codes to represent common types of fluid dynamics 
calculations.) The CRAY T3D system scaled these benchmarks more 



efficiently than all other MPPs, with near linear scaling from 32 
to 64, 128, and 256 processors. Other MPPs scaled the benchmarks 
poorly. None of these other MPPs reported all eight benchmarks 
scaling to 256 processors, and the scaling reported showed more 
nonlinear scaling than on the CRAY T3D system. These benchmark 
results confirm that the superior speed of the CRAY T3D 
interconnection network is important when scaling a wide range of 
algorithms to run on hundreds of processors.

[Figure 4 (NAS Parallel Benchmarks) is not available in ASCII 
format.]

Note that a 256-processor CRAY T3D system was the fastest MPP 
running the NAS Parallel Benchmarks. Even so, the CRAY C916 
parallel vector processor ran six of the eight benchmarks faster 
than the CRAY T3D system. The CRAY T3D system (selling for about 
$9 million) showed better price/performance than the CRAY C916 
system (selling for about $27 million). On the other hand, the 
CRAY C916 system showed better absolute performance. When we run 
these codes on a 512-processor CRAY T3D system (later this year), 
we expect the CRAY T3D to outperform the CRAY C916 system on six 
of the eight codes.

Heterogeneous benchmark results are also encouraging. We 
benchmarked a chemistry application, SUPERMOLECULE, that 
simulates an imidazole molecule on a CRAY T3D system with a CRAY 
Y-MP host. The application was 98 percent parallel, with 2 
percent of the overall time spent in serial code (to diagonalize 
a matrix). We made a baseline measurement by running the program 
on 64 CRAY T3D processors. Quadrupling the number of processors 
(256 PEs) showed poor scaling -- a speedup of 1.3 times over the 
baseline measurement. When we moved the serial code to a CRAY 
Y-MP processor on the host, leaving the parallel code on 256 CRAY 
T3D processors, the code ran 3.3 times faster than the baseline, 
showing substantially more efficient scaling. Figure 5 shows 
SUPERMOLECULE benchmark performance results on both homogeneous 
and heterogeneous systems. Ninety-eight percent may sound like a 
high level of parallelism, but after dividing 98 percent among 
256 processors, each processor ran less than 0.4 percent of the 
overall parallel time. The remaining serial code running on a 
single PE ran five times longer than the distributed parallel 
work, thus dominating the time to solution. Speeding up the 
serial code by running it on a faster vector processor brought 
the serial time in line with the distributed-parallel time, 
improving the scaling considerably.

[Figure 5 (SUPERMOLECULE Benchmark Performance Results for 
Homogeneous and Heterogeneous Systems) is not available in ASCII 
format.]

The CRAY T3D system demonstrated faster I/O throughput than any 
other MPP. A 256-processor system sustained over 570 megabytes 
per second of I/O to a disk file system residing on a solid-state 
device on the host. The system sustained over 360 megabytes per 



second to physical disks.

SUMMARY

This paper describes the design of the CRAY T3D system.  
Designers incorporated applications profiles and customer 
suggestions into the CRAFT programming model. The model permits 
high-performance exploitation of important computational 
algorithms on a massively parallel processing system. Cray 
Research designed the hardware based on the fundamentals of the 
programming model.

As of this writing, a dozen systems have shipped to customers, 
with results that show the system design is delivering excellent 
performance. The CRAY T3D system is scaling a wider range of 
codes to a larger number of processors and running benchmarks 
faster than other MPPs. The sustained I/O rates are also faster 
than on other MPPs. The system is performing as designed.
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