
 Digital Technical Journal
 Volume 6, Number 2
 DECchip paper

 Development of Digital's PCI Chip Sets
 and Evaluation Kit for the
 DECchip 21064 Microprocessor

 by

 Samyojita A. Nadkarni, Walker Anderson, Lauren M. Carlson,
 David Kravitz, Mitchell O. Norcross, and Thomas M. Wenners

ABSTRACT

The DECchip 21071 and the DECchip 21072 chip sets were designed
to provide simple, competitive devices for building cost-focused
or high-performance PCI-based systems using the DECchip 21064
family of Alpha AXP microprocessors. The chip sets include data
slices, a bridge between the DECchip 21064 microprocessor and the
PCI local bus, and a secondary cache and memory controller. The
EB64+ evaluation kit, a companion product, contains an example PC
mother board that was built using the DECchip 21064
microprocessor, the DECchip 21072 chip set, and other
off-the-shelf PC components. The EB64+ kit provides hooks for
system designers to evaluate cost/performance trade-offs. Either
chip set, used with the EB64+ evaluation kit, enables system
designers to develop Alpha AXP PCs with minimal design and
engineering effort.

INTRODUCTION

The DECchip 21071 and the DECchip 21072 chip sets are two
configurations of a core logic chip set for the DECchip 21064
family of Alpha AXP microprocessors.[1] The core logic chip set
provides a 32-bit PCI local bus interface, cache/memory control
functions, and all related data path functionality to the system
designer. It requires minimal external logic. The EB64+ kit is an
evaluation and development platform for computing systems based
on the DECchip 21064 microprocessor and the core logic chip set.
The EB64+ kit also served as a debug platform for the chip sets.
The DECchip 21071 and the DECchip 21072 chip sets and the EB64+
evaluation kit were developed to proliferate the Alpha AXP
architecture in the industry by providing system designers with a
means to build a wide range of uniprocessor systems using the
DECchip 21064 processor family with minimal design and

engineering effort.[2]

The core logic chip set and the EB64+ evaluation kit were
developed by two teams that worked closely together. This paper
describes the goals of both projects, the major features of the
products, and the design decisions of the development teams.

THE CORE LOGIC CHIP SET

This section discusses the design and development of the two
configurations of the core logic chip set. After presenting the
project goals and the overview, the section describes
partitioning alternatives and the PCI local bus interface. It
then details the memory controller and the cache controller and
concludes with discussions of design considerations and
functional verification.

Project Goals

The primary goal of the project was to develop a core logic chip
set that would demonstrate the high performance of the DECchip
21064 microprocessor in desktop and desk-side systems with entry
prices less than $4,000. The chip set had to be system
independent and had to provide the system designer with the
flexibility to build either a cost-focused system or a
high-performance system.

Another key goal was ease of system design. The chip set had to
include all complex control functions and require minimal
discrete logic on the module so that a system could be built
using a personal computer (PC) mother board and off-the-shelf
components.

Time-to-market was a major factor during the development of the
chip set. The DECchip 21064 microprocessor had been announced
nearly five months before we started to develop the core logic
chip set. Digital wanted to proliferate the Alpha AXP
architecture in the PC market segment; however, the majority of
system vendors required some core logic functions in conjunction
with the microprocessor to aid them in designing systems quickly
and with low engineering effort. Providing these interested
system vendors with core logic chip set samples as soon as
possible was very important to enable the DECchip 21064
microprocessor to succeed in the industry.

To determine the feature set that would meet the project goals,
we polled a number of potential chip set customers in the PC
market segment to understand their needs and the relative
importance of each feature. We kept this feedback in mind during
the course of the design and made appropriate design decisions
based on this data. The following subsections describe the final
chip set partitioning, the trade-offs we had to make in the

design, and the design process.

Chip Set Overview

The chip set consists of three unique designs:

 o DECchip 21071-BA data slice

 o DECchip 21071-CA cache/memory controller

 o DECchip 21071-DA PCI bridge

It can be used in either a four-chip or a six-chip configuration.

The DECchip 21071 chip set consists of four chips: two data
slices, one cache/memory controller, and one PCI bridge. This
configuration was developed for a cost-focused system; it
provides a 128-bit path to secondary cache and a 64-bit path to
memory. Cache and memory data have 32-bit parity protection.

The DECchip 21072 chip set consists of six chips: four data
slices, one cache/memory controller, and one PCI bridge. Intended
for use in a performance-focused system, this configuration
provides a 128-bit path to secondary cache and a 128-bit path to
memory. The system designer can choose between 32-bit parity or
32-bit error correcting code (ECC) protection on cache and memory
data.

Figure 1 is a block diagram of an example system using the core
logic chip set. For a list of components used in a typical system
built with this chip set, see the EB64+ Kit Overview section.

[Figure 1 (Core Logic Chip Set Configurations in a System Block
Diagram) is not available in ASCII format.]

The processor controls the secondary cache by default. It
transfers ownership of the secondary cache to the cache
controller when it encounters a read or a write that misses in
the secondary cache. The cache controller is responsible for
allocating the cache on CPU memory reads and writes, and for
extracting victims from the cache. The cache controller is also
responsible for probing and invalidating the secondary cache on
direct memory access (DMA) transactions initiated by devices on
the PCI local bus.[3]

The ownership of the address bus, sysAdr, is shared by the
processor and the PCI bridge. The processor is the default owner
of sysAdr. When the PCI bridge needs to initiate a DMA
transaction, the cache controller performs the arbitration.

Data is transferred between the processor, the secondary cache,
the data slices, and the cache/memory controller over the sysData
bus, which is 128 bits wide. In the 4-chip configuration, each of

the two data slices connects to 64 bits of the sysData bus. In
the 6-chip configuration, each of the four data slices connects
to only 32 bits of the sysData bus, leaving 32 data bits
available for use as ECC check bits for memory and cache data.
The cache/memory controller connects to the lower 16 bits of the
sysData bus to allow access to its control and status registers
(CSRs).

Data transfers between the PCI and the processor, the secondary
cache, and memory take place through the PCI bridge and the data
slices. The PCI bridge and the data slices communicate through
the epiBus. The epiBus contains 32 bits of data (epiData), 4 byte
enables, and the data path control signals. We defined the
epiBus control signals so that the PCI bridge chip operation
is independent of the number of data slices in the system.
Furthermore, the epiBus control signal definitions allow the
epiData bus width to be expanded to 64 bits without changing the
design of the data slice.

The system designer can link the system to an expansion bus, such
as the Industry Standard Architecture (ISA) bus or the Extended
Industry Standard Architecture (EISA) bus, by using a PCI-to-ISA
bridge or a PCI-to-EISA bridge. The Intel 82378IB and 82375EB
bridges, for example, are available in the market for the ISA and
the EISA buses, respectively.[4]

Partitioning Alternatives

As a result of our customer visits, we found that the following
features were important for cost-focused systems. The features,
which affect the partitioning, are listed in descending order of
importance.

 o Low cost for the chip set

 o Low chip count

 o Parity protection on memory

 o Inexpensive memory subsystem

The following features were identified as important for
performance-oriented, server-type systems (in descending order of
importance).

 o High memory bandwidth

 o Chip set cost

 o Low chip count

 o ECC-protected memory (This is a requirement in a server
 system.)

During the feasibility stages, we decided to support a 128-bit
secondary cache data path and not offer optional support for a
64-bit cache data path. We felt that a system based on the
DECchip 21066 microprocessor, which supports a 64-bit cache
interface, would meet the cost and performance needs in this
segment of the market.[5] Keeping in mind the importance of
time-to-market, we decided that the added flexibility in system
design alternatives was not worth the additional design and
verification time required to incorporate this feature.

We decided to provide an option between 64-bit-wide memory and
128-bit-wide memory. The wider memory data path provides higher
memory bandwidth but at an additional cost. The minimum memory
that the system can support with a 128-bit-wide memory data path
is double that supported by a 64-bit memory data path. Memory
upgrades are also more expensive. For example, with 4-megabyte
(MB) single in-line memory modules (SIMMs), the minimum memory
supported by a 64-bit memory data path is 8 MB (two SIMMs); with
a 128-bit memory data path, it is 16 MB. Memory increments with a
64-bit data path are 8 MB each, and with a 128-bit data path are
16 MB each. We decided that the performance of the 64-bit memory
data path was sufficient for a cost-focused system; however, for
memory-intensive applications in the server market, 128-bit-wide
memory was necessary.

One alternative we explored could have provided all the features
of a cost-focused system in a chip set of three chips, using two
identical 208-pin data path slices and one 240-pin controller
that provided the PCI bridge, cache controller, and memory
controller functions. This configuration, however, would have
been restricted to 64-bit memory width and parity protection on
memory. Thus it would not have met two of the four desirable
features of a high-performance system.

The partitioning we chose allowed us to satisfy the requirements
of both cost-focused and performance-oriented systems. By
splitting the design into three unique chips: a data slice, a
cache/memory controller, and a PCI bridge, we met the
requirements of a cost-focused system with the 4-chip
configuration. All 4 chips are 208-pin packages, costing roughly
the same as the 3-chip alternative. This partitioning scheme
allowed us to support a 128-bit-wide data path to memory and ECC
protection with the addition of 2 data slices at relatively low
incremental cost. Thus it met the requirements of a
performance-focused system. We could not support ECC with the
64-bit-wide memory due to pin-count constraints, but we felt that
this trade-off was reasonable given that cost was more important
than ECC-protected memory in this market. This partitioning
scheme had the added advantage of presenting a single load on the
PCI local bus, as opposed to the two loads presented by the
3-chip configuration described above.

Another alternative was to provide a 4-chip configuration with

128-bit-wide, ECC-protected memory. This would have required the
data slices to be of higher pin count and therefore higher cost,
thus penalizing the cost-focused implementation.

PCI Local Bus Interface

The PCI local bus is a high-performance bus intended for use as
an interconnect mechanism between highly integrated peripheral
controller components, peripheral add-in boards, and
processor/memory subsystems. Interfacing the DECchip 21064 family
of CPUs to the PCI local bus opens up the Alpha AXP architecture
to what promises to be an industry-standard, plug-and-play
interconnect for PCs. The PCI bridge provides a fully compliant
host interface to the PCI local bus. This section describes some
features of the PCI bridge.

The PCI bridge includes a rich set of DMA transaction buffers
that allows it to perform burst transfers of up to 64 bytes in
length with no wait states between transfers. We optimized our
design for naturally aligned bursts of 32 bytes and 64 bytes
because this would eliminate the need for a large address counter
and because we discovered through research that most PCI devices
in development would not perform DMA bursts longer than 64 bytes.

DMA Write Buffering. We chose a DMA write buffer size of four
cache blocks. This size would allow for two PCI peripheral
devices to alternate bursts of 64 bytes each, thus maximizing use
of PCI bandwidth. We organized the DMA write buffer as four cache
block entries (four addresses) to simplify the cache/memory
interface. In addition, this would allow the data buffers to be
used efficiently whenever 32-byte bursts were in use.

DMA Read Buffering. We designed the DMA read buffer to be able
to store a fetch cache block and a prefetch cache block. As with
the DMA write buffer, the DMA read buffer is organized to allow
for efficient operation during both 64-byte and 32-byte bursts.
Prefetching is performed only if either the initiating PCI
command type or a programmable enable bit indicates that the
prefetch data will likely be used. This allows the system
designer to combine 32-byte and 64-byte devices without
sacrificing cache/memory bandwidth. To minimize typical DMA read
latency while maintaining a coherent view of memory from the PCI,
we designed the capability for DMA read transactions to bypass
DMA write transactions, which are queued in the DMA write buffer,
as long as the DMA read address does not conflict with any of the
valid DMA write addresses. Because most DMA read addresses are
not expected to conflict, typical DMA read latency does not
suffer as a result of the relatively deep DMA write buffer.

Scatter Gather Address Mapping (S/G Mapping). The PCI bridge

provides the ability to map virtual PCI addresses to physical
locations in main memory. Because each 8-kilobyte (kB) page can
be mapped to an arbitrary physical page in main memory, a virtual
address range that spans one or more contiguous pages can be
mapped to pages that are physically scattered in main memory,
thus the name S/G mapping. Using this mechanism, software
designers can efficiently manage memory while performing
multiple-page DMA transfers.

Although our inclusion of S/G mapping offers efficiency benefits
to software designers, it also presented us with design
challenges in the areas of performance and cost goals. The PCI
bridge performs address translation by using incoming PCI
physical addresses to index into a lookup table. Each incoming
PCI transaction requires the PCI bridge to perform an address
translation. A simple implementation might store the entire
lookup table in local static random-access memory (RAM). To avoid
use of this costly component and corresponding chip set pin
allocations, our designers opted to store the lookup table in
main memory. To minimize the performance impact of storing the
table in main memory, the designers incorporated an on-chip
translation lookaside buffer (TLB) for storing the eight most
recently used translations. To keep things simple, we implemented
a circular TLB replacement algorithm.

PCI Byte Access Support. To successfully incorporate Alpha AXP
CPUs into PC environments, we required collaboration across the
corporation. Digital engineers defined a software/hardware
mechanism that allows the 32-bit/64-bit Alpha AXP architecture to
coexist with components on the PCI local bus that require
arbitrary byte access granularity. This mechanism requires that
low-order address bits be used to encode byte lane validity.
Implementing this mechanism reduces the density of I/O registers
in the address space and conveys byte lane validity information
through the address itself.

I/O write performance in this address space suffers because each
CPU-initiated I/O transaction can convey only up to 64 bits (a
quadword) of data and byte lane validity information. To allow
for full utilization of the DECchip 21064 microprocessor's
32-byte internal write buffer during I/O writes to devices that
do not require byte granularity, the chip set designers
implemented an address range that does not perform byte lane
decoding. In this space, up to 32 bytes can be transferred from
the CPU and burst onto the PCI in a single transaction. This
allows for efficient bandwidth utilization during writes to I/O
devices that exhibit memory-like interfaces, such as video
adapters with directly accessible frame buffers.

Guaranteed Access Time. Systems that support EISA or ISA
expansion buses must be able to provide a guaranteed maximum read
latency from EISA/ISA peripherals to main memory (2.5

microseconds for EISA, 2.1 microseconds for ISA). This
requirement presented a challenge for us during our design.
In the worst case, a simple memory read request from an EISA/ISA
peripheral can result in significant latency due to our use of
deep DMA write buffering and S/G mapping. Although our decision
to allow DMA reads to bypass DMA writes provides systems with a
typically low latency, this feature does not avoid worst-case
high latency. To meet the EISA/ISA worst-case requirements, we
included in our design PCI sideband signals and cache/memory
arbitration sequences that allow for guaranteed main memory
access time. When guaranteed access time is required, the
EISA/ISA bridge must signal the PCI bridge by asserting a PCI
sideband signal. In response, the PCI bridge will flush its DMA
write buffers, hold ownership of the cache/memory, and signal
readiness to the EISA/ISA bridge. When the EISA/ISA transaction
starts, this sequence guarantees that the path to main memory is
clear and will therefore have guaranteed access time.

Memory Controller

The memory controller supports up to eight banks of dynamic
random-access memory (DRAM) and one bank of dual-port video
random-access memory (VRAM). Each memory bank can be selectively
programmed to enable two subbanks, which allows the memory
controller to support double-sided SIMMs that have two row
address strobe (RAS) lines per bank. The memory controller thus
has the flexibility to support system memory sizes of 8 MB to 4
gigabytes (GB) of DRAM and 1 MB to 8 MB of VRAM. System designers
can choose to implement memory by banks of individual DRAMs or
SIMMs, either on board or across connectors. The memory
controller is able to support a wide range of DRAM sizes and
speeds across multiple banks in a system, by providing separate
programmable bank base address, configuration, and timing
registers on a per-bank basis.

We designed the memory controller for system flexibility by
supporting fully programmable memory timing with 15-nanosecond
(ns) granularity. This programmability supports SIMM speeds
ranging from 100 ns down to 50 ns. Each memory bank's timing is
programmed through registers that consist of DRAM timing
parameters to control counters. Some examples of programmable
timing parameters used to control the memory interface are "row
address setup," "read CAS width," and "CAS precharge." As the
memory controller sequences through a memory transaction, these
programmed counters control the exact timing of RAS, column
address strobe (CAS), the DRAM address bits, and write enables.
At the same time, the memory controller sends commands from the
cache/memory controller chip to the data slice chips to control
the clock edge for sending and receiving memory data on DRAM
writes and reads, respectively.

One customer is currently using one of the banks in combination
with medium-scale integration (MSI) components to interface to a

very slow memory bus that supports flash read-only memories ROMs,
nonvolatile RAM, and light-emitting diodes (LEDs). Since the
original design was not done with a very slow memory interface in
mind, this demonstrates that the chip set provides flexible,
programmable timing functionality independent of the system.

The memory controller allows the system designer to build an
inexpensive graphics subsystem using a video frame buffer on the
memory data bus, and a low-cost video controller on an expansion
bus like the ISA bus. The system designer can achieve competitive
graphics performance by using the processing power of the CPU for
graphics computations and the existing high-bandwidth memory data
path for transferring data between the graphics computation
engine (the CPU) and the frame buffer. The interface between the
memory controller and the video controller is very economical:
only two control signals are required to time the transfer of
screen data from the random-access memory of the VRAM to the
serial-access memory of the VRAM. The video controller is
responsible for transferring the data from the serial memory of
the VRAM to the screen.

Although we designed the memory controller to be flexible, we
also included features that improved performance. Two such
features are optimizations to reduce memory read latency and
selective support for use of page mode between memory
transactions.

To minimize memory read latency, the memory controller
prioritizes reads above writes pending in the memory write
buffer. For a CPU memory read, the memory controller waits six
system cycles after the last read data before servicing a pending
write, unless the memory write buffer is full. At least six
system cycles occur between the time the memory controller
latches the last read data from the DRAMs and the time a
subsequent read request could be issued by the DECchip 21064
processor. Because memory write transactions take longer than six
cycles to complete, our choice to delay the execution of a
pending write allows read latency to be reduced for the following
read. Waiting six system cycles after a read is a significant
performance improvement for successive reads with cache victims
because every read is accompanied by a write.

We also chose to improve performance by selectively determining
which memory transactions would benefit most by staying in page
mode. The memory controller stays in page mode after a DMA read
burst and between successive memory writes. Page mode is not
supported between CPU memory read transactions since the RAS
precharge time can typically be hidden between successive CPU
read requests.

Cache Controller

The secondary cache interface logic is partitioned across the

cache/memory controller chip and the data slice chips. The
cache/memory controller chip contains the address path and
control logic, and the data slice chips provide buffering for
four cache lines of data to and from memory. We designed the
cache controller to be system independent and flexible so that it
could be designed into a wide range of systems.

The chip set supports a direct-mapped, write-back secondary cache
with a data width of 128 bits and a cache line fixed at 32 bytes.
The chip set allows the system designer to choose a secondary
cache size ranging from 128 kB to 16 MB, as determined by
software configuration. The speed of the cache RAMs must be fast
enough to support the chip set's read access time of one system
cycle. Writes to the cache can be programmed to take one or two
system cycles. The write enables can be programmed to have a
half-cycle or full-cycle pulse width when writing the cache
during fill cycles. This feature was added to give the system
designer flexibility in meeting SRAM write-enable specifications
with various system cycle times.

Another feature added to the cache controller to provide
flexibility is the support of an optional allocation policy on
CPU writes. The write-back secondary cache is always allocated on
CPU memory read misses. The option to allocate the cache on CPU
memory write cache misses is programmable and can be disabled by
software during system initialization. We chose to provide this
option since disabling cache write allocation can allow higher
memory write bandwidth. This feature can be used by system
designers to determine whether particular applications have
better performance when secondary cache write allocation is
disabled.

The cache controller provides arbitration between the CPU and the
PCI bridge chip for secondary cache ownership. The arbitration
policy is programmable and varies the level of control the PCI
bridge has in keeping the ownership of the secondary cache during
DMA transactions.

Although we designed the cache controller for system flexibility,
we also included features that would give it performance
advantages. One such feature is the memory write buffer. The
cache controller uses the memory write buffer to store four cache
lines of data for cache victims, DMA writes, CPU-noncacheable
writes, and CPU-cacheable writes when write allocate mode is
disabled. The buffer is organized as first in, first out (FIFO)
on cache-line boundaries. Successive writes to the same cache
line are not merged into the buffer because the CPU chip write
buffer performs this function. The cache controller allows CPU
and DMA reads to bypass the write buffer as long as the read
address does not conflict with any of the write addresses. The
memory write buffer improves performance by allowing timely
acknowledgment of write transactions. Read bypassing of the write
buffer improves performance by reducing memory read latency.

Global Design Considerations

This section briefly discusses some of the decisions concerning
silicon technology, packaging technology, and internal clocking
of the chip sets.

Silicon Technology. The design team chose to use an externally
supplied gate-array process that offered quick time-to-market and
low cost. Most chips designed in the Semiconductor Engineering
Group are manufactured using Digital's proprietary complementary
metal-oxide semiconductor (CMOS) processes, which emphasize high
speed and high integration. Our chips' performance and complexity
-- 30-ns cycle time, approximately 35,000 gates per chip -- did
not require these capabilities. Gate-array technology offered
shorter design times and quicker turnaround times than Digital's
custom silicon technology.

Packaging Technology. When choosing a package, the design team
considered issues of package and system cost, design
partitioning, and heat produced by power dissipation. Some of
these issues are discussed in the Partitioning Alternatives
section.

We chose to put all three chips in 208-pin plastic quad flat
packages (PQFPs). The 208-pin PQFP is one of the most popular
low-cost, medium pin-count, surface-mount packages. One drawback
of PQFPs, however, is their low limit on power dissipation. To
ensure a junction temperature of 85 degrees Celsius with 100
linear feet per minute of airflow, the power dissipation must be
limited to 1.5 watts (W). The power dissipation of the data slice
is about 1.7 W, resulting in a junction temperature approaching
100 degrees Celsius. We verified that reliability was not an
issue at a junction of 100 degrees Celsius. However, we had to
ensure that the chip timing worked at a junction temperature of
100 degrees Celsius, as opposed to the 85 degrees Celsius we
would normally use. We could not use this approach on the PCI
bridge chip because the additional timing optimization required
would have adversely affected the schedule. We had to take
special measures in the design to keep the power dissipation
within the 1.5-W limit. We implemented conditional clock nets for
large blocks of registers that are loaded infrequently, such as
the CSRs and the TLB.

Internal Clocking. To achieve the shortest possible cross chip
set latencies, we implemented a four-phase clock system. A
four-phase system allows data to be transferred from one section
of the chip set to another in less than a full clock cycle if
logic delays are sufficiently small.

In contrast to approaches based on latch designs, which can offer

lower gate-count implementations, we chose to use mostly
edge-triggered devices. We viewed this as an opportunity to
simplify the design analysis and timing verification process by
keeping the number of timing reference points to four clock
edges.

To further simplify the clocking system, the designers chose to
make the PCI clock and the cache/memory clock synchronous to each
other. This approach avoids the need for synchronizers (and
corresponding synchronizer delays) between clock domains; it also
reduces the number of clock speed combinations to be verified.
Although the synchronous approach does not allow the system
designer to decouple the PCI clock speed from the cache/memory
clock speed, we felt that the added complexity and verification
effort required to support asynchronous clocks would not be worth
the small degree of flexibility that would be gained from such a
design.

Functional Verification

Given the short design schedule and the requirement that
first-pass prototypes be highly functional for customers, the
team adopted a strategy of pseudorandom testing at the
architectural level of the chip set as a whole. We felt that this
strategy would test more of the design more quickly and would
find more subtle and complex bugs than a testing methodology
focused on the gate/register level of each separate chip.

The DECSIM simulation environment included models for the three
chips, a DECchip 21064 bus functional model (BFM), a PCI BFM, a
cache model, a memory model, and some "demon" models that could
be programmed to pseudorandomly generate events such as the
assertion of the video port inputs or the injection of errors.
We developed SEGUE templates and used them in a variety of
exercisers to generate DECSIM scripts pseudorandomly.[6]

To keep the testing environment from being overly complicated, we
allowed users to pseudorandomly configure only those aspects of
the design that significantly altered the operation of the
control logic. Many configurable aspects of the chip set and
simulation environment (for example, the PCI S/G map) were not
varied in the exercisers and were tested with simple focused
tests.

In addition to programming BFMs to read back and check data, we
built a variety of checkers into the simulation environment to
verify correct operation of RAM control timing, PCI protocol,
tristate bus control, PCI transaction generation, data cache
invalidate control on the DECchip 21064 CPU, and many other
functions. At the end of every exerciser run, the secondary cache
and memory were checked for coherence and correct error
protection.

The verification efforts of the team resulted in the removal of
over 200 functional bugs, ranging from simple bugs to quite
complex and subtle bugs, prior to the fabrication of first-pass
prototypes. We found no "show stopper" bugs in the core functions
required for first-pass prototype chips, and we used simple
work-arounds for the few bugs that we did find in the first-pass
design.

THE EB64+ EVALUATION KIT

This section of the paper discusses the development of the EB64+
evaluation kit. After presenting the project's goals and the
overview of the kit, it discusses some of the module design
issues that were addressed during the design of the EB64+ module.
This section concludes with performance results of benchmarks run
on the EB64+ system.

Project Goals

The first and most important goal of the EB64+ evaluation kit
project was to provide a sample design for customers using the
DECchip 21064 microprocessor and the DECchip 21071 and the
DECchip 21072 chip sets. Another major goal was to provide an
evaluation and development platform that used standard PC
components. These two goals would enable a customer to evaluate
their design trade-offs quickly and to complete their system
design faster and with a better chance of success.

Secondary goals were to provide a development and debug
environment for the core chip set and to provide a
high-performance benchmarking system for the microprocessor and
core chip set. The EB64+ kit also serves as a platform for
hardware and software development for PCI I/O devices.

EB64+ Kit Overview

Figure 2 shows a block diagram of the EB64+ module, a full-size
PC (12.0 inch by 13.0 inch) mother board. The major components on
the module are given below:

 o DECchip 21064 microprocessor (150 megahertz [MHz] to 275
 MHz)

 o Secondary cache (512 kB, 1 MB, or 2 MB)

 o Secondary cache address buffer

 o Interrupt/configuration programmable array logic (PAL)
 device

 o Serial ROM interface for the microprocessor

 o System clock generator: oscillator, phase-locked loop
 (PLL), clock buffers

 o Core logic chip set

 o Two secondary cache control PALs

 o PCI bus peripherals: embedded small computer system
 interface (SCSI) and Ethernet

 o PCI bus arbiter

 o Intel 82378IB bridge between the PCI and ISA buses

 o Three ISA expansion slots

 o Eight slots of standard 36-bit memory SIMMs

 o Memory control signal buffers

[Figure 2 (Block Diagram of the EB64+ Module) is not available in
ASCII format.]

Secondary Cache Size and Speed

The DECchip 21064 processor has programmable secondary cache read
and write access times with a granularity equal to the processor
clock cycle time. For instance, if the read access time is 25 ns,
the programmed value for a 150-MHz processor (6.6-ns cycle time)
would be 4, and the programmed value for a 200-MHz processor
(5-ns cycle time) would be 5.

One of the more difficult decisions for any system designer is to
determine the optimal cache size and speed in terms of cost and
performance. The EB64+ module supports various cache size and
speed options in order to allow a system designer to evaluate the
difference between a large, slow cache and a small, fast cache.
The trade-off here is usually between lower cost for the 512-kB
cache and higher performance for the 2-MB cache. The 2-MB cache
uses four 128K by 9 SRAMs and twelve 128K by 8 SRAMs for the data
store, and the 512-kB cache uses four 32K by 9 SRAMs and twelve
32K by 8 SRAMs.

We decided to share data RAM footprints between the 32K by 8
SRAMs and the 128K by 8 SRAMs, thus allowing the system designer
to build two different modules: one with a 512-kB cache and the
other with a 2-MB cache. The designer can evaluate the
speed-to-size trade-off by using faster SRAMs for the smaller
cache and slower SRAMs for the larger cache. The system designer
can choose to evaluate the effect of varying the cache size from
512 kB, to 1 MB, to 2 MB, without varying the cache speed, by
configuring jumpers to disable portions of the 2-MB cache on an

EB64+ module.

System Clocking Design

System clocking for the EB64+ module presented a challenge in two
different areas. The first area was the high-frequency input
clocks needed by the DECchip 21064 microprocessor. The input
clocks operate at twice the frequency of the DECchip 21064 CPU,
requiring a 300- to 550-MHz oscillator for the EB64+ module.
Initially, an emitter-coupled logic (ECL) output oscillator was
used for this purpose. The main drawback to this solution was the
cost, which is in the $40 to $50 range. The other disadvantage
was the long lead time and nonrecurring engineering charges
associated with unique oscillator frequencies.

By working closely with a vendor of gallium arsenide (GaAs)
devices, we were able to provide an alternative in the $8 to $18
range. The device consists of a low-frequency oscillator and a
PLL that multiplies the low-frequency oscillator to provide the
high-frequency input that the processor requires. For example, a
300-MHz frequency clock is generated using a 30-MHz oscillator
connected to a PLL that multiplies this by 10 to provide the
300-MHz input. Since lower frequency oscillators are produced by
more vendors, the lead times and nonrecurring engineering charges
for unique frequencies are minimal when compared to the ECL
output oscillators.

Generating the clocks for the other system components was quite
challenging. The core logic chip set, PCI devices, and the cache
control PALs together require three types of clock signals: the
first clock is in phase with the processor's sysClkOut clock
signal; another clock is 90 degrees phase shifted from the first;
and a third clock has twice the frequency of and is in phase with
the first. The frequency of sysClkOut is an integral divisor
(between 2 and 17) of the processor's internal clock frequency.
Some divisors may result in a sysClkOut duty cycle that is not 50
percent. A PLL is used to generate both the phase-shifted and the
double-frequency clock. It also guarantees a 50 percent duty
cycle, which is required for the PCI clock.

Figure 3 illustrates how the EB64+ module generates the three
system clocks from the processor's sysClkOut signal. In addition
to the PLL, the system clock generator uses low-skew clock
buffers to drive the final device loads of the system. One output
of the clock buffers is used to provide the feedback to the PLL.
This causes the overall delay from sysClkOut to the system clock
to be close to zero.

[Figure 3 (EB64+ System Clock Distribution) is not available in
ASCII format.]

Design Evolution

As noted previously, the EB64+ kit was developed to provide an
example design to external customers as well as provide a debug
and development platform for the core logic chip set. The focus
of the design evolved during the project.

Initially, we included several features on the EB64+ module to
support the various modes of the chip set. As the design
progressed, an updated version of the EB64+ module was developed.
The final version focused more on being a sample design than a
debug and development platform for the chip set. Some of the
features that fell into this category are listed below.

 o Initially, the EB64+ module supported both the 64-bit and
 128-bit memory on the same module with configuration
 jumpers. This design affected performance because 64 bits
 of the cache data bus were routed to two data slice
 chips. The final version of the EB64+ module supports
 only 128-bit memory. This change allowed us to reduce the
 cache read access time on the DECchip 21064 processor by
 3 ns, thus reducing the programmed 2-MB cache read access
 time for a 200-MHz DECchip 21064 processor from 7 cycles
 to 6 cycles.

 o Certain modes of the chip set were controlled by
 configuration jumpers initially. These have been
 redefined to support additional cache sizes and speeds to
 support a wider range of evaluation and benchmarking.

Performance

Figures 4 and 5 show the results of the BYTE magazine portable
CPU/floating-point unit (FPU) benchmarks run on an EB64+ system
running the Windows NT operating system. The EB64+ system has a
128-bit memory subsystem with 70-ns (RAS access time) DRAMs. The
150-MHz, 166-MHz, and 200-MHz benchmarks were run using a DECchip
21064 microprocessor with a 512-kB cache with a 28-ns read access
time. The 275-MHz benchmark was run on a DECchip 21064A
microprocessor with a 2-MB cache with a 35-ns read access time.
The benchmarks for the DECchip 21066 processor were run on an
EB66 system with a 256-kB cache. The figures show the performance
relative to other Windows NT systems available in the market
today. The benchmark data for the Intel486 DX2-66 and Pentium
60-MHz chips and for the MIPS Computer Systems' R4400SC
processors was taken from the Alpha AXP Personal Computer
Performance Brief--Windows NT.[7]

[Figure 4 (BYTE Portable CPU/FPU Benchmarks) is not available in
ASCII format.]

[Figure 5 (EB64+ System Performance Benchmarks) is not available
in ASCII format.]

Table 1 compares the bandwidths on an EB64+ system using the two
possible chip set configurations, a 200-MHz processor, and 70-ns
DRAMs.

Table 1 Comparison between a 64-bit Memory Data Path and a 128-bit
Memory Data Path

Transaction Type 64-bit Memory 128-bit Memory
 4-chip Config- 6-chip Config-
 uration uration

CPU Memory Writes:
Write with secondary cache allocate 133 MB/s 133 MB/s
Write with no allocate 133 MB/s 267 MB/s

CPU Memory Read:
Bandwidth
 76 MB/s 107 MB/s

I/O Write:
8 bytes 38 MB/s 38 MB/s
32 bytes (PCI dense memory space) 82 MB/s 82 MB/s

I/O Read:
8 bytes 22 MB/s 22 MB/s

DMA Write:
64-byte PCI burst 119 MB/s 119 MB/s
32-byte burst 107 MB/s 107 MB/s

DMA Read:
Cache miss, 64-byte burst 55 MB/s 65 MB/s
Cache miss, 32-byte burst 41 MB/s 48 MB/s
Cache hit, 64-byte burst 74 MB/s 74 MB/s
Cache hit, 32-byte burst 51 MB/s 51 MB/s

SUMMARY

The DECchip 21071 and the DECchip 21072 chip sets and the EB64+
evaluation kit met their project goals by helping to proliferate
the Alpha AXP architecture in the PC market. Several customers,
as well as some groups within Digital, use the chip sets in their
systems today. Many of these customers and internal groups have
used the EB64+ platform as a basis for their designs and as a
means of initiating their software development while they were
developing their hardware. The EB64+ platform has also been used
to develop device drivers for several PCI devices developed by
Digital.

ACKNOWLEDGMENTS

The authors would like to acknowledge the efforts of the
following people. The projects would not have been successful
without them. Aaron Bauch, Dick Bissen, Mike Blake, Gregg
Bouchard, Mike Callander, Derrick Dacosta, Paul Dziekowicz, Greg
Fitzgerald, Avi Godbole, Mike Goulet, Shaheed Haque, Franklin
Hooker, Dave Ives, John Jakubowski, Mike Kagen, Elias Kazan, Don
MacKinnon, Mike Martino, Mark Matulaitis, Kevin McCarthy, John
Murphy, Mike Napier, Victor Peng, Eric Rasmussen, Tracy
Richardson, Mark Riggs, George Rzeznik, Debbie Salois, Raghu
Shankar, Will Sherwood, Jai Singh, Wilson Snyder, Hemendra
Talesara, Tom Walthall, Juanita Wickham, Mary Woodcome, Marco
Zamora, and Beth Zeranski.

REFERENCES

1. DECchip 21064-AA Microprocessor Hardware Reference Manual
 (Maynard, MA: Digital Equipment Corporation, Order No.
 EC-N0079-72, 1992).

2. R. Sites, ed., Alpha Architecture Reference Manual
 (Burlington, MA: Digital Press, 1992).

3. PCI Local Bus Specification, Revision 2.0 (Hillsboro, OR:
 PCI Special Interest Group, Order No. 281446-001, April
 1993).

4. 82420/82430 PCIset ISA and EISA Bridges (Santa Clara, CA:
 Intel Corporation, 1993).

5. DECchip 21066 and DECchip 21068 Hardware Reference
 Manual (Maynard, MA: Digital Equipment Corporation, Order
 No. EC-N2681-72, 1994).

6. W. Anderson, "Logical Verification of the NVAX CPU Chip
 Design," Digital Technical Journal, vol. 4, no. 3 (Summer
 1992): 38-46.

7. Alpha AXP Personal Computer Performance Brief--Windows
 NT, 2d ed. (Maynard, MA: Digital Equipment Corporation,
 Order No. EC-N2685-10, January 1994).

TRADEMARKS

Alpha AXP and DECchip are trademarks of Digital Equipment
Corporation.

BYTE is a registered trademark of McGraw-Hill, Inc.

Intel, Intel486, and Pentium are trademarks of Intel Corporation.

MIPS is a trademark of MIPS Computer Systems, Inc.

PAL is a registered trademark of Advanced Micro Devices, Inc.

Windows NT is a registered trademark of Microsoft Corporation.

BIOGRAPHIES

Samyojita A. Nadkarni Sam Nadkarni is the program manager for
CPU core logic chip sets in the Semiconductor Engineering Group.
She was the leader of the DECchip 21071 development project.
Prior to that, Sam led the development of the memory controller
chip used in the VAX 4000 Models 400, 500, and 600 systems. She
also worked on memory controller/bus adapter chips for the VAX
4000 Model 300 and MicroVAX 3500 systems. Sam joined Digital in
1985 and holds a Bachelor of Technology (1983) from the Indian
Institute of Technology and an M.S. (1985) from Rensselaer
Polytechnic Institute.

Walker Anderson A principal engineer in the Semiconductor
Engineering Group, Walker Anderson is currently the manager of
graphics and multimedia chip verification. He was the
verification team leader for the NVAX chip and for the DECchip
21071/21072 chip sets as well as a co-leader of the verification
team for a future Alpha AXP chip. Before joining Digital in 1988,
Walker was a diagnostic and testability engineer in a CPU
development group at Data General Corporation for eight years. He
holds a B.S.E.E. (1980) from Cornell University and an M.B.A.
(1985) from Boston University.

Lauren M. Carlson A senior hardware engineer in the
Semiconductor Engineering Group, Lauren Carlson is currently
working on the design of a core logic chip set for a new
microprocessor. Prior to this, she worked on the design of the
cache/memory controller of the DECchip 21071 chip set and
completed the hardware functional verification of the chip set on
the EB64+ evaluation board. Lauren has also contributed to the
design of the I/O controller and system module of the VAXstation
4000 Model 90. Lauren holds a patent on gate array design. She
has a B.S.E.E. from Worcester Polytechnic Institute (1986) and
joined Digital in 1987.

David Kravitz David Kravitz received a B.S.E.E. from the
Massachusetts Institute of Technology. Upon joining Digital in
1985, he worked on the cache control and processor chips for the
VAX 6000 Models 400 and 500 systems in Hudson, Massachusetts, and
a Cluster Interconnect (CI) chip in Jerusalem, Israel. As a
senior hardware engineer in the Semiconductor Engineering Group,
David designed the data path chip for the DECchip 21071 and
DECchip 21072 chip sets. He is currently working on a low-cost
microprocessor.

Mitchell O. Norcross Senior engineer Mitch Norcross is currently

project leader for a second-generation core logic chip set for
the DECchip 21064. Since joining Digital in 1986, Mitch has
contributed to the design of several ASICs and systems, including
the DECchip 21072 chip set, the VAXstation 4000 Model 90, and
Digital's first fault-tolerant VAX system, the VAXft 3000. He
received a B.E. in electrical engineering (1985) and an M.S. in
computer engineering (1987), both from Manhattan College. Mitch
holds two patents related to fault-tolerant system design.

Thomas M. Wenners Thomas Wenners is a principal hardware
engineer in the Semiconductor Engineering Group. He is the
project leader responsible for various high-performance mother
boards for Alpha AXP PCs. In addition, he is involved with issues
concerning high-speed clocking in Alpha AXP chips. Tom's previous
work includes the module design of the VAX 6000 Model 600 and VAX
4000 Model 90, as well as module design and signal integrity
support on ESB products. Tom joined Digital in 1985. He received
a B.S.E.E. (cum laude, 1985) and an M.S.E.E. (1990) from
Northeastern University.

===
Copyright 1994 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

