
 Digital Technical Journal
 Volume 6, Number 2
 Cray Research paper

FOOTNOTE:

The work described in this paper was partially supported by the
Advanced Research Projects Agency under Agreement No.
MDA972-92-0002 dated January 21, 1992.

 A Shared Memory MPP from Cray Research

 by

 R. Kent Koeninger, Mark Furtney, and Martin Walker

ABSTRACT

The CRAY T3D system is the first massively parallel processor
from Cray Research. The implementation entailed the design of
system software, hardware, languages, and tools. A study of
representative applications influenced these designs. The paper
focuses on the programming model, the physically distributed,
logically shared memory interconnect, and the integration of
Digital's DECchip 21064 Alpha AXP microprocessor in this
interconnect. Additional topics include latency-hiding and
synchronization hardware, libraries, operating system, and tools.

INTRODUCTION

Today's fastest scientific and engineering computers, namely
supercomputers, fall into two basic categories: parallel vector
processors (PVPs) and massively parallel processors (MPPs).
Systems in both categories deliver tens to hundreds of billions
of floating-point operations per second (GFLOPS) but have memory
interconnects that differ significantly. After presenting a brief
introduction on PVPs to provide a context for MPPs, this paper
focuses on the design of MPPs from Cray Research.

PVPs have dominated supercomputing design since the commercial
success of the CRAY-1 supercomputer in the 1970s. Modern PVPs,
such as the CRAY C90 systems from Cray Research, continue to
provide the highest sustained performance on a wide range of
codes. As shown in Figure 1, PVPs use dozens of powerful custom
vector processors on a high-bandwidth, low-latency, shared-memory

interconnect. The vector processors are on one side of the
interconnect with hundreds to thousands of memories on the other
side. The interconnect has uniform memory access, i.e., the
latency and bandwidth are uniform from all processors to any word
of memory.

[Figure 1 (Memory Interconnection Architectures) in not available
in ASCII format.]

MPPs implement a memory architecture that is radically different
from that of PVPs. MPPs can deliver peak performance an order of
magnitude faster than PVP systems but often sustain performance
lower than PVPs. A major challenge in MPP design is to enable a
wide range of applications to sustain performance levels higher
than on PVPs.

MPPs typically use hundreds to thousands of fast commercial
microprocessors with the processors and memories paired into
distributed processing elements (PEs). The MPP memory
interconnects have tended to be slower than the high-end PVP
memory interconnects. The MPP interconnects have nonuniform
memory access, i.e., the access speed (latency and bandwidth)
from a processor to its local memory tends to be faster than the
access speed to remote memories.

The processing speed and memory bandwidth of each microprocessor
are substantially lower than those of a vector processor. Even
so, the sum of the speeds of hundreds or thousands of
microprocessors can often exceed the aggregate speed of dozens of
vector processors by an order of magnitude. Therefore, a goal for
MPP design is to raise the efficiency of hundreds of
microprocessors working in parallel to a point where they perform
more useful work than can be performed on the traditional PVPs.
Improving the microprocessor interconnection network will broaden
the spectrum of MPP applications that have faster
times-to-solution than on PVPs.

A key architectural feature of the CRAY T3D system is the use of
physically distributed, logically shared memory
(distributed-shared memory). The memory is physically distributed
in that each PE contains a processor and a local dynamic
random-access memory (DRAM); accesses to local memory are faster
than accesses to remote memories. The memory is shared in that
any processor can read or write any word in any of the remote PEs
without the assistance or knowledge of the remote processors or
the operating system. Cray Research provides a shell of circuitry
around the processor that allows the local processor to issue
machine instructions to read remote memory locations.
Distributed-shared memory is a significant advance in balancing
the ratio between remote and local memory access speeds. This
balance, in conjunction with new programming methods that exploit
this new capability, will increase the number of applications
that can run efficiently on MPPs and simplify the programming
tasks.

The CRAY T3D design process followed a top-down flow. Initially,
a small team of Cray Research applications specialists, software
engineers, and hardware designers worked together to conduct a
performance analysis of target applications. The team extracted
key algorithmic performance traits and analyzed the performance
sensitivity of MPP designs to these traits. This activity was
accomplished with the invaluable assistance and advice of a
select set of experienced MPP users, whose insights into the
needs of high-performance computing profoundly affected the
design. The analysis identified key fundamental operations and
hardware/software features required to execute parallel programs
with high performance. A series of discussions on engineering
trade-offs, software reusability issues, interconnection design
studies and simulations, programming model designs, and
performance considerations led to the final design.

The resulting system architecture is a distributed memory, shared
address space, multiple instruction, multiple data (MIMD)
multiprocessor. Special latency-hiding and synchronization
hardware facilitates communication and remote memory access over
a fast, three-dimensional (3-D) torus interconnection network.
The majority of the remote memory accesses complete in less than
1 microsecond, which is one to two orders of magnitude faster
than on most other MPPs.[1,2,3]

A fundamental challenge for the CRAY T3D system (and for other
MPP systems) is usability. By definition, an MPP with high
usability would sustain higher performance than traditional PVP
systems for a wide range of codes and would allow the programmer
to achieve this high performance with a reasonable effort.
Several elements in the CRAY T3D system combine to achieve this
goal.

 o The distributed-shared memory interconnect allows
 efficient, random, single-word access from any processor
 to any word of memory.

 o Cray's distributed memory, Fortran programming model with
 implicit remote addressing is called CRAFT. It provides a
 standard, high-level interface to this hardware and
 reduces the effort needed to arrive at near-optimum
 performance for many problem domains.[4]

 o The heterogeneous architecture allows problems to be
 distributed between an MPP and its PVP host, with the
 highly parallel portions on the MPP and the serial or
 moderately parallel portions on the PVP host. This
 heterogeneous capability greatly increases the range of
 algorithms that will work efficiently. It also enables
 stepwise MPP program development, which lets the
 programmer move code from the PVP to the MPP in stages.

 o The CRAY T3D high-speed I/O capabilities provide a close

 coupling between the MPP and the PVP host. These
 capabilities sustain the thousands of megabytes per
 second of disk, tape, and network I/O that tend to
 accompany problems that run at GFLOPS.

The remainder of this paper is divided into four sections. The
first section discusses the results of the applications analysis
and its critical impact on the CRAY T3D design, including a
summary of critical MPP functionality. The second section
characterizes the system software. The software serves multiple
purposes; it presents the MPP functionality to the programmer,
maps the applications to the hardware, and serves as the
interface to the scientist. In the third section, the hardware
design is laid out in some detail, including microprocessor
selection and the design issues for the Cray shell circuitry that
surrounds the core microprocessor and implements the memory
system, the interconnection network, and the synchronization
capabilities. The fourth section presents benchmark results. A
brief summary and references conclude the paper.

THE IMPACT OF APPLICATIONS ON DESIGN

As computing power increases, computer simulations increasingly
use complex and irregular geometries. These simulations can
involve multiple materials with differing properties. A common
trend is to improve verisimilitude, i.e., the semblance of
reality, through increasingly accurate mathematical descriptions
of natural laws.

Consequently, the resolution of models is improving. The use of
smaller grid sizes and shorter time scales resolves detail.
Models that use irregular and unstructured grids to accommodate
geometries may be dynamically adapted by the computer programs as
the simulation evolves. The algorithms increasingly use implicit
time stepping.

A naive single instruction, multiple data (SIMD) processor design
cannot efficiently deal with the simulation trends and resulting
model characteristics. Performing the same operation at each
point of space in lockstep can be extremely wasteful. Dynamic
methods are necessary to concentrate the computation where
variables are changing rapidly and to minimize the computational
complexity. The most general form of parallelism, MIMD, is
needed. In a MIMD processor, multiple independent streams of
instructions act on multiple independent data.

With these characteristics and trends in mind, the design team
chose the kernels of a collection of applications to represent
target applications for the CRAY T3D system. The algorithms and
computational methods incorporated in these kernels were intended
to span a broad set of applications, including applications that
had not demonstrated good performance on existing MPPs. These
kernels included seismic convolution, a partial multigrid method,

matrix multiplication, transposition of multidimensional arrays,
the free Lagrange method, an explicit two-dimensional Laplace
solver, a conjugate gradient algorithm, and an integer sort. The
design team exploited the parallelism intrinsic to these kernels
by coding them in a variety of ways to reflect different demands
on the underlying hardware and software. For example, the team
generated different memory reference patterns ranging from local
to nearest neighbor to global, with regular and irregular
patterns, including hot spots. (Hot spots can occur when many
processors attempt to reference a particular DRAM page
simultaneously.)

To explore design trade-offs and to evaluate practical
alternatives, the team ran different parallel implementations of
the chosen kernel on a parameterized system-level simulator. The
parameters characterized machine size, the nature of the
processors, the memory system, messages and communication
channels, and the communications network itself. The simulator
measured rates and durations of events during execution of the
kernel implementations. These measurements influenced the choices
of the hardware and the programming model.

The results showed a clear relationship between the scalability
of the applications and the speed of accessing the remote
memories. For these algorithms to scale to run on hundreds or
thousands of processors, a high-bandwidth, low-latency
interprocessor interconnect was imperative. This finding led the
designers to choose a distributed-shared memory, 3-D torus
interconnect with very fast remote memory access speeds, as
mentioned in the previous section.

The study also indicated that a special programming model would
be necessary to avoid remote memory accesses when possible and to
hide the memory latency for the remaining remote accesses. This
finding led to the design of the CRAFT programming model, which
uses hardware in the interconnect to asynchronously fetch and
store data from and to remote PEs. This model helps programmers
to distribute the data among the shared memories and to align the
work with this distributed data. Thus, they can minimize remote
references and exploit the locality of reference intrinsic to
many applications.

The simulations also showed that the granularity of parallel work
has a significant impact on both performance and the ease of
programming. Performing work in parallel necessarily incurs a
work-distribution overhead that must be amortized by the amount
of work that gets done by each processor. Fine-grained
parallelism eases the programming burden by allowing the
programmer to avoid gathering the parallel work into large
segments. As the amount of work per iteration decreases, however,
the relative overhead of work distribution increases, which
lowers the efficiency of doing the work in parallel. Balancing
these constraints contributed to the decisions to include a
variety of fast synchronization mechanisms, such as a separate

synchronization network to minimize the overhead of fine-grained
parallelism.

SOFTWARE

Cray Research met several times a year with a group of
experienced MPP users, who indicated that software on existing
MPPs was unstable and difficult to use. The users believed that
Cray Research needed to provide clear mechanisms for getting to
the raw power of the underlying hardware while not diverging too
far from existing programming practices. The users wished to port
codes from workstations, PVPs, and other MPPs. They wanted to
minimize the porting effort while maximizing the resulting
performance. The group indicated a strong need for stability,
similar to the stability of existing CRAY Y-MP systems. They
emphasized the need to preserve their software investments across
generations of hardware improvements.

Reusing Stable Software

To meet these goals, Cray Research decided to reuse its existing
supercomputing software where possible, to acquire existing tools
from other MPPs where appropriate, and to write new software when
needed. The developers designed the operating system to reuse
Cray's existing UNICOS operating system, which is a superset of
the standard UNIX operating system. The bulk of the operating
system runs on stable PVP hosts with only microkernels running on
the MPP processors. This design enabled Cray Research to quickly
bring the CRAY T3D system to market. The resulting system had a
minimal number of software changes and retained the maximum
stability and the rich functionality of the existing UNICOS
supercomputing operating system. The extensive disk, tape, and
network I/O capabilities of the PVP host provide the hundreds of
megabytes per second of I/O throughput required by the large
MPPs. This heterogeneous operating system is called UNICOS MAX.

The support tools (editors, compilers, loaders, debuggers,
performance analyzers) reside on the host and create code for
execution on the MPP itself. The developers reused the existing
Cray Fortran 77 (CF77) and Cray Standard C compilers, with
modified front ends to support the MPP programming models and
with new code generators to support the DECchip 21064 Alpha AXP
microprocessors. They also reused and extended the heart of the
compiling systems -- the dependency-graph-analysis and
optimization module.

The CRAFT Programming Model

The CRAFT programming model extends the Fortran 77 and Fortran 90
languages to support existing popular MPP programming methods
(message passing and data parallelism) and to add a new method

called work sharing. The programmer can combine explicit and
implicit interprocessor communication methods in one program,
using techniques appropriate to each algorithm. This support for
existing MPP and PVP programming paradigms eases the task of
porting existing MPP and PVP codes.

The CRAFT language designers chose directives such that codes
written using the CRAFT model run correctly on machines that do
not support the directives. CRAFT-derived codes produce identical
results on sequential machines, which ignore the CRAFT
directives. Exceptions are hardware limitations (e.g., differing
floating-point formats), nondeterministic behavior in the user's
program (e.g., timing-dependent logic), and the use of
MPP-specific intrinsic functions (i.e., intrinsics not available
on the sequential machines).

A message-passing library and a shared memory access library
(SMAL) provide interfaces for explicit interprocessor
communication. The message-passing library is Parallel Virtual
Machine (PVM), a public domain set of portable message-passing
primitives developed at the Oak Ridge National Laboratory and the
University of Tennessee.[5] The widely used PVM is currently
available on all Cray systems. SMAL provides a function call
interface to the distributed-shared memory hardware. This
provides a simple interface to the programmer for shared memory
access to any word of memory in the global address space. These
two methods provide a high degree of control over the
communication but require a significant programming effort; a
programmer must code each communication explicitly.

The CRAFT model supports implicit data-parallel programming with
Fortran 90 array constructs and intrinsics. Programmers often
prefer this style when developing code on SIMD MPPs.

The CRAFT model provides an additional implicit programming
method called work sharing. This method simplifies the task of
distributing the data and work across the PEs. Programmers need
not explicitly state which processors will have which specific
parts of a distributed data array. Similarly, they need not
specify which PEs will perform which parts of the work. Instead,
they use high-level mechanisms to distribute the data and to
assist the compiler in aligning the work with the data. This
technique allows the programmers to maximize the locality of
reference with minimum effort.

In work sharing, programmers use the SHARED directives to block
the data across the distributed memories. They distribute work by
placing DO SHARED directives in front of DO loops or by using
Fortran 90 array statements. The compiler aligns the work with
the data and doles out each iteration of a loop to the PE where
most of the data associated with the work resides. Not all data
needs to be local to the processor.

The hardware and the programming model can accommodate

communication-intensive programs. The compiler attempts to
prefetch data that resides in remote PEs, i.e., it tends to copy
remote data to local temporaries before the data is needed. By
prefetching multiple individual words over the fast interconnect,
the compiler can mask the latency of remote memory references.
Thus, locality of reference, although still important, is less
imperative than on traditional MPP systems. The ability to fetch
individual words provides a very fine-grained communication
capability that supports random or strided access to remote
memories.

The programming model is built on concepts that are also
available in Fortran D, Vienna Fortran, and the proposed
High-performance Fortran (HPF) language definition.[6,7,8] (Cray
Research participates in the HPF Forums.) These models are based
on Mehrotra's original Kali language definition and on some
concepts introduced for the ILLIAC IV parallel computer by
Millstein.[9,10]

Libraries

Libraries for MPP systems can be considered to consist of two
parts: (1) the system support libraries for I/O, memory
allocation, stack management, mathematical functions (e.g., SIN
and COS), etc., and (2) the scientific libraries for Basic Linear
Algebra Subroutines (BLAS), real and complex fast Fourier
transforms, dense matrix routines, structured sparse matrix
routines, and convolution routines. Cray Research used its
current expertise in these areas, plus some third-party
libraries, to develop high-performance MPP libraries with all
these capabilities.

Tools

A wide variety of support tools is available to aid application
developers working on the CRAY T3D system. Included in the Cray
tool set are loaders, simulators, an advanced emulation
environment, a full-featured MPP debugger, and tools that support
high-level performance tuning.

Performance Analysis. A key software tool is the MPP Apprentice,
a performance analysis tool based in part on ideas developed by
Cray Research for its ATExpert tool.[11] The MPP Apprentice tool
has expert system capabilities to guide users in evaluating their
data and work distributions and in suggesting ways to enhance the
overall algorithm, application, and program performance.

The MPP Apprentice processes compiler and run-time data and
provides graphical displays that relate performance
characteristics to a particular subprogram, code block, and line
in the user's original source code. The user can select a code

block and obtain many different kinds of detailed information.
Specific information on the amount of each type of overhead, such
as synchronization constructs and communication time, let the
user know precisely how and where time is being spent. The user
can see exactly how many floating-point instructions, global
memory references, or other types of instructions occur in a
selected code block.

Debugging. Cray Research supplies the Cray TotalView tool, a
window-oriented multiprocessor symbolic debugger based on the
TotalView product from Bolt Beranek and Newman Inc. The Cray
TotalView tool is capable of debugging multiple-process,
multiple-processor programs, as well as single-process programs,
and provides a large repertoire of features for debugging
programs written in Fortran, C, or assembly language.

An important feature of the debugger is its window-oriented
presentation of information. Besides displaying information, the
interface allows the user to edit information and take other
actions, such as modifying the values of the variables.

The debugger offers the following full range of functions for
controlling processes:

 o Set and clear breakpoints (at the source or machine
 level)

 o Set and clear conditional breakpoints and evaluation
 points

 o Start, stop, resume, delete, and restart processes

 o Attach to existing processes

 o Examine core files

 o Single-step source lines through a program, including
 stepping across function calls

Emulator. Cray Research has implemented an emulator that allows
the user to execute MPP programs before gaining access to a CRAY
T3D system by emulating CRAY T3D codes on any CRAY Y-MP system.
The emulator supports Fortran programs that use the CRAFT model,
including message-passing and data-parallel constructs, and C
programs that use message passing. Because it provides feedback
on data locality, work distribution, program correctness, and
performance comparisons, the emulator is useful for porting and
developing new codes for the CRAY T3D system.

HARDWARE

A macro- and microarchitecture design was chosen to resolve the
conflict of maximizing hardware performance improvements between
generations of MPPs while preserving software investments. This
architecture allows Cray Research to choose the fastest
microprocessor for each generation of Cray MPPs. The
macroarchitecture implements the memory system and the
interconnection network with a set of Cray proprietary chips
(shell circuitry) that supports switching, synchronization,
latency-hiding, and communication capabilities. The
macroarchitecture will undergo only modest changes over a
three-generation life cycle of the design. Source code
compatibility will be maintained. The microarchitecture will
allow the instruction set to change while preserving the
macroarchitecture.

Macroarchitecture

The CRAY T3D macroarchitecture has characteristics that are both
visible and available to the programmer. These characteristics
include

 o Distributed memory

 o Global address space

 o Fast barrier synchronization, e.g., forcing all
 processors to wait at the end of a loop until all other
 processors have reached the end of the loop

 o Support for dynamic loop distribution, e.g., distributing
 the work in a loop across the processors in a manner that
 minimizes the number of remote memory references

 o Hardware messaging support

 o Support for fast memory locks

Memory Organization

The CRAY T3D system has a distributed-shared memory built from
DRAM parts. Any PE can directly address any other PE's memory,
within the constraints imposed by security and partitioning. The
physical address of a data element in the MPP has two parts: a PE
number and an offset within the PE, as shown in Figure 2.

Figure 2 Memory Layout

 +------------+ +------------+ +------------+ +------------+
 | OFFSET 0 | | OFFSET 0 | | OFFSET 0 | | OFFSET 0 |
 +------------+ +------------+ +------------+ +------------+

 | OFFSET 1 | | OFFSET 1 | | OFFSET 1 | | OFFSET 1 |
 +------------+ +------------+ +------------+ +------------+
 | OFFSET 2 | | OFFSET 2 | | OFFSET 2 | | OFFSET 2 |
 +------------+ +------------+ +------------+ +------------+
 | . | | . | | . | | . |
 | . | | . | | . | . . . | . |
 | . | | . | | . | | . |
 +------------+ +------------+ +------------+ +------------+
 | OFFSET M-1 | |OFFSET M-1 | | OFFSET M-1 | | OFFSET M-1 |
 +------------+ +------------+ +------------+ +------------+
 PE 0 PE 1 PE 2 PE N-1

 KEY:
 PE PROCESSING ELEMENT
 M NUMBER OF WORDS PER PROCESSING ELEMENT
 N NUMBER OF PROCESSING ELEMENTS

CRAY T3D memory is distributed among the PEs. Each processor has
a favored low-latency, high-bandwidth path to its local memory
and a longer-latency, lower-bandwidth path to memory associated
with other processors (referred to as remote or global memory).

Data Cache. The data cache resident on Digital's DECchip 21064
Alpha AXP microprocessor is a write-through, direct-mapped,
read-allocate cache. CRAY T3D hardware does not automatically
maintain the coherence of the data cache relative to remote
memory. The CRAFT programming model manages this coherence and
guarantees the integrity of the data.

Local and Remote Memory. Each PE contains 16 or 64 megabytes of
local DRAM with a latency of 13 to 38 clock cycles (87 to 253
nanoseconds) and a bandwidth of up to 320 megabytes per second.
Remote memory is directly addressable by the processor, with a
latency of 1 to 2 microseconds and a bandwidth of over 100
megabytes per second (as measured in software). All memory is
directly accessible; no action is required by remote processors
to formulate responses to remote requests. The total size of
memory in the CRAY T3D system is the number of PEs times the size
of each PE's local memory. In a typical 1,024-processor system,
the total memory size would be 64 gigabytes.

3-D Torus Interconnection Network

The CRAY T3D system uses a 3-D torus for the interconnection
network. A 3-D torus is a cube with the opposing faces connected.
Connecting the faces provides dual paths (one clockwise and one
counterclockwise) in each of the three dimensions. These
redundant paths increase the resiliency of the system, increase
the bandwidth, and shorten the average distance through the

torus. The three dimensions keep the distances short; the length
of any one dimension grows as the cube root of the number of
nodes. (See Figure 3.)

[Figure 3 (CRAY T3D System) is not available in ASCII format.]

When evaluated within the constraints of real-world packaging
limits and wiring capabilities, the 3-D torus provided the
highest global bandwidth and lowest global latency of the many
interconnection networks studied.[1,2,3] Using three dimensions
was optimum for systems with hundreds or thousands of processors.
Reducing the system to two dimensions would reduce hardware costs
but would substantially decrease the global bandwidth, increase
the network congestion, and increase the average latency. Adding
a fourth dimension would add bandwidth and reduce the latency,
but not enough to justify the increased cost and packaging
complexity.

Network Design

The CRAY T3D network router is implemented using emitter-coupled
logic (ECL) gate arrays with approximately 10,000 gates per chip.
The router is dimension sliced, which results in a network node
composed of three switch chips of identical design -- one each
for X-, Y-, and Z-dimension routing. The router implements a
dimension-order, wormhole routing algorithm with four virtual
channels that avoid potential deadlocks between the torus cycle
and the request and response cycles.

Every network node has two PEs. The PEs are independent, having
separate memories and data paths; they share only the bandwidth
of the network and the block transfer engine (described in detail
later in the paper). A 1,024-PE system would therefore have a
512-node network configured as a 3-D torus with XYZ dimensions of
8 x 8 x 8.

The network moves data in packets with payload sizes of either
one or four 64-bit words. Efficient transport of single-word
payloads is essential for sparse or strided access to remote
data, whereas the 4-word payload minimizes overhead for dense
data access.

For increased fault tolerance, the CRAY T3D system also provides
spare compute nodes that are used if nodes fail. There are two
redundant PEs for every 128 PEs. A redundant node can be
electronically switched to replace a failed compute node by
rewriting the routing tag lookup table.

Latency of the switch is very low. A packet entering a switch
chip requires only 1 clock cycle (6.67 nanoseconds at 150
megahertz [MHz]) to select its output path and to exit. The time
spent on the physical wires is not negligible and must also be
included in latency calculations. In a CRAY T3D system, all

network interconnection wires are either 1 or 1.5 clock cycles
long. Each hop through the network requires 1 clock cycle for the
switch plus 1 to 1.5 clock cycles for the physical wire. Turning
a corner is similar to routing within a dimension. The time
required is 3 clock cycles: 1 clock cycle inside the first chip,
1 clock cycle for the connection between chips, and 1 clock cycle
for the second chip, after which the packet is on the wires in
the next dimension.

The result is an interconnection network with low latency. As
stated previously in the Memory Organization subsection, the
latency for a 1,024-PE system, including the hardware and
software overhead, is between 1 and 2 microseconds.

Each channel into a switch chip is 16 bits wide and runs at 150
MHz, for a raw bandwidth of 300 megabytes per second. Seven
channels enter and seven channels exit a network node: one
channel to and one channel from the compute resource, i.e., the
pair of local PEs, and six two-way connections to the nearest
network neighbors in the north, south, east, west, up, and down
directions. All fourteen channels are independent. For example,
one packet may be traversing a node from east to west at the same
time another packet is traversing the same node from west to east
or north to south, etc.

The bandwidth can be measured in many ways. For example, the
bandwidth through a node is 4.2 gigabytes per second (300
megabytes per second times 14). A common way to measure system
bandwidth is to bisect the system and measure the bandwidth
between the two resulting partitions. This bisection bandwidth
for a 1,024-PE CRAY T3D torus network is 76 gigabytes per second.

Microarchitecture -- The Core Microprocessor

The CRAY T3D system employs Digital's DECchip 21064 Alpha AXP
microprocessor as the core of the processing element. Among the
criteria for choosing this reduced instruction set computer
(RISC) microprocessor were computational performance, memory
latency and bandwidth, power, schedule, vendor track record,
cache size, and programmability. Table 1, the Alpha Architecture
Reference Manual, and the DECchip 21064-AA Microprocessor
Hardware Reference Manual provide details on the Alpha AXP
microprocessor.[12,13]

Table 1 CRAY T3D Core Microprocessor Specifications

Characteristic Specification

Microprocessor Digital's DECchip 21064 Alpha AXP
 microprocessor
Clock cycle 6.67 nanoseconds
Bidirectional data bus 128 bits data, 28 check bits

Data error protection SECDED
Address bus 34 bits
Issue rate 2 instructions/clock cycle
Internal data cache 8K bytes (256 32-byte lines)
Internal instruction cache 8K bytes (256 32-byte lines)
Latency: data cache hit 3 clock cycles
Bandwidth: data cache hit 64 bits/clock cycle
Floating-point unit IEEE floating-point and
 floating-point--to--integer
Floating-point registers 32 (64 bits each)
Integer execution unit Integer arithmetic, shift, logical,
 compare
Integer registers 32 (64 bits each)
Integrated circuit CMOS, 14.1 mm x 16.8 mm
Pin count 431 (229 signal)
Typical power dissipation -23 watts

For use in a shared address space MPP, all commercially available
microprocessors contemporaneous with the DECchip 21064 device
have three major weaknesses in common:[14]

 1. Limited address space

 2. Little or no latency-hiding capability

 3. Few or no synchronization primitives

These limitations arise naturally from the desktop workstation
and personal computer environments for which microprocessors have
been optimized. A desktop system has a memory that is easily
addressed by 32 or fewer bits. Such a system possesses a large
board-level cache to reduce the number of memory references that
result in the long latencies associated with DRAM. The system
usually is a uniprocessor, which requires little support for
multiple processor synchronization. Cray Research designed a
shell of circuitry around the core DECchip 21064 Alpha AXP
microprocessor in the CRAY T3D system to extend the
microprocessor's capabilities in the three areas.

Address Extension

The Alpha AXP microprocessor has a 43-bit virtual address space
that is translated in the on-chip data translation look-aside
buffer (DTB) to a 34-bit address space that is used to address
physical bytes of DRAM. Thirty-four bits can address up to 16
gigabytes (2**34 bytes). Since the CRAY T3D system has up to 128
gigabytes (2**37 bytes) of distributed-shared memory, at least 37
bits of physical address are required. In addition, several more
address bits are needed to control caching and to facilitate
control of the memory-mapped mechanisms that implement the
external MPP shell. The CRAY T3D system uses a 32-entry register
set called the DTB Annex to extend the number of physical address

bits beyond the 34 provided by the microprocessor.

Shell circuitry always checks the virtual PE number. If the
number matches that of the local PE, the shell performs a local
memory reference instead of a remote reference.

Latency-hiding Mechanisms

As with most other microprocessors, the external interface of the
DECchip 21064 is not pipelined; only one memory reference may be
pending at any one time. Although merely an annoyance for local
accesses, this behavior becomes a severe performance restriction
for remote accesses, with their longer latencies, unless external
mechanisms are added to extend the processor's memory pipeline.

The CRAY T3D system provides three mechanisms for hiding the
startup time (latency) of remote references: (1) the prefetch
queue, (2) the remote processor store, and (3) the block transfer
engine. As shown in Table 2, each mechanism has its own
strengths. The compilers, communication libraries, and operating
system choose among these mechanisms according to the specific
remote reference requirements. Typically, the prefetch queue and
the remote processor store are the most effective mechanisms for
fine-grained communication, whereas the block transfer engine is
strongest for moving large blocks of data.

Table 2 Latency-hiding Attributes

 Remote Block
 Prefetch Processor Transfer
 Queue Store Engine

Source Memory Register Memory

Destination Local queue Memory Memory

Data Size 1 word 1-4 words Up to 256K words

Startup 18-47 6-53 >480
(6.67-nanosecond
clock cycles)

Latency 80 40 40-80
(nanoseconds)

The Prefetch Queue. The DECchip 21064 instruction set includes
an operation code FETCH that permits a compiler to provide a
"hint" to the hardware of upcoming memory activity. Originally,

the FETCH instruction was intended to trigger a prefetch to the
external secondary cache. The CRAY T3D shell hardware uses FETCH
to initiate a single-word remote memory read that will fill a
slot reserved by the hardware in an external prefetch queue.

The prefetch queue is first in, first out (FIFO) memory that acts
as an external memory pipeline. As the processor issues each
FETCH instruction, the shell hardware reserves a location in the
queue for the return data and sends a memory read request packet
to the remote node. When the read data returns to the requesting
processor, the shell hardware writes the data into the reserved
slot in the queue.

The processor retrieves data from the FIFO queue by executing a
load instruction from a memory-mapped register that represents
the head of the queue. If the data has not yet returned from the
remote node, the processor will stall while waiting for the queue
slot to be filled.

The data prefetch queue is able to store up to 16 words, that is,
the processor can issue up to 16 FETCH instructions before
executing any load instructions to remove (pop) the data from the
head of the queue. Repeated load instructions from the
memory-mapped location that addresses the head of the queue will
return successive elements in the order in which they were
fetched.

The Remote Processor Store. The DECchip 21064 stores to remote
memory do not need to wait for a response, so a large number of
store operations can be outstanding at any time. This is an
effective communication mechanism when the producer of the data
knows which PEs will immediately need to use the data.

The Alpha AXP microprocessor has four 4-word write buffers on
chip that try to accumulate a cache line (4 words) of data before
performing the actual external store. This feature increases the
network packet payload size and the effective bandwidth.

The CRAY T3D system increments a counter in the PE shell
circuitry each time the DECchip 21064 microprocessor issues a
remote store and decrements the counter each time a write
operation completes. For synchronization purposes, the processor
can read this counter to determine when all of its writes have
completed.

The Block Transfer Engine. The block transfer engine (BLT) is an
asynchronous direct memory access controller used to redistribute
data between local and remote memory. To facilitate
reorganization of sparse or randomly organized data, the BLT
includes scatter-gather capabilities in addition to constant
strides. The BLT operates independently of the processors at a
node, in essence appearing as another processor in contention for

memory, data path, and switch resources. Cray Research has a
patent pending for a centrifuge unit in the BLT that accelerates
the address calculations in the CRAFT programming model.

The processor initiates BLT activity by storing individual
request information (for example, starting address, length, and
stride) in the memory-mapped control registers. The overhead
associated with this setup work is noticeable (tens of
microseconds), which makes the BLT most effective for large data
block moves.

Synchronization

The CRAY T3D system provides hardware primitives that facilitate
synchronization at various levels of granularity and support both
control parallelism and data parallelism. Table 3 presents the
characteristics of these synchronization primitives.

Table 3 Synchronization Primitives

Primitive Granularity Parallelism

Barrier Coarse Control
Fetch-and-increment Medium Both
Lightweight messaging Medium Both
Atomic swap Fine Data

Barrier. The CRAY T3D has specialized barrier hardware in the
form of 16 parallel logical AND trees that permit multiple
barriers to be pipelined and the resource to be partitioned. When
all PEs in the partition have reached the barrier and have set
the same bit to a one, the AND function is satisfied and the
barrier bit in each PE's barrier register is cleared by hardware,
thus signaling the processors to continue.

The barrier has a second mode, called eureka mode, that supports
search operations. A eureka is simply a logical OR instead of a
logical AND and can be satisfied by any one processor.

The barrier mechanism in the CRAY T3D system is quite fast. Even
for the largest configuration (i.e., 2,048 PEs), a barrier
propagates in less than 50 clock cycles (about 330 nanoseconds),
which is roughly the latency of a local DRAM read.

Fetch and Increment. The CRAY T3D system has specialized
fetch-and-increment hardware as part of a shared register set
that automatically increments the contents each time the register

is read. Fetch-and-increment hardware is useful for distributing
control with fine granularity. For example, it can be used as a
global array index, shared by multiple processors, where each
processor increments the index to determine which element in an
array to process next. Each element can be guaranteed to be
processed exactly once, with minimal control overhead.

Messaging. A messaging facility in the CRAY T3D system enables
the passing of packets of data from one processor to another
without having an explicit destination address in the target PE's
memory. A message is a special cache-line-size write that has as
its destination a predefined queue area in the memory of the
receiving PE. The shell circuitry manages the queue pointers,
providing flow control mechanisms to guarantee the correct
delivery of the messages. The shell circuitry interrupts the
target processor after a message is stored.

Atomic Swap. Atomic swap registers are provided for the exchange
of data with a memory location that may be remote. The swap is an
atomic operation, that is, reading the data from the memory
location and overwriting the data with the swap data from the
processor is an indivisible operation. As with ordinary memory
reads, swap latency can be hidden using the prefetch queue.

I/O

System I/O is performed through multiple Cray high-speed channels
that connect the CRAY T3D system to a host CRAY Y-MP system or to
standard Cray I/O subsystems. These channels provide hundreds of
megabytes per second of throughput to the wide array of
peripheral devices and networks already supported on Cray
Research mainframes. Cray has demonstrated individual high-speed
channels that can transfer over 100 megabytes per second in each
direction, simultaneously. There are two high-speed channels for
every 128 processors in a CRAY T3D system.

BENCHMARK RESULTS

The following benchmarks show results as of May 1994, six months
after the release of the CRAY T3D product. The results indicate
that in this short span of time, the CRAY T3D system
substantially outperformed other MPPs.

As shown in Figure 4, a CRAY T3D system with 256 processors
delivered the fastest execution of all eight NAS Parallel
Benchmarks on any MPP of any size.[15] (The NAS Parallel
Benchmarks are eight codes specified by the Numerical Aerodynamic
Simulation [NAS] program at NASA/Ames Research Center. NAS chose
these codes to represent common types of fluid dynamics
calculations.) The CRAY T3D system scaled these benchmarks more

efficiently than all other MPPs, with near linear scaling from 32
to 64, 128, and 256 processors. Other MPPs scaled the benchmarks
poorly. None of these other MPPs reported all eight benchmarks
scaling to 256 processors, and the scaling reported showed more
nonlinear scaling than on the CRAY T3D system. These benchmark
results confirm that the superior speed of the CRAY T3D
interconnection network is important when scaling a wide range of
algorithms to run on hundreds of processors.

[Figure 4 (NAS Parallel Benchmarks) is not available in ASCII
format.]

Note that a 256-processor CRAY T3D system was the fastest MPP
running the NAS Parallel Benchmarks. Even so, the CRAY C916
parallel vector processor ran six of the eight benchmarks faster
than the CRAY T3D system. The CRAY T3D system (selling for about
$9 million) showed better price/performance than the CRAY C916
system (selling for about $27 million). On the other hand, the
CRAY C916 system showed better absolute performance. When we run
these codes on a 512-processor CRAY T3D system (later this year),
we expect the CRAY T3D to outperform the CRAY C916 system on six
of the eight codes.

Heterogeneous benchmark results are also encouraging. We
benchmarked a chemistry application, SUPERMOLECULE, that
simulates an imidazole molecule on a CRAY T3D system with a CRAY
Y-MP host. The application was 98 percent parallel, with 2
percent of the overall time spent in serial code (to diagonalize
a matrix). We made a baseline measurement by running the program
on 64 CRAY T3D processors. Quadrupling the number of processors
(256 PEs) showed poor scaling -- a speedup of 1.3 times over the
baseline measurement. When we moved the serial code to a CRAY
Y-MP processor on the host, leaving the parallel code on 256 CRAY
T3D processors, the code ran 3.3 times faster than the baseline,
showing substantially more efficient scaling. Figure 5 shows
SUPERMOLECULE benchmark performance results on both homogeneous
and heterogeneous systems. Ninety-eight percent may sound like a
high level of parallelism, but after dividing 98 percent among
256 processors, each processor ran less than 0.4 percent of the
overall parallel time. The remaining serial code running on a
single PE ran five times longer than the distributed parallel
work, thus dominating the time to solution. Speeding up the
serial code by running it on a faster vector processor brought
the serial time in line with the distributed-parallel time,
improving the scaling considerably.

[Figure 5 (SUPERMOLECULE Benchmark Performance Results for
Homogeneous and Heterogeneous Systems) is not available in ASCII
format.]

The CRAY T3D system demonstrated faster I/O throughput than any
other MPP. A 256-processor system sustained over 570 megabytes
per second of I/O to a disk file system residing on a solid-state
device on the host. The system sustained over 360 megabytes per

second to physical disks.

SUMMARY

This paper describes the design of the CRAY T3D system.
Designers incorporated applications profiles and customer
suggestions into the CRAFT programming model. The model permits
high-performance exploitation of important computational
algorithms on a massively parallel processing system. Cray
Research designed the hardware based on the fundamentals of the
programming model.

As of this writing, a dozen systems have shipped to customers,
with results that show the system design is delivering excellent
performance. The CRAY T3D system is scaling a wider range of
codes to a larger number of processors and running benchmarks
faster than other MPPs. The sustained I/O rates are also faster
than on other MPPs. The system is performing as designed.

REFERENCES

 1. R. Numrich, P. Springer, and J. Peterson, "Measurement of
 Communication Rates on the CRAY T3D Interprocessor Network,"
 Proceedings HPCN Europe (Munich) (April 1994).

 2. R. Kessler and J. Schwarzmeier, "CRAY T3D: A New Dimension
 for Cray Research," Proceedings of COMPCON (1993): 176-182.

 3. S. Scott and G. Thorson, "Optimized Routing in the CRAY T3D,"
 extended abstract for the Parallel Computing Routing and
 Communication Workshop (1994).

 4. D. Pase, T. MacDonald, and A. Meltzer, "The CRAFT Fortran
 Programming Model," CRAY Internal Report (Eagan, MN: Cray
 Research, Inc., February 1993) and Scientific Programming
 (New York: John Wiley and Sons, forthcoming).

 5. A. Geist et al., PVM 3 User's Guide and Reference
 Manual (Oak Ridge, TN: Oak Ridge National Laboratory,
 ORNL/TM-12187, May 1993).

 6. G. Fox et al., Fortran D Language Specification (Houston, TX:
 Department of Computer Science, Rice University, Technical
 Report TR90-141, December 1990).

 7. B. Chapman, P. Mehrotra, and H. Zima, Vienna Fortran -- A
 Fortran Language Extension for Distributed Memory
 Multiprocessors (Hampton, VA: ICASE, NASA Langley Research
 Center, 1991).

 8. High Performance Fortran (High Performance Fortran Language
 Specification, Version 1.0) (May 1993). Also available as

 technical report CRPC-TR 92225 (Houston, TX: Center for
 Research on Parallel Computation, Rice University) and in
 Scientific Computing (forthcoming).

 9. P. Mehrotra, "Programming Parallel Architectures: The BLAZE
 Family of Languages," Proceedings of the Third SIAM
 Conference on Parallel Processing for Scientific
 Computing (December 1988): 289-299.

10. R. Millstein, "Control Structures in ILLIAC IV Fortran,"
 Communications of the ACM, vol. 16, no. 10 (October 1973):
 621-627.

11. J. Kohn and W. Williams, "ATExpert," The Journal of Parallel
 and Distributed Computing, 18 (June 1993): 205-222.

12. R. Sites, ed., Alpha Architecture Reference Manual
 (Burlington, MA: Digital Press, Order No. EY-L520E-DP, 1992).

13. DECchip 21064-AA Microprocessor Hardware Reference Manual,
 1st ed. (Maynard, MA: Digital Equipment Corporation, Order
 No. EC-N0079-72, October 1992).

14. D. Bailey and R. Schreiber, "Problems with RISC
 Microprocessors for Scientific Computing" (Moffet Field, CA:
 NASA/Ames, RNR Technical Report, September 1992).

15. D. Bailey, E. Barszcz, L. Dagum, and H. Simon, "NAS Parallel
 Benchmark Results" (Moffet Field, CA: NASA/Ames, RNR
 Technical Report, March 1994 [updated May 1994]).

TRADEMARKS

The following are trademarks of Digital Equipment Corporation:
Alpha AXP, DECchip, and Digital.

CRAY-1, CRAY Y-MP, MPP Apprentice, and UNICOS are registered
trademarks and ATExpert, CRAFT, CRAY C90, CRAY C916, CRAY T3D,
Cray TotalView, and UNICOS MAX are trademarks of Cray Research,
Inc.

TotalView is a trademark of Bolt Beranek and Newman Inc.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company, Ltd.

BIOGRAPHIES

R. Kent Koeninger Kent Koeninger has been the MPP Software
Program Manager for Cray Research since 1992. Prior to this, he
was a supercomputer specialist for Apple Computer, where he
modeled the Cray to Apple's unique interactive-graphics,
mass-storage, and high-speed-networking requirements. Earlier,
while at the NASA/Ames Research Center, he repeatedly upgraded
the supercomputers to the fastest available. A notable event was
the first field installation of the CRAY X-MP system. Kent has a
B.S. (cum laude, 1977) in mathematics from California State
University at Bakersfield and is a National Merit Scholar.

Mark Furtney Mark Furtney specializes in software for
high-performance parallel systems. He has been employed by Cray
Research in the Software Division since 1982, where he worked on
CRAY-2 parallel software and led the development of Cray's
Autotasking compiling system. He is now the group leader for
Tools, Libraries, Commands, and MPP Software for various systems,
including the CRAY T3D and follow-on systems. Mark holds a B.S.
(1968) in mechanical engineering from Clarkson University, an
M.S. (1970) in nuclear engineering from MIT, and a Ph.D. (1983)
in computer science from the University of Virginia.

Martin Walker Martin Walker directed all applications activity
in support of CRAY T3D development. He was co-creator and first
director of Cray's Parallel Applications Technology Program.
Presently, he is General Manager of APTOS, a European
applications company created by Cray Research and Stern Computing
Systems. Prior to joining Cray, following fifteen years of
scientific research, he managed MPP development at Myrias
Research Corporation. Martin has a B.Sc. from Carleton
University, Ottawa, and a Ph.D. from the University of London,
U.K.

===
Copyright 1994 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

