Digital Technical Journa
Vol une 6, Nunber 3

VTX Version of the OSF Paper

DEC OSF/1 Symmetric Miltiprocessing

by

Jeffrey M Denham Paula Long, and Janes A Wodward

ABSTRACT

The primary goal for an operating systemin a symretric

mul ti processing (SMP) inplementation is to convert the additiona
conmputing power provided to the system as processors are added,
into i nproved system performance w thout conprom sing system
quality. The DEC OSF/ 1 version 3.0 operating system uses a nunber
of techniques to achieve this goal. The techni ques include

al gorithm c enhancenments to inprove parallelismw thin the kerne
and additional | ock-based synchronization to protect globa
system state. Synchronization primtives include spin |ocks and
bl ocki ng | ocks. An optional |ocking hierarchy was inposed to
detect latent symretric nultiprocessor synchronization issues.
Enhancenents to the kernel schedul er inprove cache usage by
enabling soft affinity of threads to the processor on which the
thread | ast ran; a |oad-bal anci ng al gorithm keeps the nunber of
runnabl e threads spread evenly across the avail able processors. A
hi ghly scal abl e and stable SMP i npl enentation resulted fromthe
proj ect.

| NTRODUCTI ON

The DEC OSF/ 1 operating systemis a Digital product based in part
on the Open Software Foundation's OSF/ 1 operating system[1l] One
maj or goal of the DEC OSF/1 version 3.0 project was to provide a
| eadership nultiprocessing inplenentation of the UNI X operating
system for Al pha server systens, such as the Digital Al phaServer
2100 product. This paper describes the goals and devel opnent of
this operating systemfeature for the version 3.0 rel ease.

THE DEC OSF/1 VERSI ON 3.0 MJULTI PROCESSI NG PRQJECT

Mul ti processing platforns |ike the Al phaServer 2100 product
provi de a cost-effective nmeans of increasing the conputing power
of a server. Additional conputing capacity can be obtained at a
potentially significant cost advantage by sinply addi ng CPU
nodul es to the systemrather than by adding a new systemto a
nore | oosely coupl ed network-server arrangenent. An effective
execution of this server-scaling strategy requires significant
cooperation between the hardware and software conponents of the
system The hardware nust provide symetrical (i.e., equal)
access to systemresources, such as menmory and 1/O for al

processors; the operating system software nust provide for enough
parallelismin its nmpjor subsystens to allow applications to take
advant age of the additional CPUs in the system That is, the
operating system cost of multiprocessing nust be kept |ow enough
to enabl e nost of an additional CPU s conputing power to be used
by applications rather than by the operating system s efforts to
synchroni ze sinultaneous access to shared nmenory by multiple
processors.

Regar di ng hardware, the Al phaServer 2100 product and the other
Al pha nul tiprocessing platforns provide the shared nmenory and
symretric access to the systemand |I/O buses desired by the
operating system designers.[2] The design allows all CPUs to
share a single copy of the operating systemin nenory. The
hardware al so has a | oad-1 ocked/ store-conditional instruction
sequence, which provides both a nmechanismfor atom c updates to
shared menory by a single processor and an interprocessor

i nterrupt mechani sm

G ven these hardware features, operating system software

devel opers have a great deal of freedomin devel oping a

nmul ti processing strategy. The approach used in DEC OSF/ 1 version
3.0 is called symretric nultiprocessing (SMP), in which al
processors can participate fully in the execution of operating
system code. This synmetric design contrasts with asymetric

nmul ti processing (ASMP), in which all operating system code nust
be executed on a single designated "master" processor. Such an
approach is undesirabl e because it provides inadequate
utilization of additional "slave" processors for nost application
m xes. By contrast, for the DEC OSF/ 1 nultiprocessing design, the
concept of a master processor applies only to the keeping of the
gl obal systemtinme and to other specialized uses (such as
supporting subsystens that are not yet fully symetric).

The SMP features in the DEC OSF/ 1 version 3.0 operating system
are based on the joint work of Carnegie Mellon University, for
the Mach version 2.5 kernel, and the Open Software Foundation and
the Encore Conputer Corporation, for the version 1.2 rel ease of
the OSF/ 1 operating system[3-6] Fromthis substantial technica
base, the DEC OSF/1 mnultiprocessing project focused on achieving
UNI X | eadershi p performance on targeted conmercial server
applications, such as data servers (i.e., DBMS and file servers)
and conpute servers. These application domains tend to nmake heavy
use of system services. Therefore, shortconmings in the

nmul ti processi ng i npl enentati on beconme readily apparent through
the failure of these applications to gain significant perfornmance
speedups as processors are added to the server. The ideal benefit
is, of course, to obtain 100 percent of each additional processor
for the applications' use. In reality, a gain of 70 to 80 percent
of the last CPU added is well worth the increnmental cost of the
processor.

From the outset of the project, the engineering team was
enpowered to enhance and augnent the OSF/ 1 version 1.2 code base

to obtain this level of multiprocessing performance for DEC OSF/ 1
version 3.0. At the sanme tine, it was required to naintain the
system s stability and reliability. The team was staffed by

engi neers with extensive multiprocessing and real -tinme operating
system experience inside and outside Digital. Quality assurance
(Q A and performance teans provi ded consi derabl e feedback as the
product moved through its devel opnment base |evels.

The engi neering team faced nmultiple technical issues in the SMP
i mpl ementation of the DEC OSF/ 1 operating system including

o] Anal yzi ng concurrency and | ocking issues

o] Adapting the base operating system for SMP
o] Supporting a conprehensive | ock package

o] Adapting thread scheduling for SMP

o] Ensuring a quality inplenentation

o] Benchmar ki ng progress in SMP performance

The remai nder of this paper describes the highlights of the
team s efforts in these areas.

ANALYZI NG CONCURRENCY AND LOCKI NG | SSUES

Moving from a uni processor to a shared-nmenory, symretric

mul ti processi ng platform places new demands on an operating
system Miltiple processes running independently on separate
processors can access kernel data structures simultaneously. This
| evel of true concurrency is unobtainable on uniprocessor
systens, where concurrency either derives fromthe asynchronous
execution of interrupt service routines (ISRs) or is emnulated
through the interleaving of processes on a tine-share basis. In
the first case, synchronization is required for data structures
accessed by both mainline kernel code and the | SR The techni que
used to achi eve synchroni zation is to raise the processor
interrupt priority level (IPL), i.e., systempriority level (SPL)
in UNI X parlance, in the mainline code to the |evel used by the
conpeting ISR, thus blocking the interrupt that invokes the ISR
In the case of the virtual concurrency provi ded by process

ti me-sharing, synchronization is achieved by allow ng only one
process to be in kernel context at a time. The kernel protects
itself by preventing context switching (process preenption) unti
an executing process has reached a safe point, i.e., usually when
it is about to | eave kernel context. Other safe points appear
when a process nust voluntarily block to await the availability
of sone resource. These are the synchronization strategies

enpl oyed by traditional UN X-based operating systens.

One powerful feature of the OSF/ 1 kernel provides a further |eve

of concurrency, which conplicates the process of synchroni zing
access to kernel data; that feature is kernel-based threads. The
Mach task/thread nodel allows nultiple threads of execution to be
active within a single task (process) address space. Therefore,
whereas an unthreaded UNI X system has to protect data shared by
mul tiple processes, e.g., the scheduling queues, a threaded
kernel nust protect all process-level data, which is shared by
all threads in the process.

Al t hough in many ways a traditional UNI X systemfromthe user's
poi nt of view, the first version of the DEC OSF/ 1 operating
system departed fromtypical UN X practice by providing

kernel -node preenption in its real-tinme version of the kernel
Thi s enhancenent, targeted to i nprove the responsiveness of the
systemto real-tinme events, allows preenptive priority-based
context switching between threads to occur at any point in kerne
execution that neets a set of criteria for preenption safety.
These criteria have an imedi ate rel evance and applicability to
the work of adapting the OSF/ 1 uni processor code to a

nmul ti processi ng environnent. In the follow ng di scussion of
preenption safety, each criterion for safe preenption is
presented as it relates and | eads to an understandi ng of correct
mul ti processi ng synchroni zati on.

Real -tinme thread preenption can occur only when all three of the
foll owing conditions are net:

1. The processor SPL is zero. This state indicates that al
interrupts are enabled and inplies that no code is
executing in an ISR or is nodifying kernel data shared
with an I SR

On a nonpreenpting uni processor kernel, SPL

synchroni zation alone is adequate to protect shared data
structures. SPL is a processorw de rather than a
systemwi de characteristic. Consequently, raising the SPL
to interrupt level is inadequate protection on a

mul ti processi ng system in which one processor's SPL has
no effect on another's. The classic nultiprocessing
solution to this problemis to conbine SPL

synchroni zation with rmutual -exclusion spin | ocks to bl ock
out other processors as well as | SRs.

2. No sinple locks (spin |ocks) are held. This state is
represented in the Mach and OSF/ 1 kernel code by a cal
to the sinple_lock() routine. This call signifies that
the code has entered a critical section where shared data
will be nodified. On a uniprocessor, calling the
sinmple_lock() routine actually increnments a gl obal spin
| ock count; unlocking decrenments that count. |If the count
is zero, then an attenpt to preenpt the current process
can be nade. In this uniprocessor inplenentation, no
actual spin locks exist in nmenory, and nothing is | ocked
in the physical sense of a lock bit being checked for a

state of zero or one.

By contrast, on a mcroprocessing system real |ocking,
not | ock counting, is required; therefore, spin |ocks
occupy real mermory. On a multiprocessing system | ocking
a spin lock involves testing the lock |Iocation for a

val ue of zero and then atomically setting the value to
one before continuing into the critical code section,
assured of exclusive access. |f another processor finds
the lock bit set (i.e., nonzero), it will repeatedly test
the lock location and thus "spin" until the |ock val ue
beconmes zero when unl ocked by its previous hol der

Because processors nake no progress while they attenpt to
obtain a spin lock, such a lock is neant to be held for
bounded, hopefully brief periods. Extensive or unbounded
accesses require the use of conplex | ocks (bl ocking
read/wite |locks) by which a thread will sleep until a

| ocked resource becones avail abl e and unl ocked. (Sl eeping
to obtain a conplex lock is by definition a preenption
poi nt.)

3. The code is not funneled to the master processor. This
state is another way by which OSF/ 1 kernel code
delineates a critical code section. Funneling forces code
to run on a single processor designated as the master
processor. Funneling allows device drivers and entire
kernel subsystens that have not been adapted to a
concurrent-execution environnent with sinple_lock() calls
to nmodi fy kernel data safely. On a preenpting
uni processor, funneling is represented sinply as a
per-thread flag that prevents preenption when set; no
context switching is required to cause funneling.

By contrast, on a mnultiprocessing system funneling to
the master processor may involve an actual context switch
fromthe funneling thread's current processor---an
expensive form of synchronization. Prior to DEC OSF/ 1
version 3.0, all UN X process subsystem conponents,
including the fork(), exec(), wait(), and exit() routines
and signal logic, were not safe for preenption and were
therefore funneled. Al nodifications to process data
structures could occur only on the nmaster processor. This
situation elimnated concerns about access to those
structures from another processor but at the sanme tine
virtually elimnated the parallelismof the process
subsystem For exanple, for the fork systemcalls, the
list of active processes in the system (allproc) was
traversed in funneled code. Clearly, funneling this
fundamental resource introduces significant |atencies
into the system s response to scheduling events. In

nmul ti processing terns, no process-|evel operations can
execute in parall el

The devel opnent of the DEC OSF/ 1 real -time kernel |everaged the

exi sting OSF/1 SPL, |ocking, and funneling constructs to

i mpl ement preenption on uni processor Al pha systens. This work
provi ded a val uabl e product feature and was a previ ew of the
effort that would be required to adapt the OSF/ 1 code for the DEC
2000, 4000, and 7000 multiprocessing platfornms. Supporting
separate preenptive kernels for three versions prior to DEC OSF/ 1
version 3.0, conbined with the devel opers' experience on other

nmul ti processi ng systens (including ULTRI X version 4 and an
advanced devel opnent project using MPS multiprocessing

pl atforns), uncovered the foll owi ng chall enges and probl ens that
the team had to overcone to produce a conpetitive multiprocessing
product:

o] Supporting two conpl ete sets of kernel binary
obj ects---base and real -tine---was burdensone for the
operating system engi neers and awkward for third-party
devel opers. Therefore, the DEC OSF/1 mul ti processing
product team had to strive to ship a single, unified set
of kernel binaries. This set should enconpass the ful
range of real-tinme features, including preenption and
POSI X fixed-priority scheduling. For that to be
practical, the resulting multiprocessing kernel would
have to performas well on a uniprocessor as the non- SMP
kernel .

o] Di agnosi ng | ocki ng problens in the preenptive kernel was
expensive in devel oper time. The process required
pai nst aki ng i nspection of the sinple-Ilocking source code,
which is often disguised in subsystem specific macros.
Locki ng or unlocking a spin lock multiple tines or not
unl ocking it at all (usually in code |oops) would disable
preenption well beyond the end of a critical section or
enable it before the end. A coherent |ocking architecture
wi th automated debugging facilities was needed to ship a
reliable product on tinme. The | ock-debugging facility
present in the original OSF/1 code was probably
i nadequate for the task.

o] Experiments with the real-tinme kernel reveal ed
unaccept abl e preenption |atencies, especially in funnel ed
code paths. This deficiency indicated that, when noved to
a multiprocessing platform the existing kernel would
fail to use additional processors effectively. That is,
the kernel would not exhibit adequate parallelismto
scal e effectively. Clearly, major work was required to
significantly increase parallelismin the kernel. This
task would likely involve removing nost uses of
funneling, elimnating sonme spin | ocks, and addi ng ot her
spin locks to create a finer granularity of | ocking.

ADAPTI NG THE BASE OPERATI NG SYSTEM FOR SYMVETRI C MULTI PROCESSI NG

Maki ng the leap froma preenptive uni processor kernel to an

effective SMP inplenentation, built froma single set of kerne
bi naries, required contributions fromthe OSF/1 version 1.2 and
the DEC OSF/ 1 version 3.0 projects. Fundanental changes were

i ntroduced into the systemto support SMP.

The basi c approach planned by the SMP project teamwas first to
bootstrap the DEC OSF/ 1 version 1.3 kernel on the existing Al pha
nmul ti processing platfornms. This task was acconplished by
funneling all major subsystenms to a single processor while
stabilizing the underpinnings of the nultiprocessing system
(i.e., the scheduler, the virtual nenory subsystem the virtua
file system and the hardware support) in the new environment.
Thi s approach allowed the teamto nmake progress in understandi ng
the scope of the effort while analyzing the rmultiprocessing
requi renents of each kernel subsystem The in-depth analysis was
necessary to identify those subsystens in the kernel that
required nodifications to run safely and efficiently under SMP.
As each subsystem was confirmed to exhibit parallelismor was
made parallel, it was unfunneled and thus freed to run on any
processor. This process was iterative. |If incorrectly
parallelized, a subsystemw ||l reveal itself by (1) |leaving data
incorrectly unprotected and thus open for corruption and (2)
devel opi ng a deadl ock, i.e., a situation in which each of two
threads holds a spin lock required by the other thread and thus
neither thread can take the | ock and proceed.

The efforts at parallelizing the kernel fell into two classes of
nodi fi cation: |ock-based synchronization to ensure

nmul ti processi ng correctness and al gorithm c changes to increase
the level of parallelism achieved.

Lock-based Synchroni zati on

The code base on which the DEC OSF/ 1 product is built, i.e., the
Open Sof tware Foundation's OSF/ 1 software, provides a strong
foundation for SMP. The OSF further strengthened this foundation
in OSF/1 versions 1.1 and 1.2, when it corrected nmultiple SMP
problenms in the code base and parallelized (and thus unfunnel ed)
addi ti onal subsystenms. As the nultiprocessing bootstrap effort
conti nued, the team anal yzed and i ncorporated the OSF/1 version
1.2 SMP i nprovenents into DEC OSF/ 1 version 3.0. As strong as
this starting point was, however, sonme structures in the system
did not receive the appropriate | evel of synchronization. The
team corrected these problenms as they were uncovered through
testing and code inspection.

The DEC OSF/ 1 operating system uses a conbinati on of sinple

| ocks, conplex |ocks, elevated SPL, and funneling to guarantee
synchroni zed access to systemresources and data structures.

Si nmpl e | ocks, SPL, and funneling were described briefly in the
earlier discussion of preenption. Conplex |ocks, |ike elevated
SPL, are used in both uniprocessor and multi processor
environnents. These | ocks are usually sleep | ocks---threads can

bl ock while they wait for the | ock---which offer additiona
features, including nultiple-reader/single-witer access and
recursive acquisition.

An exanpl e of the use of each synchronization technique foll ows:

o] A sinple lock is used to protect the kernel's call out
(timer) queue. In an SMP environnment, multiple threads
can update the callout queue at the same tine, as each of
them adds a tiner entry to the queue. Each thread nust
obtain the callout |ock before adding an entry and
rel ease the | ock when done. The callout sinple lock is
al so a good exanpl e of SPL synchronization under
mul ti processi ng because the call out queue is scanned by
the systemclock | SR. Therefore, before |ocking the
callout lock, a thread nust raise the SPL to the clock's
IPL. Oherwise, the thread holding the callout |ock at an
SPL of zero can be interrupted by the clock ISR, which
wWill in turn attenpt to take the callout |ock. The result
is a permanent deadl ock

o] A conplex lock protects the file systemdirectory
structure. A blocking lock is required because the
directory lock holder nust performI|/O to update the
directory, which itself can bl ock. Whenever bl ocking can
occur while a lock is held, a conplex lock is required.

o] Funneling is used to synchroni ze access to the | SO 9660
CD-ROM file system[7] The decision to funnel this file
systemwas |largely due to limtations in the DEC OSF/ 1
version 3.0 schedul e; however, the file systemis a good
choice for funneling because of its generally slow
operation and |ight usage.

To ensure adequate performance and scaling as processors are
added to the system an SMP inplenentati on nust provide for as
much parallelismthrough the kernel as possible. The granularity
of locks placed in the system has a ngjor inpact on the anount of
paral | el i sm obt ai ned.

During nmul ti processing devel opnent, | ocking strategies were
designed to

o] Reduce the total nunber of | ocks per subsystem
o] Reduce the nunber of | ocks taken per subsystem operation
o] | mprove the I evel of parallelismthroughout the kerne
At times, these goals clashed: enhancing parallelismusually
i nvol ves adding a lock to sone structure or code path. This
outcone conflicts with the goal of reducing | ock counts.

Consequently, in practice, the process of successfully
parallelizing a subsysteminvolves striking a bal ance between

| ock reduction and the resulting increase in |lock granularity.
Often, benchmarking different approaches is required to fine-tune
t hi s bal ance.

Several general trends were uncovered during | ock analysis and
tuning. In sonme cases | ocks were renoved because they were not
needed; they were the products of overzeal ous synchronization
For exanple, a structure that is private to a thread may require
no locking at all. Moreover, a data elenent that is read
atomically needs no | ocking. An exanple of |ock renmoval is the
getti neofday() systemcall, which is used frequently by DBMS
servers. The systemcall sinply reads the systemtine, a 64-bit
quantity, and copies it to a buffer provided by the caller. The
original OSF/1 systemcall, running on a 32-bit architecture, had
to take a sinple lock before reading the tine to guarantee a
consi stent value. On the Al pha architecture, the systemcall can
read the entire 64-bit time value atomi cally. Rempving the | ock
resulted in a 40 percent speedup

In other cases, analyzing how structures are used reveal ed that
no | ocki ng was needed. For exanple, an |/ O control block called
the buf structure was being | ocked in several device drivers
while the block was in a state that allowed only the device
driver to access it. Renpving these unnecessary | ocks saved one
conpl ex and one sinple |ocking sequence per |/O operation in

t hese drivers.

Anot her effective optim zation involved postponing |ocking unti

a thread determned that it had actual work to do. This technique
was used successfully in a routine frequently called in a
transacti on processi ng benchmark. The routine, which was | ocking
structures in anticipation of following a rarely used code path,
was nodified to | ock only when the uncommon code path was needed.
This optimzation significantly reduced | ock overhead.

To inprove parallelismacross the system the DEC OSF/ 1 SMP
devel opnent team nodified the | ock strategi es in nunerous other
cases.

Al gorithm Changes

In sonme instances, the effective nmigration of a subsystemto the
mul ti processi ng environnent required significant reworking of its
fundamental algorithns. This section presents three exanpl es of
this work. The first exanple involves the rework of the process
managenment subsysten the second exanple is a new technique for a
thread to refer to its own state; and the third exanple deals

wi th enhancenents in translation buffer coherency or "shootdown."

Managi ng Processes and Process State. Early versions of the DEC
OSF/ 1 software maintai ned a set of systemn de process lists, npst
notably proc (static proc structure array), allproc (active

process list), and zonproc (zonbie process list). These lists
tend to be fairly long and are nornmally traversed sequentially.
Operations involving access to these lists include
process-creation tine (fork()), signal posting, and process

term nation. The original OSF/1 code protected these process
lists and the individual proc structures thensel ves by neans of
funneling. This neant that virtually every systemcall that

i nvol ved process state, such as exit(), wait(), ptrace(), and
sigaction(), was also forced into a single funnel. Experience
with real-time preenption indicated that this approach woul d
exact excessive nmultiprocessing costs. Although it is possible to
protect these lists with | ocks, the devel opment team deci ded t hat
this basic portion of the kernel nust be optimzed for meaxinmm
mul ti processi ng performance. The OSF al so recogni zed the need for
optim zation; they addressed the problemin OSF/1 version 1.2 by
adopting a redesign of the process managenent devel oped for their
Mul ti max systens by Encore Computer Corporation. The DEC OSF/ 1

t eam adopt ed and enhanced this design for handling process lists,
process managenent system calls, and signal processing.

The redesign replaces the statically sized array of proc
structures with an array of smaller process identification (PID)
entry structures. Each PID entry structure potentially points to
a dynamically allocated proc structure. Under this new schene,
finding the proc structure associated with a user PID has been
reduced to hashing the PID value to an index into the PID entry
array. The process state associated with that PID (active,
zonmbi e, or nonexistent) is nmaintained in the PID entry structure.
This all ows process structures to be allocated dynamically, as
needed, rather than statically at boot tinme, as before. Sinple

| ocks are al so added to the process structure to allow nmultiple
threads in the process to perform process managenent systemcalls
and signal handling concurrently. These changes all owed process
managenment funneling to be renmoved entirely, which significantly
i mproved the degree of parallelismin the process managenent
subsyst em

Accessing Current Thread State. One critical design choice in

i mpl ementing SMP on the DEC OSF/ 1 system concerned how to access
the state of the currently running thread. This state includes
the current thread's process, task, and virtual nmenory
structures, and the so-called uarea, which contains the pageable
UNI X state. Access to this state, which threads require
frequently as they run in kernel context, nust have | ow overhead.
Further, because the DEC OSF/ 1 operating system supports
kernel - node preenption, the nethod for accessing the current
thread's state nmust work even if a context switch to another CPU
occurs during the access operation.

The original OSF/1 code used arrays indexed by the CPU nunber to
| ook up the state of a running thread. One of these arrays was
the U_ADDRESS array, which was used to access the currently
active uarea. The U _ADDRESS array was | oaded at context switch

time and accessed while the thread executed. Before the advent of
nmul ti processi ng, the CPU nunber was a conpile-tine constant, so
that thread-state | ookup involved sinply reading a gl oba
variable to formthe pointer to the data. Adding nultiprocessing
support neant changing the CPU nunber froma constant to the
result of the WHAM ("Who am | ?") PALcode call to get the current
CPU nunber. (PALcode is the operating-systemspecific privileged
architecture library that provides control over interrupts,
exceptions, context switching, etc.[8])

Usi ng such gl obal arrays for accessing the current thread' s state
presented three shortconi ngs:

1. The WHAM PALcode call added a mi ni num over head of 21
machi ne cycles on the Al phaServer 2100 server, not
i ncludi ng further overhead due to cache mi sses or
instruction streamstalls. The multiprocessing teamfelt
that this was too |arge a performance price to pay.

2. Allowing nmultiple CPUs to wite sequential pointers
caused cache thrashing and extra overhead during context
swi t chi ng.

3. Indexing by CPU nunber was not a safe practice when
kernel -node preenption is enabled. A thread could switch
processors in the mddle of an array access, and the
wrong pointer would be fetched. Providing additiona
| ocking to prevent this had unacceptabl e performance
i mplications because the operation is so common.

These probl ens convinced the teamthat a new al gorithm was
required for accessing the current thread' s state.

The sol ution selected was nodel ed on the way the OpenVMs VAX
system uses the processor interrupt stack pointer to derive the
pointer to per-CPU state.[9] In the OSF/1 system each thread has
its own kernel stack. By aligning this stack on a power-of-two
boundary, a sinple nasking of the stack pointer yields a pointer
to the per-thread data, such as the process control bl ock (PCB)
and uthread structure. Any data itemin the per-thread area can
be accessed with the followi ng code sequence:

I da r16, MASK # CGet mask val ue
bic sp, r16, r0 # Mask stack pointer to point to stack base
I dg rx, OFFSET(rO0) # Add offset to base and fetch item

Accessing thread state using the kernel stack pointer solves al
three problens with CPU number-based indexing. First, this

techni que has very | ow overhead; accessing the current thread's
data involves only a sinple nmasking operation and a read
operation. Second, using the kernel stack pointer incurs no extra
over head during context sw tching because the pointer has to be

| oaded for other uses. Third, because thread stack areas are
pages, no cache conflicts exist between threads runni ng on

di fferent processors. Finally, the data access can be preenpted
at any point, and the correct pointer is still fetched. No
processor-dependent state is used to access the current thread
state.

I nterprocessor Transl ati on Lookasi de Buffer Shootdown. Al pha
processors enploy translation | ookaside buffers (TLBs) to speed
up the translation of physical-to-virtual nmappings. The TLB
caches page table entries (PTEs) that contain virtual-to-physica
address mappi ngs and access control information. Unlike data
cache coherency, which the hardware maintains, TLB cache
coherency is a task of the software. The DEC OSF/ 1 system uses an
enhanced version of the TLB shootdown al gorithm devel oped for the
Mach kernel to maintain TLB coherency.[10] First, a nodification
to the original shootdown al gorithm was needed to inplenment the
Al pha architecture's address space numbers (ASNs). Second, a
synchroni zation feature of the original algorithmwas renoved
entirely to enhance shootdown performance. This feature provided
synchroni zation for architectures in which the hardware can

nodi fy PTEs, such as the VAX platform the added protection is
unnecessary for the Al pha architecture.

The final shootdown algorithmis as follows. The physical nmap
(PMAP) is the software structure that hol ds the
virtual -t o- physi cal mapping informati on. Each task within the
system has a PMAP; operating system mappi ngs have a specia

kernel PMAP. Each PMAP contains a |ist of processors currently
usi ng the associ ated address space. To initiate a
virtual -t o-physical translation change, a processor (the
initiator) first locks the PMAP to prevent any other threads from
nmodi fying it. Next, the initiator updates the PTE mapping in
menory and flushes the | ocal TLB. The processor then sends an

i nterprocessor interrupt to all other processors (the responders)
that are currently active in the sane address space. Each
responder needs to acknow edge the initiator and invalidate its
own mapping. Once all responders are accounted for, the initiator
is free to continue with the know edge that all TLBs are coherent
on the system The initiator marks nonactive processors' ASNs

i nactive, spins while it waits for other processors to check in,
and then unl ocks the PMAP. Figure 1 shows this final TLB
shootdown algorithmas it progresses fromthe initiating
processor to the potential responding processors.

Figure 1 Translation Lookasi de Buffer Shootdown Al gorithm

Initiator: Responders:

Lock the PMAP.
Update the translation map (PTE).
I nval idate the processor TLB entry.
Send an interprocessor interrupt to al
processors that are using the PMAP.
Acknow edge the shoot down.
I nval i date the processor TLB
entry.
Return fromthe interrupt.
Mark the nonactive processors' ASNs
i nactive.
Spin while it waits for other
processors to check in.
Unl ock the PMAP

DEVELOPI NG THE LOCK PACKAGE

Key to neeting the performance and reliability goals for the

nmul ti processing portion of the DEC OSF/1 version 3.0 rel ease was
t he devel opnent of a | ock package with the foll ow ng
characteristics:

o] Low execution and nmenory over head

o] Fl exi bl e support for both uni processor and mrulti processor
platfornms, with and without real-tinme preenption

o] Aut omat ed debugging facilities to detect incorrect
| ocki ng practices at run tine

0] Statistical facilities to track the nunber of |ocks used,
how many tines a lock is taken, and how | ong threads wait
to obtain | ocks

O course, the overall role of the |lock package is to provide a
set of synchronization primtives, that is, the sinple and
conpl ex |l ocks described in earlier sections. To support

kernel -node thread preenption, DEC OSF/1 version 1.0 had extended
the |l ock package originally delivered with OSF/1 version 1.0.
Early in the DEC OSF/ 1 version 3.0 project, the devel opnent team
extended the package again to optim ze its performance and to add
the desired debuggi ng and statistical features.

As previously noted, a major goal for DEC OSF/1 version 3.0 was
to ship a single version of its kernel objects, instead of the
base and real -tinme sets of previous rel eases. Therefore, sinple

| ocks woul d have to be conpiled into the kernel, even for kernels
that would run only on uni processor systens. Achieving this goa
required mnimzing the size of the lock structure; it would be
unacceptabl e to have hundreds of kil obytes (KB) of nmenory
dedicated to | ock structures in systems that did not use such
structures. Further, the sinple | ock and unl ock invocations
required by the multiprocessing code would have to be present for
all platfornms, which would raise serious perfornmance issues for
uni processor systens. In fact, in the original OSF/ 1 | ock
package, the CPU overhead cost of conpiling in the |ock code was
between 1 and 20 percent. Conpute-intensive benchmarks showed the
cost to be less than 5 percent, but the cost for nultiuser
benchmarks was greater than 10 percent, which represents an
unaccept abl e performance degradation. To neet the goal of a
single set of binaries, the devel opnent team had to enhance the

| ock package to be configurable at boot tinme. That is, the
package needed to be able to tailor itself to fit the
configuration and real -tinme requirenents of the platformon which
it would run.

The | ock package supplied by the OSF/1 system was further
deficient in that it did not support error checki ng when | ocks
were asserted. This deficiency |eft devel opers open to the nost
comon tornmentor of concurrent programers, i.e., deadl ocks.

W t hout error checking, potential system hangs caused by | ocks
bei ng asserted in the wong order could go undetected for years
and be difficult to debug. A formal |ocking order or hierarchy
for all locks in the systemhad to be established, and the | ock
package needed the ability to check the hierarchy on each | ock
t aken.

These needs were nmet by introducing the notion of |ock node to
the | ock package. Devel opers defined the followi ng five npdes and
associ ated rol es:

o] Mode O: No | ock operations; for production uniprocessor
syst ens

o] Mode 1: Lock counting only to nmanage kernel preenption;
for production real-tine uni processor systens

o] Mode 2: Locking wi thout kernel preenption; for production
nmul ti processi ng systens

o] Mode 3: Locking with kernel preenption; for production
real -tinme multiprocessing systens

o] Mode 4: Full |ock debugging with or without preenption;
for any devel opnent system

The default uniprocessor |lock node is 0; the nultiprocessing
default is lock node 2. Both selections favor non-real -tine
production systens. The system s | ock node, however, can be

sel ected at boot tinme by a nunber of nechanisns. Lock npdes are

i mpl enented through a dynam c | ock configuration schene that
essentially installs the appropriate set of lock primtives for
the selected |lock node. Installation is realized by patching the
conpil ed-in function calls, such as sinple_lock(), to dispatch to
the corresponding lock primtive for the selected | ock node. This
techni que avoi ds the overhead of dispatching indirectly to
different sets of lock prinmtives for each call, based on the

| ock nobde. The conpiled-in | ock function calls to the |ock
package are all entry points that branch to a call-patching
routine called sinple_lock _patch(). This routine changes the
calling machine instruction to be patched out (for |ock node 0)
or to branch to the corresponding primtive in the appropriate
set of actual primtives, and then branches there (for |ock nodes
1 through 4). Thus, the overhead for dynamcally swtching
between the versions of sinple |ock primitives occurs only once
for each code path. In the case of |ock node 0, calls to sinple
lock primitives are "back patched" out. Under this nodel,

uni processor systens pay a one-time cost to invoke the sinple
lock primtives, after which the expense of executing a |ock
primtive is reduced to executing a few no-op instructions where

the code for the lock call once resided.

To address nmenory consunption i ssues and to provide better system
debug capabilities, the devel opers reorgani zed the | ock data
structures around the concept of the |ockinfo structure. This
structure is an encapsul ation of the |ock's ordering
(hierarchical relationship) with surrounding |ocks and its

m ni mrum SPL requi renent. Lock debugging information and the | ock
statistics were decoupled fromthe |ock structures thenselves. To
facilitate the expression of a |lock hierarchy, the devel opers

i ntroduced the concept of classes and instances. A lock class is
a grouping of locks of the sanme type. For exanple, the process
structure |lock constitutes a lock class. A lock instance is a
particul ar |l ock of a given class. For exanple, one process
structure sinple lock is an instance of the class process
structure lock. Error checking and statistics-gathering are
performed on a | ock-class basis and only in | ock node 4.

Decoupling the | ock debugging information fromthe lock itself
significantly reduced the sizes of the sinple and conpl ex | ock
structures to 8 and 32 bytes, respectively. Enbedded in both
structures is a 16-bit index into the | ockinfo structure table
for that particular |ock class. The |lockinfo structure is

dynami cally created at systemstartup in lock node 4. Al classes
in the systemare assigned a relative position in a single
unified | ock hierarchy. A lock class's position in the |ockinfo
table is also its position in the lock hierarchy; that is, |ocks
nmust be taken in the order in which they appear in the table.
Lock statistics are also nmintained on a per-class basis with
separate entries for each processor. Keeping |ock statistics per
processor and separating this information by cache bl ocks
elimnates the need to synchronize lock-primtive access to the
statistics. This design, which is illustrated in Figure 2,
prevents negative cache effects that could result from sharing
thi s data.

Lock Structure

Figure 2

LOCK STATI STI CS

LOCK CLASS

LOCK | NSTANCES
o et

Fome e

—_—t —+ —— + —+ —— + —+ —— +
1 1 1 1 1 1 1
1 1 1 1 1 1 1
O T " Z \
1 1 1 1 1 1 1
D D D |
1 1 1 1 1 1 1
@ _@_ _@_ 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
_—t —+ —— + —+ —— + —+ —— +
A A A
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
+ —+ — — + —— — __+
1
1
1
S S
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
T S
A
\
+ — — + — — — +
1 1 1
1 1 1
— + + — + + — +
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
— + + — + + — +

Once this powerful |ock package was operational, devel opers

anal yzed the | ock design of their kernel subsystens and attenpted
to place the |l ocks used into classes in the overall system | ock
hi erarchy. The position of a class depends on the order in which
its locks are taken and released in relation to other |locks in
the sane code path and in the system At tinmes, this static |ock
anal ysis reveal ed problens in existing |lock protocols, in which

| ocks were taken in varying orders at different points in the
code. Clearly, the |l ock protocol needed to be reworked to produce
a consistent order that could be codified in the hierarchy. Thus,
the exercise of producing an overall |ock hierarchy resulted in a
signi ficant cleanup of the original multiprocessing code base. To
add a new lock to the system a devel oper would have to deterni ne
the hierarchical position for the new |l ock class and the mi nimum
SPL at which the | ock nust be taken.

Runni ng the systemin |lock node 4 and exercising code paths of
i nterest provided devel opers with i medi ate feedback on their
| ock protocols. Using the hierarchy and SPL information stored in
the run-tine lockinfo table, the lock prinitives aggressively
check for a variety of |ocking errors, which include the
fol | owi ng:

o] Locking a | ock out of hierarchical order

o] Locking a sinple lock at an SPL bel ow t he required
m ni mum

o] Locking a sinple | ock already held by the caller

o] Unl ocki ng an unl ocked sinple |ock

o] Unl ocki ng a sinple | ock owned by anot her CPU

o] Locking a conplex lock with a sinple |ock held

o] Locking a conplex lock at interrupt |eve

o] Sl eeping with a sinple |ock held

o] Locki ng or unlocking an uninitialized | ock
Encountering any of these types of violation results in a |ock
fault, i.e., a system bug check that records the information
required by the devel oper to quickly track down the | ock error
The reduction in lock sizes and the nmgj or enhancenent of the | ock
package enabled the teamto realize its goal of a single set of
kernel binaries. Benchmarks that compare a pure uniprocessor

kernel and a kernel in |ock nmode O that are both running on the
same hardware show a | ess than 3 percent difference in

performance, a cost considered by the teamto be well worth the
many advantages to returning to a unified kernel. Moreover, the
debuggi ng capabilities of the | ock package with its hierarchica
schenme stream ined the process of |ock analysis and provided
preci se and i medi at e feedback as devel opers adapted their
subsystens to the nultiprocessing environnent.

ADAPTI NG THE SCHEDULER FOR MULTI PROCESSI NG

The normal scheduling behavior, i.e., policy, of the OSF/1 system
is traditional UNI X time-sharing. The systemtinme-slices
processes based on a tine quantum and adj usts process priorities
to favor interactive jobs over conpute-intensive jobs. To support
the POSI X real -tinme standard, the DEC OSF/ 1 system i ncorporates
two additional fixed-priority scheduling policies: first in,

first out (POLICY_FIFO and round robin (POLICY_RR)

A tine-share thread's priority degrades with CPU usage; the nore
recent the thread's CPU usage, the nore its priority degrades.
(Note that OSF/ 1 scheduling entities are threads rather than
processes.) In contrast, a fixed-priority thread never suffers
priority degradation. Instead, a POLICY_RR thread runs until it

bl ocks voluntarily, is preenpted by a higher-priority thread, or
exhausts a quantum (and even then, the round robin scheduling
applies only to threads of equal priority). A POLICY_FIFO thread
has no scheduling quantum it runs until it blocks or is
preenpted. These specialized policies are used by real-tine
applications and by threads created and managed by the kernel
Exanpl es of these kernel threads include the swapper and pagi ng

t hreads, device driver threads, and network protocol handlers. A
feature called thread binding, or hard affinity, was added to DEC
OSF/ 1 version 3.0. Binding allows a user or the kernel to force a
thread to run only on a specified processor. Binding supports the
funneling feature used by unparallelized code and the

bi nd_to_cpu() system call

The goal of a nultiprocessing operating systemin scheduling
threads is to run the top N priority threads on N processors at
any given tinme. A sinple way to acconplish this would be to
schedul e threads that are not bound to a CPU in a single, globa
run queue and schedul e bound threads in a run queue local to its
bound processor. Wen a processor reschedules, it would sel ect
the highest-priority thread available in the | ocal or the globa
run queue.

Schedul i ng threads out of a global run queue is highly effective
at keeping the N highest-priority threads runni ng; however, two
probl enms arise with this approach

1. A single run queue |l eads to contention between processors
that are attenpting to reschedule, as they race to |ock
the run queue and renove the highest-priority thread.

2. Scheduling with a global run queue does not take
advant age of the cache state that a thread builds on the
CPU where it last ran. Athread that mgrates to a
di fferent processor nust reload its state into the new
processor's cache. This can substantially degrade
per f or mance.

To hel p preserve cache state and reduce wasteful global run queue
contention, the devel opers enhanced the multiprocessi ng schedul er
by addi ng two new scheduling nmodels: a soft-affinity scheduling
nodel for time-share threads and a | ast-processor-preference
nodel for fixed-priority threads. Under these nodels, each
processor schedul es tinme-share and bound threads in its local run
queue, and it schedul es unbound fixed-priority threads out of a
gl obal run queue.

Fi xed-priority threads schedul ed froma global run queue are able
to run as soon as possible. This behavior is required for
high-priority tasks like kernel threads and real-tine
applications. The | ast-processor-preference nodel gives a
fixed-priority thread a preference for running on the processor
where it last ran; if that processor is busy, the thread runs on
the next avail able processor. Each tine-share thread is softly
bound to the processor on which it last ran; that is, the thread
shows an affinity for that processor. Unlike funneling or user

bi ndi ng, which support hard (mandatory) affinity, soft affinity
allows a thread to run elsewhere if it is advantageous, i.e., if
such activity bal ances the |l oad. O herw se, the softly bound
thread tries to return to the processor where it last ran and
where its recent cache state nay still reside.

Under | oad, however, a soft affinity nodel used al one can
degenerate to a state where one processor builds up a | arge queue
of threads, |leaving the other processors with little to do and

t hus di m ni shing the performance of the multiprocessing system
To mtigate these side effects of soft affinity, devel opers
paired the soft affinity feature with the ability to | oad-bal ance
the runnable threads in the system To keep the |oad of

ti me-share jobs spread evenly across processors, the schedul er
nmust periodically |oad-balance the system In addition to
distributing threads evenly across the local run queues in the
system this |oad-bal ancing activity nust

o] Cost no nore in processing tinme than it saves
o] Prevent excessive thread novenent anmpng processors

o] Recogni ze and effectively accommdate changes in the job
m x

To i npl enent | oad bal anci ng, each processor maintains a

time-share | oad average, i.e., the average | ocal run queue depth
over the last five seconds. Each processor updates its own | oad
average on each systemclock tick. Processors also keep track of

the tinme they spend handling interrupts and running
fixed-priority threads, which are not accounted for in the |loca
run queue depth. Taking a processor's total potential execution
time for a scheduling period and subtracting fromthis tinme the
i nterrupt-processing and fixed-priority run tinmes yields the
total tine available on a processor (processor ticks avail able)
to run time-share threads. In the worse case, a processor could
be conpl etely consuned by fixed-priority threads and/or interrupt
processing and have no tinme to run tinme-share threads. In this
extrene case, the schedul er should give no tine-share load to

t hat processor.

Addi ng the tinme-share | oad averages of all processors determ nes
the aggregate tine-share load for the system Simlarly, summing
the processor ticks available yields the total tinme avail able on
the system for handling tinme-share tasks. Using this data, the
schedul er cal cul ates the desired | oad for each processor once per
second, as foll ows:

Processor ticks System tine-share
Desired avail abl e X | oad
| oad R R
Systemticks avail abl e

Load bal ancing is called for when at |east one processor is above
and one is belowits desired load by a miniml amunt. If this
condition arises, then those processors under their desired | oads
are declared to be "out of balance.” The next tine an

out - of - bal ance processor reschedules, it will try to take a
thread fromthe | ocal run queue of a processor that is above its
desired load ("thread stealing"). A processor can declare itself
back in bal ance when its current load is above its desired | oad
or when there are no eligible threads to steal. Figure 3 shows a
sinmplified | oad-bal ancing scenario, in which a processor bel ow
its desired load steals a thread froma processor above its
desired | oad.

Figure 3 Load Bal anci ng

oo + oo + oo +
| CPU1 | | CPU2 | | CPUN |
oo + oo + oo +
CURRENT LOAD +--------- + b memoae + b memoae +
(NUMBER OF | 5 | CPU1 IS | 3 | | 4 |
THREADS) | | OUT OF | | | |
| | BALANCE | | | |
DESI RED LOAD | 4 | | 4 | | 4 |
LOCAL	[<---------	LOCAL		LOCAL
RUN [------n-- > RUN		RUN		
QUEUE	CPU 2	QUEUE		QUEUE
+----+----+STEALS Foom oot Foom oot				
ONE THREAD				
FROM CPU 1				
HI GHEST PRI ORI TY				
THREAD BETMEEN ~ #-----mcemooommmnn 4 b mmmmeeeooo- +				
LOCAL RUN QUEUES				
AND GLOBAL RUN QUEUE oo P				
W NS THE PROCESSOR				
GLOBAL				
RUN				
QUEUE				
oo +

To hel p preserve the cache benefits of soft affinity, a thread is
eligible for stealing only when it has not run on its current
processor for sonme configurable nunber of clock ticks. After this
time has el apsed without a thread running, the chance of it
havi ng significant cache state remai ni ng has di m ni shed
sufficiently that the thread is nmore likely to benefit from

m grating to another processor and running inmediately than from
waiting longer to run on its current processor.

To denmonstrate that soft affinity with | oad bal anci ng i nproves
nmul ti processi ng performance through cache benefits and the
elimnation of run queue contention, developers ran a sinple test
program The program which wites 128 KB of data, yields the
processor, and then reads the sane data back, was run on a
four-processor DEC 7000 system Table 1 shows the results of
running multiple versions of this programwith and wi thout soft
affinity and | oad bal ancing in operation. Performance benefits
appear only when multiple copies of the program begin piling up
in the run queues at the 16-job level. Prior to this point, each
j ob keeps running on the same processor, i.e., the cache it had
just filled still had its data cached when the programread it
back---the ideal case. At the 16-job level, the four processors
nmust be tinme-shared. The jobs that are running with soft affinity
now benefit significantly because they continue to run on the
same processor and thus find sone of their cache state preserved
fromwhen they last ran. The systens that schedule from a gl oba
run queue provide no such benefit. Jobs take |l onger to conplete,
since they are likely to run on a different processor for each
time slice and find no cache state that they can reuse.

Table 1 Benefits of Soft Affinity with Load Bal anci ng (SA/ LB)

Nunber Time with SA/LB Time w t hout Benefit from
of Jobs (Seconds) SA/ LB (Seconds) SA/ LB (Percent)
1 25.9 26.0 0
4 25.9 26.0 0
16 106.5 141.9 25

The soft affinity and | oad-bal ancing features inproved nmany ot her
mul ti user benchmarks. For exanple, a transaction processing
benchmark showed a 17 percent performance inprovenent.

FOCUSI NG ON QUALI TY

The error-checking focus of the | ock package is just one exanple
of how the DEC OSF/ 1 version 3.0 project focused on the quality
and stability of the product. Mst nenbers of the nultiprocessing
t eam had been involved in an SMP devel opnent effort prior to
their DEC OSF/ 1 effort. This past experience, coupled with the
difficulties other vendors had experienced with their own

nmul ti processing i npl enentations, reinforced the need to have a
strong quality focus in the SMP project.

Devel opers took nmultiple steps to ensure that the SMP sol ution
delivered in DEC OSF/1 version 3.0 would be production quality,
i ncl udi ng

o] Code revi ews
o] Lock debuggi ng
o] In-1ine assertion checking

o] Mul tithreaded test suite devel opnent for SWP
qual i fication

The base kernel code was reviewed for nultiprocessing
correctness. During this review phase, checks were nade to ensure
that the proper |evel of synchronization was enployed to protect
gl obal data structures. Nunerous defects were uncovered during
this process and corrected. Running code with |ock checking
enabl ed provided enpirical evidence of the increnenta

i mprovenents of the nultiprocessing inplenmentation.

Beyond code reviews and | ock debuggi ng, internal consistency
checks (assertions) were coded into the kernel to verify
correctness of operations at key points. Assertion checking was
enabl ed during the devel opnent process to ensure that the kerne
was functioning correctly; it was then conpiled out for the
production version of the kernel

In parallel with the operating system devel opment effort, new
conmponent tests were designed to force as much concurrency as
possi bl e through particular code paths. The core of the test
suite is a thread-race library, which consists of a set of

routi nes that can be used to construct nultithreaded system cal
exercisers. The library provides the ability to commence nultiple
test instances sinmultaneously. The individual tests are then
conmbi ned to form focused subsystemtests and systemwi de tests.
These tests have been used to uncover multiple race conditions in
the operating system

The UNI X devel opnent organi zati on had a four-processor DEC 7000
system depl oyed in its devel opment environnment for nore than 7

nmonths prior to releasing the SMP product. This system has been
extrenely stable, with few conplaints fromthe user comunity.
Ext ensive internal and external field testing produced sinilar
results.

MEASURI NG MULTI PROCESSI NG PERFORMANCE OUTCOMES

The major functionality delivered with SMP is inproved
performance through application concurrency. The goal of the SMP
project was to provide | eadership performance in the areas of
conpute and data servers. To gauge success in this effort,
several industry-standard benchmarks were utilized. These
benchmar ks include SPECrate_ | NT92, SPECrate FP92, and AIM Suite
[,

SMP performance is neasured in ternms of the increnenta
performance gai ned as processors are added to the system Adding
processors by no neans guarantees increased system perfornmance.
Systens that have I/O or nmenory linmtations rarely benefit from
i ntroduci ng additional CPUs. Systens that are conpute bound tend
to have the |argest potential for gain from additiona
processors. Note that large, nmonolithic applications tend to see
little performance inprovenent as processors are added because
such applications enploy little concurrency in their designs.

Performance tuning for SMP was an iterative process that can be
characterized as foll ows:

1. Collect and anal yze perfornmance data.
o CPU utilization across the processors
o Lock statistics
ol/Orates
o Context switch rates
o Kernel profiling
2. ldentify areas that require inprovenment.
3. Prototype changes.
4. Incorporate changes that denpnstrate inprovenment.
5. Repeat steps 1 through 4.
In reality, the process has two stages for each benchmark. The
initial phase was devoted to driving the systemto becone conpute

bound. The second phase inproved code efficiencies.

Figures 4 and 5 show that, as expected, the SPECrate_ | NT92 and

SPECr ate_FP92 benchmarks scale alnost linearly. Both of these
benchmarks are conpute intensive and nmake only nom nal denmands on
the operating system

[Figure 4 (SPECrate Integer Scaling for Four-CPU Systems) is not
available in ASCI| format.]

[Figure 5 (SPECrate Floating-point Scaling for Four-CPU Systens)
is not available in ASCII format.]

AIM Suite Il is a nultiuser benchmark that stresses multiple
conmponents of an operating system including the virtual nenory
system the scheduler, UNI X pipes, and the I/0O subsystem Figure
6 shows AIMIII results for one and four processors, with a
resulting 3.27 to 4 scaling factor. This equates to a greater
than 80 percent scaling factor, a figure well within the goals
for this benchmark at first multiprocessing release. Efforts to

produce still better results are under way.

[Figure 6 (AIM Suite Il Scaling) is not available in ASCI
format.]

AlM Suite Il scaling appears to be gated by a single test in the
AlM Suite Ill benchmark, i.e., directory search. The goal of this

test is to create and renmove a set of files across a linmited
nunber of directories.[10] Because these operations require
updating directory information, only one thread of execution can
perform these operations on a directory at a tinme. Sone

i mprovenents have been applied to nitigate this contention, but
this single test still inpacts the overall scaling results.

CONCLUSI ON

The focus of the first rel ease of SMP capabilities for the DEC
OSF/ 1 operating systemwas to provide | eadership SMP performance
Wi t hout conprom sing overall systemquality. The project team
acconplished this goal by carefully nodifying the base operating
systemto take advantage of the additional processing power

provi ded. The team paid particular attention to synchronization
parall el algorithns, and error and inconsistency detection.

Work for future releases will continue to focus on performance
and quality inprovenments. Other areas of investigation include
features such as processor sets, stopping and starting CPUs, and
nore flexible handling of interrupts as processors are added.

ACKNOW.EDGVENTS

Virtually every phase of this project depended on the teamaork
and cooperation of multiple groups with the UNI X Software G oup.
The authors wish to acknow edge the tireless efforts and
acconpli shments of that entire organization in maki ng DEC OSF/ 1

version 3.0 and SMP a reality. In particular, we would like to

acknowl edge the foll owing contributors who were involved in the
SMP project fromits earliest stages: Tim Burke, Dan Christians,
Scott Cranston, Richard Flower, Heather Gray, Gerri Harter, Tim
Hoski ns, Chet Juszczak, Stan Luke, Shashi Mangal at, Joe Martin,

Ron Menner, Brian Nadeau, Ernie Petrides, Rajul Shah, Dave

Stanl ey, and Tony Verhul st.

NOTE AND REFERENCES

1. The OSF/1 operating system based on Carnegie Mellon
Uni versity's Mach version 2.5 kernel, is devel oped and
di stributed by the Open Software Foundation. The DEC OSF/ 1
operating system based in part on the OSF/1 system is
devel oped and distributed by Digital Equi prment Corporation
To further clarify the relationship between the two products,
DEC OSF/ 1 versions 1.0, 1.2, 1.3, 2.0, and 2.1 include code
mainly fromthe OSF/ 1 version 1.0 software. DEC OSF/ 1 version
3.0 includes code fromthe OSF/1 version 1.1 and 1.2
sof t war e.

2. F. Hayes, "Design of the Al phaServer Miltiprocessor Server
Systens," Digital Technical Journal, vol. 6, no. 3 (Sumer
1994, this issue): 8-19.

3. R Rashid, "Threads of a New System (Mach: A Milti processor
Operating System)," UN X Review (August 1986): 37-49.

4. M Accetta et al., "Mach: A New Kernel Foundation for Unix
Devel opnent , " USEN X Sunmer Proceedi ngs (August 1986):
93-112.

5. Open Software Foundation, Design of the OSF/1 Operating
System (Engl ewood Cliffs, NJ: Prentice-Hall, 1993).

6. S. Mangal at and D. Bolinger, "Parallelizing Signal Handling
and Process Managenent in OSF/1," USEN X Synposium
Proceedi ngs (Novenber 1991): 105-122.

7. Information Processing---Volune and File Structure of CD-ROM
for Information Interchange, | SO 9660 (Geneva: |Internationa
Organi zation for Standardi zation, 1988).

8. R Sites, ed., Alpha Architecture Reference Manua
(Burlington, MA: Digital Press, 1992).

9. R Gamache and K. Morse, "VMS Symetric Miltiprocessing,"
Digital Technical Journal, vol. 1, no. 7 (August 1988):
57-63.

10. D. Black et al., "Translati on Lookasi de Buffer Consistency: A
Sof t ware Approach," Proceedings of the Third Internationa
Conference on Architectural Support for Programm ng Languages

and Operating Systens (1989).

TRADEMARKS

The following are trademarks of Digital Equi pnent Corporation:
Al phaServer, DEC, Digital, and ULTRI X

Mul timax is a trademark of Encore Conputer Corporation.

Open Software Foundation is a trademark and OSF/1 is a registered
trademar k of Open Software Foundation, Inc.

UNI X is a registered trademark |icensed exclusively by X/ Open
Conpany Ltd.

MPS is a trademark of M PS Conputer Systens, Inc.

Bl OGRAPHI ES

Jeffrey M Denham A principal software engineer in the UN X
Software Group, Jeff Denhamis a contributor to the DEC OSF/ 1
version 3.0 symmetric multiprocessing effort. Prior to this, he
hel ped add POSI X. 1b features to the DEC OSF/ 1 operati ng system
and worked on the VAXELN real-tine kernel. Jeff canme to Digita
in 1986 from Rayt heon Corporation. He holds a B.A (1979) from
Hiram Col | ege, an M A (1980) from Tufts University, both in
English, and an M'S. (1985) in Technical Comrunication from
Renssel aer Pol ytechnic Institute.

Paul a Long Since joining Digital in 1986, Paula Long has
contributed to various operating system projects. Presently a
princi pal software engineer with the UNI X Software G oup, she

| eads the devel opnent of symmetric nultiprocessing (SWMP)
capabilities for the DEC OSF/ 1 operating system In previous
positions, she led the DEC OSF/1 real -ti ne and DECwW ndows on
VAXELN projects. Paula received a B.S.C.S. fromWestfield State
Col |l ege in 1983.

James A. Woodward Princi pal software engi neer Janes Wodward is
a menber of the UNI X Software Group. He is responsible for DEC
OSF/ 1 symetric nultiprocessing (SMP) processor scheduling and
base kernel support. In previous work, Jimled the ULTRI X SMP
project and the VAX 8200, VAX 8800, and VAX 6000 ULTRI X operating
system ports. He also wote microcode for the VAX 8200 systens as
a menber of the Sem conductor Engi neering Group. Jimjoined
Digital in 1981 after receiving a B.S.E.E. fromthe University of
M chi gan.

Copyright 1994 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

