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ABSTRACT

The AlphaServer 2100 I/O subsystem contains a dual-level I/O 
structure that includes the high-powered PCI local bus and the 
widely used EISA bus. The PCI bus is connected to the server's 
multiprocessing system bus through the custom-designed bridge 
chip. The EISA bus supports eight general-purpose EISA/ISA 
connectors, providing connections to plug-in, industry-standard 
options. Data rate isolation, disconnected transaction, and data 
buffer management techniques were used to ensure bus efficiency 
in the I/O subsystem. Innovative engineering designs accomplished 
the task of combining Alpha CPUs and standard-system I/O devices.  

INTRODUCTION

Digital's AlphaServer 2100 server combines Alpha multiprocessing 
technology with an I/O subsystem typically associated with  
personal computers (PCs).[1] The I/O subsystem on the AlphaServer 
2100 system contains a two-level hierarchical bus structure 
consisting of a high-performance primary I/O bus connected to a 
secondary, lower performance I/O bus. The primary I/O bus is a 
32-bit peripheral component interconnect (PCI) local bus (or 
simply, PCI bus).[2] The PCI bus is connected to the AlphaServer 
2100 system's multiprocessing system bus through a custom 
application specific integrated circuit (ASIC) bridge chip 
(referred to as the T2 bridge chip). The secondary I/O bus is a 
32-bit Extended Industry Standard Architecture (EISA) bus 
connected to the PCI bus through a bridge chip set provided by 
Intel Corporation.[3] Figure 1 shows the I/O subsystem designed 
for the AlphaServer 2100 product. The I/O subsystem demonstrated 
sufficient flexibility to become the I/O interface for the small 
pedestal AlphaServer 2000 product and the rackmountable version 
of the AlphaServer 2100 server. 

[Figure 1 (I/O Subsystem for the AlphaServer 2100 System) 
is not available in ASCII format.]
 
This paper discusses the dual-level bus hierarchy and the several 
I/O advantages it provides. The design considerations of the I/O 
subsystem for the AlphaServer 2100 server are examined in the 
sections that follow.

I/O SUPPORT FOR EISA AND PCI BUSES



The EISA bus enables the AlphaServer 2100 system to support a 
wide range of existing EISA or Industry Standard Architecture 
(ISA) I/O peripherals.[4] The EISA bus can sustain data rates up 
to a theoretical limit of 33 megabytes per second (MB/s) at a 
clock rate of 8.25 megahertz (MHz). In the current configuration 
for the AlphaServer 2100 product, the EISA bus supports eight 
general-purpose EISA/ISA connectors, and the EISA bridge chip set 
provides connections to various low-speed, system-standard I/O 
devices such as keyboard, mouse, and time-of-year (TOY) clock. 
For most system configurations, the AlphaServer 2100 system's 
EISA bus provides enough data bandwidth to meet all data 
throughput requirements. In light of the new requirements for 
faster data rates, however, the EISA bus will soon begin to run 
out of bus bandwidth.

To provide for more bandwidth, the AlphaServer 2100 system also 
contains a PCI bus as its primary bus. With data rates four times 
that of the EISA bus, the PCI bus provides a direct migration 
path from the EISA bus. The 32-bit PCI bus can sustain data rates 
up to a theoretical limit of 132 MB/s at a clock rate of 33 MHz. 
In the AlphaServer 2100 system configuration, the PCI bus 
provides connections to three general-purpose 32-bit PCI 
connectors, an Ethernet device, a SCSI device, the PCI-to-EISA 
bridge chip, and the T2 bridge chip.

A close examination of the bus structure reveals that the 
AlphaServer 2100 system actually contains a three-level, 
hierarchical bus structure. In addition to the PCI and EISA 
buses, the AlphaServer 2100 system includes a 128-bit 
multiprocessing system bus, as shown in Figure 1. Each bus is 
designed to adhere to its own bus interface protocols at 
different data rates. The system bus is 128 bits per 24 
nanoseconds (ns); the PCI bus is 32 bits per 30 ns; and the EISA 
bus is 32 bits per 120 ns. Each bus is required to provide a 
particular function to the system and is positioned in the bus 
hierarchy to maximize that efficiency. For example, the system 
bus is positioned close to the CPUs and memory to maximize CPU 
memory access time, and the lower performance I/O devices are 
placed on the EISA bus because their timing requirements are less 
critical. To maintain maximum bus efficiency on all three buses, 
it is critical that each bus be able to perform its various 
functions autonomously of each other. In other words, a slower 
performing bus should not affect the efficiency of a 
high-performance bus. The section below discusses a few 
techniques that we designed into the I/O subsystem to enable the 
buses to work together efficiently.

USING THE BUS HIERARCHY EFFICIENTLY

This section discusses the data rate isolation, disconnected 
transaction, data buffer management, and data bursting techniques 
used to ensure bus efficiency in the I/O subsystem. 



Data Rate Isolation

The three-level bus hierarchy promotes data rate isolation and 
concurrency for simultaneous operations on all three buses. The 
design of the bus bridges helps to enable each bus to work 
independently: it provides bus interfaces with extensive data 
buffering that function at the same data rates as the interfacing 
bus. For example, the T2 bridge chip contains both a system bus 
interface and a PCI bus interface that run synchronously to their 
respective buses, but are totally asynchronous to each other. The 
data buffers inside the T2 bridge chip act as a domain connector 
from one bus time zone to the other and help to isolate the data 
rates of the two buses.

Disconnected Transactions

Whenever possible, the bridges promote the use of disconnected 
(or pended) protocols to move data across the buses. Disconnected 
protocols decrease the interdependencies between the different 
buses. For example, when a CPU residing on the system bus needs 
to move data to the PCI bus, the CPU does so by sending its data 
onto the system bus. Here the T2 bridge chip (see Figure 2) 
stores the data into its internal data buffers at the system bus 
data rate. The T2 bridge chip provides enough buffering to store 
an entire CPU transaction. From the CPU's perspective, the 
transaction is completed as soon as the T2 bridge chip accepts 
its data. At that point, the T2 bridge chip must forward the data 
to the PCI bus, independent of the CPU. In this way, the CPU is 
not required to waste bus bandwidth by waiting for the transfer 
to complete to its final destination on the PCI bus.

[Figure 2 (Block Diagram of the T2 Bridge Chip) is not available 
in ASCII format.]
 
The T2 bridge chip implements disconnected transactions for all 
CPU-to-PCI transactions and most PCI-to-memory transactions. In a 
similar fashion, the PCI-to-EISA bridge implements disconnected 
transactions between the PCI bus and the EISA bus.

Data Buffer Management

In addition to containing temporary data buffering to store data 
on its journey from bus to bus, each bridge chip utilizes buffer 
management to allocate and deallocate its internal data buffers 
from one incoming data stream to another. In this way, a single 
ASIC bridge design can efficiently service multiple data streams 
with a relatively small amount of data buffering and without 
impacting bus performance.

The T2 bridge chip contains 160 bytes of temporary data buffering 
divided across the three specific bus transactions it performs. 



These three transactions are (1) direct memory access (DMA) 
writes from PCI to memory (system bus), (2) DMA reads from memory 
(system bus) to PCI, and 3) programmed I/O (system bus) 
reads/writes by a CPU from/to the PCI. The T2 bridge chip's data 
buffering is organized into five 32-byte buffers. Two 32-byte 
buffers each are allocated to the DMA write and DMA read 
functions, and one 32-byte buffer is allocated to the programmed 
I/O function. Each of the three transaction functions contains 
its own buffer management logic to determine the best use of its 
available data buffering. Buffer management is especially 
valuable in situations in which a PCI device is reading data from 
memory on the system bus. To maintain an even flow of data from 
bus to bus, the buffer management inside the T2 bridge chip 
attempts to prefetch more read data from memory while it is 
moving data onto the PCI.

Buffer management helps the bridges service bus transactions in a 
way that promotes continuous data flow that, in turn, promotes 
bus efficiency.

Burst Transactions

Using a bus efficiently also means utilizing as much of the bus 
bandwidth as possible for "useful" data movement. Useful data 
movement is defined as that section of time when only the actual 
data is moving on the bus, devoid of address or protocol cycles. 
Maximizing useful data movement can be accomplished by sending 
many data beats (data per cycle) per single transfer time. 
Sending multiple data beats per single transfer is referred to as 
a "burst transaction."

All three buses have the ability to perform burst transactions. 
The system bus can burst as much as 32 bytes of data per 
transaction, and the PCI and EISA buses can burst continuously as 
required.

Data bursting promotes bus efficiency and very high data rates. 
Each bus bridge in the server is required to support data 
bursting.

THE BUS BRIDGES

In the previous section, we discussed certain design techniques 
used to promote efficiency within the server's hierarchical bus 
structure. The section that follows describes the bus bridges in 
more detail, emphasizing a few interesting features.

The T2 Bridge Chip

The T2 bridge chip is a specially designed ASIC that provides 
bridge functionality between the server's multiprocessing system 



bus and the primary PCI bus. (See Figures 1 and 2.) The T2 ASIC 
is a 5.0-volt chip designed in complementary metal-oxide 
semiconductor (CMOS) technology. It is packaged in a 299-pin 
ceramic pin grid array (CPGA).

As stated earlier, the T2 bridge chip contains a 128-bit system 
bus interface running at 24 ns and a 32-bit PCI interface running 
at 30 ns. By using these two interfaces and data buffering, the 
T2 bridge chip translates bus protocols in both directions and 
moves data on both buses, thereby providing the logical system 
bus-to-PCI interface (bridge). In addition to the previously 
mentioned bridge features, the T2 bridge chip integrates system 
functions such as parity protection, error reporting, and 
CPU-to-PCI address and data mapping, which is discussed later in 
the section Connecting the Alpha CPU to the PCI and EISA Buses.

The T2 bridge chip contains a sophisticated DMA controller 
capable of servicing three separate PCI masters simultaneously. 
The DMA controller supports different-size data bursting (e.g., 
single, multiple, or continuous) and two kinds of DMA transfers, 
direct mapped and scatter/gather mapped. Both DMA mappings allow 
the T2 bridge chip to transfer large amounts of data between the 
PCI bus and the system bus, independent of the CPU.

Direct-mapped DMAs use the address generated by the PCI to access 
the system bus memory directly. Scatter/gather-mapped DMAs use 
the address generated by the PCI to access a table of page frame 
numbers (PFNs) in the system bus memory. By using the PFNs from 
the table, the T2 bridge chip generates a new address to access 
the data. To enhance the performance of scatter/gather-mapped 
DMAs, the T2 bridge chip contains a translation look-aside buffer 
(TLB) that contains eight of the most recently used PFNs from the 
table. By storing the PFNs in the TLB, the T2 bridge chip does 
not have to access the table in system bus memory every time it 
requires a new PFN. The TLB improves scatter/gather-mapped DMA 
performance and conserves bus bandwidth. Each entry in the TLB 
can be individually invalidated as required by software.

The T2 bridge chip also contains a single I/O data mover that 
enables a CPU on the system bus to initiate data transfers with a 
device on the PCI bus. The I/O data mover supports accesses to 
all the valid PCI address spaces, including PCI I/O space, PCI 
memory space, and PCI configuration space. The T2 bridge chip 
supports two I/O transaction types when accessing PCI memory 
space: sparse-type data transfers and dense-type data transfers. 
Sparse-type transfers are low-performance operations consisting 
of 8-, 16-, 24-, 32-, and 64-bit data transactions. Dense-type 
transfers are high-performance operations consisting of 32-bit 
through 32-byte data transactions. Dense-type transfers are 
especially useful when accessing I/O devices with large data 
buffers, such as video graphics adapter (VGA) controllers. A 
single PCI device mapped into PCI memory space can be accessed 
with either sparse-type operations, dense-type operations, or 
both.



In addition to accessing the PCI, a CPU can access various T2 
bridge chip internal control/status registers (CSRs) for setup 
and status purposes. For maximum flexibility, all the T2 bridge 
chip's functions are CSR programmable, allowing for a variety of 
optional features. All CPU I/O transfers, other than those to T2 
bridge chip CSRs, are forwarded to the PCI bus.

Intel PCI-to-EISA Bridge Chip Set

The Intel PCI-to-EISA bridge chip set provides the bridge between 
the PCI bus and the EISA bus.[3] It integrates many of the common 
I/O functions found in today's EISA-based PCs. The chip set 
incorporates the logic for a PCI interface running at a clock 
rate of 30 ns and an EISA interface running at a clock rate of 
120 ns. The chip set contains a DMA controller that supports 
direct- and scatter/gather-mapped data transfers, with a 
sufficient amount of data buffering to isolate the PCI bus from 
the EISA bus. The chip set also includes PCI and EISA arbiters 
and various other support control logic that provide decode for 
peripheral devices such as the flash read-only memories (ROMs) 
containing the basic I/O system (BIOS) code, real-time clock, 
keyboard/mouse controller, floppy controller, two serial ports, 
one parallel port, and hard disk drive. In the AlphaServer 2100 
system, the PCI-to-EISA bridge chip set resides on the standard 
I/O module, which is discussed later in this paper.

CONNECTING THE ALPHA CPU TO THE PCI AND EISA BUSES

In the next section, we discuss several interesting design 
challenges that we encountered as we attempted to connect 
PC-oriented bus structures to a high-powered multiprocessing 
Alpha chassis.

Address and Data Mapping 

When a CPU initiates a data transfer to a device on the PCI bus, 
the T2 bridge chip must first determine the location (address) 
and amount of data (mask) information for the requested 
transaction and then generate the appropriate PCI bus cycle. This 
issue is not straightforward because the PCI and EISA buses both 
support data transfers down to the byte granularity, but the 
Alpha CPU and the system bus provide masking granularity only 
down to 32 bits of data. 

To generate less than 32-bit addresses and byte-masked data 
transactions on the PCI bus, the T2 bridge chip needed to 
implement a special decoding scheme that converts an Alpha 
CPU-to-I/O transaction, as it appears on the system bus, to a 
correctly sized PCI transaction. Tables 1 and 2 give the 
low-order Alpha address bits and Alpha 32-bit mask fields and 



show how they are encoded to generate the appropriate PCI address 
and data masks. By using this encoding scheme, the Alpha CPU can 
perform read and write transactions to a PCI device mapped in 
either PCI I/O, PCI memory, or PCI configuration space with 
sparse-type transfers. (Sparse-type transfer sizes have 8-, 16-, 
24-, 32-, or 64-bit data granularity.)

 
                     Table 1 CPU-to-PCI Read Size Encoding
 
 Transaction    EV_Addr EV_Addr Instruc-   PCI    PCI_AD  Data Returned      
 Size           [6:5]    [4:3]  tions      Byte    [1:0]   to Processor,
                                           Enables         EV_Data[127:0]
                                           (L)
 
 8 bits 00 00 LDL    1110    00    OW_0:[D7:D0]
 
 01 00 LDL    1101    01    OW_0:[D15:D8]
 
 10 00 LDL    1011    10    OW_0:[D23:D16]
 
 11 00 LDL    0111    11    OW_0:[D31:D24]
 
 16 bits 00 01 LDL    1100    00    OW_0:[D79:D64]
 
 01 01 LDL    1001    01    OW_0:[D87:D72]
 
 10 01 LDL    0011    10    OW_0:[D95:D80]
 
 24 bits 00 10 LDL    1000    00    OW_1:[D23:D0]
 
 01 10 LDL    0001    01    OW_1:[D31:D8]
 
 32 bits 00 11 LDL    0000    00    OW_1:[D95:D64]
 
 64 bits 11 11 LDQ    0000    00    OW_1:[D95:D64]
    0000       OW_1:[D127:D96]
 



 
                    Table 2  CPU-to-PCI Write Size Encoding
 
 Transac-  EV_Addr EV_Addr EV_Mask  Instruc- PCI   PCI_AD  Data Returned      
 tion Size [6:5]   [4:3]   [7:0]    tions    Byte  [1:0]   to Processor,
                           (H)               Enab-         EV_Data[127:0]
                                             les 
                   (L)
 8 bits    00    00    00000001  LDL     1110   00    OW_0:[D7:D0]
 
    01    00    00000001  LDL     1101   01    OW_0:[D15:D8]
       
    10    00    00000001  LDL     1011   10    OW_0:[D23:D16]
       
    11    00    00000001  LDL     0111   11    OW_0:[D31:D24]
 
 16 bits   00    01    00000100  LDL     1100   00    OW_0:[D79:D64]
 
    01    01    00000100  LDL     1001   01    OW_0:[D87:D72]
 
    10    01    00000100  LDL     0011   10    OW_0:[D95:D80]
 
 24 bits   00    10    00010000  LDL     1000   00    OW_1:[D23:D0]
 
    01    10    00010000  LDL     0001   01    OW_1:[D31:D8]
 
 32 bits   00    11    01000000  LDL     0000   00    OW_1:[D95:D64]
 
 64 bits   11    11    11000000  LDQ     0000   00    OW_1:[D95:D64]
                    0000      OW_1:[D127:D96]
 
 
 

Another mapping problem exists when a PCI device wants to move a 
byte of data (or anything smaller than 32 bytes of data) into the 
system bus memory. Neither the system bus nor its memory supports 
byte granularity data transfers. Therefore, the T2 bridge chip 
must perform a read-modify-write operation to move less than 32 
bytes of data into the system bus memory. During the 
read-modify-write operation, the T2 bridge chip first reads a 
full 32 bytes of data from memory at the address range specified 
by the PCI device.[2] It then merges the old data (read data) 
with the new data (PCI write data) and writes the full 32 bytes 
back into memory.

ISA Fixed-address Mapping 

We encountered a third interesting mapping problem when we 
decided to support certain ISA devices with fixed I/O addresses 
in the AlphaServer 2100 system. These ISA devices (e.g., ISA 
local area network (LAN) card or an ISA frame buffer) have fixed 
(hardwired) memory-mapped I/O addresses in the 1-MB to 16-MB 



address range.

The ISA devices being discussed were designed for use in the 
first PCs, which contained less than 1 MB of main memory. In 
these PCs, the I/O devices had fixed access addresses above main 
memory in the 1-MB to 16-MB address range. Today's PCs have 
significantly more physical memory and use the 1-MB to 16-MB 
region as a part of main memory. Unfortunately, these ISA devices 
were never redesigned to accommodate this change. Therefore, to 
support these ISA options, the PC designers created I/O access 
gaps in main memory in the 1-MB to 16-MB address range. With this 
technology, an access by a CPU in that address range is 
automatically forwarded to the ISA device.

To remain compatible with the ISA community, the T2 bridge chip 
also had to allow for a gap in main memory at the 1-MB to 16-MB 
address range so that these addresses could be forwarded to the 
appropriate ISA device.

BIOS CACHING COMPATIBILITY

Today's Microsoft-compatible PCs provide another 
performance-enhancing mechanism. We decided to implement this 
function inside the T2 bridge chip as well.

During system initialization, MS-DOS-based PCs read several BIOS 
ROMs from their I/O space. Once the ROMs are read, their contents 
are placed in fixed locations in main memory in the 512-kilobyte 
(KB) to 1-MB address range. The software then has the ability to 
mark certain addresses within this range as read cacheable, write 
cacheable, read noncacheable, or write noncacheable. The basic 
intention is to mark frequently accessed sections of code as read 
cacheable but write noncacheable. In this way, read accesses 
"hit" in main memory (or cache), and writes update the ROMs 
directly.

INTERRUPT MECHANISM

No computer system would be complete without providing a 
mechanism for an I/O device to send interrupts to a CPU. The I/O 
interrupt scheme on the AlphaServer 2100 system combines familiar 
technology with custom support logic to provide a new mechanism. 

Electrical and architectural restrictions prohibited the 
interrupt control logic from being directly accessed by either 
the system bus or the PCI bus. As a result, the interrupt control 
logic is physically located on a utility bus called the XBUS. The 
XBUS is an 8-bit slave ISA bus placed nearby the PCI-to-EISA 
bridge chips.

The base technology of the I/O interrupt logic is a cascaded 
sequence of Intel 8259 interrupt controllers. The 8259 chip was 



chosen because it is a standard, accepted, and well-known 
controller used by the PC industry today. The use of the 8259 
interrupt controller translated to low design risk as well. 
Although the 8259 interrupt controller is not new, its 
integration into a high-performance multiprocessing server, 
without incurring undue performance degradation, required some 
novel thinking.

The integration of the 8259 interrupt controller into the 
AlphaServer 2100 system presented two considerable problems. 
First, the designers had to satisfy the 8259 interface 
requirements in a way that would have a minimal impact on the 
performance of the interrupt-servicing CPU. The 8259 requires two 
consecutive special-acknowledge cycles before it will present the 
interrupt vector. To resolve this problem, we designed a set of 
handshaking IACK programmable array logic (PAL) devices. These 
PALs enhance the functions of the 8259 controllers as XBUS 
slaves. The interrupt-servicing CPU performs only a single read 
to a designated address that is decoded to the XBUS. The 
IACK-control PALs decode this read and then generate the special, 
double-acknowledge cycles required to access the vector. The PAL 
logic also deasserts CHRDY, a ready signal to the ISA bus, so 
that the cycle has ample time to proceed without causing a 
conformance error for a standard ISA slave cycle. When the double 
acknowledge is complete and the vector is guaranteed to be driven 
on the bus, the PALs assert the CHRDY ready signal.

The second problem involved the location of the interrupt 
controller. As mentioned earlier, because of electrical and 
architectural restrictions, the interrupt controller was located 
on the XBUS near the PCI-to-EISA bridge chips. With the interrupt 
controller located on the XBUS, an interrupt-servicing CPU is 
required to perform a vector read that spans two I/O bus 
structures. For this reason and its potential effect on system 
performance, vector reads had to be kept to a minimum, which is 
not easy in a system that allows more than one CPU to service a 
pending interrupt request.

Since the AlphaServer 2100 system can have as many as four CPUs, 
all four CPUs can attempt to service the same pending interrupt 
request at the same time. Without special provisions, each CPU 
would perform a vector read of the interrupt controller only to 
find that the interrupt has already been serviced by another CPU. 
Requiring each CPU to perform a vector read of the interrupt 
controller on the XBUS wastes system resources, especially when 
each vector read spans two bus structures. Of course, this 
problem could be resolved by assigning only one CPU to service 
pending interrupts, but this would negate the advantage of having 
multiple CPUs in a system. To solve this problem, the T2 bridge 
chip on the system bus implements special "passive-release" logic 
that informs a CPU at the earliest possible time that the pending 
interrupt is being serviced by another CPU. This allows the 
"released" CPU to resume other, more important tasks.



The term passive release typically refers to a vector code given 
to an interrupt-servicing CPU during a vector read operation. The 
passive-release code informs the CPU that no more interrupts are 
pending. The special passive-release logic allows the T2 bridge 
chip to return the passive-release code to a servicing CPU on 
behalf of the interrupt controller. The T2 bridge chip performs 
this function to save time and bus bandwidth.

After the designers implemented all the features described above, 
they needed to address the problem of how to deal with all the 
slow, highly volatile, "off-the-shelf" parts. To integrate these 
components into the I/O subsystem, they invented the standard I/O 
module. 

THE STANDARD I/O MODULE 

As part of the development effort of the I/O subsystem, the 
engineering team faced the challenge of integrating several 
inexpensive, low-performance, off-the-shelf, PC-oriented I/O 
functions (e.g., TOY clock, keyboard, mouse, speaker) into a 
high-performance Alpha multiprocessing system, without affecting 
the higher performing architectural resources. The multilevel I/O 
bus structure served to alleviate the performance issues, but the 
development of a PC-style I/O subsystem with off-the-shelf 
components involved inherent risk and challenge.

To reduce the risks inherent with using new and unfamiliar 
devices, such as the PCI-to-EISA bridge chip set, we chose to 
build an I/O module (called the standard I/O module) that plugs 
into the AlphaServer 2100 system backplane and contains the 
PCI-to-EISA bridge, associated control logic, controllers for 
mouse, keyboard, printer, and floppy drive as well as the 
integral Ethernet and SCSI controllers. Without this plug-in 
module, fixing any problems with the PCI-to-EISA bridge chip set 
or any of the supporting logic would have required a backplane 
upgrade, which is a costly and time-consuming effort.
   
The standard I/O module is relatively small, inexpensive both to 
manufacture and to modify, and easily accessible as a field 
replaceable unit (FRU). As shown in Figure 3, the standard I/O 
module contains the following logic:

    o PCI-to-Ethernet controller chip

    o PCI-to-SCSI controller chip

    o PCI-to-EISA bridge chips

    o Real-time clock speaker control

    o 8-KB, nonvolatile, EISA-configuration, random-access 
        memory (RAM)



    o 1-MB BIOS flash ROM

    o Keyboard and mouse control

    o Parallel port

    o FDC floppy controller

    o Two serial ports

    o I**2C support: controller, expander, and ROM

    o Intel 8259 interrupt controllers

    o Ethernet station address ROM

    o Reset and sysevent logic

    o Fan speed monitor

    o Remote fault management connector

    o External PCI subarbiter

    o 3.3-volt and --5.0-volt generation
[Figure 3 (The Standard I/O Module) is not available in ASCII 
format.]
 
For the most part, all these functions were generated by using 
integrated, off-the-shelf components at commodity pricing. 
Solutions known to work on other products were used as often as 
possible. The flash memory resides on the EISA memory bus and is 
controlled by the PCI-to-EISA bridge chip. A simple multiplexing 
scheme with minimal hardware enabled the server to address more 
locations than the bridge chip allowed, as much as a full 1 MB of 
BIOS ROM. The National PC87312, which provides the serial and 
parallel port control logic, and the floppy disk controller 
reside directly on the ISA bus. The rest of the devices are 
located on the XBUS (an 8-bit buffered slave ISA bus), with 
control managed by the PCI-to-EISA bridge chips.

In addition, the common PC functions are located at typical PC 
addresses to ease their integration and access by software. As 
expected, hardware changes were required to the standard I/O 
module during its hardware development cycle. However, the 
standard I/O module, which takes only minutes to replace, 
provided an easy and efficient method of integrating hardware 
changes into the AlphaServer 2100 system. We expect the 
usefulness of the standard I/O module to continue and hope that 
it will provide an easy and inexpensive repair process.

SUMMARY

The I/O subsystem on the AlphaServer 2100 system contains a 



two-level hierarchical bus structure consisting of a 
high-performance PCI bus connected to a secondary EISA bus. The 
PCI bus is connected to the AlphaServer 2100 system's 
multiprocessing system bus through the T2 bridge chip. The 
secondary I/O bus is connected to the PCI bus through a standard 
bridge chip set. The I/O subsystem demonstrated sufficient 
flexibility to become the I/O interface for the small pedestal 
AlphaServer 2000 and the rackmountable version of the AlphaServer 
2100 products.
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