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ABSTRACT

The DECchip 21071 and the DECchip 21072 chip sets were designed 
to provide simple, competitive devices for building cost-focused 
or high-performance PCI-based systems using the DECchip 21064 
family of Alpha AXP microprocessors. The chip sets include data 
slices, a bridge between the DECchip 21064 microprocessor and the 
PCI local bus, and a secondary cache and memory controller. The 
EB64+ evaluation kit, a companion product, contains an example PC 
mother board that was built using the DECchip 21064 
microprocessor, the DECchip 21072 chip set, and other 
off-the-shelf PC components. The EB64+ kit provides hooks for 
system designers to evaluate cost/performance trade-offs. Either 
chip set, used with the EB64+ evaluation kit, enables system 
designers to develop Alpha AXP PCs with minimal design and 
engineering effort. 

INTRODUCTION
    
The DECchip 21071 and the DECchip 21072 chip sets are two 
configurations of a core logic chip set for the DECchip 21064 
family of Alpha AXP microprocessors.[1] The core logic chip set 
provides a 32-bit PCI local bus interface, cache/memory control 
functions, and all related data path functionality to the system 
designer. It requires minimal external logic. The EB64+ kit is an 
evaluation and development platform for computing systems based 
on the DECchip 21064 microprocessor and the core logic chip set. 
The EB64+ kit also served as a debug platform for the chip sets. 
The DECchip 21071 and the DECchip 21072 chip sets and the EB64+ 
evaluation kit were developed to proliferate the Alpha AXP 
architecture in the industry by providing system designers with a 
means to build a wide range of uniprocessor systems using the 
DECchip 21064 processor family with minimal design and 



engineering effort.[2]

The core logic chip set and the EB64+ evaluation kit were 
developed by two teams that worked closely together. This paper 
describes the goals of both projects, the major features of the 
products, and the design decisions of the development teams. 

THE CORE LOGIC CHIP SET

This section discusses the design and development of the two 
configurations of the core logic chip set. After presenting the 
project goals and the overview, the section describes 
partitioning alternatives and the PCI local bus interface. It 
then details the memory controller and the cache controller and 
concludes with discussions of design considerations and 
functional verification.
                  

Project Goals

The primary goal of the project was to develop a core logic chip 
set that would demonstrate the high performance of the DECchip 
21064 microprocessor in desktop and desk-side systems with entry 
prices less than $4,000. The chip set had to be system 
independent and had to provide the system designer with the 
flexibility to build either a cost-focused system or a 
high-performance system.

Another key goal was ease of system design. The chip set had to 
include all complex control functions and require minimal 
discrete logic on the module so that a system could be built 
using a personal computer (PC) mother board and off-the-shelf 
components. 

Time-to-market was a major factor during the development of the 
chip set. The DECchip 21064 microprocessor had been announced 
nearly five months before we started to develop the core logic 
chip set. Digital wanted to proliferate the Alpha AXP 
architecture in the PC market segment; however, the majority of 
system vendors required some core logic functions in conjunction 
with the microprocessor to aid them in designing systems quickly 
and with low engineering effort. Providing these interested 
system vendors with core logic chip set samples as soon as 
possible was very important to enable the DECchip 21064 
microprocessor to succeed in the industry. 

To determine the feature set that would meet the project goals, 
we polled a number of potential chip set customers in the PC 
market segment to understand their needs and the relative 
importance of each feature. We kept this feedback in mind during 
the course of the design and made appropriate design decisions 
based on this data. The following subsections describe the final 
chip set partitioning, the trade-offs we had to make in the 



design, and the design process.

Chip Set Overview      

The chip set consists of three unique designs:  

    o   DECchip 21071-BA data slice  

    o   DECchip 21071-CA cache/memory controller 

    o   DECchip 21071-DA PCI bridge

It can be used in either a four-chip or a six-chip configuration.

The DECchip 21071 chip set consists of four chips: two data 
slices, one cache/memory controller, and one PCI bridge. This 
configuration was developed for a cost-focused system; it 
provides a 128-bit path to secondary cache and a 64-bit path to 
memory. Cache and memory data have 32-bit parity protection.

The DECchip 21072 chip set consists of six chips: four data 
slices, one cache/memory controller, and one PCI bridge. Intended 
for use in a performance-focused system, this configuration 
provides a 128-bit path to secondary cache and a 128-bit path to 
memory. The system designer can choose between 32-bit parity or 
32-bit error correcting code (ECC) protection on cache and memory 
data. 

Figure 1 is a block diagram of an example system using the core 
logic chip set. For a list of components used in a typical system 
built with this chip set, see the EB64+ Kit Overview section. 

[Figure 1 (Core Logic Chip Set Configurations in a System Block
Diagram) is not available in ASCII format.]

The processor controls the secondary cache by default. It 
transfers ownership of the secondary cache to the cache 
controller when it encounters a read or a write that misses in 
the secondary cache. The cache controller is responsible for 
allocating the cache on CPU memory reads and writes, and for 
extracting victims from the cache. The cache controller is also 
responsible for probing and invalidating the secondary cache on 
direct memory access (DMA) transactions initiated by devices on 
the PCI local bus.[3]

The ownership of the address bus, sysAdr, is shared by the 
processor and the PCI bridge. The processor is the default owner 
of sysAdr. When the PCI bridge needs to initiate a DMA 
transaction, the cache controller performs the arbitration.
    
Data is transferred between the processor, the secondary cache, 
the data slices, and the cache/memory controller over the sysData 
bus, which is 128 bits wide. In the 4-chip configuration, each of 



the two data slices connects to 64 bits of the sysData bus. In 
the 6-chip configuration, each of the four data slices connects 
to only 32 bits of the sysData bus, leaving 32 data bits 
available for use as ECC check bits for memory and cache data. 
The cache/memory controller connects to the lower 16 bits of the 
sysData bus to allow access to its control and status registers 
(CSRs).

Data transfers between the PCI and the processor, the secondary 
cache, and memory take place through the PCI bridge and the data 
slices. The PCI bridge and the data slices communicate through 
the epiBus. The epiBus contains 32 bits of data (epiData), 4 byte 
enables, and the data path control signals.  We defined the 
epiBus control signals so that the PCI bridge chip operation 
is independent of the number of data slices in the system. 
Furthermore, the epiBus control signal definitions allow the 
epiData bus width to be expanded to 64 bits without changing the 
design of the data slice. 

The system designer can link the system to an expansion bus, such 
as the Industry Standard Architecture (ISA) bus or the Extended 
Industry Standard Architecture (EISA) bus, by using a PCI-to-ISA 
bridge or a PCI-to-EISA bridge. The Intel 82378IB and 82375EB 
bridges, for example, are available in the market for the ISA and 
the EISA buses, respectively.[4] 

Partitioning Alternatives

As a result of our customer visits, we found that the following 
features were important for cost-focused systems. The features, 
which affect the partitioning, are listed in descending order of 
importance.

    o   Low cost for the chip set 
    
    o   Low chip count
    
    o   Parity protection on memory
    
    o   Inexpensive memory subsystem

The following features were identified as important for 
performance-oriented, server-type systems (in descending order of 
importance).
    
    o   High memory bandwidth
    
    o   Chip set cost
    
    o   Low chip count 
    
    o   ECC-protected memory (This is a requirement in a server 
        system.)



During the feasibility stages, we decided to support a 128-bit 
secondary cache data path and not offer optional support for a 
64-bit cache data path. We felt that a system based on the 
DECchip 21066 microprocessor, which supports a 64-bit cache 
interface, would meet the cost and performance needs in this 
segment of the market.[5] Keeping in mind the importance of 
time-to-market, we decided that the added flexibility in system 
design alternatives was not worth the additional design and 
verification time required to incorporate this feature.

We decided to provide an option between 64-bit-wide memory and 
128-bit-wide memory. The wider memory data path provides higher 
memory bandwidth but at an additional cost. The minimum memory 
that the system can support with a 128-bit-wide memory data path 
is double that supported by a 64-bit memory data path. Memory 
upgrades are also more expensive. For example, with 4-megabyte 
(MB) single in-line memory modules (SIMMs), the minimum memory 
supported by a 64-bit memory data path is 8 MB (two SIMMs); with 
a 128-bit memory data path, it is 16 MB. Memory increments with a 
64-bit data path are 8 MB each, and with a 128-bit data path are 
16 MB each. We decided that the performance of the 64-bit memory 
data path was sufficient for a cost-focused system; however, for 
memory-intensive applications in the server market, 128-bit-wide 
memory was necessary. 

One alternative we explored could have provided all the features 
of a cost-focused system in a chip set of three chips, using two 
identical 208-pin data path slices and one 240-pin controller 
that provided the PCI bridge, cache controller, and memory 
controller functions. This configuration, however, would have 
been restricted to 64-bit memory width and parity protection on 
memory. Thus it would not have met two of the four desirable 
features of a high-performance system.

The partitioning we chose allowed us to satisfy the requirements 
of both cost-focused and performance-oriented systems. By 
splitting the design into three unique chips: a data slice, a 
cache/memory controller, and a PCI bridge, we met the 
requirements of a cost-focused system with the 4-chip 
configuration. All 4 chips are 208-pin packages, costing roughly 
the same as the 3-chip alternative. This partitioning scheme 
allowed us to support a 128-bit-wide data path to memory and ECC 
protection with the addition of 2 data slices at relatively low 
incremental cost. Thus it met the requirements of a 
performance-focused system. We could not support ECC with the 
64-bit-wide memory due to pin-count constraints, but we felt that 
this trade-off was reasonable given that cost was more important  
than ECC-protected memory in this market. This partitioning 
scheme had the added advantage of presenting a single load on the 
PCI local bus, as opposed to the two loads presented by the 
3-chip configuration described above. 

Another alternative was to provide a 4-chip configuration with 



128-bit-wide, ECC-protected memory. This would have required the 
data slices to be of higher pin count and therefore higher cost, 
thus penalizing the cost-focused implementation. 

PCI Local Bus Interface

The PCI local bus is a high-performance bus intended for use as 
an interconnect mechanism between highly integrated peripheral 
controller components, peripheral add-in boards, and 
processor/memory subsystems. Interfacing the DECchip 21064 family 
of CPUs to the PCI local bus opens up the Alpha AXP architecture 
to what promises to be an industry-standard, plug-and-play 
interconnect for PCs. The PCI bridge provides a fully compliant 
host interface to the PCI local bus. This section describes some 
features of the PCI bridge.

The PCI bridge includes a rich set of DMA transaction buffers 
that allows it to perform burst transfers of up to 64 bytes in 
length with no wait states between transfers. We optimized our 
design for naturally aligned bursts of 32 bytes and 64 bytes 
because this would eliminate the need for a large address counter 
and because we discovered through research that most PCI devices 
in development would not perform DMA bursts longer than 64 bytes. 

DMA Write Buffering.  We chose a DMA write buffer size of four 
cache blocks. This size would allow for two PCI peripheral 
devices to alternate bursts of 64 bytes each, thus maximizing use 
of PCI bandwidth. We organized the DMA write buffer as four cache 
block entries (four addresses) to simplify the cache/memory 
interface. In addition, this would allow the data buffers to be 
used efficiently whenever 32-byte bursts were in use.

DMA Read Buffering.  We designed the DMA read buffer to be able 
to store a fetch cache block and a prefetch cache block. As with 
the DMA write buffer, the DMA read buffer is organized to allow 
for efficient operation during both 64-byte and 32-byte bursts.  
Prefetching is performed only if either the initiating PCI 
command type or a programmable enable bit indicates that the 
prefetch data will likely be used. This allows the system 
designer to combine 32-byte and 64-byte devices without 
sacrificing cache/memory bandwidth. To minimize typical DMA read 
latency while maintaining a coherent view of memory from the PCI, 
we designed the capability for DMA read transactions to bypass 
DMA write transactions, which are queued in the DMA write buffer, 
as long as the DMA read address does not conflict with any of the 
valid DMA write addresses. Because most DMA read addresses are 
not expected to conflict, typical DMA read latency does not 
suffer as a result of the relatively deep DMA write buffer.

Scatter Gather Address Mapping (S/G Mapping). The PCI bridge 



provides the ability to map virtual PCI addresses to physical 
locations in main memory. Because each 8-kilobyte (kB) page can 
be mapped to an arbitrary physical page in main memory, a virtual 
address range that spans one or more contiguous pages can be 
mapped to pages that are physically scattered in main memory, 
thus the name S/G mapping. Using this mechanism, software 
designers can efficiently manage memory while performing 
multiple-page DMA transfers.

Although our inclusion of S/G mapping offers efficiency benefits 
to software designers, it also presented us with design 
challenges in the areas of performance and cost goals. The PCI 
bridge performs address translation by using incoming PCI 
physical addresses to index into a lookup table. Each incoming 
PCI transaction requires the PCI bridge to perform an address 
translation. A simple implementation might store the entire 
lookup table in local static random-access memory (RAM). To avoid 
use of this costly component and corresponding chip set pin 
allocations, our designers opted to store the lookup table in 
main memory. To minimize the performance impact of storing the 
table in main memory, the designers incorporated an on-chip 
translation lookaside buffer (TLB) for storing the eight most 
recently used translations. To keep things simple, we implemented 
a circular TLB replacement algorithm.

PCI Byte Access Support.  To successfully incorporate Alpha AXP 
CPUs into PC environments, we required collaboration across the 
corporation. Digital engineers defined a software/hardware 
mechanism that allows the 32-bit/64-bit Alpha AXP architecture to 
coexist with components on the PCI local bus that require 
arbitrary byte access granularity. This mechanism requires that 
low-order address bits be used to encode byte lane validity. 
Implementing this mechanism reduces the density of I/O registers 
in the address space and conveys byte lane validity information 
through the address itself. 

I/O write performance in this address space suffers because each 
CPU-initiated I/O transaction can convey only up to 64 bits (a 
quadword) of data and byte lane validity information. To allow 
for full utilization of the DECchip 21064 microprocessor's 
32-byte internal write buffer during I/O writes to devices that 
do not require byte granularity, the chip set designers 
implemented an address range that does not perform byte lane 
decoding. In this space, up to 32 bytes can be transferred from 
the CPU and burst onto the PCI in a single transaction. This 
allows for efficient bandwidth utilization during writes to I/O 
devices that exhibit memory-like interfaces, such as video 
adapters with directly accessible frame buffers.

Guaranteed Access Time. Systems that support EISA or ISA 
expansion buses must be able to provide a guaranteed maximum read 
latency from EISA/ISA peripherals to main memory (2.5 



microseconds for EISA, 2.1 microseconds for ISA). This 
requirement presented a challenge for us during our design. 
In the worst case, a simple memory read request from an EISA/ISA 
peripheral can result in significant latency due to our use of 
deep DMA write buffering and S/G mapping. Although our decision 
to allow DMA reads to bypass DMA writes provides systems with a 
typically low latency, this feature does not avoid worst-case 
high latency. To meet the EISA/ISA worst-case requirements, we 
included in our design PCI sideband signals and cache/memory 
arbitration sequences that allow for guaranteed main memory 
access time. When guaranteed access time is required, the 
EISA/ISA bridge must signal the PCI bridge by asserting a PCI 
sideband signal. In response, the PCI bridge will flush its DMA 
write buffers, hold ownership of the cache/memory, and signal 
readiness to the EISA/ISA bridge. When the EISA/ISA transaction 
starts, this sequence guarantees that the path to main memory is 
clear and will therefore have guaranteed access time.

Memory Controller

The memory controller supports up to eight banks of dynamic 
random-access memory (DRAM) and one bank of dual-port video 
random-access memory (VRAM). Each memory bank can be selectively 
programmed to enable two subbanks, which allows the memory 
controller to support double-sided SIMMs that have two row 
address strobe (RAS) lines per bank. The memory controller thus 
has the flexibility to support system memory sizes of 8 MB to 4 
gigabytes (GB) of DRAM and 1 MB to 8 MB of VRAM. System designers 
can choose to implement memory by banks of individual DRAMs or 
SIMMs, either on board or across connectors. The memory 
controller is able to support a wide range of DRAM sizes and 
speeds across multiple banks in a system, by providing separate 
programmable bank base address, configuration, and timing 
registers on a per-bank basis.

We designed the memory controller for system flexibility by 
supporting fully programmable memory timing with 15-nanosecond 
(ns) granularity. This programmability supports SIMM speeds 
ranging from 100 ns down to 50 ns. Each memory bank's timing is 
programmed through registers that consist of DRAM timing 
parameters to control counters. Some examples of programmable 
timing parameters used to control the memory interface are "row 
address setup," "read CAS width," and "CAS precharge." As the 
memory controller sequences through a memory transaction, these 
programmed counters control the exact timing of RAS, column 
address strobe (CAS), the DRAM address bits, and write enables. 
At the same time, the memory controller sends commands from the 
cache/memory controller chip to the data slice chips to control 
the clock edge for sending and receiving memory data on DRAM 
writes and reads, respectively.

One customer is currently using one of the banks in combination 
with medium-scale integration (MSI) components to interface to a 



very slow memory bus that supports flash read-only memories ROMs, 
nonvolatile RAM, and light-emitting diodes (LEDs). Since the 
original design was not done with a very slow memory interface in 
mind, this demonstrates that the chip set provides flexible, 
programmable timing functionality independent of the system.

The memory controller allows the system designer to build an 
inexpensive graphics subsystem using a video frame buffer on the 
memory data bus, and a low-cost video controller on an expansion 
bus like the ISA bus. The system designer can achieve competitive 
graphics performance by using the processing power of the CPU for 
graphics computations and the existing high-bandwidth memory data 
path for transferring data between the graphics computation 
engine (the CPU) and the frame buffer. The interface between the 
memory controller and the video controller is very economical:  
only two control signals are required to time the transfer of 
screen data from the random-access memory of the VRAM to the 
serial-access memory of the VRAM. The video controller is 
responsible for transferring the data from the serial memory of 
the VRAM to the screen. 

Although we designed the memory controller to be flexible, we 
also included features that improved performance. Two such 
features are optimizations to reduce memory read latency and 
selective support for use of page mode between memory 
transactions.

To minimize memory read latency, the memory controller 
prioritizes reads above writes pending in the memory write 
buffer. For a CPU memory read, the memory controller waits six 
system cycles after the last read data before servicing a pending 
write, unless the memory write buffer is full. At least six 
system cycles occur between the time the memory controller 
latches the last read data from the DRAMs and the time a 
subsequent read request could be issued by the DECchip 21064 
processor. Because memory write transactions take longer than six 
cycles to complete, our choice to delay the execution of a 
pending write allows read latency to be reduced for the following 
read. Waiting six system cycles after a read is a significant 
performance improvement for successive reads with cache victims 
because every read is accompanied by a write.

We also chose to improve performance by selectively determining 
which memory transactions would benefit most by staying in page 
mode. The memory controller stays in page mode after a DMA read 
burst and between successive memory writes. Page mode is not 
supported between CPU memory read transactions since the RAS 
precharge time can typically be hidden between successive CPU 
read requests.

Cache Controller

The secondary cache interface logic is partitioned across the 



cache/memory controller chip and the data slice chips. The 
cache/memory controller chip contains the address path and 
control logic, and the data slice chips provide buffering for 
four cache lines of data to and from memory. We designed the 
cache controller to be system independent and flexible so that it 
could be designed into a wide range of systems.
           
The chip set supports a direct-mapped, write-back secondary cache 
with a data width of 128 bits and a cache line fixed at 32 bytes. 
The chip set allows the system designer to choose a secondary 
cache size ranging from 128 kB to 16 MB, as determined by 
software configuration. The speed of the cache RAMs must be fast 
enough to support the chip set's read access time of one system 
cycle. Writes to the cache can be programmed to take one or two 
system cycles. The write enables can be programmed to have a 
half-cycle or full-cycle pulse width when writing the cache 
during fill cycles. This feature was added to give the system 
designer flexibility in meeting SRAM write-enable specifications 
with various system cycle times.

Another feature added to the cache controller to provide 
flexibility is the support of an optional allocation policy on 
CPU writes. The write-back secondary cache is always allocated on 
CPU memory read misses. The option to allocate the cache on CPU 
memory write cache misses is programmable and can be disabled by 
software during system initialization. We chose to provide this 
option since disabling cache write allocation can allow higher 
memory write bandwidth. This feature can be used by system 
designers to determine whether particular applications have 
better performance when secondary cache write allocation is 
disabled.

The cache controller provides arbitration between the CPU and the 
PCI bridge chip for secondary cache ownership. The arbitration 
policy is programmable and varies the level of control the PCI 
bridge has in keeping the ownership of the secondary cache during 
DMA transactions.

Although we designed the cache controller for system flexibility, 
we also included features that would give it performance 
advantages. One such feature is the memory write buffer. The 
cache controller uses the memory write buffer to store four cache 
lines of data for cache victims, DMA writes, CPU-noncacheable 
writes, and CPU-cacheable writes when write allocate mode is 
disabled. The buffer is organized as first in, first out (FIFO) 
on cache-line boundaries. Successive writes to the same cache 
line are not merged into the buffer because the CPU chip write 
buffer performs this function. The cache controller allows CPU 
and DMA reads to bypass the write buffer as long as the read 
address does not conflict with any of the write addresses. The 
memory write buffer improves performance by allowing timely 
acknowledgment of write transactions. Read bypassing of the write 
buffer improves performance by reducing memory read latency.



Global Design Considerations

This section briefly discusses some of the decisions concerning 
silicon technology, packaging technology, and internal clocking 
of the chip sets.

Silicon Technology.  The design team chose to use an externally 
supplied gate-array process that offered quick time-to-market and 
low cost. Most chips designed in the Semiconductor Engineering 
Group are manufactured using Digital's proprietary complementary 
metal-oxide semiconductor (CMOS) processes, which emphasize high 
speed and high integration. Our chips' performance and complexity 
-- 30-ns cycle time, approximately 35,000 gates per chip -- did 
not require these capabilities. Gate-array technology offered 
shorter design times and quicker turnaround times than Digital's 
custom silicon technology.

Packaging Technology.  When choosing a package, the design team 
considered issues of package and system cost, design 
partitioning, and heat produced by power dissipation. Some of 
these issues are discussed in the Partitioning Alternatives 
section.

We chose to put all three chips in 208-pin plastic quad flat 
packages (PQFPs). The 208-pin PQFP is one of the most popular 
low-cost, medium pin-count, surface-mount packages. One drawback 
of PQFPs, however, is their low limit on power dissipation. To 
ensure a junction temperature of 85 degrees Celsius with 100 
linear feet per minute of airflow, the power dissipation must be 
limited to 1.5 watts (W). The power dissipation of the data slice 
is about 1.7 W, resulting in a junction temperature approaching 
100 degrees Celsius. We verified that reliability was not an 
issue at a junction of 100 degrees Celsius. However, we had to 
ensure that the chip timing worked at a junction temperature of 
100 degrees Celsius, as opposed to the 85 degrees Celsius we 
would normally use. We could not use this approach on the PCI 
bridge chip because the additional timing optimization required 
would have adversely affected the schedule. We had to take 
special measures in the design to keep the power dissipation 
within the 1.5-W limit. We implemented conditional clock nets for 
large blocks of registers that are loaded infrequently, such as 
the CSRs and the TLB.  

Internal Clocking.  To achieve the shortest possible cross chip 
set latencies, we implemented a four-phase clock system. A 
four-phase system allows data to be transferred from one section 
of the chip set to another in less than a full clock cycle if 
logic delays are sufficiently small.

In contrast to approaches based on latch designs, which can offer 



lower gate-count implementations, we chose to use mostly 
edge-triggered devices. We viewed this as an opportunity to 
simplify the design analysis and timing verification process by 
keeping the number of timing reference points to four clock 
edges.

To further simplify the clocking system, the designers chose to 
make the PCI clock and the cache/memory clock synchronous to each 
other. This approach avoids the need for synchronizers (and 
corresponding synchronizer delays) between clock domains; it also 
reduces the number of clock speed combinations to be verified. 
Although the synchronous approach does not allow the system 
designer to decouple the PCI clock speed from the cache/memory 
clock speed, we felt that the added complexity and verification 
effort required to support asynchronous clocks would not be worth 
the small degree of flexibility that would be gained from such a 
design.

Functional Verification

Given the short design schedule and the requirement that 
first-pass prototypes be highly functional for customers, the 
team adopted a strategy of pseudorandom testing at the 
architectural level of the chip set as a whole. We felt that this 
strategy would test more of the design more quickly and would 
find more subtle and complex bugs than a testing methodology 
focused on the gate/register level of each separate chip.
 
The DECSIM simulation environment included models for the three 
chips, a DECchip 21064 bus functional model (BFM), a PCI BFM, a 
cache model, a memory model, and some "demon" models that could 
be programmed to pseudorandomly generate events such as the 
assertion of the video port inputs or the injection of errors.  
We developed SEGUE templates and used them in a variety of 
exercisers to generate DECSIM scripts pseudorandomly.[6]  

To keep the testing environment from being overly complicated, we 
allowed users to pseudorandomly configure only those aspects of 
the design that significantly altered the operation of the 
control logic. Many configurable aspects of the chip set and 
simulation environment (for example, the PCI S/G map) were not 
varied in the exercisers and were tested with simple focused 
tests.

In addition to programming BFMs to read back and check data, we 
built a variety of checkers into the simulation environment to 
verify correct operation of RAM control timing, PCI protocol, 
tristate bus control, PCI transaction generation, data cache 
invalidate control on the DECchip 21064 CPU, and many other 
functions. At the end of every exerciser run, the secondary cache 
and memory were checked for coherence and correct error 
protection.



The verification efforts of the team resulted in the removal of 
over 200 functional bugs, ranging from simple bugs to quite 
complex and subtle bugs, prior to the fabrication of first-pass 
prototypes. We found no "show stopper" bugs in the core functions 
required for first-pass prototype chips, and we used simple 
work-arounds for the few bugs that we did find in the first-pass 
design.

THE EB64+ EVALUATION KIT 

This section of the paper discusses the development of the EB64+ 
evaluation kit. After presenting the project's goals and the 
overview of the kit, it discusses some of the module design 
issues that were addressed during the design of the EB64+ module.  
This section concludes with performance results of benchmarks run 
on the EB64+ system.

Project Goals

The first and most important goal of the EB64+ evaluation kit 
project was to provide a sample design for customers using the 
DECchip 21064 microprocessor and the DECchip 21071 and the 
DECchip 21072 chip sets. Another major goal was to provide an 
evaluation and development platform that used standard PC 
components. These two goals would enable a customer to evaluate 
their design trade-offs quickly and to complete their system 
design faster and with a better chance of success.

Secondary goals were to provide a development and debug 
environment for the core chip set and to provide a 
high-performance benchmarking system for the microprocessor and 
core chip set. The EB64+ kit also serves as a platform for 
hardware and software development for PCI I/O devices.

EB64+ Kit Overview

Figure 2 shows a block diagram of the EB64+ module, a full-size 
PC (12.0 inch by 13.0 inch) mother board. The major components on 
the module are given below:

    o   DECchip 21064 microprocessor (150 megahertz [MHz] to 275 
        MHz)
    
    o   Secondary cache (512 kB, 1 MB, or 2 MB)
    
    o   Secondary cache address buffer 
    
    o   Interrupt/configuration programmable array logic (PAL) 
        device

    o   Serial ROM interface for the microprocessor



    o   System clock generator: oscillator, phase-locked loop 
        (PLL), clock buffers

    o   Core logic chip set 

    o   Two secondary cache control PALs

    o   PCI bus peripherals: embedded small computer system 
        interface (SCSI) and Ethernet

    o   PCI bus arbiter 

    o   Intel 82378IB bridge between the PCI and ISA buses

    o   Three ISA expansion slots 

    o   Eight slots of standard 36-bit memory SIMMs 

    o   Memory control signal buffers

[Figure 2 (Block Diagram of the EB64+ Module) is not available in 
ASCII format.]

Secondary Cache Size and Speed

The DECchip 21064 processor has programmable secondary cache read 
and write access times with a granularity equal to the processor 
clock cycle time. For instance, if the read access time is 25 ns, 
the programmed value for a 150-MHz processor (6.6-ns cycle time) 
would be 4, and the programmed value for a 200-MHz processor 
(5-ns cycle time) would be 5.

One of the more difficult decisions for any system designer is to 
determine the optimal cache size and speed in terms of cost and 
performance. The EB64+ module supports various cache size and 
speed options in order to allow a system designer to evaluate the 
difference between a large, slow cache and a small, fast cache. 
The trade-off here is usually between lower cost for the 512-kB 
cache and higher performance for the 2-MB cache. The 2-MB cache 
uses four 128K by 9 SRAMs and twelve 128K by 8 SRAMs for the data 
store, and the 512-kB cache uses four 32K by 9 SRAMs and twelve 
32K by 8 SRAMs.

We decided to share data RAM footprints between the 32K by 8 
SRAMs and the 128K by 8 SRAMs, thus allowing the system designer 
to build two different modules: one with a 512-kB cache and the 
other with a 2-MB cache. The designer can evaluate the 
speed-to-size trade-off by using faster SRAMs for the smaller 
cache and slower SRAMs for the larger cache. The system designer 
can choose to evaluate the effect of varying the cache size from 
512 kB, to 1 MB, to 2 MB, without varying the cache speed, by 
configuring jumpers to disable portions of the 2-MB cache on an 



EB64+ module.

System Clocking Design

System clocking for the EB64+ module presented a challenge in two 
different areas. The first area was the high-frequency input 
clocks needed by the DECchip 21064 microprocessor. The input 
clocks operate at twice the frequency of the DECchip 21064 CPU, 
requiring a 300- to 550-MHz oscillator for the EB64+ module. 
Initially, an emitter-coupled logic (ECL) output oscillator was 
used for this purpose. The main drawback to this solution was the 
cost, which is in the $40 to $50 range. The other disadvantage 
was the long lead time and nonrecurring engineering charges 
associated with unique oscillator frequencies.  

By working closely with a vendor of gallium arsenide (GaAs) 
devices, we were able to provide an alternative in the $8 to $18 
range. The device consists of a low-frequency oscillator and a 
PLL that multiplies the low-frequency oscillator to provide the 
high-frequency input that the processor requires. For example, a 
300-MHz frequency clock is generated using a 30-MHz oscillator 
connected to a PLL that multiplies this by 10 to provide the 
300-MHz input. Since lower frequency oscillators are produced by 
more vendors, the lead times and nonrecurring engineering charges 
for unique frequencies are minimal when compared to the ECL 
output oscillators.

Generating the clocks for the other system components was quite 
challenging. The core logic chip set, PCI devices, and the cache 
control PALs together require three types of clock signals: the 
first clock is in phase with the processor's sysClkOut clock 
signal; another clock is 90 degrees phase shifted from the first; 
and a third clock has twice the frequency of and is in phase with 
the first. The frequency of sysClkOut is an integral divisor 
(between 2 and 17) of the processor's internal clock frequency. 
Some divisors may result in a sysClkOut duty cycle that is not 50 
percent. A PLL is used to generate both the phase-shifted and the 
double-frequency clock. It also guarantees a 50 percent duty 
cycle, which is required for the PCI clock.

Figure 3 illustrates how the EB64+ module generates the three 
system clocks from the processor's sysClkOut signal. In addition 
to the PLL, the system clock generator uses low-skew clock 
buffers to drive the final device loads of the system. One output 
of the clock buffers is used to provide the feedback to the PLL. 
This causes the overall delay from sysClkOut to the system clock 
to be close to zero.

[Figure 3 (EB64+ System Clock Distribution) is not available in 
ASCII format.]

Design Evolution



As noted previously, the EB64+ kit was developed to provide an 
example design to external customers as well as provide a debug 
and development platform for the core logic chip set. The focus 
of the design evolved during the project.

Initially, we included several features on the EB64+ module to 
support the various modes of the chip set. As the design 
progressed, an updated version of the EB64+ module was developed. 
The final version focused more on being a sample design than a 
debug and development platform for the chip set. Some of the 
features that fell into this category are listed below.

    o   Initially, the EB64+ module supported both the 64-bit and 
        128-bit memory on the same module with configuration 
        jumpers. This design affected performance because 64 bits 
        of the cache data bus were routed to two data slice 
        chips. The final version of the EB64+ module supports 
        only 128-bit memory. This change allowed us to reduce the 
        cache read access time on the DECchip 21064 processor by 
        3 ns, thus reducing the programmed 2-MB cache read access 
        time for a 200-MHz DECchip 21064 processor from 7 cycles 
        to 6 cycles. 

    o   Certain modes of the chip set were controlled by 
        configuration jumpers initially. These have been 
        redefined to support additional cache sizes and speeds to 
        support a wider range of evaluation and benchmarking.

Performance

Figures 4 and 5 show the results of the BYTE magazine portable 
CPU/floating-point unit (FPU) benchmarks run on an EB64+ system 
running the Windows NT operating system. The EB64+ system has a 
128-bit memory subsystem with 70-ns (RAS access time) DRAMs. The 
150-MHz, 166-MHz, and 200-MHz benchmarks were run using a DECchip 
21064 microprocessor with a 512-kB cache with a 28-ns read access 
time. The 275-MHz benchmark was run on a DECchip 21064A 
microprocessor with a 2-MB cache with a 35-ns read access time. 
The benchmarks for the DECchip 21066 processor were run on an 
EB66 system with a 256-kB cache. The figures show the performance 
relative to other Windows NT systems available in the market 
today. The benchmark data for the Intel486 DX2-66 and Pentium 
60-MHz chips and for the MIPS Computer Systems' R4400SC 
processors was taken from the Alpha AXP Personal Computer 
Performance Brief--Windows NT.[7]

[Figure 4 (BYTE Portable CPU/FPU Benchmarks) is not available in
ASCII format.]

[Figure 5 (EB64+ System Performance Benchmarks) is not available
in ASCII format.]



Table 1 compares the bandwidths on an EB64+ system using the two 
possible chip set configurations, a 200-MHz processor, and 70-ns 
DRAMs. 

Table 1  Comparison between a 64-bit Memory Data Path and a 128-bit           
Memory Data Path

Transaction Type                        64-bit Memory   128-bit Memory
                                        4-chip Config-  6-chip Config-
                                        uration         uration

CPU Memory Writes:
Write with secondary cache allocate     133 MB/s        133 MB/s
Write with no allocate                  133 MB/s        267 MB/s

CPU Memory Read:
Bandwidth                                                              
                                         76 MB/s        107 MB/s
      
I/O Write:
8 bytes                                  38 MB/s         38 MB/s
32 bytes (PCI dense memory space)        82 MB/s         82 MB/s

I/O Read:                                                          
8 bytes                                  22 MB/s         22 MB/s
  
DMA Write:
64-byte PCI burst                       119 MB/s        119 MB/s
32-byte burst                           107 MB/s        107 MB/s

DMA Read:
Cache miss, 64-byte burst                55 MB/s         65 MB/s
Cache miss, 32-byte burst                41 MB/s         48 MB/s
Cache hit, 64-byte burst                 74 MB/s         74 MB/s
Cache hit, 32-byte burst                 51 MB/s         51 MB/s

SUMMARY

The DECchip 21071 and the DECchip 21072 chip sets and the EB64+ 
evaluation kit met their project goals by helping to proliferate 
the Alpha AXP architecture in the PC market. Several customers, 
as well as some groups within Digital, use the chip sets in their 
systems today. Many of these customers and internal groups have 
used the EB64+ platform as a basis for their designs and as a 
means of initiating their software development while they were 
developing their hardware. The EB64+ platform has also been used 
to develop device drivers for several PCI devices developed by 
Digital.
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