
 The AlphaServer 2100 I/O Subsystem

 by

 Andrew P. Russo

ABSTRACT

The AlphaServer 2100 I/O subsystem contains a dual-level I/O
structure that includes the high-powered PCI local bus and the
widely used EISA bus. The PCI bus is connected to the server's
multiprocessing system bus through the custom-designed bridge
chip. The EISA bus supports eight general-purpose EISA/ISA
connectors, providing connections to plug-in, industry-standard
options. Data rate isolation, disconnected transaction, and data
buffer management techniques were used to ensure bus efficiency
in the I/O subsystem. Innovative engineering designs accomplished
the task of combining Alpha CPUs and standard-system I/O devices.

INTRODUCTION

Digital's AlphaServer 2100 server combines Alpha multiprocessing
technology with an I/O subsystem typically associated with
personal computers (PCs).[1] The I/O subsystem on the AlphaServer
2100 system contains a two-level hierarchical bus structure
consisting of a high-performance primary I/O bus connected to a
secondary, lower performance I/O bus. The primary I/O bus is a
32-bit peripheral component interconnect (PCI) local bus (or
simply, PCI bus).[2] The PCI bus is connected to the AlphaServer
2100 system's multiprocessing system bus through a custom
application specific integrated circuit (ASIC) bridge chip
(referred to as the T2 bridge chip). The secondary I/O bus is a
32-bit Extended Industry Standard Architecture (EISA) bus
connected to the PCI bus through a bridge chip set provided by
Intel Corporation.[3] Figure 1 shows the I/O subsystem designed
for the AlphaServer 2100 product. The I/O subsystem demonstrated
sufficient flexibility to become the I/O interface for the small
pedestal AlphaServer 2000 product and the rackmountable version
of the AlphaServer 2100 server.

[Figure 1 (I/O Subsystem for the AlphaServer 2100 System)
is not available in ASCII format.]

This paper discusses the dual-level bus hierarchy and the several
I/O advantages it provides. The design considerations of the I/O
subsystem for the AlphaServer 2100 server are examined in the
sections that follow.

I/O SUPPORT FOR EISA AND PCI BUSES

The EISA bus enables the AlphaServer 2100 system to support a
wide range of existing EISA or Industry Standard Architecture
(ISA) I/O peripherals.[4] The EISA bus can sustain data rates up
to a theoretical limit of 33 megabytes per second (MB/s) at a
clock rate of 8.25 megahertz (MHz). In the current configuration
for the AlphaServer 2100 product, the EISA bus supports eight
general-purpose EISA/ISA connectors, and the EISA bridge chip set
provides connections to various low-speed, system-standard I/O
devices such as keyboard, mouse, and time-of-year (TOY) clock.
For most system configurations, the AlphaServer 2100 system's
EISA bus provides enough data bandwidth to meet all data
throughput requirements. In light of the new requirements for
faster data rates, however, the EISA bus will soon begin to run
out of bus bandwidth.

To provide for more bandwidth, the AlphaServer 2100 system also
contains a PCI bus as its primary bus. With data rates four times
that of the EISA bus, the PCI bus provides a direct migration
path from the EISA bus. The 32-bit PCI bus can sustain data rates
up to a theoretical limit of 132 MB/s at a clock rate of 33 MHz.
In the AlphaServer 2100 system configuration, the PCI bus
provides connections to three general-purpose 32-bit PCI
connectors, an Ethernet device, a SCSI device, the PCI-to-EISA
bridge chip, and the T2 bridge chip.

A close examination of the bus structure reveals that the
AlphaServer 2100 system actually contains a three-level,
hierarchical bus structure. In addition to the PCI and EISA
buses, the AlphaServer 2100 system includes a 128-bit
multiprocessing system bus, as shown in Figure 1. Each bus is
designed to adhere to its own bus interface protocols at
different data rates. The system bus is 128 bits per 24
nanoseconds (ns); the PCI bus is 32 bits per 30 ns; and the EISA
bus is 32 bits per 120 ns. Each bus is required to provide a
particular function to the system and is positioned in the bus
hierarchy to maximize that efficiency. For example, the system
bus is positioned close to the CPUs and memory to maximize CPU
memory access time, and the lower performance I/O devices are
placed on the EISA bus because their timing requirements are less
critical. To maintain maximum bus efficiency on all three buses,
it is critical that each bus be able to perform its various
functions autonomously of each other. In other words, a slower
performing bus should not affect the efficiency of a
high-performance bus. The section below discusses a few
techniques that we designed into the I/O subsystem to enable the
buses to work together efficiently.

USING THE BUS HIERARCHY EFFICIENTLY

This section discusses the data rate isolation, disconnected
transaction, data buffer management, and data bursting techniques
used to ensure bus efficiency in the I/O subsystem.

Data Rate Isolation

The three-level bus hierarchy promotes data rate isolation and
concurrency for simultaneous operations on all three buses. The
design of the bus bridges helps to enable each bus to work
independently: it provides bus interfaces with extensive data
buffering that function at the same data rates as the interfacing
bus. For example, the T2 bridge chip contains both a system bus
interface and a PCI bus interface that run synchronously to their
respective buses, but are totally asynchronous to each other. The
data buffers inside the T2 bridge chip act as a domain connector
from one bus time zone to the other and help to isolate the data
rates of the two buses.

Disconnected Transactions

Whenever possible, the bridges promote the use of disconnected
(or pended) protocols to move data across the buses. Disconnected
protocols decrease the interdependencies between the different
buses. For example, when a CPU residing on the system bus needs
to move data to the PCI bus, the CPU does so by sending its data
onto the system bus. Here the T2 bridge chip (see Figure 2)
stores the data into its internal data buffers at the system bus
data rate. The T2 bridge chip provides enough buffering to store
an entire CPU transaction. From the CPU's perspective, the
transaction is completed as soon as the T2 bridge chip accepts
its data. At that point, the T2 bridge chip must forward the data
to the PCI bus, independent of the CPU. In this way, the CPU is
not required to waste bus bandwidth by waiting for the transfer
to complete to its final destination on the PCI bus.

[Figure 2 (Block Diagram of the T2 Bridge Chip) is not available
in ASCII format.]

The T2 bridge chip implements disconnected transactions for all
CPU-to-PCI transactions and most PCI-to-memory transactions. In a
similar fashion, the PCI-to-EISA bridge implements disconnected
transactions between the PCI bus and the EISA bus.

Data Buffer Management

In addition to containing temporary data buffering to store data
on its journey from bus to bus, each bridge chip utilizes buffer
management to allocate and deallocate its internal data buffers
from one incoming data stream to another. In this way, a single
ASIC bridge design can efficiently service multiple data streams
with a relatively small amount of data buffering and without
impacting bus performance.

The T2 bridge chip contains 160 bytes of temporary data buffering
divided across the three specific bus transactions it performs.

These three transactions are (1) direct memory access (DMA)
writes from PCI to memory (system bus), (2) DMA reads from memory
(system bus) to PCI, and 3) programmed I/O (system bus)
reads/writes by a CPU from/to the PCI. The T2 bridge chip's data
buffering is organized into five 32-byte buffers. Two 32-byte
buffers each are allocated to the DMA write and DMA read
functions, and one 32-byte buffer is allocated to the programmed
I/O function. Each of the three transaction functions contains
its own buffer management logic to determine the best use of its
available data buffering. Buffer management is especially
valuable in situations in which a PCI device is reading data from
memory on the system bus. To maintain an even flow of data from
bus to bus, the buffer management inside the T2 bridge chip
attempts to prefetch more read data from memory while it is
moving data onto the PCI.

Buffer management helps the bridges service bus transactions in a
way that promotes continuous data flow that, in turn, promotes
bus efficiency.

Burst Transactions

Using a bus efficiently also means utilizing as much of the bus
bandwidth as possible for "useful" data movement. Useful data
movement is defined as that section of time when only the actual
data is moving on the bus, devoid of address or protocol cycles.
Maximizing useful data movement can be accomplished by sending
many data beats (data per cycle) per single transfer time.
Sending multiple data beats per single transfer is referred to as
a "burst transaction."

All three buses have the ability to perform burst transactions.
The system bus can burst as much as 32 bytes of data per
transaction, and the PCI and EISA buses can burst continuously as
required.

Data bursting promotes bus efficiency and very high data rates.
Each bus bridge in the server is required to support data
bursting.

THE BUS BRIDGES

In the previous section, we discussed certain design techniques
used to promote efficiency within the server's hierarchical bus
structure. The section that follows describes the bus bridges in
more detail, emphasizing a few interesting features.

The T2 Bridge Chip

The T2 bridge chip is a specially designed ASIC that provides
bridge functionality between the server's multiprocessing system

bus and the primary PCI bus. (See Figures 1 and 2.) The T2 ASIC
is a 5.0-volt chip designed in complementary metal-oxide
semiconductor (CMOS) technology. It is packaged in a 299-pin
ceramic pin grid array (CPGA).

As stated earlier, the T2 bridge chip contains a 128-bit system
bus interface running at 24 ns and a 32-bit PCI interface running
at 30 ns. By using these two interfaces and data buffering, the
T2 bridge chip translates bus protocols in both directions and
moves data on both buses, thereby providing the logical system
bus-to-PCI interface (bridge). In addition to the previously
mentioned bridge features, the T2 bridge chip integrates system
functions such as parity protection, error reporting, and
CPU-to-PCI address and data mapping, which is discussed later in
the section Connecting the Alpha CPU to the PCI and EISA Buses.

The T2 bridge chip contains a sophisticated DMA controller
capable of servicing three separate PCI masters simultaneously.
The DMA controller supports different-size data bursting (e.g.,
single, multiple, or continuous) and two kinds of DMA transfers,
direct mapped and scatter/gather mapped. Both DMA mappings allow
the T2 bridge chip to transfer large amounts of data between the
PCI bus and the system bus, independent of the CPU.

Direct-mapped DMAs use the address generated by the PCI to access
the system bus memory directly. Scatter/gather-mapped DMAs use
the address generated by the PCI to access a table of page frame
numbers (PFNs) in the system bus memory. By using the PFNs from
the table, the T2 bridge chip generates a new address to access
the data. To enhance the performance of scatter/gather-mapped
DMAs, the T2 bridge chip contains a translation look-aside buffer
(TLB) that contains eight of the most recently used PFNs from the
table. By storing the PFNs in the TLB, the T2 bridge chip does
not have to access the table in system bus memory every time it
requires a new PFN. The TLB improves scatter/gather-mapped DMA
performance and conserves bus bandwidth. Each entry in the TLB
can be individually invalidated as required by software.

The T2 bridge chip also contains a single I/O data mover that
enables a CPU on the system bus to initiate data transfers with a
device on the PCI bus. The I/O data mover supports accesses to
all the valid PCI address spaces, including PCI I/O space, PCI
memory space, and PCI configuration space. The T2 bridge chip
supports two I/O transaction types when accessing PCI memory
space: sparse-type data transfers and dense-type data transfers.
Sparse-type transfers are low-performance operations consisting
of 8-, 16-, 24-, 32-, and 64-bit data transactions. Dense-type
transfers are high-performance operations consisting of 32-bit
through 32-byte data transactions. Dense-type transfers are
especially useful when accessing I/O devices with large data
buffers, such as video graphics adapter (VGA) controllers. A
single PCI device mapped into PCI memory space can be accessed
with either sparse-type operations, dense-type operations, or
both.

In addition to accessing the PCI, a CPU can access various T2
bridge chip internal control/status registers (CSRs) for setup
and status purposes. For maximum flexibility, all the T2 bridge
chip's functions are CSR programmable, allowing for a variety of
optional features. All CPU I/O transfers, other than those to T2
bridge chip CSRs, are forwarded to the PCI bus.

Intel PCI-to-EISA Bridge Chip Set

The Intel PCI-to-EISA bridge chip set provides the bridge between
the PCI bus and the EISA bus.[3] It integrates many of the common
I/O functions found in today's EISA-based PCs. The chip set
incorporates the logic for a PCI interface running at a clock
rate of 30 ns and an EISA interface running at a clock rate of
120 ns. The chip set contains a DMA controller that supports
direct- and scatter/gather-mapped data transfers, with a
sufficient amount of data buffering to isolate the PCI bus from
the EISA bus. The chip set also includes PCI and EISA arbiters
and various other support control logic that provide decode for
peripheral devices such as the flash read-only memories (ROMs)
containing the basic I/O system (BIOS) code, real-time clock,
keyboard/mouse controller, floppy controller, two serial ports,
one parallel port, and hard disk drive. In the AlphaServer 2100
system, the PCI-to-EISA bridge chip set resides on the standard
I/O module, which is discussed later in this paper.

CONNECTING THE ALPHA CPU TO THE PCI AND EISA BUSES

In the next section, we discuss several interesting design
challenges that we encountered as we attempted to connect
PC-oriented bus structures to a high-powered multiprocessing
Alpha chassis.

Address and Data Mapping

When a CPU initiates a data transfer to a device on the PCI bus,
the T2 bridge chip must first determine the location (address)
and amount of data (mask) information for the requested
transaction and then generate the appropriate PCI bus cycle. This
issue is not straightforward because the PCI and EISA buses both
support data transfers down to the byte granularity, but the
Alpha CPU and the system bus provide masking granularity only
down to 32 bits of data.

To generate less than 32-bit addresses and byte-masked data
transactions on the PCI bus, the T2 bridge chip needed to
implement a special decoding scheme that converts an Alpha
CPU-to-I/O transaction, as it appears on the system bus, to a
correctly sized PCI transaction. Tables 1 and 2 give the
low-order Alpha address bits and Alpha 32-bit mask fields and

show how they are encoded to generate the appropriate PCI address
and data masks. By using this encoding scheme, the Alpha CPU can
perform read and write transactions to a PCI device mapped in
either PCI I/O, PCI memory, or PCI configuration space with
sparse-type transfers. (Sparse-type transfer sizes have 8-, 16-,
24-, 32-, or 64-bit data granularity.)

 Table 1 CPU-to-PCI Read Size Encoding

 Transaction EV_Addr EV_Addr Instruc- PCI PCI_AD Data Returned
 Size [6:5] [4:3] tions Byte [1:0] to Processor,
 Enables EV_Data[127:0]
 (L)

 8 bits 00 00 LDL 1110 00 OW_0:[D7:D0]

 01 00 LDL 1101 01 OW_0:[D15:D8]

 10 00 LDL 1011 10 OW_0:[D23:D16]

 11 00 LDL 0111 11 OW_0:[D31:D24]

 16 bits 00 01 LDL 1100 00 OW_0:[D79:D64]

 01 01 LDL 1001 01 OW_0:[D87:D72]

 10 01 LDL 0011 10 OW_0:[D95:D80]

 24 bits 00 10 LDL 1000 00 OW_1:[D23:D0]

 01 10 LDL 0001 01 OW_1:[D31:D8]

 32 bits 00 11 LDL 0000 00 OW_1:[D95:D64]

 64 bits 11 11 LDQ 0000 00 OW_1:[D95:D64]
 0000 OW_1:[D127:D96]

 Table 2 CPU-to-PCI Write Size Encoding

 Transac- EV_Addr EV_Addr EV_Mask Instruc- PCI PCI_AD Data Returned
 tion Size [6:5] [4:3] [7:0] tions Byte [1:0] to Processor,
 (H) Enab- EV_Data[127:0]
 les
 (L)
 8 bits 00 00 00000001 LDL 1110 00 OW_0:[D7:D0]

 01 00 00000001 LDL 1101 01 OW_0:[D15:D8]

 10 00 00000001 LDL 1011 10 OW_0:[D23:D16]

 11 00 00000001 LDL 0111 11 OW_0:[D31:D24]

 16 bits 00 01 00000100 LDL 1100 00 OW_0:[D79:D64]

 01 01 00000100 LDL 1001 01 OW_0:[D87:D72]

 10 01 00000100 LDL 0011 10 OW_0:[D95:D80]

 24 bits 00 10 00010000 LDL 1000 00 OW_1:[D23:D0]

 01 10 00010000 LDL 0001 01 OW_1:[D31:D8]

 32 bits 00 11 01000000 LDL 0000 00 OW_1:[D95:D64]

 64 bits 11 11 11000000 LDQ 0000 00 OW_1:[D95:D64]
 0000 OW_1:[D127:D96]

Another mapping problem exists when a PCI device wants to move a
byte of data (or anything smaller than 32 bytes of data) into the
system bus memory. Neither the system bus nor its memory supports
byte granularity data transfers. Therefore, the T2 bridge chip
must perform a read-modify-write operation to move less than 32
bytes of data into the system bus memory. During the
read-modify-write operation, the T2 bridge chip first reads a
full 32 bytes of data from memory at the address range specified
by the PCI device.[2] It then merges the old data (read data)
with the new data (PCI write data) and writes the full 32 bytes
back into memory.

ISA Fixed-address Mapping

We encountered a third interesting mapping problem when we
decided to support certain ISA devices with fixed I/O addresses
in the AlphaServer 2100 system. These ISA devices (e.g., ISA
local area network (LAN) card or an ISA frame buffer) have fixed
(hardwired) memory-mapped I/O addresses in the 1-MB to 16-MB

address range.

The ISA devices being discussed were designed for use in the
first PCs, which contained less than 1 MB of main memory. In
these PCs, the I/O devices had fixed access addresses above main
memory in the 1-MB to 16-MB address range. Today's PCs have
significantly more physical memory and use the 1-MB to 16-MB
region as a part of main memory. Unfortunately, these ISA devices
were never redesigned to accommodate this change. Therefore, to
support these ISA options, the PC designers created I/O access
gaps in main memory in the 1-MB to 16-MB address range. With this
technology, an access by a CPU in that address range is
automatically forwarded to the ISA device.

To remain compatible with the ISA community, the T2 bridge chip
also had to allow for a gap in main memory at the 1-MB to 16-MB
address range so that these addresses could be forwarded to the
appropriate ISA device.

BIOS CACHING COMPATIBILITY

Today's Microsoft-compatible PCs provide another
performance-enhancing mechanism. We decided to implement this
function inside the T2 bridge chip as well.

During system initialization, MS-DOS-based PCs read several BIOS
ROMs from their I/O space. Once the ROMs are read, their contents
are placed in fixed locations in main memory in the 512-kilobyte
(KB) to 1-MB address range. The software then has the ability to
mark certain addresses within this range as read cacheable, write
cacheable, read noncacheable, or write noncacheable. The basic
intention is to mark frequently accessed sections of code as read
cacheable but write noncacheable. In this way, read accesses
"hit" in main memory (or cache), and writes update the ROMs
directly.

INTERRUPT MECHANISM

No computer system would be complete without providing a
mechanism for an I/O device to send interrupts to a CPU. The I/O
interrupt scheme on the AlphaServer 2100 system combines familiar
technology with custom support logic to provide a new mechanism.

Electrical and architectural restrictions prohibited the
interrupt control logic from being directly accessed by either
the system bus or the PCI bus. As a result, the interrupt control
logic is physically located on a utility bus called the XBUS. The
XBUS is an 8-bit slave ISA bus placed nearby the PCI-to-EISA
bridge chips.

The base technology of the I/O interrupt logic is a cascaded
sequence of Intel 8259 interrupt controllers. The 8259 chip was

chosen because it is a standard, accepted, and well-known
controller used by the PC industry today. The use of the 8259
interrupt controller translated to low design risk as well.
Although the 8259 interrupt controller is not new, its
integration into a high-performance multiprocessing server,
without incurring undue performance degradation, required some
novel thinking.

The integration of the 8259 interrupt controller into the
AlphaServer 2100 system presented two considerable problems.
First, the designers had to satisfy the 8259 interface
requirements in a way that would have a minimal impact on the
performance of the interrupt-servicing CPU. The 8259 requires two
consecutive special-acknowledge cycles before it will present the
interrupt vector. To resolve this problem, we designed a set of
handshaking IACK programmable array logic (PAL) devices. These
PALs enhance the functions of the 8259 controllers as XBUS
slaves. The interrupt-servicing CPU performs only a single read
to a designated address that is decoded to the XBUS. The
IACK-control PALs decode this read and then generate the special,
double-acknowledge cycles required to access the vector. The PAL
logic also deasserts CHRDY, a ready signal to the ISA bus, so
that the cycle has ample time to proceed without causing a
conformance error for a standard ISA slave cycle. When the double
acknowledge is complete and the vector is guaranteed to be driven
on the bus, the PALs assert the CHRDY ready signal.

The second problem involved the location of the interrupt
controller. As mentioned earlier, because of electrical and
architectural restrictions, the interrupt controller was located
on the XBUS near the PCI-to-EISA bridge chips. With the interrupt
controller located on the XBUS, an interrupt-servicing CPU is
required to perform a vector read that spans two I/O bus
structures. For this reason and its potential effect on system
performance, vector reads had to be kept to a minimum, which is
not easy in a system that allows more than one CPU to service a
pending interrupt request.

Since the AlphaServer 2100 system can have as many as four CPUs,
all four CPUs can attempt to service the same pending interrupt
request at the same time. Without special provisions, each CPU
would perform a vector read of the interrupt controller only to
find that the interrupt has already been serviced by another CPU.
Requiring each CPU to perform a vector read of the interrupt
controller on the XBUS wastes system resources, especially when
each vector read spans two bus structures. Of course, this
problem could be resolved by assigning only one CPU to service
pending interrupts, but this would negate the advantage of having
multiple CPUs in a system. To solve this problem, the T2 bridge
chip on the system bus implements special "passive-release" logic
that informs a CPU at the earliest possible time that the pending
interrupt is being serviced by another CPU. This allows the
"released" CPU to resume other, more important tasks.

The term passive release typically refers to a vector code given
to an interrupt-servicing CPU during a vector read operation. The
passive-release code informs the CPU that no more interrupts are
pending. The special passive-release logic allows the T2 bridge
chip to return the passive-release code to a servicing CPU on
behalf of the interrupt controller. The T2 bridge chip performs
this function to save time and bus bandwidth.

After the designers implemented all the features described above,
they needed to address the problem of how to deal with all the
slow, highly volatile, "off-the-shelf" parts. To integrate these
components into the I/O subsystem, they invented the standard I/O
module.

THE STANDARD I/O MODULE

As part of the development effort of the I/O subsystem, the
engineering team faced the challenge of integrating several
inexpensive, low-performance, off-the-shelf, PC-oriented I/O
functions (e.g., TOY clock, keyboard, mouse, speaker) into a
high-performance Alpha multiprocessing system, without affecting
the higher performing architectural resources. The multilevel I/O
bus structure served to alleviate the performance issues, but the
development of a PC-style I/O subsystem with off-the-shelf
components involved inherent risk and challenge.

To reduce the risks inherent with using new and unfamiliar
devices, such as the PCI-to-EISA bridge chip set, we chose to
build an I/O module (called the standard I/O module) that plugs
into the AlphaServer 2100 system backplane and contains the
PCI-to-EISA bridge, associated control logic, controllers for
mouse, keyboard, printer, and floppy drive as well as the
integral Ethernet and SCSI controllers. Without this plug-in
module, fixing any problems with the PCI-to-EISA bridge chip set
or any of the supporting logic would have required a backplane
upgrade, which is a costly and time-consuming effort.

The standard I/O module is relatively small, inexpensive both to
manufacture and to modify, and easily accessible as a field
replaceable unit (FRU). As shown in Figure 3, the standard I/O
module contains the following logic:

 o PCI-to-Ethernet controller chip

 o PCI-to-SCSI controller chip

 o PCI-to-EISA bridge chips

 o Real-time clock speaker control

 o 8-KB, nonvolatile, EISA-configuration, random-access
 memory (RAM)

 o 1-MB BIOS flash ROM

 o Keyboard and mouse control

 o Parallel port

 o FDC floppy controller

 o Two serial ports

 o I**2C support: controller, expander, and ROM

 o Intel 8259 interrupt controllers

 o Ethernet station address ROM

 o Reset and sysevent logic

 o Fan speed monitor

 o Remote fault management connector

 o External PCI subarbiter

 o 3.3-volt and --5.0-volt generation
[Figure 3 (The Standard I/O Module) is not available in ASCII
format.]

For the most part, all these functions were generated by using
integrated, off-the-shelf components at commodity pricing.
Solutions known to work on other products were used as often as
possible. The flash memory resides on the EISA memory bus and is
controlled by the PCI-to-EISA bridge chip. A simple multiplexing
scheme with minimal hardware enabled the server to address more
locations than the bridge chip allowed, as much as a full 1 MB of
BIOS ROM. The National PC87312, which provides the serial and
parallel port control logic, and the floppy disk controller
reside directly on the ISA bus. The rest of the devices are
located on the XBUS (an 8-bit buffered slave ISA bus), with
control managed by the PCI-to-EISA bridge chips.

In addition, the common PC functions are located at typical PC
addresses to ease their integration and access by software. As
expected, hardware changes were required to the standard I/O
module during its hardware development cycle. However, the
standard I/O module, which takes only minutes to replace,
provided an easy and efficient method of integrating hardware
changes into the AlphaServer 2100 system. We expect the
usefulness of the standard I/O module to continue and hope that
it will provide an easy and inexpensive repair process.

SUMMARY

The I/O subsystem on the AlphaServer 2100 system contains a

two-level hierarchical bus structure consisting of a
high-performance PCI bus connected to a secondary EISA bus. The
PCI bus is connected to the AlphaServer 2100 system's
multiprocessing system bus through the T2 bridge chip. The
secondary I/O bus is connected to the PCI bus through a standard
bridge chip set. The I/O subsystem demonstrated sufficient
flexibility to become the I/O interface for the small pedestal
AlphaServer 2000 and the rackmountable version of the AlphaServer
2100 products.

ACKNOWLEDGMENTS

The AlphaServer 2100 I/O would not be what it is today, without
the dedicated, focused efforts of several people. Although not
complete, the following list gives credit to those who were the
most deeply involved. Thanks to Fidelma Hayes for leading the
Sable effort; to Vicky Triolo for the Sable mother board and her
support of the T2 bridge chip effort; to Rachael Berman for her
unflagging support of the standard I/O module; to Lee Ridlon for
his much needed early conceptual contributions; to Stephen
Shirron for driving Sable software I/O issues; to John Bridge for
cleaning up the second-pass T2; and to Tom Hunt and Paul Rotker
for their contributions to the first-pass T2.

REFERENCES

1. F. Hayes, "Design of the AlphaServer Multiprocessor Server
 Systems," Digital Technical Journal, vol. 6, no. 3 (Summer
 1994): 8-19.

2. PCI Local Bus Specification, Revision 2.0 (Hillsboro, OR: PCI
 Special Interest Group, Order No. 281446-001, April 1993).

3. 82420/82430 PCIset ISA and EISA Bridges (Santa Clara, CA:
 Intel Corporation, 1993).

4. E. Solari, ISA and EISA, Theory and Operation (San Diego, CA:
 Annabooks, 1992).

BIOGRAPHY

Andrew P. Russo Andy Russo is a principal hardware engineer in
the Alpha Server Group. Since joining Digital in 1983, Andy has
been a project leader for several internal organizations,
including the Mid-range I/O Options Group, the Fault Tolerant
Group, and the Alpha Server Group. While at Digital, Andy has
contributed to the architecture and design of high-performance
ASICs and modules to provide a variety of end-product
requirements. Andy holds several patents and has authored two
papers. He received a B.S. in computer engineering from Boston
University.

TRADEMARKS

Alpha and AlphaServer are trademarks of Digital Equipment
Corporation.

Intel is a trademark of Intel Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft
Corporation.

PAL is a registered trademark of Advanced Micro Devices, Inc.

===
Copyright 1994 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

