
 Digital Technical Journal
 Volume 6, Number 2
 DLT2000 paper

 Analysis of Data Compression in the DLT2000 Tape Drive

 by

 David C. Cressman

ABSTRACT

The DLT2000 magnetic tape drive is a state-of-the-art storage
product with a 1.25M-byte-per-second data throughput rate and a
10G-byte capacity, without data compression. To increase data
capacity and throughput rates, the DLT2000 implements a variant
of the Lempel-Ziv (LZ) data compression algorithm. An LZ method
was chosen over other methods, specifically over the Improved
Data Recording Capability (IDRC) algorithm, after performance
studies showed that the LZ implementation has superior data
throughput rates for typical data, as well as superior capacity.
This paper outlines the two designs, presents the methodology and
the results of the performance testing, and analyzes why the LZ
implementation is faster, when the IDRC hardware implementation
had twice the bandwidth and was expected to have faster
throughput rates.

OVERVIEW

Data compression, a method of reducing data size by coding to
take advantage of data redundancy, is now featured in most tape
drive products. Two compression techniques in widespread use are
(1) an arithmetic coding algorithm called Improved Data Recording
Capability (IDRC) and (2) variants of the general Lempel-Ziv (LZ)
compression algorithm. Current tape products that implement these
algorithms are IBM's fast (a maximum throughput rate of
approximately 3M bytes per second [M bytes/s]) and relatively
expensive (originally about $60K) family of half-inch, 36-track
tape products, which have employed the IDRC algorithm for about
five years. More recently, the 8-millimeter (mm) helical scan
tape products began incorporating IDRC data compression. Also,
some 4-mm helical scan digital audiotape (DAT) products now use a
variant of the LZ algorithm, as do some quarter-inch cartridge
(QIC) tape products.

In developing a complex product like an industry-leading tape
drive, it is difficult to determine at the beginning of the

project the design that will have the best performance
characteristics and meet time/cost goals. When Digital included
data compression in the plans for its DLT2000 tape product, the
choice was not clear regarding which compression technology would
best enhance the tape drive's data transfer rate and capacity.
Keeping within cost constraints and incurring an acceptable level
of risk to the development schedule were important factors as
well. The options were greatly limited, however, because the
schedule was too short for the engineering team to implement a
compression method on a silicon chip designed specifically for
the DLT2000 tape drive; therefore, the team needed to find a
compression chip that was available already or would be soon.

Another important consideration was that the compression method
used on the DLT2000 tape drive would likely be used on future
digital linear tape (DLT) products. For media interchangeability,
such products would have to be able to write and read media
compatible with the DLT2000 tape drive. New products that used
different compression methods would require extra hardware to
handle both types of data compression. Since extra hardware adds
significant cost and complexity to products, the use of different
compression methods is undesirable. Also, to meet future data
throughput needs, the compression method used on the DLT2000 tape
drive had to support the significantly higher data transfer
speeds planned. If the compression chip used initially was too
slow for future products, it had to be at least possible to
develop an implementation of the same compression algorithm that
would be fast enough for future DLT products.

To gain more expertise in applying data compression technology to
tape drives, the tape development group investigated several
designs using various data compression chips. Eventually, we
created about 20 DLT2000 engineering prototype units, each of
which used one of the two most common data compression methods:
IDRC and an LZ variant. The specific Lempel-Ziv variant used was
designated Digital Lempel-Ziv 1 (DLZ1).[1,2] We tested the
performance of the prototype units and studied the results to
check for consistency with our expectations. Such analysis was
important since tape drive performance with data compression was
a new area for the engineering team, and the interplay of higher
tape transfer rates, new gate arrays, compression chip, memory
buffers, new firmware, and host tape applications is complex.

Figure 1 shows the basic design of the data path on the DLT2000
tape drive's electronics module. (Microprocessors, most gate
arrays, firmware read-only memories [ROMs], and other electronic
components are not shown.) Note that the data cache size is
effectively increased because it contains compressed data. The
data processing throughput of the compression chip, however, can
potentially be a bottleneck between the cache and the small
computer systems interface (SCSI) bus. The IDRC compression chip
can process data at throughput rates of up to 5M bytes/s, whereas
the DLZ1 chip can process data at rates of up to about 2.5M
bytes/s when compressing data and up to about 3M bytes/s when

decompressing data. In each design, the memory and data paths
outside the compression chip were designed to be adequate for the
compression chip used.

[Figure 1 (Tape Drive Data Path) is not available in ASCII
format.]

One major goal of this study was to quantify the performance of
each implementation to determine if the lower throughput of the
DLZ1 chip was a practical disadvantage in the DLT2000 product.
The IDRC version of the DLT2000 product, with its maximum
throughput rate of 5M bytes/s, would seem to have a clear
throughput advantage, but the typical compression ratio and the
data rate to the tape media are significant factors in the
overall throughput of the tape drive.

The development group expected the IDRC and DLZ1 chips to have
approximately the same compression ratio (i.e., the result of
dividing the number of units of data input by the number of units
of data output). The DLZ1 ratio would possibly be slightly
higher. The group based their expectation on comparisons of
results from several studies.[2,3,4] These studies reported
compression ratios for various types of data on implementations
that used either the IDRC algorithm or an LZ algorithm but not
both.

Compressing data within the tape drive has a multiplying effect
on the drive's throughput rate, as seen by a host computer. If
the uncompressed data throughput rate to the tape media is 1.25M
bytes/s and the data compression ratio is 2.0:1 (or 2.0), the
expected average data transfer rate is 1.25 x 2.0 = 2.5M bytes/s.
Since the development group thought that the typical compression
ratio of each implementation was 2.0:1, and because the DLZ1 chip
would tend to become a bottleneck as data rates approached the
chip's maximum throughput rate, the group expected the IDRC
prototype to be at least as fast as the DLZ1 prototype for a
given data set.

Testing showed, however, that the DLZ1 DLT2000 prototype
consistently, and significantly, surpassed the IDRC prototype in
both metrics! To ensure the correctness of the IDRC
implementation used on the prototype DLT2000 and thus confirm the
unexpected result, the group verified the IDRC compression
efficiency results by testing two other tape products that use
the IDRC algorithm. Given identical data sets, the benchmark test
results were consistent with those of the IDRC DLT2000 prototype.

The marked difference between the DLZ1 and IDRC prototypes can be
mainly attributed to the differences in the compression
efficiencies of the two algorithms. Relatively low compression
ratios on the IDRC unit limit its throughput capabilities. The
author believes that the discrepancy between the results of the
DLT2000 prototype testing and the results of the earlier studies
can be explained by two factors: variations in the data sets used

and differences in media format.

First, the compression efficiency for different samples of data,
even if of the same type, e.g., PostScript data, can vary widely.
The data sets tested on the DLT2000 prototypes were not identical
to those tested in the earlier studies.

Second, some tape drive implementations combine IDRC data
compression with a feature IBM calls autoblocking (also known as
superblocking). This coupling occurs when the tape drive has a
media format that contains interrecord gaps (IRGs) whose number
is inversely proportional to the tape block (record) size used
(sometimes linear). Autoblocking minimizes the number of IRGs by
automatically using a large, fixed on-tape block size (e.g., 64K
bytes). The autoblocking feature packs multiple compressed blocks
from the host into the larger blocks on the media.[4] Reducing
the number of IRGs on such tape formats is important because IRGs
are wasted space. If block sizes are small, the number of IRGs
will be large and the tape capacity significantly reduced. Tape
products that combine autoblocking with IDRC compression derive
an increased capacity from both techniques.

These two factors, however, were not relevant to the test results
of our study, i.e., the favorable DLZ1 findings. We performed the
DLT2000 prototype testing with tape drives that were virtually
identical except for the compression technology used. Also, the
data samples, tools, and test environments were the same.

From the test results and analysis we concluded that, when
compared with the IDRC implementation, the DLZ1 implementation
combines consistently superior cartridge capacity (25G bytes at a
compression ratio of 2.5:1) and superior data throughput for most
types of real data. The testing did not reveal any real data
types that compressed better with the IDRC technique than with
the DLZ1 technique. In addition, the DLZ1 technique is supported
by the strong prospect of future DLZ1 compression chips that will
greatly increase the maximum data throughput rates. This
addresses the concern that the DLZ1 technique should support a
growth path in data throughput rate for future members of the DLT
product family.

The remainder of this paper outlines the operation of the IDRC
and DLZ1 compression techniques, discusses what testing was done
and how, presents the test data, and gives an analysis of the
results.

DESCRIPTION OF THE IDRC AND DLZ1 COMPRESSION ALGORITHMS

This section provides some historical/industrial background on
the IDRC and DLZ1 algorithms and some cursory information on how
they work. An in-depth technical presentation of these (or other)
compression techniques is beyond the scope of this paper. For
more details on their operation and mathematics, please refer to

the references.

The IDRC Compression Algorithm

IBM developed the IDRC algorithm and employs this technique on
some members of the Model 3480 and Model 3490 tape subsystems.
EXABYTE Corporation is currently licensing the IDRC algorithm
from IBM.[4]

The IDRC algorithm is a lossless, adaptive arithmetic compression
technique. Arithmetic compression encodes data by creating an
output string that represents a sequence of fractional numbers
between 0 and 1. Each fraction is the result of the product of
the probabilities of the preceding input symbols.[4,5,6,7]

The IDRC technique has two modes: byte oriented and binary (bit)
oriented. On input, bytes are compared with the last byte
processed. If three or more consecutive bytes are found to be
equal, processing occurs on a byte-by-byte basis. Otherwise, the
data is compressed bit by bit.[6]

Parallel recording implementations for which the number of IRGs
is a capacity issue (for example, the IBM Model 3490 product)
usually combine IDRC compression with autoblocking. Since
autoblocking reduces the number of IRGs (assuming that a smaller
block size is commonly used), the effective increase in tape
capacity due to autoblocking surpasses the increase that
compression alone would yield.

In some tape implementations, though, data is packed into
fixed-size blocks on the media whether or not compression is
used. If done efficiently, this packing makes tape capacity on
such products independent of block size.

The DLZ1 Compression Algorithm

A number of variations of the Lempel-Ziv algorithm (also referred
to as the Ziv-Lempel algorithm) have been implemented and are in
wide use in the industry today. Some examples are the common PC
compression software tools PKARC, PKZIP, and ZOO; the compression
method built into the MS-DOS Version 6.0 system; and
Hewlett-Packard's HP 7980XC tape drive. IBM recently announced
that it has developed a high-speed (40M bytes/s) compression chip
that uses the LZ algorithm. In addition, STAC Electronics' data
compression products and the QIC-122 data compression standard
use derivatives of the LZ algorithm.[4,5]

Lempel-Ziv methods generally replace redundant strings in the
input data with shorter symbols. The methods are lossless and
adapt to the input data. Implementations typically simplify the
general algorithm in one or more ways for practical reasons, such
as speed and memory requirements for string storage.[1,3,4,5,8]

The LZ variant used in the DLZ1 implementation maps
variable-length strings in the input to variable-length output
symbols. During compression, the algorithm builds a dictionary of
strings, which is accessed by means of a hash table. Compression
occurs when input data matches a string in the table and is
replaced with the corresponding dictionary symbol. The dictionary
itself is not output to the tape media but is rebuilt during
decompression.[1]

When the dictionary fills up with strings, the algorithm cannot
adapt to new patterns in the data. For this reason, the
dictionary needs to be reset periodically. The DLT2000 DLZ1
algorithm resets the dictionary on each logical block boundary.
Thus, the compression efficiency can vary according to the block
size, as well as with the actual data. With small blocks, the
dictionary is typically still adapting to the input data when the
block ends and the dictionary is reset. This tends to keep the
compression algorithm from reaching full efficiency. For example,
with an LZ variant similar to the DLZ1, the LZW algorithm
presented in Welch's "A Technique for High-Performance Data
Compression," compression efficiency increases rapidly as the
block size used goes from 1 byte to about 8K bytes.[3] The
efficiency peaks at about 12K bytes, and larger block sizes show
good but gradually decreasing compression efficiencies. The
initial input block range that exhibits rapid improvement in
compression efficiency (1 byte to 8K bytes, in this case) is
referred to as the "adaptation zone."

TEST PROCEDURES

The development group carried out three main sets of tests.

 1. Tests that measured the compression efficiency on an
 OpenVMS system and on an ULTRIX system, which is based on
 the UNIX system

 2. Tests that measured the compression efficiency and the
 data throughput in a high-throughput test system
 environment

 3. Benchmark tests that measured the IDRC compression ratios
 on two other tape products

The DLT2000 firmware measured the compression ratios precisely by
comparing the block size (in bytes) before and after compression,
during write command processing. In the benchmark tests,
compression ratios were calculated from total tape capacities
with and without compression enabled. We repeated the DLT2000
tests with minor variations in test parameters; the results
suggested an uncertainty of approximately +/-1 percent in the
measurements.

Test configurations were identical in system type, test software,
and operating system versions. We often used the same test bed
and varied only the tape unit under test, i.e., the DLZ1 or the
IDRC. The hardware and firmware on the different DLT2000
prototypes were identical to ensure that factors such as
diagnostic code overhead and clock speed did not skew test
results between the DLZ1 and the IDRC units, or between test
runs. We also varied some parameters and repeated tests to ensure
that the measured performance characteristics were consistent
with and reflective of the final product.

Operating System--based Tests

Since the system configurations used could not supply data fast
enough for conclusions to be made regarding the DLT2000 tape
drive's maximum throughput rates, compression efficiency was the
focus of the operating system testing. Test parameters were still
chosen to minimize throughput bottlenecks in the host system. For
each test, the data was set up on a single disk on each of two
systems -- an OpenVMS system and a UNIX system.

OpenVMS Tests. The OpenVMS system used in the tests was a
clustered MicroVAX 3400 machine with a KZQSA adapter for the SCSI
bus. The MicroVAX 3400 system was running the OpenVMS Version
5.5-2 operating system and used the standard backup utility
(BACKUP) to write data to the DLT2000 tape drive. Although
compression efficiency was the focus of the operating system
testing, we selected the following BACKUP options to maximize
system throughput as much as possible:

 o /NOCRC. This option disables a cyclic redundancy check
 (CRC) calculated and stored in the tape block by BACKUP
 for extra data integrity protection. Since the CRC
 calculations are CPU intensive, they were disabled to
 minimize system bottlenecks.

 o /BLOCK_SIZE=65024. A block size of 65,024 minimizes host
 and SCSI bus overhead to a reasonable degree.

 o /GROUP_SIZE=0. This option disables the creation of (and
 the writing to tape of) an exclusive OR (XOR) block
 calculated by BACKUP. By default, BACKUP would create one
 XOR block for every 10 data blocks. We disabled XOR
 blocks because their presence would probably decrease the
 compression ratio and system throughput.

We tested the following types of data on the OpenVMS system.

 o Bin -- the BACKUP of a set of binary files, mainly
 executable files

 o Sys -- the image BACKUP of the system disk

 o C -- the BACKUP of the DLT2000 product's firmware source
 library, primarily C code and include files

UNIX Tests. The UNIX configuration used for testing was a
DECsystem 5500 system running the ULTRIX Version 4.2c operating
system. The SCSI common access model (CAM) software driver was
used, running on this machine's native SCSI port. The standard
ULTRIX tar and dd utilities were used to copy the following data
to the tape:

 o Text -- ASCII text files of product documentation manuals

 o PS -- PostScript versions of the manuals

 o tar -- tar backup of the system disk

 o HarGra -- the chart and art files shipped with the
 standard Harvard Graphics software package

 o ValLog -- the files containing the gate array design
 database, which was built using Valid Logic tools

Throughput Tests

The throughput tests were performed on PC-based Adaptec SDS-3
SCSI development/test systems. The development team chose this
test environment to do repeatable, high-performance testing
because it is relatively unconstrained by disk, file system, CPU,
or application software bottlenecks for the performance range of
the DLT2000 tape drive.

We tested the following data types on the SDS-3 system:

 o Binary -- an OpenVMS VAX object file

 o Source -- C source code

 o VAXcam -- a VAXcamera image file in PostScript format

 o HarGra -- a collection of chart and art files shipped
 with the standard Harvard Graphics software package

 o Paint -- a complicated Paintbrush file, in bitmap format

 o Ones -- an all ones (hex FF) pattern

 o Repeat -- a string of 24 unique characters, repeated as
 needed

SCSI bus protocol overhead can be somewhat high on an SDS-3
system, and compression ratio and throughput rate can vary

depending on the tape block size. Consequently, all measurements
were taken using 64K-byte tape blocks. This block size minimizes
per-command overhead on the SCSI bus, as well as in the host.
With high enough compression ratios, however, this overhead was
still a limiting factor for 64K-byte blocks on the IDRC testing,
as will be shown later in the SDS-3 Test Results section.

Another factor in SCSI bus performance is whether synchronous or
asynchronous data transfer mode is used. Asynchronous transfer
mode requires a full handshake to transfer each data byte, which
can seriously decrease the bandwidth of the SCSI bus in many
configurations. Synchronous transfer mode (period/offset = 200/7)
was enabled, which tends to minimize the effect of cable length
on performance.

For a given data type, the same amount of data, i.e., from 50M
bytes to 300M bytes, was transferred to both versions of the tape
product. We often performed several test runs using different
amounts of data to check the consistency of the test results.

To maximize the applicability of the test results, we wanted to
use "real world" data. To do so in our test environment was not
practical or would have introduced delays between blocks, thus
ruining any throughput measurements. We obtained a compromise in
the following manner. The SDS-3 tool we used is limited by a
64K-byte buffer for high-speed transfers. That buffer can be used
repeatedly, and the direct memory access (DMA) pointers
automatically "wrap around" back to the start when they reach the
end of the buffer. We created a tool that takes the first 64K
bytes from a file with the desired test data, reformats the data,
and writes the data to an output file compatible with the SDS-3
software. This "buffer file" can then be uploaded into the SDS-3
tool's memory buffer, thus duplicating the first 64K bytes of the
data from the test file in SDS-3 memory. The tool has an obvious
limitation; the first 64K bytes of data might not be
representative of the rest of the data in the file. Using this
tool was, however, a practical way to transfer at least subsets
of real data into the throughput test environment.

Benchmark Tests

Since preliminary results of our study indicated that the IDRC
chip has a lower compression ratio than that indicated by
previous studies, the benchmark tests were performed primarily to
confirm the compression efficiency of the IDRC DLT2000
implementation.[4] For the benchmark tests, we tested two tape
products that use IDRC compression implementations.

The first product tested was Digital's TA91 tape drive (which is
compatible with an IBM 3480E tape drive) configured on a
Hierarchical Storage Controller (HSC) in a VAXcluster
configuration. A collection of chart and art files included with
the standard Harvard Graphics software package composed the data

set. This identical data set was written to an IDRC DLT2000 tape
drive for accurate comparison.

The second benchmark product tested was an EXB-8505 tape drive,
which also uses IDRC compression.[9] We tested the EXB-8505 tape
drive on an SDS-3 test system. The data set used was the first
64K bytes of the text of the U.S. Constitution. We compared the
compression ratio obtained on the EXB-8505 with the compression
ratio for the same data written to a DLZ1 DLT2000 unit and with
text data compressed on an IDRC DLT2000 tape drive. (The text
data on the IDRC implementation was different from the text data
on the EXB-8505 and DLZ1 implementations because an IDRC
prototype was no longer readily available when the U.S.
Constitution data became part of the tests.) We also performed
some throughput tests to compare the DLZ1 DLT2000 and the
EXB-8505 drives.

We measured the native product capacity of the TA91 and EXB-8505
tape drives by writing to the end of tape (EOT) with compression
disabled. We then repeated this test with compression enabled.

TEST RESULTS

The compression ratios shown in the test results are calculated
by dividing the number of bytes of uncompressed data by the
number of bytes of the same data when compressed. Therefore, a
compression ratio of 2.0:1, or simply 2.0, means that the data
compressed to one-half its original size, and if maintained for
that whole tape, such compression would effectively double the
data capacity of the tape drive.

Operating System Test Results

Figure 2 shows the measurements of compression ratio on the
OpenVMS and UNIX systems. The difference between the compression
ratios of the DLZ1 prototype and those of the IDRC prototype is
striking on the graph. The DLZ1 prototype had significantly
higher compression ratios for all the data types tested. Note
that these results, as compared to the results of the SDS-3
testing, are more representative of the real world, since most of
these data sets came from live multimegabyte databases.

[Figure 2 (Operating System Data Compression Ratios) is not
available in ASCII format.]

We tested the ULTRIX dump utility on the same system and data on
which we ran the tar utility. The dump utility compression ratios
were almost identical to those obtained with the tar utility.
This result was not surprising since the bulk of the data stored
was identical -- only the metadata created by the utility varied.
For comparison purposes, the average compression ratio for these
data types was 2.76 for the DLZ1 prototype and 1.54 for the IDRC

prototype.

Although compression measurements were the focus of the operating
system--based tests, for general information, we also took some
throughput measurements. The DECsystem 5500 system running the dd
utility achieved write rates of approximately 0.85M bytes/s for
the data types. Running the tapex utility's performance test
(which is not disk or file system limited) on a similar machine
resulted in rates of more than 3M bytes/s. The 3M-byte/s rate
implies that, when running dd or tar, the disk and/or file system
is the likely bottleneck, since the ULTRIX drivers, SCSI channel,
and tape driver were capable of three times the throughput.
(Other possibilities are inefficiencies within dd and/or tar,
inefficient handling of two devices on the SCSI bus, insufficient
CPU horsepower, etc.)

OpenVMS tests showed similar results for the BACKUP utility, but
the throughput is likely to have been limited by the KZQSA
adapter. Other tests indicate that the KZQSA has a limit of 0.8M
bytes/s to 0.9M bytes/s with the OpenVMS system.

The informal operating system throughput testing confirms that
the particular configurations tested are not suitable for
measuring the bandwidth limits of the DLT2000 tape drive, when
using the standard backup utilities. Note that the newer VAX and
the Alpha AXP platforms have much higher throughput capabilities
and are able to more fully utilize the capabilities of the
DLT2000 product. These platforms were not available when we
performed this study.

SDS-3 Test Results

The SDS-3 tests measured compression ratios and data throughput
rates.

Compression. Figure 3 shows the SDS-3 data compression ratios.
The ratios for the first four data types are in the normal range,
i.e., the DLZ1 prototype averaged approximately 2.4 and the IDRC
prototype averaged approximately 1.5. For the Paintbrush bitmap
file, both prototype versions compressed at about the same
efficiency.

[Figure 3 (SDS-3 Data Compression Ratios) is not available in
ASCII format.]

Although the 30:1 compression ratio for the Ones pattern data is
not representative of normal data, the ratio gives a sense of the
maximum efficiency of the algorithms. The Repeat pattern test
ratios highlight the ability of the DLZ1 algorithm to capitalize
on redundant strings of moderate length (24 bytes, in this case).
The IDRC algorithm lacks this ability. None of the many data sets
tested compressed better with the IDRC algorithm than with the

DLZ1 algorithm. (We tested six other data sets but did not
include the test results in this paper because they showed little
variation from those presented.)

Throughput Rates. Figure 4 shows the data throughput rates for
six of the data types; compression ratios are annotated at the
bottom for convenience. The use of a line graph rather than a bar
graph suggests some correlation between compression ratio and
throughput. We tested variants of these data types to explore the
strength of this correlation.

[Figure 4 (SDS-3 Data Throughput Rates) is not available in ASCII
format.]

With the DLZ1 algorithm, we found data sets that had the same
compression ratio but significantly different throughput rates.
We saw variations of up to +/-0.3M bytes/s from the "expected"
rate, which is the native drive rate (1.25M bytes/s) multiplied
by the compression ratio.

The throughput rate with the IDRC algorithm tends to correlate
more strongly with the compression ratio, but we did see
variations. For example, the VAXcamera data at a compression
ratio of 1.4 transfers about 0.1M bytes/s faster than Harvard
Graphics data, which compresses at 1.6.

Even more striking is the difference on write and read transfer
rates. The DLZ1 algorithm is almost always significantly faster
on decompression. This feature is characteristic of this type of
LZ algorithm. On the other hand, IDRC write and read rates match
very closely, typically within 0.05M bytes/s.

The throughput limit of the SDS-3 system used was high enough to
not usually be a factor. Knowing this fact was essential for the
proper interpretation of test results. A bottleneck in the tape
device must be distinguishable from an adapter or tester
limitation. We measured the throughput limit of the SDS-3 system
by writing and reading the Ones pattern and similar data
patterns, which are highly compressible by the IDRC algorithm.
With a 64K-byte block size, throughput on the SDS-3 system peaked
at about 3.5M bytes/s. When we increased the block size 1M byte,
the throughput jumped to nearly 4.5M bytes/s. This increase was
due to reduction in the amount of command overhead for a given
amount of data being transferred on the SCSI bus. None of the
normal data types tested, except the Paintbrush bitmap files,
could approach compression ratios high enough to begin to push
the limits of the SDS-3 system.

These results indicate that at higher data rates, the SDS-3
system becomes a limiting factor. Analysis of SCSI protocol
handling on the SDS-3 system shows that the nondata portions of a
transaction (e.g., message, command, and status) are handled
somewhat inefficiently. At high throughput rates, this overhead

is significant enough to affect throughput to the device. Using a
larger block size reduces this per-command overhead for a given
amount of tape data and allows a higher throughput to be achieved
on the SCSI bus.

BENCHMARK TEST RESULTS

We wrote the Harvard Graphics data set repeatedly to the TA91
tape drive. With compression disabled, about 132M bytes fit on
the media. With compression enabled, 216M bytes were written,
giving a compression ratio of 1.64. This ratio compares closely
with the 1.66 obtained on the IDRC DLT2000 prototype.

We then used the SDS-3 tool to repeatedly write the first 64K
bytes of the U.S. Constitution to the EXB-8505 tape drive. With
compression disabled, about 5G bytes were written. With
compression enabled, 7.6G bytes were written, giving a
compression ratio of 1.52. Again, this corresponds closely with
the compression ratio of 1.54 achieved when writing text data on
the IDRC DLT2000 prototype.

We performed more testing for general comparison between the DLZ1
DLT2000 product and the EXB-8505 product. The U.S. Constitution
data compressed at 2.23 on the DLT2000 drive and at 1.52 on the
EXB-8505 drive. Figure 5 shows the results of throughput testing
with this data on these two products, using two block sizes,
10K-byte blocks and 64K-byte blocks.

[Figure 5 (EXB-8505 and DLT2000 Data Throughput Rates) is not
available in ASCII format.]

CONCLUSIONS

The compression efficiency testing outlined in this paper
indicates that, for most data sets, the DLZ1 algorithm usually
achieves a higher compression ratio than the IDRC algorithm and,
therefore, yields a consistent capacity advantage over the IDRC
algorithm. The reader should carefully note that regardless of
the algorithm used, the actual capacity increase that a user
might realize with data compression depends heavily on the
specific mix of data. The following summarizes the compression
results presented in this paper. Based on the compression testing
in the operating system environment, a DLT2000 product using DLZ1
compression has a typical capacity of 25G bytes to 30G bytes. A
DLT2000 product using IDRC compression would typically hold about
15G bytes of data.

The data throughput testing showed that, in most cases, the DLZ1
DLT2000 prototype transferred data at a faster rate than the IDRC
DLT2000 prototype -- even though the IDRC prototype's hardware
implementation was capable of almost twice the data rate (5M
bytes/s for the IDRC drive and 2.5M/3.0M bytes/s for the DLZ1

drive). The IDRC implementation did not perform better for two
reasons.

 1. Given the same data set, the compression ratio of the
 IDRC implementation is almost always less than that of
 the DLZ1 implementation.

 2. The typical compression ratio of the IDRC implementation
 is somewhat low, in an absolute sense (less than 1.8).

Since data compression in the tape device has a multiplying
effect on data transfer rates seen by the host, a low compression
ratio limits the practical rate at which compressed data can be
made available to the tape media.

To transfer data faster than the DLZ1 prototype, the IDRC
prototype must achieve a compression ratio that multiplies the
drive's native data rate beyond the throughput limit of the DLZ1
prototype. This limit is about 2.5M bytes/s for write operations.
Calculating the approximate minimum compression ratio (Cr) needed
is straightforward, as the following steps show:

 Cr x (native data transfer rate) = throughput limit

 Cr x 1.25M bytes/s = 2.5M bytes/s

 Cr = (2.5M bytes/s)/(1.25M bytes/s)

 Cr = 2.0 (or 2.0:1)

Thus, when the IDRC prototype compresses data at a rate greater
than 2.0:1, its transfer rate should exceed that of the DLZ1
prototype. Indeed, with the Paintbrush and Ones data patterns,
the compression ratio was more than 4.0:1, and the transfer rate
measurements show the throughput potential of the IDRC
implementation over the DLZ1 implementation. These data patterns
are not typical, however, and more realistic data sets (e.g.,
binary, source files, text, and databases) show the IDRC
algorithm compression ratios to be only in the 1.5 to 1.7 range.
The benchmark testing confirms these results and, therefore, the
correctness of the IDRC DLT2000 implementation. These low IDRC
compression ratios for typical data are what prevent the IDRC
implementation from achieving its throughput potential on the
DLT2000 tape product.

The DLZ1 DLT2000 implementation was adopted for the actual
DLT2000 tape product. As the development team completed the
design, they made hardware and firmware improvements to enhance
the data throughput characteristics of the final product. For
example, they increased the clock rate on the compression chip by
10 percent and optimized critical firmware code paths.

ACKNOWLEDGMENTS

Other members of the firmware engineering team made contributions
relevant to this paper. In particular, I would like to thank
Brian LeBlanc for conducting performance SDS-3 test runs that
confirmed my results and in some cases were incorporated into the
data presented. I would also like to thank Haim Bitner for
assisting me in digging into the theory behind the LZ and IDRC
compression algorithms and for running the EXB-8505 benchmark
tests.

REFERENCES

1. D. Whiting et al., Data Compression Apparatus and Method,
 U.S. Patent 5,016,009 (May 14, 1991).

2. "9705 Data Compression Coprocessor Data Sheet," Revision
 1.00, STAC Electronics (December 1991).

3. T. Welch, "A Technique for High-Performance Data
 Compression," Computer 17 (June 1984): 8-19.

4. V. Chinnaswamy, "An Overview of Compression Techniques and
 TA90 Performance with Compression," internal report (Maynard,
 MA: Digital Equipment Corporation, July 1991). This internal
 document is unavailable to external readers.

5. D. Lelewer, Current Techniques in Data Compression (Irvine,
 CA: University of California, Instructional Television
 Network, 1993).

6. Compaction Algorithm, Binary Arithmetic Coding, 1st Draft,
 Proposed American National Standard X3B5 (November 17, 1989).

7. T. Bell, J. Cleary, and I. Witten, Text Compression
 (Englewood Cliffs, NJ: Prentice Hall, 1990).

8. J. Ziv and A. Lempel, "A Universal Algorithm for Sequential
 Data Compression," IEEE Transactions on Information Theory,
 vol. IT-23, no. 3 (May 1977): 337-343.

9. EXB-8505 8mm Cartridge Tape Subsystem User's Manual, Revision
 002 (Boulder, CO: EXABYTE Corporation, November 1992).

TRADEMARKS

The following are trademarks of Digital Equipment Corporation:
Alpha AXP, DECsystem, Digital, HSC, MicroVAX, OpenVMS, TA,
ULTRIX, VAX, and VAXcamera.

EXABYTE is a registered trademark of EXABYTE Corporation.

Harvard Graphics is a trademark of Software Publishing
Corporation.

Hewlett-Packard is a registered trademark of Hewlett-Packard
Company.

IBM is a registered trademark of International Business Machines
Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

Paintbrush is a registered trademark of Zsoft Corporation.

PostScript is a registered trademark of Adobe Systems
Incorporated.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company, Ltd.

BIOGRAPHY

David C. Cressman A consulting software engineer in the Tapes
and Solid State Disk Engineering Group, Dave Cressman is
currently working on the development of digital linear tape (DLT)
products. He developed the SCSI firmware for the TZ85 and TZ86
tape products and was responsible for the TMSCP firmware of the
TF85 and TF86 tape products. Dave joined Digital in 1988 after
seven years with Data General Corporation, where he developed a
SCSI subsystem controller and operating system device drivers. He
received B.S.C.S. and B.S.E.E. degrees (1981) from State
University of New York (SUNY) at Stony Brook.

===
Copyright 1994 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

