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ABSTRACT

The DLT2000 magnetic tape drive is a state-of-the-art storage 
product with a 1.25M-byte-per-second data throughput rate and a 
10G-byte capacity, without data compression. To increase data 
capacity and throughput rates, the DLT2000 implements a variant 
of the Lempel-Ziv (LZ) data compression algorithm. An LZ method 
was chosen over other methods, specifically over the Improved 
Data Recording Capability (IDRC) algorithm, after performance 
studies showed that the LZ implementation has superior data 
throughput rates for typical data, as well as superior capacity. 
This paper outlines the two designs, presents the methodology and 
the results of the performance testing, and analyzes why the LZ 
implementation is faster, when the IDRC hardware implementation 
had twice the bandwidth and was expected to have faster 
throughput rates.

OVERVIEW

Data compression, a method of reducing data size by coding to 
take advantage of data redundancy, is now featured in most tape 
drive products. Two compression techniques in widespread use are 
(1) an arithmetic coding algorithm called Improved Data Recording 
Capability (IDRC) and (2) variants of the general Lempel-Ziv (LZ) 
compression algorithm. Current tape products that implement these 
algorithms are IBM's fast (a maximum throughput rate of 
approximately 3M bytes per second [M bytes/s]) and relatively 
expensive (originally about $60K) family of half-inch, 36-track 
tape products, which have employed the IDRC algorithm for about 
five years. More recently, the 8-millimeter (mm) helical scan 
tape products began incorporating IDRC data compression. Also, 
some 4-mm helical scan digital audiotape (DAT) products now use a 
variant of the LZ algorithm, as do some quarter-inch cartridge 
(QIC) tape products.

In developing a complex product like an industry-leading tape 
drive, it is difficult to determine at the beginning of the 



project the design that will have the best performance 
characteristics and meet time/cost goals. When Digital included 
data compression in the plans for its DLT2000 tape product, the 
choice was not clear regarding which compression technology would 
best enhance the tape drive's data transfer rate and capacity. 
Keeping within cost constraints and incurring an acceptable level 
of risk to the development schedule were important factors as 
well. The options were greatly limited, however, because the 
schedule was too short for the engineering team to implement a 
compression method on a silicon chip designed specifically for 
the DLT2000 tape drive; therefore, the team needed to find a 
compression chip that was available already or would be soon.

Another important consideration was that the compression method 
used on the DLT2000 tape drive would likely be used on future 
digital linear tape (DLT) products. For media interchangeability, 
such products would have to be able to write and read media 
compatible with the DLT2000 tape drive. New products that used 
different compression methods would require extra hardware to 
handle both types of data compression. Since extra hardware adds 
significant cost and complexity to products, the use of different 
compression methods is undesirable. Also, to meet future data 
throughput needs, the compression method used on the DLT2000 tape 
drive had to support the significantly higher data transfer 
speeds planned. If the compression chip used initially was too 
slow for future products, it had to be at least possible to 
develop an implementation of the same compression algorithm that 
would be fast enough for future DLT products.

To gain more expertise in applying data compression technology to 
tape drives, the tape development group investigated several 
designs using various data compression chips. Eventually, we 
created about 20 DLT2000 engineering prototype units, each of 
which used one of the two most common data compression methods: 
IDRC and an LZ variant. The specific Lempel-Ziv variant used was 
designated Digital Lempel-Ziv 1 (DLZ1).[1,2]  We tested the 
performance of the prototype units and studied the results to 
check for consistency with our expectations. Such analysis was 
important since tape drive performance with data compression was 
a new area for the engineering team, and the interplay of higher 
tape transfer rates, new gate arrays, compression chip, memory 
buffers, new firmware, and host tape applications is complex.

Figure 1 shows the basic design of the data path on the DLT2000 
tape drive's electronics module. (Microprocessors, most gate 
arrays, firmware read-only memories [ROMs], and other electronic 
components are not shown.) Note that the data cache size is 
effectively increased because it contains compressed data. The 
data processing throughput of the compression chip, however, can 
potentially be a bottleneck between the cache and the small 
computer systems interface (SCSI) bus. The IDRC compression chip 
can process data at throughput rates of up to 5M bytes/s, whereas 
the DLZ1 chip can process data at rates of up to about 2.5M 
bytes/s when compressing data and up to about 3M bytes/s when 



decompressing data. In each design, the memory and data paths 
outside the compression chip were designed to be adequate for the 
compression chip used.

[Figure 1 (Tape Drive Data Path) is not available in ASCII 
format.]

One major goal of this study was to quantify the performance of 
each implementation to determine if the lower throughput of the 
DLZ1 chip was a practical disadvantage in the DLT2000 product. 
The IDRC version of the DLT2000 product, with its maximum 
throughput rate of 5M bytes/s, would seem to have a clear 
throughput advantage, but the typical compression ratio and the 
data rate to the tape media are significant factors in the 
overall throughput of the tape drive.

The development group expected the IDRC and DLZ1 chips to have 
approximately the same compression ratio (i.e., the result of 
dividing the number of units of data input by the number of units 
of data output). The DLZ1 ratio would possibly be slightly 
higher. The group based their expectation on comparisons of 
results from several studies.[2,3,4] These studies reported 
compression ratios for various types of data on implementations 
that used either the IDRC algorithm or an LZ algorithm but not 
both.

Compressing data within the tape drive has a multiplying effect 
on the drive's throughput rate, as seen by a host computer. If 
the uncompressed data throughput rate to the tape media is 1.25M 
bytes/s and the data compression ratio is 2.0:1 (or 2.0), the 
expected average data transfer rate is 1.25 x 2.0 = 2.5M bytes/s. 
Since the development group thought that the typical compression 
ratio of each implementation was 2.0:1, and because the DLZ1 chip 
would tend to become a bottleneck as data rates approached the 
chip's maximum throughput rate, the group expected the IDRC 
prototype to be at least as fast as the DLZ1 prototype for a 
given data set. 

Testing showed, however, that the DLZ1 DLT2000 prototype 
consistently, and significantly, surpassed the IDRC prototype in 
both metrics! To ensure the correctness of the IDRC 
implementation used on the prototype DLT2000 and thus confirm the 
unexpected result, the group verified the IDRC compression 
efficiency results by testing two other tape products that use 
the IDRC algorithm. Given identical data sets, the benchmark test 
results were consistent with those of the IDRC DLT2000 prototype.

The marked difference between the DLZ1 and IDRC prototypes can be 
mainly attributed to the differences in the compression 
efficiencies of the two algorithms. Relatively low compression 
ratios on the IDRC unit limit its throughput capabilities. The 
author believes that the discrepancy between the results of the 
DLT2000 prototype testing and the results of the earlier studies 
can be explained by two factors: variations in the data sets used 



and differences in media format. 

First, the compression efficiency for different samples of data, 
even if of the same type, e.g., PostScript data, can vary widely. 
The data sets tested on the DLT2000 prototypes were not identical 
to those tested in the earlier studies. 

Second, some tape drive implementations combine IDRC data 
compression with a feature IBM calls autoblocking (also known as 
superblocking). This coupling occurs when the tape drive has a 
media format that contains interrecord gaps (IRGs) whose number 
is inversely proportional to the tape block (record) size used 
(sometimes linear). Autoblocking minimizes the number of IRGs by 
automatically using a large, fixed on-tape block size (e.g., 64K 
bytes). The autoblocking feature packs multiple compressed blocks 
from the host into the larger blocks on the media.[4] Reducing 
the number of IRGs on such tape formats is important because IRGs 
are wasted space. If block sizes are small, the number of IRGs 
will be large and the tape capacity significantly reduced. Tape 
products that combine autoblocking with IDRC compression derive 
an increased capacity from both techniques. 

These two factors, however, were not relevant to the test results 
of our study, i.e., the favorable DLZ1 findings. We performed the 
DLT2000 prototype testing with tape drives that were virtually 
identical except for the compression technology used. Also, the 
data samples, tools, and test environments were the same.
        
From the test results and analysis we concluded that, when 
compared with the IDRC implementation, the DLZ1 implementation 
combines consistently superior cartridge capacity (25G bytes at a 
compression ratio of 2.5:1) and superior data throughput for most 
types of real data. The testing did not reveal any real data 
types that compressed better with the IDRC technique than with 
the DLZ1 technique. In addition, the DLZ1 technique is supported 
by the strong prospect of future DLZ1 compression chips that will 
greatly increase the maximum data throughput rates. This 
addresses the concern that the DLZ1 technique should support a 
growth path in data throughput rate for future members of the DLT 
product family.

The remainder of this paper outlines the operation of the IDRC 
and DLZ1 compression techniques, discusses what testing was done 
and how, presents the test data, and gives an analysis of the 
results.

DESCRIPTION OF THE IDRC AND DLZ1 COMPRESSION ALGORITHMS

This section provides some historical/industrial background on 
the IDRC and DLZ1 algorithms and some cursory information on how 
they work. An in-depth technical presentation of these (or other) 
compression techniques is beyond the scope of this paper. For 
more details on their operation and mathematics, please refer to 



the references.

The IDRC Compression Algorithm 

IBM developed the IDRC algorithm and employs this technique on 
some members of the Model 3480 and Model 3490 tape subsystems. 
EXABYTE Corporation is currently licensing the IDRC algorithm 
from IBM.[4]

The IDRC algorithm is a lossless, adaptive arithmetic compression 
technique. Arithmetic compression encodes data by creating an 
output string that represents a sequence of fractional numbers 
between 0 and 1. Each fraction is the result of the product of 
the probabilities of the preceding input symbols.[4,5,6,7]

The IDRC technique has two modes: byte oriented and binary (bit) 
oriented. On input, bytes are compared with the last byte 
processed. If three or more consecutive bytes are found to be 
equal, processing occurs on a byte-by-byte basis. Otherwise, the 
data is compressed bit by bit.[6]

Parallel recording implementations for which the number of IRGs 
is a capacity issue (for example, the IBM Model 3490 product) 
usually combine IDRC compression with autoblocking. Since 
autoblocking reduces the number of IRGs (assuming that a smaller 
block size is commonly used), the effective increase in tape 
capacity due to autoblocking surpasses the increase that 
compression alone would yield. 

In some tape implementations, though, data is packed into 
fixed-size blocks on the media whether or not compression is 
used. If done efficiently, this packing makes tape capacity on 
such products independent of block size.

The DLZ1 Compression Algorithm 

A number of variations of the Lempel-Ziv algorithm (also referred 
to as the Ziv-Lempel algorithm) have been implemented and are in 
wide use in the industry today. Some examples are the common PC 
compression software tools PKARC, PKZIP, and ZOO; the compression 
method built into the MS-DOS Version 6.0 system; and 
Hewlett-Packard's HP 7980XC tape drive. IBM recently announced 
that it has developed a high-speed (40M bytes/s) compression chip 
that uses the LZ algorithm. In addition, STAC Electronics' data 
compression products and the QIC-122 data compression standard 
use derivatives of the LZ algorithm.[4,5]
            
Lempel-Ziv methods generally replace redundant strings in the 
input data with shorter symbols. The methods are lossless and 
adapt to the input data. Implementations typically simplify the 
general algorithm in one or more ways for practical reasons, such 
as speed and memory requirements for string storage.[1,3,4,5,8]



The LZ variant used in the DLZ1 implementation maps 
variable-length strings in the input to variable-length output 
symbols. During compression, the algorithm builds a dictionary of 
strings, which is accessed by means of a hash table. Compression 
occurs when input data matches a string in the table and is 
replaced with the corresponding dictionary symbol. The dictionary 
itself is not output to the tape media but is rebuilt during 
decompression.[1] 

When the dictionary fills up with strings, the algorithm cannot 
adapt to new patterns in the data. For this reason, the 
dictionary needs to be reset periodically. The DLT2000 DLZ1 
algorithm resets the dictionary on each logical block boundary. 
Thus, the compression efficiency can vary according to the block 
size, as well as with the actual data. With small blocks, the 
dictionary is typically still adapting to the input data when the 
block ends and the dictionary is reset. This tends to keep the 
compression algorithm from reaching full efficiency. For example, 
with an LZ variant similar to the DLZ1, the LZW algorithm 
presented in Welch's "A Technique for High-Performance Data 
Compression," compression efficiency increases rapidly as the 
block size used goes from 1 byte to about 8K bytes.[3] The 
efficiency peaks at about 12K bytes, and larger block sizes show 
good but gradually decreasing compression efficiencies. The 
initial input block range that exhibits rapid improvement in 
compression efficiency (1 byte to 8K bytes, in this case) is 
referred to as the "adaptation zone."

TEST PROCEDURES

The development group carried out three main sets of tests.

    1.  Tests that measured the compression efficiency on an 
        OpenVMS system and on an ULTRIX system, which is based on 
        the UNIX system

    2.  Tests that measured the compression efficiency and the 
        data throughput in a high-throughput test system 
        environment 

    3.  Benchmark tests that measured the IDRC compression ratios 
        on two other tape products

The DLT2000 firmware measured the compression ratios precisely by 
comparing the block size (in bytes) before and after compression, 
during write command processing. In the benchmark tests, 
compression ratios were calculated from total tape capacities 
with and without compression enabled. We repeated the DLT2000 
tests with minor variations in test parameters; the results 
suggested an uncertainty of approximately +/-1 percent in the 
measurements.



Test configurations were identical in system type, test software, 
and operating system versions. We often used the same test bed 
and varied only the tape unit under test, i.e., the DLZ1 or the 
IDRC. The hardware and firmware on the different DLT2000 
prototypes were identical to ensure that factors such as 
diagnostic code overhead and clock speed did not skew test 
results between the DLZ1 and the IDRC units, or between test 
runs. We also varied some parameters and repeated tests to ensure 
that the measured performance characteristics were consistent 
with and reflective of the final product.

Operating System--based Tests

Since the system configurations used could not supply data fast 
enough for conclusions to be made regarding the DLT2000 tape 
drive's maximum throughput rates, compression efficiency was the 
focus of the operating system testing. Test parameters were still 
chosen to minimize throughput bottlenecks in the host system. For 
each test, the data was set up on a single disk on each of two 
systems -- an OpenVMS system and a UNIX system. 

OpenVMS Tests.  The OpenVMS system used in the tests was a 
clustered MicroVAX 3400 machine with a KZQSA adapter for the SCSI 
bus. The MicroVAX 3400 system was running the OpenVMS Version 
5.5-2 operating system and used the standard backup utility 
(BACKUP) to write data to the DLT2000 tape drive. Although 
compression efficiency was the focus of the operating system 
testing, we selected the following BACKUP options to maximize 
system throughput as much as possible:

    o   /NOCRC.  This option disables a cyclic redundancy check 
        (CRC) calculated and stored in the tape block by BACKUP 
        for extra data integrity protection. Since the CRC 
        calculations are CPU intensive, they were disabled to 
        minimize system bottlenecks.

    o   /BLOCK_SIZE=65024.  A block size of 65,024 minimizes host 
        and SCSI bus overhead to a reasonable degree.

    o   /GROUP_SIZE=0.  This option disables the creation of (and 
        the writing to tape of) an exclusive OR (XOR) block 
        calculated by BACKUP. By default, BACKUP would create one 
        XOR block for every 10 data blocks. We disabled XOR 
        blocks because their presence would probably decrease the 
        compression ratio and system throughput.

We tested the following types of data on the OpenVMS system.

    o   Bin -- the BACKUP of a set of binary files, mainly 
        executable files

    o   Sys -- the image BACKUP of the system disk



          
    o   C -- the BACKUP of the DLT2000 product's firmware source 
        library, primarily C code and include files

UNIX Tests.  The UNIX configuration used for testing was a 
DECsystem 5500 system running the ULTRIX Version 4.2c operating 
system. The SCSI common access model (CAM) software driver was 
used, running on this machine's native SCSI port. The standard 
ULTRIX tar and dd utilities were used to copy the following data 
to the tape:

    o   Text -- ASCII text files of product documentation manuals

    o   PS -- PostScript versions of the manuals
          
    o   tar -- tar backup of the system disk

    o   HarGra -- the chart and art files shipped with the 
        standard Harvard Graphics software package
        
    o   ValLog -- the files containing the gate array design 
        database, which was built using Valid Logic tools

Throughput Tests

The throughput tests were performed on PC-based Adaptec SDS-3 
SCSI development/test systems. The development team chose this 
test environment to do repeatable, high-performance testing 
because it is relatively unconstrained by disk, file system, CPU, 
or application software bottlenecks for the performance range of 
the DLT2000 tape drive.

We tested the following data types on the SDS-3 system:

    o   Binary -- an OpenVMS VAX object file

    o   Source -- C source code

    o   VAXcam -- a VAXcamera image file in PostScript format
          
    o   HarGra -- a collection of chart and art files shipped 
        with the standard Harvard Graphics software package

    o   Paint -- a complicated Paintbrush file, in bitmap format
          
    o   Ones -- an all ones (hex FF) pattern

    o   Repeat -- a string of 24 unique characters, repeated as 
        needed
        
SCSI bus protocol overhead can be somewhat high on an SDS-3 
system, and compression ratio and throughput rate can vary 



depending on the tape block size. Consequently, all measurements 
were taken using 64K-byte tape blocks. This block size minimizes 
per-command overhead on the SCSI bus, as well as in the host. 
With high enough compression ratios, however, this overhead was 
still a limiting factor for 64K-byte blocks on the IDRC testing, 
as will be shown later in the SDS-3 Test Results section.

Another factor in SCSI bus performance is whether synchronous or 
asynchronous data transfer mode is used. Asynchronous transfer 
mode requires a full handshake to transfer each data byte, which 
can seriously decrease the bandwidth of the SCSI bus in many 
configurations. Synchronous transfer mode (period/offset = 200/7) 
was enabled, which tends to minimize the effect of cable length 
on performance.

For a given data type, the same amount of data, i.e., from 50M 
bytes to 300M bytes, was transferred to both versions of the tape 
product. We often performed several test runs using different 
amounts of data to check the consistency of the test results.

To maximize the applicability of the test results, we wanted to 
use "real world" data. To do so in our test environment was not 
practical or would have introduced delays between blocks, thus 
ruining any throughput measurements. We obtained a compromise in 
the following manner. The SDS-3 tool we used is limited by a 
64K-byte buffer for high-speed transfers. That buffer can be used  
repeatedly, and the direct memory access (DMA) pointers 
automatically "wrap around" back to the start when they reach the 
end of the buffer. We created a tool that takes the first 64K 
bytes from a file with the desired test data, reformats the data, 
and writes the data to an output file compatible with the SDS-3  
software. This "buffer file" can then be uploaded into the SDS-3 
tool's memory buffer, thus duplicating the first 64K bytes of the 
data from the test file in SDS-3 memory. The tool has an obvious 
limitation; the first 64K bytes of data might not be 
representative of the rest of the data in the file. Using this  
tool was, however, a practical way to transfer at least subsets  
of real data into the throughput test environment.

Benchmark Tests

Since preliminary results of our study indicated that the IDRC 
chip has a lower compression ratio than that indicated by 
previous studies, the benchmark tests were performed primarily to 
confirm the compression efficiency of the IDRC DLT2000 
implementation.[4] For the benchmark tests, we tested two tape 
products that use IDRC compression implementations.

The first product tested was Digital's TA91 tape drive (which is 
compatible with an IBM 3480E tape drive) configured on a 
Hierarchical Storage Controller (HSC) in a VAXcluster 
configuration. A collection of chart and art files included with 
the standard Harvard Graphics software package composed the data 



set. This identical data set was written to an IDRC DLT2000 tape 
drive for accurate comparison.

The second benchmark product tested was an EXB-8505 tape drive, 
which also uses IDRC compression.[9] We tested the EXB-8505 tape 
drive on an SDS-3 test system. The data set used was the first 
64K bytes of the text of the U.S. Constitution. We compared the 
compression ratio obtained on the EXB-8505 with the compression 
ratio for the same data written to a DLZ1 DLT2000 unit and with 
text data compressed on an IDRC DLT2000 tape drive. (The text 
data on the IDRC implementation was different from the text data 
on the EXB-8505 and DLZ1 implementations because an IDRC 
prototype was no longer readily available when the U.S. 
Constitution data became part of the tests.) We also performed 
some throughput tests to compare the DLZ1 DLT2000 and the 
EXB-8505 drives.

We measured the native product capacity of the TA91 and EXB-8505 
tape drives by writing to the end of tape (EOT) with compression 
disabled. We then repeated this test with compression enabled.

TEST RESULTS

The compression ratios shown in the test results are calculated 
by dividing the number of bytes of uncompressed data by the 
number of bytes of the same data when compressed. Therefore, a 
compression ratio of 2.0:1, or simply 2.0, means that the data 
compressed to one-half its original size, and if maintained for 
that whole tape, such compression would effectively double the 
data capacity of the tape drive.

Operating System Test Results

Figure 2 shows the measurements of compression ratio on the 
OpenVMS and UNIX systems. The difference between the compression 
ratios of the DLZ1 prototype and those of the IDRC prototype is 
striking on the graph. The DLZ1 prototype had significantly 
higher compression ratios for all the data types tested. Note 
that these results, as compared to the results of the SDS-3 
testing, are more representative of the real world, since most of 
these data sets came from live multimegabyte databases.

[Figure 2 (Operating System Data Compression Ratios) is not 
available in ASCII format.]

We tested the ULTRIX dump utility on the same system and data on 
which we ran the tar utility. The dump utility compression ratios 
were almost identical to those obtained with the tar utility. 
This result was not surprising since the bulk of the data stored 
was identical -- only the metadata created by the utility varied. 
For comparison purposes, the average compression ratio for these 
data types was 2.76 for the DLZ1 prototype and 1.54 for the IDRC 



prototype.

Although compression measurements were the focus of the operating 
system--based tests, for general information, we also took some 
throughput measurements. The DECsystem 5500 system running the dd 
utility achieved write rates of approximately 0.85M bytes/s for 
the data types. Running the tapex utility's performance test 
(which is not disk or file system limited) on a similar machine 
resulted in rates of more than 3M bytes/s. The 3M-byte/s rate 
implies that, when running dd or tar, the disk and/or file system 
is the likely bottleneck, since the ULTRIX drivers, SCSI channel, 
and tape driver were capable of three times the throughput. 
(Other possibilities are inefficiencies within dd and/or tar, 
inefficient handling of two devices on the SCSI bus, insufficient 
CPU horsepower, etc.) 

OpenVMS tests showed similar results for the BACKUP utility, but 
the throughput is likely to have been limited by the KZQSA 
adapter. Other tests indicate that the KZQSA has a limit of 0.8M 
bytes/s to 0.9M bytes/s with the OpenVMS system.

The informal operating system throughput testing confirms that 
the particular configurations tested are not suitable for 
measuring the bandwidth limits of the DLT2000 tape drive, when 
using the standard backup utilities. Note that the newer VAX and 
the Alpha AXP platforms have much higher throughput capabilities 
and are able to more fully utilize the capabilities of the 
DLT2000 product. These platforms were not available when we 
performed this study.

SDS-3 Test Results

The SDS-3 tests measured compression ratios and data throughput 
rates.

Compression.  Figure 3 shows the SDS-3 data compression ratios. 
The ratios for the first four data types are in the normal range, 
i.e., the DLZ1 prototype averaged approximately 2.4 and the IDRC 
prototype averaged approximately 1.5. For the Paintbrush bitmap 
file, both prototype versions compressed at about the same 
efficiency.

[Figure 3  (SDS-3 Data Compression Ratios) is not available in 
ASCII format.]

Although the 30:1 compression ratio for the Ones pattern data is 
not representative of normal data, the ratio gives a sense of the 
maximum efficiency of the algorithms. The Repeat pattern test 
ratios highlight the ability of the DLZ1 algorithm to capitalize 
on redundant strings of moderate length (24 bytes, in this case). 
The IDRC algorithm lacks this ability. None of the many data sets 
tested compressed better with the IDRC algorithm than with the 



DLZ1 algorithm. (We tested six other data sets but did not 
include the test results in this paper because they showed little 
variation from those presented.) 

Throughput Rates.  Figure 4 shows the data throughput rates for 
six of the data types; compression ratios are annotated at the 
bottom for convenience. The use of a line graph rather than a bar 
graph suggests some correlation between compression ratio and 
throughput. We tested variants of these data types to explore the 
strength of this correlation.

[Figure 4 (SDS-3 Data Throughput Rates) is not available in ASCII 
format.]

With the DLZ1 algorithm, we found data sets that had the same 
compression ratio but significantly different throughput rates. 
We saw variations of up to +/-0.3M bytes/s from the "expected" 
rate, which is the native drive rate (1.25M bytes/s) multiplied 
by the compression ratio.

The throughput rate with the IDRC algorithm tends to correlate 
more strongly with the compression ratio, but we did see 
variations. For example, the VAXcamera data at a compression 
ratio of 1.4 transfers about 0.1M bytes/s faster than Harvard 
Graphics data, which compresses at 1.6.

Even more striking is the difference on write and read transfer 
rates. The DLZ1 algorithm is almost always significantly faster 
on decompression. This feature is characteristic of this type of 
LZ algorithm. On the other hand, IDRC write and read rates match 
very closely, typically within 0.05M bytes/s.

The throughput limit of the SDS-3 system used was high enough to 
not usually be a factor. Knowing this fact was essential for the 
proper interpretation of test results. A bottleneck in the tape 
device must be distinguishable from an adapter or tester 
limitation. We measured the throughput limit of the SDS-3 system 
by writing and reading the Ones pattern and similar data 
patterns, which are highly compressible by the IDRC algorithm. 
With a 64K-byte block size, throughput on the SDS-3 system peaked 
at about 3.5M bytes/s. When we increased the block size 1M byte, 
the throughput jumped to nearly 4.5M bytes/s. This increase was 
due to reduction in the amount of command overhead for a given 
amount of data being transferred on the SCSI bus. None of the 
normal data types tested, except the Paintbrush bitmap files, 
could approach compression ratios high enough to begin to push 
the limits of the SDS-3 system.

These results indicate that at higher data rates, the SDS-3 
system becomes a limiting factor. Analysis of SCSI protocol 
handling on the SDS-3 system shows that the nondata portions of a 
transaction (e.g., message, command, and status) are handled 
somewhat inefficiently. At high throughput rates, this overhead 



is significant enough to affect throughput to the device. Using a 
larger block size reduces this per-command overhead for a given 
amount of tape data and allows a higher throughput to be achieved 
on the SCSI bus.

BENCHMARK TEST RESULTS

We wrote the Harvard Graphics data set repeatedly to the TA91 
tape drive. With compression disabled, about 132M bytes fit on 
the media. With compression enabled, 216M bytes were written, 
giving a compression ratio of 1.64. This ratio compares closely 
with the 1.66 obtained on the IDRC DLT2000 prototype.

We then used the SDS-3 tool to repeatedly write the first 64K 
bytes of the U.S. Constitution to the EXB-8505 tape drive. With 
compression disabled, about 5G bytes were written. With 
compression enabled, 7.6G bytes were written, giving a 
compression ratio of 1.52. Again, this corresponds closely with 
the compression ratio of 1.54 achieved when writing text data on 
the IDRC DLT2000 prototype.

We performed more testing for general comparison between the DLZ1 
DLT2000 product and the EXB-8505 product. The U.S. Constitution 
data compressed at 2.23 on the DLT2000 drive and at 1.52 on the 
EXB-8505 drive. Figure 5 shows the results of throughput testing 
with this data on these two products, using two block sizes, 
10K-byte blocks and 64K-byte blocks. 

[Figure 5 (EXB-8505 and DLT2000 Data Throughput Rates) is not 
available in ASCII format.]

CONCLUSIONS

The compression efficiency testing outlined in this paper 
indicates that, for most data sets, the DLZ1 algorithm usually 
achieves a higher compression ratio than the IDRC algorithm and, 
therefore, yields a consistent capacity advantage over the IDRC 
algorithm. The reader should carefully note that regardless of 
the algorithm used, the actual capacity increase that a user 
might realize with data compression depends heavily on the 
specific mix of data. The following summarizes the compression 
results presented in this paper. Based on the compression testing 
in the operating system environment, a DLT2000 product using DLZ1 
compression has a typical capacity of 25G bytes to 30G bytes. A 
DLT2000 product using IDRC compression would typically hold about 
15G bytes of data.

The data throughput testing showed that, in most cases, the DLZ1 
DLT2000 prototype transferred data at a faster rate than the IDRC 
DLT2000 prototype -- even though the IDRC prototype's hardware 
implementation was capable of almost twice the data rate (5M 
bytes/s for the IDRC drive and 2.5M/3.0M bytes/s for the DLZ1 



drive). The IDRC implementation did not perform better for two 
reasons.

    1.  Given the same data set, the compression ratio of the 
        IDRC implementation is almost always less than that of 
        the DLZ1 implementation.

    2.  The typical compression ratio of the IDRC implementation 
        is somewhat low, in an absolute sense (less than 1.8).
        
Since data compression in the tape device has a multiplying 
effect on data transfer rates seen by the host, a low compression 
ratio limits the practical rate at which compressed data can be 
made available to the tape media.

To transfer data faster than the DLZ1 prototype, the IDRC 
prototype must achieve a compression ratio that multiplies the 
drive's native data rate beyond the throughput limit of the DLZ1 
prototype. This limit is about 2.5M bytes/s for write operations. 
Calculating the approximate minimum compression ratio (Cr) needed 
is straightforward, as the following steps show:

  Cr x (native data transfer rate) = throughput limit 

  Cr x 1.25M bytes/s = 2.5M bytes/s
   
  Cr = (2.5M bytes/s)/(1.25M bytes/s)  

  Cr = 2.0 (or 2.0:1)

Thus, when the IDRC prototype compresses data at a rate greater 
than 2.0:1, its transfer rate should exceed that of the DLZ1 
prototype. Indeed, with the Paintbrush and Ones data patterns, 
the compression ratio was more than 4.0:1, and the transfer rate 
measurements show the throughput potential of the IDRC 
implementation over the DLZ1 implementation. These data patterns 
are not typical, however, and more realistic data sets (e.g., 
binary, source files, text, and databases) show the IDRC 
algorithm compression ratios to be only in the 1.5 to 1.7 range. 
The benchmark testing confirms these results and, therefore, the 
correctness of the IDRC DLT2000 implementation. These low IDRC 
compression ratios for typical data are what prevent the IDRC 
implementation from achieving its throughput potential on the 
DLT2000 tape product.

The DLZ1 DLT2000 implementation was adopted for the actual 
DLT2000 tape product. As the development team completed the 
design, they made hardware and firmware improvements to enhance 
the data throughput characteristics of the final product. For 
example, they increased the clock rate on the compression chip by 
10 percent and optimized critical firmware code paths.
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