
 Digital Technical Journal
 Volume 6, Number 3

 VTX Version of the OSF Paper

 DEC OSF/1 Symmetric Multiprocessing

 by

 Jeffrey M. Denham, Paula Long, and James A. Woodward

ABSTRACT

The primary goal for an operating system in a symmetric
multiprocessing (SMP) implementation is to convert the additional
computing power provided to the system, as processors are added,
into improved system performance without compromising system
quality. The DEC OSF/1 version 3.0 operating system uses a number
of techniques to achieve this goal. The techniques include
algorithmic enhancements to improve parallelism within the kernel
and additional lock-based synchronization to protect global
system state. Synchronization primitives include spin locks and
blocking locks. An optional locking hierarchy was imposed to
detect latent symmetric multiprocessor synchronization issues.
Enhancements to the kernel scheduler improve cache usage by
enabling soft affinity of threads to the processor on which the
thread last ran; a load-balancing algorithm keeps the number of
runnable threads spread evenly across the available processors. A
highly scalable and stable SMP implementation resulted from the
project.

INTRODUCTION

The DEC OSF/1 operating system is a Digital product based in part
on the Open Software Foundation's OSF/1 operating system.[1] One
major goal of the DEC OSF/1 version 3.0 project was to provide a
leadership multiprocessing implementation of the UNIX operating
system for Alpha server systems, such as the Digital AlphaServer
2100 product. This paper describes the goals and development of
this operating system feature for the version 3.0 release.

THE DEC OSF/1 VERSION 3.0 MULTIPROCESSING PROJECT

Multiprocessing platforms like the AlphaServer 2100 product
provide a cost-effective means of increasing the computing power
of a server. Additional computing capacity can be obtained at a
potentially significant cost advantage by simply adding CPU
modules to the system rather than by adding a new system to a
more loosely coupled network-server arrangement. An effective
execution of this server-scaling strategy requires significant
cooperation between the hardware and software components of the
system. The hardware must provide symmetrical (i.e., equal)
access to system resources, such as memory and I/O, for all

processors; the operating system software must provide for enough
parallelism in its major subsystems to allow applications to take
advantage of the additional CPUs in the system. That is, the
operating system cost of multiprocessing must be kept low enough
to enable most of an additional CPU's computing power to be used
by applications rather than by the operating system's efforts to
synchronize simultaneous access to shared memory by multiple
processors.

Regarding hardware, the AlphaServer 2100 product and the other
Alpha multiprocessing platforms provide the shared memory and
symmetric access to the system and I/O buses desired by the
operating system designers.[2] The design allows all CPUs to
share a single copy of the operating system in memory. The
hardware also has a load-locked/store-conditional instruction
sequence, which provides both a mechanism for atomic updates to
shared memory by a single processor and an interprocessor
interrupt mechanism.

Given these hardware features, operating system software
developers have a great deal of freedom in developing a
multiprocessing strategy. The approach used in DEC OSF/1 version
3.0 is called symmetric multiprocessing (SMP), in which all
processors can participate fully in the execution of operating
system code. This symmetric design contrasts with asymmetric
multiprocessing (ASMP), in which all operating system code must
be executed on a single designated "master" processor. Such an
approach is undesirable because it provides inadequate
utilization of additional "slave" processors for most application
mixes. By contrast, for the DEC OSF/1 multiprocessing design, the
concept of a master processor applies only to the keeping of the
global system time and to other specialized uses (such as
supporting subsystems that are not yet fully symmetric).

The SMP features in the DEC OSF/1 version 3.0 operating system
are based on the joint work of Carnegie Mellon University, for
the Mach version 2.5 kernel, and the Open Software Foundation and
the Encore Computer Corporation, for the version 1.2 release of
the OSF/1 operating system.[3-6] From this substantial technical
base, the DEC OSF/1 multiprocessing project focused on achieving
UNIX leadership performance on targeted commercial server
applications, such as data servers (i.e., DBMS and file servers)
and compute servers. These application domains tend to make heavy
use of system services. Therefore, shortcomings in the
multiprocessing implementation become readily apparent through
the failure of these applications to gain significant performance
speedups as processors are added to the server. The ideal benefit
is, of course, to obtain 100 percent of each additional processor
for the applications' use. In reality, a gain of 70 to 80 percent
of the last CPU added is well worth the incremental cost of the
processor.

From the outset of the project, the engineering team was
empowered to enhance and augment the OSF/1 version 1.2 code base

to obtain this level of multiprocessing performance for DEC OSF/1
version 3.0. At the same time, it was required to maintain the
system's stability and reliability. The team was staffed by
engineers with extensive multiprocessing and real-time operating
system experience inside and outside Digital. Quality assurance
(Q/A) and performance teams provided considerable feedback as the
product moved through its development base levels.

The engineering team faced multiple technical issues in the SMP
implementation of the DEC OSF/1 operating system, including

 o Analyzing concurrency and locking issues

 o Adapting the base operating system for SMP

 o Supporting a comprehensive lock package

 o Adapting thread scheduling for SMP

 o Ensuring a quality implementation

 o Benchmarking progress in SMP performance

The remainder of this paper describes the highlights of the
team's efforts in these areas.

ANALYZING CONCURRENCY AND LOCKING ISSUES

Moving from a uniprocessor to a shared-memory, symmetric
multiprocessing platform places new demands on an operating
system. Multiple processes running independently on separate
processors can access kernel data structures simultaneously. This
level of true concurrency is unobtainable on uniprocessor
systems, where concurrency either derives from the asynchronous
execution of interrupt service routines (ISRs) or is emulated
through the interleaving of processes on a time-share basis. In
the first case, synchronization is required for data structures
accessed by both mainline kernel code and the ISR. The technique
used to achieve synchronization is to raise the processor
interrupt priority level (IPL), i.e., system priority level (SPL)
in UNIX parlance, in the mainline code to the level used by the
competing ISR, thus blocking the interrupt that invokes the ISR.
In the case of the virtual concurrency provided by process
time-sharing, synchronization is achieved by allowing only one
process to be in kernel context at a time. The kernel protects
itself by preventing context switching (process preemption) until
an executing process has reached a safe point, i.e., usually when
it is about to leave kernel context. Other safe points appear
when a process must voluntarily block to await the availability
of some resource. These are the synchronization strategies
employed by traditional UNIX-based operating systems.

One powerful feature of the OSF/1 kernel provides a further level

of concurrency, which complicates the process of synchronizing
access to kernel data; that feature is kernel-based threads. The
Mach task/thread model allows multiple threads of execution to be
active within a single task (process) address space. Therefore,
whereas an unthreaded UNIX system has to protect data shared by
multiple processes, e.g., the scheduling queues, a threaded
kernel must protect all process-level data, which is shared by
all threads in the process.

Although in many ways a traditional UNIX system from the user's
point of view, the first version of the DEC OSF/1 operating
system departed from typical UNIX practice by providing
kernel-mode preemption in its real-time version of the kernel.
This enhancement, targeted to improve the responsiveness of the
system to real-time events, allows preemptive priority-based
context switching between threads to occur at any point in kernel
execution that meets a set of criteria for preemption safety.
These criteria have an immediate relevance and applicability to
the work of adapting the OSF/1 uniprocessor code to a
multiprocessing environment. In the following discussion of
preemption safety, each criterion for safe preemption is
presented as it relates and leads to an understanding of correct
multiprocessing synchronization.

Real-time thread preemption can occur only when all three of the
following conditions are met:

 1. The processor SPL is zero. This state indicates that all
 interrupts are enabled and implies that no code is
 executing in an ISR or is modifying kernel data shared
 with an ISR.

 On a nonpreempting uniprocessor kernel, SPL
 synchronization alone is adequate to protect shared data
 structures. SPL is a processorwide rather than a
 systemwide characteristic. Consequently, raising the SPL
 to interrupt level is inadequate protection on a
 multiprocessing system, in which one processor's SPL has
 no effect on another's. The classic multiprocessing
 solution to this problem is to combine SPL
 synchronization with mutual-exclusion spin locks to block
 out other processors as well as ISRs.

 2. No simple locks (spin locks) are held. This state is
 represented in the Mach and OSF/1 kernel code by a call
 to the simple_lock() routine. This call signifies that
 the code has entered a critical section where shared data
 will be modified. On a uniprocessor, calling the
 simple_lock() routine actually increments a global spin
 lock count; unlocking decrements that count. If the count
 is zero, then an attempt to preempt the current process
 can be made. In this uniprocessor implementation, no
 actual spin locks exist in memory, and nothing is locked
 in the physical sense of a lock bit being checked for a

 state of zero or one.

 By contrast, on a microprocessing system, real locking,
 not lock counting, is required; therefore, spin locks
 occupy real memory. On a multiprocessing system, locking
 a spin lock involves testing the lock location for a
 value of zero and then atomically setting the value to
 one before continuing into the critical code section,
 assured of exclusive access. If another processor finds
 the lock bit set (i.e., nonzero), it will repeatedly test
 the lock location and thus "spin" until the lock value
 becomes zero when unlocked by its previous holder.
 Because processors make no progress while they attempt to
 obtain a spin lock, such a lock is meant to be held for
 bounded, hopefully brief periods. Extensive or unbounded
 accesses require the use of complex locks (blocking
 read/write locks) by which a thread will sleep until a
 locked resource becomes available and unlocked. (Sleeping
 to obtain a complex lock is by definition a preemption
 point.)

 3. The code is not funneled to the master processor. This
 state is another way by which OSF/1 kernel code
 delineates a critical code section. Funneling forces code
 to run on a single processor designated as the master
 processor. Funneling allows device drivers and entire
 kernel subsystems that have not been adapted to a
 concurrent-execution environment with simple_lock() calls
 to modify kernel data safely. On a preempting
 uniprocessor, funneling is represented simply as a
 per-thread flag that prevents preemption when set; no
 context switching is required to cause funneling.

 By contrast, on a multiprocessing system, funneling to
 the master processor may involve an actual context switch
 from the funneling thread's current processor---an
 expensive form of synchronization. Prior to DEC OSF/1
 version 3.0, all UNIX process subsystem components,
 including the fork(), exec(), wait(), and exit() routines
 and signal logic, were not safe for preemption and were
 therefore funneled. All modifications to process data
 structures could occur only on the master processor. This
 situation eliminated concerns about access to those
 structures from another processor but at the same time
 virtually eliminated the parallelism of the process
 subsystem. For example, for the fork system calls, the
 list of active processes in the system (allproc) was
 traversed in funneled code. Clearly, funneling this
 fundamental resource introduces significant latencies
 into the system's response to scheduling events. In
 multiprocessing terms, no process-level operations can
 execute in parallel.

The development of the DEC OSF/1 real-time kernel leveraged the

existing OSF/1 SPL, locking, and funneling constructs to
implement preemption on uniprocessor Alpha systems. This work
provided a valuable product feature and was a preview of the
effort that would be required to adapt the OSF/1 code for the DEC
2000, 4000, and 7000 multiprocessing platforms. Supporting
separate preemptive kernels for three versions prior to DEC OSF/1
version 3.0, combined with the developers' experience on other
multiprocessing systems (including ULTRIX version 4 and an
advanced development project using MIPS multiprocessing
platforms), uncovered the following challenges and problems that
the team had to overcome to produce a competitive multiprocessing
product:

 o Supporting two complete sets of kernel binary
 objects---base and real-time---was burdensome for the
 operating system engineers and awkward for third-party
 developers. Therefore, the DEC OSF/1 multiprocessing
 product team had to strive to ship a single, unified set
 of kernel binaries. This set should encompass the full
 range of real-time features, including preemption and
 POSIX fixed-priority scheduling. For that to be
 practical, the resulting multiprocessing kernel would
 have to perform as well on a uniprocessor as the non-SMP
 kernel.

 o Diagnosing locking problems in the preemptive kernel was
 expensive in developer time. The process required
 painstaking inspection of the simple-locking source code,
 which is often disguised in subsystem-specific macros.
 Locking or unlocking a spin lock multiple times or not
 unlocking it at all (usually in code loops) would disable
 preemption well beyond the end of a critical section or
 enable it before the end. A coherent locking architecture
 with automated debugging facilities was needed to ship a
 reliable product on time. The lock-debugging facility
 present in the original OSF/1 code was probably
 inadequate for the task.

 o Experiments with the real-time kernel revealed
 unacceptable preemption latencies, especially in funneled
 code paths. This deficiency indicated that, when moved to
 a multiprocessing platform, the existing kernel would
 fail to use additional processors effectively. That is,
 the kernel would not exhibit adequate parallelism to
 scale effectively. Clearly, major work was required to
 significantly increase parallelism in the kernel. This
 task would likely involve removing most uses of
 funneling, eliminating some spin locks, and adding other
 spin locks to create a finer granularity of locking.

ADAPTING THE BASE OPERATING SYSTEM FOR SYMMETRIC MULTIPROCESSING

Making the leap from a preemptive uniprocessor kernel to an

effective SMP implementation, built from a single set of kernel
binaries, required contributions from the OSF/1 version 1.2 and
the DEC OSF/1 version 3.0 projects. Fundamental changes were
introduced into the system to support SMP.

The basic approach planned by the SMP project team was first to
bootstrap the DEC OSF/1 version 1.3 kernel on the existing Alpha
multiprocessing platforms. This task was accomplished by
funneling all major subsystems to a single processor while
stabilizing the underpinnings of the multiprocessing system
(i.e., the scheduler, the virtual memory subsystem, the virtual
file system, and the hardware support) in the new environment.
This approach allowed the team to make progress in understanding
the scope of the effort while analyzing the multiprocessing
requirements of each kernel subsystem. The in-depth analysis was
necessary to identify those subsystems in the kernel that
required modifications to run safely and efficiently under SMP.
As each subsystem was confirmed to exhibit parallelism or was
made parallel, it was unfunneled and thus freed to run on any
processor. This process was iterative. If incorrectly
parallelized, a subsystem will reveal itself by (1) leaving data
incorrectly unprotected and thus open for corruption and (2)
developing a deadlock, i.e., a situation in which each of two
threads holds a spin lock required by the other thread and thus
neither thread can take the lock and proceed.

The efforts at parallelizing the kernel fell into two classes of
modification: lock-based synchronization to ensure
multiprocessing correctness and algorithmic changes to increase
the level of parallelism achieved.

Lock-based Synchronization

The code base on which the DEC OSF/1 product is built, i.e., the
Open Software Foundation's OSF/1 software, provides a strong
foundation for SMP. The OSF further strengthened this foundation
in OSF/1 versions 1.1 and 1.2, when it corrected multiple SMP
problems in the code base and parallelized (and thus unfunneled)
additional subsystems. As the multiprocessing bootstrap effort
continued, the team analyzed and incorporated the OSF/1 version
1.2 SMP improvements into DEC OSF/1 version 3.0. As strong as
this starting point was, however, some structures in the system
did not receive the appropriate level of synchronization. The
team corrected these problems as they were uncovered through
testing and code inspection.

The DEC OSF/1 operating system uses a combination of simple
locks, complex locks, elevated SPL, and funneling to guarantee
synchronized access to system resources and data structures.
Simple locks, SPL, and funneling were described briefly in the
earlier discussion of preemption. Complex locks, like elevated
SPL, are used in both uniprocessor and multiprocessor
environments. These locks are usually sleep locks---threads can

block while they wait for the lock---which offer additional
features, including multiple-reader/single-writer access and
recursive acquisition.

An example of the use of each synchronization technique follows:

 o A simple lock is used to protect the kernel's callout
 (timer) queue. In an SMP environment, multiple threads
 can update the callout queue at the same time, as each of
 them adds a timer entry to the queue. Each thread must
 obtain the callout lock before adding an entry and
 release the lock when done. The callout simple lock is
 also a good example of SPL synchronization under
 multiprocessing because the callout queue is scanned by
 the system clock ISR. Therefore, before locking the
 callout lock, a thread must raise the SPL to the clock's
 IPL. Otherwise, the thread holding the callout lock at an
 SPL of zero can be interrupted by the clock ISR, which
 will in turn attempt to take the callout lock. The result
 is a permanent deadlock.

 o A complex lock protects the file system directory
 structure. A blocking lock is required because the
 directory lock holder must perform I/O to update the
 directory, which itself can block. Whenever blocking can
 occur while a lock is held, a complex lock is required.

 o Funneling is used to synchronize access to the ISO 9660
 CD-ROM file system.[7] The decision to funnel this file
 system was largely due to limitations in the DEC OSF/1
 version 3.0 schedule; however, the file system is a good
 choice for funneling because of its generally slow
 operation and light usage.

To ensure adequate performance and scaling as processors are
added to the system, an SMP implementation must provide for as
much parallelism through the kernel as possible. The granularity
of locks placed in the system has a major impact on the amount of
parallelism obtained.

During multiprocessing development, locking strategies were
designed to

 o Reduce the total number of locks per subsystem

 o Reduce the number of locks taken per subsystem operation

 o Improve the level of parallelism throughout the kernel

At times, these goals clashed: enhancing parallelism usually
involves adding a lock to some structure or code path. This
outcome conflicts with the goal of reducing lock counts.
Consequently, in practice, the process of successfully
parallelizing a subsystem involves striking a balance between

lock reduction and the resulting increase in lock granularity.
Often, benchmarking different approaches is required to fine-tune
this balance.

Several general trends were uncovered during lock analysis and
tuning. In some cases locks were removed because they were not
needed; they were the products of overzealous synchronization.
For example, a structure that is private to a thread may require
no locking at all. Moreover, a data element that is read
atomically needs no locking. An example of lock removal is the
gettimeofday() system call, which is used frequently by DBMS
servers. The system call simply reads the system time, a 64-bit
quantity, and copies it to a buffer provided by the caller. The
original OSF/1 system call, running on a 32-bit architecture, had
to take a simple lock before reading the time to guarantee a
consistent value. On the Alpha architecture, the system call can
read the entire 64-bit time value atomically. Removing the lock
resulted in a 40 percent speedup.

In other cases, analyzing how structures are used revealed that
no locking was needed. For example, an I/O control block called
the buf structure was being locked in several device drivers
while the block was in a state that allowed only the device
driver to access it. Removing these unnecessary locks saved one
complex and one simple locking sequence per I/O operation in
these drivers.

Another effective optimization involved postponing locking until
a thread determined that it had actual work to do. This technique
was used successfully in a routine frequently called in a
transaction processing benchmark. The routine, which was locking
structures in anticipation of following a rarely used code path,
was modified to lock only when the uncommon code path was needed.
This optimization significantly reduced lock overhead.

To improve parallelism across the system, the DEC OSF/1 SMP
development team modified the lock strategies in numerous other
cases.

Algorithm Changes

In some instances, the effective migration of a subsystem to the
multiprocessing environment required significant reworking of its
fundamental algorithms. This section presents three examples of
this work. The first example involves the rework of the process
management subsystem; the second example is a new technique for a
thread to refer to its own state; and the third example deals
with enhancements in translation buffer coherency or "shootdown."

Managing Processes and Process State. Early versions of the DEC
OSF/1 software maintained a set of systemwide process lists, most
notably proc (static proc structure array), allproc (active

process list), and zomproc (zombie process list). These lists
tend to be fairly long and are normally traversed sequentially.
Operations involving access to these lists include
process-creation time (fork()), signal posting, and process
termination. The original OSF/1 code protected these process
lists and the individual proc structures themselves by means of
funneling. This meant that virtually every system call that
involved process state, such as exit(), wait(), ptrace(), and
sigaction(), was also forced into a single funnel. Experience
with real-time preemption indicated that this approach would
exact excessive multiprocessing costs. Although it is possible to
protect these lists with locks, the development team decided that
this basic portion of the kernel must be optimized for maximum
multiprocessing performance. The OSF also recognized the need for
optimization; they addressed the problem in OSF/1 version 1.2 by
adopting a redesign of the process management developed for their
Multimax systems by Encore Computer Corporation. The DEC OSF/1
team adopted and enhanced this design for handling process lists,
process management system calls, and signal processing.

The redesign replaces the statically sized array of proc
structures with an array of smaller process identification (PID)
entry structures. Each PID entry structure potentially points to
a dynamically allocated proc structure. Under this new scheme,
finding the proc structure associated with a user PID has been
reduced to hashing the PID value to an index into the PID entry
array. The process state associated with that PID (active,
zombie, or nonexistent) is maintained in the PID entry structure.
This allows process structures to be allocated dynamically, as
needed, rather than statically at boot time, as before. Simple
locks are also added to the process structure to allow multiple
threads in the process to perform process management system calls
and signal handling concurrently. These changes allowed process
management funneling to be removed entirely, which significantly
improved the degree of parallelism in the process management
subsystem.

Accessing Current Thread State. One critical design choice in
implementing SMP on the DEC OSF/1 system concerned how to access
the state of the currently running thread. This state includes
the current thread's process, task, and virtual memory
structures, and the so-called uarea, which contains the pageable
UNIX state. Access to this state, which threads require
frequently as they run in kernel context, must have low overhead.
Further, because the DEC OSF/1 operating system supports
kernel-mode preemption, the method for accessing the current
thread's state must work even if a context switch to another CPU
occurs during the access operation.

The original OSF/1 code used arrays indexed by the CPU number to
look up the state of a running thread. One of these arrays was
the U_ADDRESS array, which was used to access the currently
active uarea. The U_ADDRESS array was loaded at context switch

time and accessed while the thread executed. Before the advent of
multiprocessing, the CPU number was a compile-time constant, so
that thread-state lookup involved simply reading a global
variable to form the pointer to the data. Adding multiprocessing
support meant changing the CPU number from a constant to the
result of the WHAMI ("Who am I?") PALcode call to get the current
CPU number. (PALcode is the operating-system-specific privileged
architecture library that provides control over interrupts,
exceptions, context switching, etc.[8])

Using such global arrays for accessing the current thread's state
presented three shortcomings:

 1. The WHAMI PALcode call added a minimum overhead of 21
 machine cycles on the AlphaServer 2100 server, not
 including further overhead due to cache misses or
 instruction stream stalls. The multiprocessing team felt
 that this was too large a performance price to pay.

 2. Allowing multiple CPUs to write sequential pointers
 caused cache thrashing and extra overhead during context
 switching.

 3. Indexing by CPU number was not a safe practice when
 kernel-mode preemption is enabled. A thread could switch
 processors in the middle of an array access, and the
 wrong pointer would be fetched. Providing additional
 locking to prevent this had unacceptable performance
 implications because the operation is so common.

These problems convinced the team that a new algorithm was
required for accessing the current thread's state.

The solution selected was modeled on the way the OpenVMS VAX
system uses the processor interrupt stack pointer to derive the
pointer to per-CPU state.[9] In the OSF/1 system, each thread has
its own kernel stack. By aligning this stack on a power-of-two
boundary, a simple masking of the stack pointer yields a pointer
to the per-thread data, such as the process control block (PCB)
and uthread structure. Any data item in the per-thread area can
be accessed with the following code sequence:

lda r16, MASK # Get mask value
bic sp, r16, r0 # Mask stack pointer to point to stack base
ldq rx, OFFSET(r0) # Add offset to base and fetch item

Accessing thread state using the kernel stack pointer solves all
three problems with CPU-number-based indexing. First, this
technique has very low overhead; accessing the current thread's
data involves only a simple masking operation and a read
operation. Second, using the kernel stack pointer incurs no extra
overhead during context switching because the pointer has to be

loaded for other uses. Third, because thread stack areas are
pages, no cache conflicts exist between threads running on
different processors. Finally, the data access can be preempted
at any point, and the correct pointer is still fetched. No
processor-dependent state is used to access the current thread
state.

Interprocessor Translation Lookaside Buffer Shootdown. Alpha
processors employ translation lookaside buffers (TLBs) to speed
up the translation of physical-to-virtual mappings. The TLB
caches page table entries (PTEs) that contain virtual-to-physical
address mappings and access control information. Unlike data
cache coherency, which the hardware maintains, TLB cache
coherency is a task of the software. The DEC OSF/1 system uses an
enhanced version of the TLB shootdown algorithm developed for the
Mach kernel to maintain TLB coherency.[10] First, a modification
to the original shootdown algorithm was needed to implement the
Alpha architecture's address space numbers (ASNs). Second, a
synchronization feature of the original algorithm was removed
entirely to enhance shootdown performance. This feature provided
synchronization for architectures in which the hardware can
modify PTEs, such as the VAX platform; the added protection is
unnecessary for the Alpha architecture.

The final shootdown algorithm is as follows. The physical map
(PMAP) is the software structure that holds the
virtual-to-physical mapping information. Each task within the
system has a PMAP; operating system mappings have a special
kernel PMAP. Each PMAP contains a list of processors currently
using the associated address space. To initiate a
virtual-to-physical translation change, a processor (the
initiator) first locks the PMAP to prevent any other threads from
modifying it. Next, the initiator updates the PTE mapping in
memory and flushes the local TLB. The processor then sends an
interprocessor interrupt to all other processors (the responders)
that are currently active in the same address space. Each
responder needs to acknowledge the initiator and invalidate its
own mapping. Once all responders are accounted for, the initiator
is free to continue with the knowledge that all TLBs are coherent
on the system. The initiator marks nonactive processors' ASNs
inactive, spins while it waits for other processors to check in,
and then unlocks the PMAP. Figure 1 shows this final TLB
shootdown algorithm as it progresses from the initiating
processor to the potential responding processors.

Figure 1 Translation Lookaside Buffer Shootdown Algorithm

Initiator: Responders:

Lock the PMAP.
Update the translation map (PTE).
Invalidate the processor TLB entry.
Send an interprocessor interrupt to all
 processors that are using the PMAP.

 Acknowledge the shootdown.
 Invalidate the processor TLB

entry.
 Return from the interrupt.

Mark the nonactive processors' ASNs
 inactive.
Spin while it waits for other
 processors to check in.
Unlock the PMAP.

DEVELOPING THE LOCK PACKAGE

Key to meeting the performance and reliability goals for the
multiprocessing portion of the DEC OSF/1 version 3.0 release was
the development of a lock package with the following
characteristics:

 o Low execution and memory overhead

 o Flexible support for both uniprocessor and multiprocessor
 platforms, with and without real-time preemption

 o Automated debugging facilities to detect incorrect
 locking practices at run time

 o Statistical facilities to track the number of locks used,
 how many times a lock is taken, and how long threads wait
 to obtain locks

Of course, the overall role of the lock package is to provide a
set of synchronization primitives, that is, the simple and
complex locks described in earlier sections. To support
kernel-mode thread preemption, DEC OSF/1 version 1.0 had extended
the lock package originally delivered with OSF/1 version 1.0.
Early in the DEC OSF/1 version 3.0 project, the development team
extended the package again to optimize its performance and to add
the desired debugging and statistical features.

As previously noted, a major goal for DEC OSF/1 version 3.0 was
to ship a single version of its kernel objects, instead of the
base and real-time sets of previous releases. Therefore, simple
locks would have to be compiled into the kernel, even for kernels
that would run only on uniprocessor systems. Achieving this goal
required minimizing the size of the lock structure; it would be
unacceptable to have hundreds of kilobytes (KB) of memory
dedicated to lock structures in systems that did not use such
structures. Further, the simple lock and unlock invocations
required by the multiprocessing code would have to be present for
all platforms, which would raise serious performance issues for
uniprocessor systems. In fact, in the original OSF/1 lock
package, the CPU overhead cost of compiling in the lock code was
between 1 and 20 percent. Compute-intensive benchmarks showed the
cost to be less than 5 percent, but the cost for multiuser
benchmarks was greater than 10 percent, which represents an
unacceptable performance degradation. To meet the goal of a
single set of binaries, the development team had to enhance the
lock package to be configurable at boot time. That is, the
package needed to be able to tailor itself to fit the
configuration and real-time requirements of the platform on which
it would run.

The lock package supplied by the OSF/1 system was further
deficient in that it did not support error checking when locks
were asserted. This deficiency left developers open to the most
common tormentor of concurrent programmers, i.e., deadlocks.
Without error checking, potential system hangs caused by locks
being asserted in the wrong order could go undetected for years
and be difficult to debug. A formal locking order or hierarchy
for all locks in the system had to be established, and the lock
package needed the ability to check the hierarchy on each lock
taken.

These needs were met by introducing the notion of lock mode to
the lock package. Developers defined the following five modes and
associated roles:

 o Mode 0: No lock operations; for production uniprocessor
 systems

 o Mode 1: Lock counting only to manage kernel preemption;
 for production real-time uniprocessor systems

 o Mode 2: Locking without kernel preemption; for production
 multiprocessing systems

 o Mode 3: Locking with kernel preemption; for production
 real-time multiprocessing systems

 o Mode 4: Full lock debugging with or without preemption;
 for any development system

The default uniprocessor lock mode is 0; the multiprocessing
default is lock mode 2. Both selections favor non-real-time
production systems. The system's lock mode, however, can be
selected at boot time by a number of mechanisms. Lock modes are
implemented through a dynamic lock configuration scheme that
essentially installs the appropriate set of lock primitives for
the selected lock mode. Installation is realized by patching the
compiled-in function calls, such as simple_lock(), to dispatch to
the corresponding lock primitive for the selected lock mode. This
technique avoids the overhead of dispatching indirectly to
different sets of lock primitives for each call, based on the
lock mode. The compiled-in lock function calls to the lock
package are all entry points that branch to a call-patching
routine called simple_lock_patch(). This routine changes the
calling machine instruction to be patched out (for lock mode 0)
or to branch to the corresponding primitive in the appropriate
set of actual primitives, and then branches there (for lock modes
1 through 4). Thus, the overhead for dynamically switching
between the versions of simple lock primitives occurs only once
for each code path. In the case of lock mode 0, calls to simple
lock primitives are "back patched" out. Under this model,
uniprocessor systems pay a one-time cost to invoke the simple
lock primitives, after which the expense of executing a lock
primitive is reduced to executing a few no-op instructions where

the code for the lock call once resided.

To address memory consumption issues and to provide better system
debug capabilities, the developers reorganized the lock data
structures around the concept of the lockinfo structure. This
structure is an encapsulation of the lock's ordering
(hierarchical relationship) with surrounding locks and its
minimum SPL requirement. Lock debugging information and the lock
statistics were decoupled from the lock structures themselves. To
facilitate the expression of a lock hierarchy, the developers
introduced the concept of classes and instances. A lock class is
a grouping of locks of the same type. For example, the process
structure lock constitutes a lock class. A lock instance is a
particular lock of a given class. For example, one process
structure simple lock is an instance of the class process
structure lock. Error checking and statistics-gathering are
performed on a lock-class basis and only in lock mode 4.

Decoupling the lock debugging information from the lock itself
significantly reduced the sizes of the simple and complex lock
structures to 8 and 32 bytes, respectively. Embedded in both
structures is a 16-bit index into the lockinfo structure table
for that particular lock class. The lockinfo structure is
dynamically created at system startup in lock mode 4. All classes
in the system are assigned a relative position in a single
unified lock hierarchy. A lock class's position in the lockinfo
table is also its position in the lock hierarchy; that is, locks
must be taken in the order in which they appear in the table.
Lock statistics are also maintained on a per-class basis with
separate entries for each processor. Keeping lock statistics per
processor and separating this information by cache blocks
eliminates the need to synchronize lock-primitive access to the
statistics. This design, which is illustrated in Figure 2,
prevents negative cache effects that could result from sharing
this data.

Figure 2 Lock Structure

LOCK INSTANCES LOCK CLASS LOCK STATISTICS
+------------+ +--------+ +---------+
| |--+ | | | |
+------------+ | | | | |
 | | | +---------+
+------------+ | | | +------->| CPU 0 |
| |--+ +--------+ | +---------+
+------------+ |->| |---+ | |
 | +--------+ | | |
+------------+ | | | | +---------+
| |--+ | | +------->| CPU 1 |
+------------+ | | | +---------+

 | | | | |
 | | | | |

 | | | +---------+
 | | +------->| CPU N |
 | | +---------+
 | | | |
 | | | |
 +--------+ +---------+

Once this powerful lock package was operational, developers
analyzed the lock design of their kernel subsystems and attempted
to place the locks used into classes in the overall system lock
hierarchy. The position of a class depends on the order in which
its locks are taken and released in relation to other locks in
the same code path and in the system. At times, this static lock
analysis revealed problems in existing lock protocols, in which
locks were taken in varying orders at different points in the
code. Clearly, the lock protocol needed to be reworked to produce
a consistent order that could be codified in the hierarchy. Thus,
the exercise of producing an overall lock hierarchy resulted in a
significant cleanup of the original multiprocessing code base. To
add a new lock to the system, a developer would have to determine
the hierarchical position for the new lock class and the minimum
SPL at which the lock must be taken.

Running the system in lock mode 4 and exercising code paths of
interest provided developers with immediate feedback on their
lock protocols. Using the hierarchy and SPL information stored in
the run-time lockinfo table, the lock primitives aggressively
check for a variety of locking errors, which include the
following:

 o Locking a lock out of hierarchical order

 o Locking a simple lock at an SPL below the required
 minimum

 o Locking a simple lock already held by the caller

 o Unlocking an unlocked simple lock

 o Unlocking a simple lock owned by another CPU

 o Locking a complex lock with a simple lock held

 o Locking a complex lock at interrupt level

 o Sleeping with a simple lock held

 o Locking or unlocking an uninitialized lock

Encountering any of these types of violation results in a lock
fault, i.e., a system bug check that records the information
required by the developer to quickly track down the lock error.

The reduction in lock sizes and the major enhancement of the lock
package enabled the team to realize its goal of a single set of
kernel binaries. Benchmarks that compare a pure uniprocessor
kernel and a kernel in lock mode 0 that are both running on the
same hardware show a less than 3 percent difference in

performance, a cost considered by the team to be well worth the
many advantages to returning to a unified kernel. Moreover, the
debugging capabilities of the lock package with its hierarchical
scheme streamlined the process of lock analysis and provided
precise and immediate feedback as developers adapted their
subsystems to the multiprocessing environment.

ADAPTING THE SCHEDULER FOR MULTIPROCESSING

The normal scheduling behavior, i.e., policy, of the OSF/1 system
is traditional UNIX time-sharing. The system time-slices
processes based on a time quantum and adjusts process priorities
to favor interactive jobs over compute-intensive jobs. To support
the POSIX real-time standard, the DEC OSF/1 system incorporates
two additional fixed-priority scheduling policies: first in,
first out (POLICY_FIFO) and round robin (POLICY_RR).

A time-share thread's priority degrades with CPU usage; the more
recent the thread's CPU usage, the more its priority degrades.
(Note that OSF/1 scheduling entities are threads rather than
processes.) In contrast, a fixed-priority thread never suffers
priority degradation. Instead, a POLICY_RR thread runs until it
blocks voluntarily, is preempted by a higher-priority thread, or
exhausts a quantum (and even then, the round robin scheduling
applies only to threads of equal priority). A POLICY_FIFO thread
has no scheduling quantum; it runs until it blocks or is
preempted. These specialized policies are used by real-time
applications and by threads created and managed by the kernel.
Examples of these kernel threads include the swapper and paging
threads, device driver threads, and network protocol handlers. A
feature called thread binding, or hard affinity, was added to DEC
OSF/1 version 3.0. Binding allows a user or the kernel to force a
thread to run only on a specified processor. Binding supports the
funneling feature used by unparallelized code and the
bind_to_cpu() system call.

The goal of a multiprocessing operating system in scheduling
threads is to run the top N priority threads on N processors at
any given time. A simple way to accomplish this would be to
schedule threads that are not bound to a CPU in a single, global
run queue and schedule bound threads in a run queue local to its
bound processor. When a processor reschedules, it would select
the highest-priority thread available in the local or the global
run queue.

Scheduling threads out of a global run queue is highly effective
at keeping the N highest-priority threads running; however, two
problems arise with this approach:

 1. A single run queue leads to contention between processors
 that are attempting to reschedule, as they race to lock
 the run queue and remove the highest-priority thread.

 2. Scheduling with a global run queue does not take
 advantage of the cache state that a thread builds on the
 CPU where it last ran. A thread that migrates to a
 different processor must reload its state into the new
 processor's cache. This can substantially degrade
 performance.

To help preserve cache state and reduce wasteful global run queue
contention, the developers enhanced the multiprocessing scheduler
by adding two new scheduling models: a soft-affinity scheduling
model for time-share threads and a last-processor-preference
model for fixed-priority threads. Under these models, each
processor schedules time-share and bound threads in its local run
queue, and it schedules unbound fixed-priority threads out of a
global run queue.

Fixed-priority threads scheduled from a global run queue are able
to run as soon as possible. This behavior is required for
high-priority tasks like kernel threads and real-time
applications. The last-processor-preference model gives a
fixed-priority thread a preference for running on the processor
where it last ran; if that processor is busy, the thread runs on
the next available processor. Each time-share thread is softly
bound to the processor on which it last ran; that is, the thread
shows an affinity for that processor. Unlike funneling or user
binding, which support hard (mandatory) affinity, soft affinity
allows a thread to run elsewhere if it is advantageous, i.e., if
such activity balances the load. Otherwise, the softly bound
thread tries to return to the processor where it last ran and
where its recent cache state may still reside.

Under load, however, a soft affinity model used alone can
degenerate to a state where one processor builds up a large queue
of threads, leaving the other processors with little to do and
thus diminishing the performance of the multiprocessing system.
To mitigate these side effects of soft affinity, developers
paired the soft affinity feature with the ability to load-balance
the runnable threads in the system. To keep the load of
time-share jobs spread evenly across processors, the scheduler
must periodically load-balance the system. In addition to
distributing threads evenly across the local run queues in the
system, this load-balancing activity must

 o Cost no more in processing time than it saves

 o Prevent excessive thread movement among processors

 o Recognize and effectively accommodate changes in the job
 mix

To implement load balancing, each processor maintains a
time-share load average, i.e., the average local run queue depth
over the last five seconds. Each processor updates its own load
average on each system clock tick. Processors also keep track of

the time they spend handling interrupts and running
fixed-priority threads, which are not accounted for in the local
run queue depth. Taking a processor's total potential execution
time for a scheduling period and subtracting from this time the
interrupt-processing and fixed-priority run times yields the
total time available on a processor (processor ticks available)
to run time-share threads. In the worse case, a processor could
be completely consumed by fixed-priority threads and/or interrupt
processing and have no time to run time-share threads. In this
extreme case, the scheduler should give no time-share load to
that processor.

Adding the time-share load averages of all processors determines
the aggregate time-share load for the system. Similarly, summing
the processor ticks available yields the total time available on
the system for handling time-share tasks. Using this data, the
scheduler calculates the desired load for each processor once per
second, as follows:

 Processor ticks System time-share
Desired available X load
load = -----------------------------------

System ticks available

Load balancing is called for when at least one processor is above
and one is below its desired load by a minimal amount. If this
condition arises, then those processors under their desired loads
are declared to be "out of balance." The next time an
out-of-balance processor reschedules, it will try to take a
thread from the local run queue of a processor that is above its
desired load ("thread stealing"). A processor can declare itself
back in balance when its current load is above its desired load
or when there are no eligible threads to steal. Figure 3 shows a
simplified load-balancing scenario, in which a processor below
its desired load steals a thread from a processor above its
desired load.

Figure 3 Load Balancing

 +---------+ +---------+ +---------+
 | CPU 1 | | CPU 2 | ... | CPU N |
 +---------+ +---------+ +---------+

CURRENT LOAD +---------+ +---------+ +---------+
(NUMBER OF | 5 | CPU 1 IS | 3 | | 4 |
THREADS) | | OUT OF | | | |

 | | BALANCE | | | |
DESIRED LOAD | 4 | | 4 | | 4 |

 | | | | ... | |
 | | | | | |
 | LOCAL |<---------| LOCAL | | LOCAL |
 | RUN |--------->| RUN | | RUN |
 | QUEUE |CPU 2 | QUEUE | | QUEUE |
 +----+----+STEALS +----+----+ +----+----+
 | ONE THREAD | |
 | FROM CPU 1 | |

HIGHEST PRIORITY | | |
THREAD BETWEEN +-----------------+ + +----------------+
LOCAL RUN QUEUES | | |
AND GLOBAL RUN QUEUE +-+-----+-+
WINS THE PROCESSOR | |

 | |
 | |
 | GLOBAL |
 | RUN |
 | QUEUE |
 | |
 | |
 | |
 +---------+

To help preserve the cache benefits of soft affinity, a thread is
eligible for stealing only when it has not run on its current
processor for some configurable number of clock ticks. After this
time has elapsed without a thread running, the chance of it
having significant cache state remaining has diminished
sufficiently that the thread is more likely to benefit from
migrating to another processor and running immediately than from
waiting longer to run on its current processor.

To demonstrate that soft affinity with load balancing improves
multiprocessing performance through cache benefits and the
elimination of run queue contention, developers ran a simple test
program. The program, which writes 128 KB of data, yields the
processor, and then reads the same data back, was run on a
four-processor DEC 7000 system. Table 1 shows the results of
running multiple versions of this program with and without soft
affinity and load balancing in operation. Performance benefits
appear only when multiple copies of the program begin piling up
in the run queues at the 16-job level. Prior to this point, each
job keeps running on the same processor, i.e., the cache it had
just filled still had its data cached when the program read it
back---the ideal case. At the 16-job level, the four processors
must be time-shared. The jobs that are running with soft affinity
now benefit significantly because they continue to run on the
same processor and thus find some of their cache state preserved
from when they last ran. The systems that schedule from a global
run queue provide no such benefit. Jobs take longer to complete,
since they are likely to run on a different processor for each
time slice and find no cache state that they can reuse.

Table 1 Benefits of Soft Affinity with Load Balancing (SA/LB)

Number Time with SA/LB Time without Benefit from
of Jobs (Seconds) SA/LB (Seconds) SA/LB (Percent)
 1 25.9 26.0 0
 4 25.9 26.0 0
 16 106.5 141.9 25

The soft affinity and load-balancing features improved many other
multiuser benchmarks. For example, a transaction processing
benchmark showed a 17 percent performance improvement.

FOCUSING ON QUALITY

The error-checking focus of the lock package is just one example
of how the DEC OSF/1 version 3.0 project focused on the quality
and stability of the product. Most members of the multiprocessing
team had been involved in an SMP development effort prior to
their DEC OSF/1 effort. This past experience, coupled with the
difficulties other vendors had experienced with their own
multiprocessing implementations, reinforced the need to have a
strong quality focus in the SMP project.

Developers took multiple steps to ensure that the SMP solution
delivered in DEC OSF/1 version 3.0 would be production quality,
including

 o Code reviews

 o Lock debugging

 o In-line assertion checking

 o Multithreaded test suite development for SMP
 qualification

The base kernel code was reviewed for multiprocessing
correctness. During this review phase, checks were made to ensure
that the proper level of synchronization was employed to protect
global data structures. Numerous defects were uncovered during
this process and corrected. Running code with lock checking
enabled provided empirical evidence of the incremental
improvements of the multiprocessing implementation.

Beyond code reviews and lock debugging, internal consistency
checks (assertions) were coded into the kernel to verify
correctness of operations at key points. Assertion checking was
enabled during the development process to ensure that the kernel
was functioning correctly; it was then compiled out for the
production version of the kernel.

In parallel with the operating system development effort, new
component tests were designed to force as much concurrency as
possible through particular code paths. The core of the test
suite is a thread-race library, which consists of a set of
routines that can be used to construct multithreaded system-call
exercisers. The library provides the ability to commence multiple
test instances simultaneously. The individual tests are then
combined to form focused subsystem tests and systemwide tests.
These tests have been used to uncover multiple race conditions in
the operating system.

The UNIX development organization had a four-processor DEC 7000
system deployed in its development environment for more than 7

months prior to releasing the SMP product. This system has been
extremely stable, with few complaints from the user community.
Extensive internal and external field testing produced similar
results.

MEASURING MULTIPROCESSING PERFORMANCE OUTCOMES

The major functionality delivered with SMP is improved
performance through application concurrency. The goal of the SMP
project was to provide leadership performance in the areas of
compute and data servers. To gauge success in this effort,
several industry-standard benchmarks were utilized. These
benchmarks include SPECrate_INT92, SPECrate_FP92, and AIM Suite
III.

SMP performance is measured in terms of the incremental
performance gained as processors are added to the system. Adding
processors by no means guarantees increased system performance.
Systems that have I/O or memory limitations rarely benefit from
introducing additional CPUs. Systems that are compute bound tend
to have the largest potential for gain from additional
processors. Note that large, monolithic applications tend to see
little performance improvement as processors are added because
such applications employ little concurrency in their designs.

Performance tuning for SMP was an iterative process that can be
characterized as follows:

 1. Collect and analyze performance data.

 o CPU utilization across the processors

 o Lock statistics

 o I/O rates

 o Context switch rates

 o Kernel profiling

 2. Identify areas that require improvement.

 3. Prototype changes.

 4. Incorporate changes that demonstrate improvement.

 5. Repeat steps 1 through 4.

In reality, the process has two stages for each benchmark. The
initial phase was devoted to driving the system to become compute
bound. The second phase improved code efficiencies.

Figures 4 and 5 show that, as expected, the SPECrate_INT92 and

SPECrate_FP92 benchmarks scale almost linearly. Both of these
benchmarks are compute intensive and make only nominal demands on
the operating system.

[Figure 4 (SPECrate Integer Scaling for Four-CPU Systems) is not
available in ASCII format.]

[Figure 5 (SPECrate Floating-point Scaling for Four-CPU Systems)
is not available in ASCII format.]

AIM Suite III is a multiuser benchmark that stresses multiple
components of an operating system, including the virtual memory
system, the scheduler, UNIX pipes, and the I/O subsystem. Figure
6 shows AIM III results for one and four processors, with a
resulting 3.27 to 4 scaling factor. This equates to a greater
than 80 percent scaling factor, a figure well within the goals
for this benchmark at first multiprocessing release. Efforts to
produce still better results are under way.

[Figure 6 (AIM Suite III Scaling) is not available in ASCII
format.]

AIM Suite III scaling appears to be gated by a single test in the
AIM Suite III benchmark, i.e., directory search. The goal of this
test is to create and remove a set of files across a limited
number of directories.[10] Because these operations require
updating directory information, only one thread of execution can
perform these operations on a directory at a time. Some
improvements have been applied to mitigate this contention, but
this single test still impacts the overall scaling results.

CONCLUSION

The focus of the first release of SMP capabilities for the DEC
OSF/1 operating system was to provide leadership SMP performance
without compromising overall system quality. The project team
accomplished this goal by carefully modifying the base operating
system to take advantage of the additional processing power
provided. The team paid particular attention to synchronization,
parallel algorithms, and error and inconsistency detection.

Work for future releases will continue to focus on performance
and quality improvements. Other areas of investigation include
features such as processor sets, stopping and starting CPUs, and
more flexible handling of interrupts as processors are added.

ACKNOWLEDGMENTS

Virtually every phase of this project depended on the teamwork
and cooperation of multiple groups with the UNIX Software Group.
The authors wish to acknowledge the tireless efforts and
accomplishments of that entire organization in making DEC OSF/1

version 3.0 and SMP a reality. In particular, we would like to
acknowledge the following contributors who were involved in the
SMP project from its earliest stages: Tim Burke, Dan Christians,
Scott Cranston, Richard Flower, Heather Gray, Gerri Harter, Tim
Hoskins, Chet Juszczak, Stan Luke, Shashi Mangalat, Joe Martin,
Ron Menner, Brian Nadeau, Ernie Petrides, Rajul Shah, Dave
Stanley, and Tony Verhulst.

NOTE AND REFERENCES

 1. The OSF/1 operating system, based on Carnegie Mellon
 University's Mach version 2.5 kernel, is developed and
 distributed by the Open Software Foundation. The DEC OSF/1
 operating system, based in part on the OSF/1 system, is
 developed and distributed by Digital Equipment Corporation.
 To further clarify the relationship between the two products,
 DEC OSF/1 versions 1.0, 1.2, 1.3, 2.0, and 2.1 include code
 mainly from the OSF/1 version 1.0 software. DEC OSF/1 version
 3.0 includes code from the OSF/1 version 1.1 and 1.2
 software.

 2. F. Hayes, "Design of the AlphaServer Multiprocessor Server
 Systems," Digital Technical Journal, vol. 6, no. 3 (Summer
 1994, this issue): 8-19.

 3. R. Rashid, "Threads of a New System (Mach: A Multiprocessor
 Operating System)," UNIX Review (August 1986): 37-49.

 4. M. Accetta et al., "Mach: A New Kernel Foundation for Unix
 Development," USENIX Summer Proceedings (August 1986):
 93-112.

 5. Open Software Foundation, Design of the OSF/1 Operating
 System (Englewood Cliffs, NJ: Prentice-Hall, 1993).

 6. S. Mangalat and D. Bolinger, "Parallelizing Signal Handling
 and Process Management in OSF/1," USENIX Symposium
 Proceedings (November 1991): 105-122.

 7. Information Processing---Volume and File Structure of CD-ROM
 for Information Interchange, ISO 9660 (Geneva: International
 Organization for Standardization, 1988).

 8. R. Sites, ed., Alpha Architecture Reference Manual
 (Burlington, MA: Digital Press, 1992).

 9. R. Gamache and K. Morse, "VMS Symmetric Multiprocessing,"
 Digital Technical Journal, vol. 1, no. 7 (August 1988):
 57-63.

10. D. Black et al., "Translation Lookaside Buffer Consistency: A
 Software Approach," Proceedings of the Third International
 Conference on Architectural Support for Programming Languages

 and Operating Systems (1989).

TRADEMARKS

The following are trademarks of Digital Equipment Corporation:
AlphaServer, DEC, Digital, and ULTRIX.

Multimax is a trademark of Encore Computer Corporation.

Open Software Foundation is a trademark and OSF/1 is a registered
trademark of Open Software Foundation, Inc.

UNIX is a registered trademark licensed exclusively by X/Open
Company Ltd.

MIPS is a trademark of MIPS Computer Systems, Inc.

BIOGRAPHIES

Jeffrey M. Denham A principal software engineer in the UNIX
Software Group, Jeff Denham is a contributor to the DEC OSF/1
version 3.0 symmetric multiprocessing effort. Prior to this, he
helped add POSIX.1b features to the DEC OSF/1 operating system
and worked on the VAXELN real-time kernel. Jeff came to Digital
in 1986 from Raytheon Corporation. He holds a B.A. (1979) from
Hiram College, an M.A. (1980) from Tufts University, both in
English, and an M.S. (1985) in Technical Communication from
Rensselaer Polytechnic Institute.

Paula Long Since joining Digital in 1986, Paula Long has
contributed to various operating system projects. Presently a
principal software engineer with the UNIX Software Group, she
leads the development of symmetric multiprocessing (SMP)
capabilities for the DEC OSF/1 operating system. In previous
positions, she led the DEC OSF/1 real-time and DECwindows on
VAXELN projects. Paula received a B.S.C.S. from Westfield State
College in 1983.

James A. Woodward Principal software engineer James Woodward is
a member of the UNIX Software Group. He is responsible for DEC
OSF/1 symmetric multiprocessing (SMP) processor scheduling and
base kernel support. In previous work, Jim led the ULTRIX SMP
project and the VAX 8200, VAX 8800, and VAX 6000 ULTRIX operating
system ports. He also wrote microcode for the VAX 8200 systems as
a member of the Semiconductor Engineering Group. Jim joined
Digital in 1981 after receiving a B.S.E.E. from the University of
Michigan.

===
Copyright 1994 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

