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ABSTRACT

The primary goal for an operating system in a symmetric 
multiprocessing (SMP) implementation is to convert the additional 
computing power provided to the system, as processors are added, 
into improved system performance without compromising system 
quality. The DEC OSF/1 version 3.0 operating system uses a number 
of techniques to achieve this goal. The techniques include 
algorithmic enhancements to improve parallelism within the kernel 
and additional lock-based synchronization to protect global 
system state. Synchronization primitives include spin locks and 
blocking locks. An optional locking hierarchy was imposed to 
detect latent symmetric multiprocessor synchronization issues. 
Enhancements to the kernel scheduler improve cache usage by 
enabling soft affinity of threads to the processor on which the 
thread last ran; a load-balancing algorithm keeps the number of 
runnable threads spread evenly across the available processors. A 
highly scalable and stable SMP implementation resulted from the 
project.

INTRODUCTION

The DEC OSF/1 operating system is a Digital product based in part 
on the Open Software Foundation's OSF/1 operating system.[1] One 
major goal of the DEC OSF/1 version 3.0 project was to provide a 
leadership multiprocessing implementation of the UNIX operating 
system for Alpha server systems, such as the Digital AlphaServer 
2100 product. This paper describes the goals and development of 
this operating system feature for the version 3.0 release. 

THE DEC OSF/1 VERSION 3.0 MULTIPROCESSING PROJECT

Multiprocessing platforms like the AlphaServer 2100 product 
provide a cost-effective means of increasing the computing power 
of a server. Additional computing capacity can be obtained at a 
potentially significant cost advantage by simply adding CPU 
modules to the system rather than by adding a new system to a 
more loosely coupled network-server arrangement. An effective 
execution of this server-scaling strategy requires significant 
cooperation between the hardware and software components of the 
system. The hardware must provide symmetrical (i.e., equal) 
access to system resources, such as memory and I/O, for all 



processors; the operating system software must provide for enough 
parallelism in its major subsystems to allow applications to take 
advantage of the additional CPUs in the system. That is, the 
operating system cost of multiprocessing must be kept low enough 
to enable most of an additional CPU's computing power to be used 
by applications rather than by the operating system's efforts to 
synchronize simultaneous access to shared memory by multiple 
processors.

Regarding hardware, the AlphaServer 2100 product and the other 
Alpha multiprocessing platforms provide the shared memory and 
symmetric access to the system and I/O buses desired by the 
operating system designers.[2] The design allows all CPUs to 
share a single copy of the operating system in memory. The 
hardware also has a load-locked/store-conditional instruction 
sequence, which provides both a mechanism for atomic updates to 
shared memory by a single processor and an interprocessor 
interrupt mechanism.
 
Given these hardware features, operating system software 
developers have a great deal of freedom in developing a 
multiprocessing strategy. The approach used in DEC OSF/1 version 
3.0 is called symmetric multiprocessing (SMP), in which all 
processors can participate fully in the execution of operating 
system code. This symmetric design contrasts with asymmetric 
multiprocessing (ASMP), in which all operating system code must 
be executed on a single designated "master" processor. Such an 
approach is undesirable because it provides inadequate 
utilization of additional "slave" processors for most application 
mixes. By contrast, for the DEC OSF/1 multiprocessing design, the 
concept of a master processor applies only to the keeping of the 
global system time and to other specialized uses (such as 
supporting subsystems that are not yet fully symmetric).

The SMP features in the DEC OSF/1 version 3.0 operating system 
are based on the joint work of Carnegie Mellon University, for 
the Mach version 2.5 kernel, and the Open Software Foundation and 
the Encore Computer Corporation, for the version 1.2 release of 
the OSF/1 operating system.[3-6] From this substantial technical 
base, the DEC OSF/1 multiprocessing project focused on achieving 
UNIX leadership performance on targeted commercial server 
applications, such as data servers (i.e., DBMS and file servers) 
and compute servers. These application domains tend to make heavy 
use of system services. Therefore, shortcomings in the 
multiprocessing implementation become readily apparent through 
the failure of these applications to gain significant performance 
speedups as processors are added to the server. The ideal benefit 
is, of course, to obtain 100 percent of each additional processor 
for the applications' use. In reality, a gain of 70 to 80 percent 
of the last CPU added is well worth the incremental cost of the 
processor.

From the outset of the project, the engineering team was 
empowered to enhance and augment the OSF/1 version 1.2 code base 



to obtain this level of multiprocessing performance for DEC OSF/1 
version 3.0. At the same time, it was required to maintain the 
system's stability and reliability. The team was staffed by 
engineers with extensive multiprocessing and real-time operating 
system experience inside and outside Digital. Quality assurance 
(Q/A) and performance teams provided considerable feedback as the 
product moved through its development base levels.

The engineering team faced multiple technical issues in the SMP 
implementation of the DEC OSF/1 operating system, including

    o Analyzing concurrency and locking issues

    o Adapting the base operating system for SMP

    o Supporting a comprehensive lock package

    o Adapting thread scheduling for SMP

    o Ensuring a quality implementation

    o Benchmarking progress in SMP performance

The remainder of this paper describes the highlights of the 
team's efforts in these areas.

ANALYZING CONCURRENCY AND LOCKING ISSUES

Moving from a uniprocessor to a shared-memory, symmetric 
multiprocessing platform places new demands on an operating 
system. Multiple processes running independently on separate 
processors can access kernel data structures simultaneously. This 
level of true concurrency is unobtainable on uniprocessor 
systems, where concurrency either derives from the asynchronous 
execution of interrupt service routines (ISRs) or is emulated 
through the interleaving of processes on a time-share basis. In 
the first case, synchronization is required for data structures 
accessed by both mainline kernel code and the ISR. The technique 
used to achieve synchronization is to raise the processor 
interrupt priority level (IPL), i.e., system priority level (SPL) 
in UNIX parlance, in the mainline code to the level used by the 
competing ISR, thus blocking the interrupt that invokes the ISR. 
In the case of the virtual concurrency provided by process 
time-sharing, synchronization is achieved by allowing only one 
process to be in kernel context at a time. The kernel protects 
itself by preventing context switching (process preemption) until 
an executing process has reached a safe point, i.e., usually when 
it is about to leave kernel context. Other safe points appear 
when a process must voluntarily block to await the availability 
of some resource. These are the synchronization strategies 
employed by traditional UNIX-based operating systems.

One powerful feature of the OSF/1 kernel provides a further level 



of concurrency, which complicates the process of synchronizing 
access to kernel data; that feature is kernel-based threads. The 
Mach task/thread model allows multiple threads of execution to be 
active within a single task (process) address space. Therefore, 
whereas an unthreaded UNIX system has to protect data shared by 
multiple processes, e.g., the scheduling queues, a threaded 
kernel must protect all process-level data, which is shared by 
all threads in the process.

Although in many ways a traditional UNIX system from the user's 
point of view, the first version of the DEC OSF/1 operating 
system departed from typical UNIX practice by providing 
kernel-mode preemption in its real-time version of the kernel. 
This enhancement, targeted to improve the responsiveness of the 
system to real-time events, allows preemptive priority-based 
context switching between threads to occur at any point in kernel 
execution that meets a set of criteria for preemption safety. 
These criteria have an immediate relevance and applicability to 
the work of adapting the OSF/1 uniprocessor code to a 
multiprocessing environment. In the following discussion of 
preemption safety, each criterion for safe preemption is 
presented as it relates and leads to an understanding of correct 
multiprocessing synchronization.

Real-time thread preemption can occur only when all three of the 
following conditions are met: 

    1. The processor SPL is zero. This state indicates that all 
        interrupts are enabled and implies that no code is 
        executing in an ISR or is modifying kernel data shared 
        with an ISR.
  
    On a nonpreempting uniprocessor kernel, SPL 
        synchronization alone is adequate to protect shared data 
        structures. SPL is a processorwide rather than a 
        systemwide characteristic. Consequently, raising the SPL 
        to interrupt level is inadequate protection on a 
        multiprocessing system, in which one processor's SPL has 
        no effect on another's. The classic multiprocessing 
        solution to this problem is to combine SPL 
        synchronization with mutual-exclusion spin locks to block 
        out other processors as well as ISRs.

    2. No simple locks (spin locks) are held. This state is 
        represented in the Mach and OSF/1 kernel code by a call 
        to the simple_lock() routine. This call signifies that 
        the code has entered a critical section where shared data 
        will be modified. On a uniprocessor, calling the 
        simple_lock() routine actually increments a global spin 
        lock count; unlocking decrements that count. If the count 
        is zero, then an attempt to preempt the current process 
        can be made. In this uniprocessor implementation, no 
        actual spin locks exist in memory, and nothing is locked 
        in the physical sense of a lock bit being checked for a 



        state of zero or one.

       By contrast, on a microprocessing system, real locking, 
        not lock counting, is required; therefore, spin locks 
        occupy real memory. On a multiprocessing system, locking 
        a spin lock involves testing the lock location for a 
        value of zero and then atomically setting the value to 
        one before continuing into the critical code section, 
        assured of exclusive access. If another processor finds 
        the lock bit set (i.e., nonzero), it will repeatedly test 
        the lock location and thus "spin" until the lock value 
        becomes zero when unlocked by its previous holder. 
        Because processors make no progress while they attempt to 
        obtain a spin lock, such a lock is meant to be held for 
        bounded, hopefully brief periods. Extensive or unbounded 
        accesses require the use of complex locks (blocking 
        read/write locks) by which a thread will sleep until a 
        locked resource becomes available and unlocked. (Sleeping 
        to obtain a complex lock is by definition a preemption 
        point.)

    3. The code is not funneled to the master processor. This 
        state is another way by which OSF/1 kernel code 
        delineates a critical code section. Funneling forces code 
        to run on a single processor designated as the master 
        processor. Funneling allows device drivers and entire 
        kernel subsystems that have not been adapted to a 
        concurrent-execution environment with simple_lock() calls 
        to modify kernel data safely. On a preempting 
        uniprocessor, funneling is represented simply as a 
        per-thread flag that prevents preemption when set; no 
        context switching is required to cause funneling.

       By contrast, on a multiprocessing system, funneling to 
        the master processor may involve an actual context switch 
        from the funneling thread's current processor---an 
        expensive form of synchronization. Prior to DEC OSF/1 
        version 3.0, all UNIX process subsystem components, 
        including the fork(), exec(), wait(), and exit() routines 
        and signal logic, were not safe for preemption and were 
        therefore funneled. All modifications to process data 
        structures could occur only on the master processor. This 
        situation eliminated concerns about access to those 
        structures from another processor but at the same time 
        virtually eliminated the parallelism of the process 
        subsystem. For example, for the fork system calls, the 
        list of active processes in the system (allproc) was 
        traversed in funneled code. Clearly, funneling this 
        fundamental resource introduces significant latencies 
        into the system's response to scheduling events. In 
        multiprocessing terms, no process-level operations can 
        execute in parallel.

The development of the DEC OSF/1 real-time kernel leveraged the 



existing OSF/1 SPL, locking, and funneling constructs to 
implement preemption on uniprocessor Alpha systems. This work 
provided a valuable product feature and was a preview of the 
effort that would be required to adapt the OSF/1 code for the DEC 
2000, 4000, and 7000 multiprocessing platforms. Supporting 
separate preemptive kernels for three versions prior to DEC OSF/1 
version 3.0, combined with the developers' experience on other 
multiprocessing systems (including ULTRIX version 4 and an 
advanced development project using MIPS multiprocessing 
platforms), uncovered the following challenges and problems that 
the team had to overcome to produce a competitive multiprocessing 
product:

    o Supporting two complete sets of kernel binary 
        objects---base and real-time---was burdensome for the 
        operating system engineers and awkward for third-party 
        developers. Therefore, the DEC OSF/1 multiprocessing 
        product team had to strive to ship a single, unified set 
        of kernel binaries. This set should encompass the full 
        range of real-time features, including preemption and 
        POSIX fixed-priority scheduling. For that to be 
        practical, the resulting multiprocessing kernel would 
        have to perform as well on a uniprocessor as the non-SMP 
        kernel.

    o Diagnosing locking problems in the preemptive kernel was 
        expensive in developer time. The process required 
        painstaking inspection of the simple-locking source code, 
        which is often disguised in subsystem-specific macros. 
        Locking or unlocking a spin lock multiple times or not 
        unlocking it at all (usually in code loops) would disable 
        preemption well beyond the end of a critical section or 
        enable it before the end. A coherent locking architecture 
        with automated debugging facilities was needed to ship a 
        reliable product on time. The lock-debugging facility 
        present in the original OSF/1 code was probably 
        inadequate for the task.

    o Experiments with the real-time kernel revealed 
        unacceptable preemption latencies, especially in funneled 
        code paths. This deficiency indicated that, when moved to 
        a multiprocessing platform, the existing kernel would 
        fail to use additional processors effectively. That is, 
        the kernel would not exhibit adequate parallelism to 
        scale effectively. Clearly, major work was required to 
        significantly increase parallelism in the kernel. This 
        task would likely involve removing most uses of 
        funneling, eliminating some spin locks, and adding other 
        spin locks to create a finer granularity of locking.

ADAPTING THE BASE OPERATING SYSTEM FOR SYMMETRIC MULTIPROCESSING

Making the leap from a preemptive uniprocessor kernel to an 



effective SMP implementation, built from a single set of kernel 
binaries, required contributions from the OSF/1 version 1.2 and 
the DEC OSF/1 version 3.0 projects. Fundamental changes were 
introduced into the system to support SMP.

The basic approach planned by the SMP project team was first to 
bootstrap the DEC OSF/1 version 1.3 kernel on the existing Alpha 
multiprocessing platforms. This task was accomplished by 
funneling all major subsystems to a single processor while 
stabilizing the underpinnings of the multiprocessing system 
(i.e., the scheduler, the virtual memory subsystem, the virtual 
file system, and the hardware support) in the new environment. 
This approach allowed the team to make progress in understanding 
the scope of the effort while analyzing the multiprocessing 
requirements of each kernel subsystem. The in-depth analysis was 
necessary to identify those subsystems in the kernel that 
required modifications to run safely and efficiently under SMP. 
As each subsystem was confirmed to exhibit parallelism or was 
made parallel, it was unfunneled and thus freed to run on any 
processor. This process was iterative. If incorrectly 
parallelized, a subsystem will reveal itself by (1) leaving data 
incorrectly unprotected and thus open for corruption and (2) 
developing a deadlock, i.e., a situation in which each of two 
threads holds a spin lock required by the other thread and thus 
neither thread can take the lock and proceed.

The efforts at parallelizing the kernel fell into two classes of 
modification: lock-based synchronization to ensure 
multiprocessing correctness and algorithmic changes to increase 
the level of parallelism achieved.

Lock-based Synchronization

The code base on which the DEC OSF/1 product is built, i.e., the 
Open Software Foundation's OSF/1 software, provides a strong 
foundation for SMP. The OSF further strengthened this foundation 
in OSF/1 versions 1.1 and 1.2, when it corrected multiple SMP 
problems in the code base and parallelized (and thus unfunneled) 
additional subsystems. As the multiprocessing bootstrap effort 
continued, the team analyzed and incorporated the OSF/1 version 
1.2 SMP improvements into DEC OSF/1 version 3.0. As strong as 
this starting point was, however, some structures in the system 
did not receive the appropriate level of synchronization. The 
team corrected these problems as they were uncovered through 
testing and code inspection.

The DEC OSF/1 operating system uses a combination of simple 
locks, complex locks, elevated SPL, and funneling to guarantee 
synchronized access to system resources and data structures. 
Simple locks, SPL, and funneling were described briefly in the 
earlier discussion of preemption. Complex locks, like elevated 
SPL, are used in both uniprocessor and multiprocessor 
environments. These locks are usually sleep locks---threads can 



block while they wait for the lock---which offer additional 
features, including multiple-reader/single-writer access and 
recursive acquisition.

An example of the use of each synchronization technique follows:

    o A simple lock is used to protect the kernel's callout 
        (timer) queue. In an SMP environment, multiple threads 
        can update the callout queue at the same time, as each of 
        them adds a timer entry to the queue. Each thread must 
        obtain the callout lock before adding an entry and 
        release the lock when done. The callout simple lock is 
        also a good example of SPL synchronization under 
        multiprocessing because the callout queue is scanned by 
        the system clock ISR. Therefore, before locking the 
        callout lock, a thread must raise the SPL to the clock's 
        IPL. Otherwise, the thread holding the callout lock at an 
        SPL of zero can be interrupted by the clock ISR, which 
        will in turn attempt to take the callout lock. The result 
        is a permanent deadlock.

    o A complex lock protects the file system directory 
        structure. A blocking lock is required because the 
        directory lock holder must perform I/O to update the 
        directory, which itself can block. Whenever blocking can 
        occur while a lock is held, a complex lock is required.

    o Funneling is used to synchronize access to the ISO 9660 
        CD-ROM file system.[7] The decision to funnel this file 
        system was largely due to limitations in the DEC OSF/1 
        version 3.0 schedule; however, the file system is a good 
        choice for funneling because of its generally slow 
        operation and light usage.

To ensure adequate performance and scaling as processors are 
added to the system, an SMP implementation must provide for as 
much parallelism through the kernel as possible. The granularity 
of locks placed in the system has a major impact on the amount of 
parallelism obtained.

During multiprocessing development, locking strategies were 
designed to

    o Reduce the total number of locks per subsystem 

    o Reduce the number of locks taken per subsystem operation
 
    o Improve the level of parallelism throughout the kernel

At times, these goals clashed: enhancing parallelism usually 
involves adding a lock to some structure or code path. This 
outcome conflicts with the goal of reducing lock counts. 
Consequently, in practice, the process of successfully 
parallelizing a subsystem involves striking a balance between 



lock reduction and the resulting increase in lock granularity. 
Often, benchmarking different approaches is required to fine-tune 
this balance.

Several general trends were uncovered during lock analysis and 
tuning. In some cases locks were removed because they were not 
needed; they were the products of overzealous synchronization. 
For example, a structure that is private to a thread may require 
no locking at all. Moreover, a data element that is read 
atomically needs no locking. An example of lock removal is the 
gettimeofday() system call, which is used frequently by DBMS 
servers. The system call simply reads the system time, a 64-bit 
quantity, and copies it to a buffer provided by the caller. The 
original OSF/1 system call, running on a 32-bit architecture, had 
to take a simple lock before reading the time to guarantee a 
consistent value. On the Alpha architecture, the system call can 
read the entire 64-bit time value atomically. Removing the lock 
resulted in a 40 percent speedup.

In other cases, analyzing how structures are used revealed that 
no locking was needed. For example, an I/O control block called 
the buf structure was being locked in several device drivers 
while the block was in a state that allowed only the device 
driver to access it. Removing these unnecessary locks saved one 
complex and one simple locking sequence per I/O operation in 
these drivers.

Another effective optimization involved postponing locking until 
a thread determined that it had actual work to do. This technique 
was used successfully in a routine frequently called in a 
transaction processing benchmark. The routine, which was locking 
structures in anticipation of following a rarely used code path, 
was modified to lock only when the uncommon code path was needed. 
This optimization significantly reduced lock overhead. 

To improve parallelism across the system, the DEC OSF/1 SMP 
development team modified the lock strategies in numerous other 
cases.

Algorithm Changes

In some instances, the effective migration of a subsystem to the 
multiprocessing environment required significant reworking of its 
fundamental algorithms. This section presents three examples of 
this work. The first example involves the rework of the process 
management subsystem; the second example is a new technique for a 
thread to refer to its own state; and the third example deals 
with enhancements in translation buffer coherency or "shootdown."

Managing Processes and Process State.  Early versions of the DEC 
OSF/1 software maintained a set of systemwide process lists, most 
notably proc (static proc structure array), allproc (active 



process list), and zomproc (zombie process list). These lists 
tend to be fairly long and are normally traversed sequentially. 
Operations involving access to these lists include 
process-creation time (fork()), signal posting, and process 
termination. The original OSF/1 code protected these process 
lists and the individual proc structures themselves by means of 
funneling. This meant that virtually every system call that 
involved process state, such as exit(), wait(), ptrace(), and 
sigaction(), was also forced into a single funnel. Experience 
with real-time preemption indicated that this approach would 
exact excessive multiprocessing costs. Although it is possible to 
protect these lists with locks, the development team decided that 
this basic portion of the kernel must be optimized for maximum 
multiprocessing performance. The OSF also recognized the need for 
optimization; they addressed the problem in OSF/1 version 1.2 by 
adopting a redesign of the process management developed for their 
Multimax systems by Encore Computer Corporation. The DEC OSF/1 
team adopted and enhanced this design for handling process lists, 
process management system calls, and signal processing.

The redesign replaces the statically sized array of proc 
structures with an array of smaller process identification (PID) 
entry structures. Each PID entry structure potentially points to 
a dynamically allocated proc structure. Under this new scheme, 
finding the proc structure associated with a user PID has been 
reduced to hashing the PID value to an index into the PID entry 
array. The process state associated with that PID (active, 
zombie, or nonexistent) is maintained in the PID entry structure.  
This allows process structures to be allocated dynamically, as 
needed, rather than statically at boot time, as before. Simple 
locks are also added to the process structure to allow multiple 
threads in the process to perform process management system calls 
and signal handling concurrently. These changes allowed process 
management funneling to be removed entirely, which significantly 
improved the degree of parallelism in the process management 
subsystem.

Accessing Current Thread State.  One critical design choice in 
implementing SMP on the DEC OSF/1 system concerned how to access 
the state of the currently running thread. This state includes 
the current thread's process, task, and virtual memory 
structures, and the so-called uarea, which contains the pageable 
UNIX state. Access to this state, which threads require 
frequently as they run in kernel context, must have low overhead. 
Further, because the DEC OSF/1 operating system supports 
kernel-mode preemption, the method for accessing the current 
thread's state must work even if a context switch to another CPU 
occurs during the access operation.

The original OSF/1 code used arrays indexed by the CPU number to 
look up the state of a running thread. One of these arrays was 
the U_ADDRESS array, which was used to access the currently 
active uarea. The U_ADDRESS array was loaded at context switch 



time and accessed while the thread executed. Before the advent of 
multiprocessing, the CPU number was a compile-time constant, so 
that thread-state lookup involved simply reading a global 
variable to form the pointer to the data. Adding multiprocessing 
support meant changing the CPU number from a constant to the 
result of the WHAMI ("Who am I?") PALcode call to get the current 
CPU number. (PALcode is the operating-system-specific privileged 
architecture library that provides control over interrupts, 
exceptions, context switching, etc.[8])

Using such global arrays for accessing the current thread's state 
presented three shortcomings:

    1. The WHAMI PALcode call added a minimum overhead of 21 
        machine cycles on the AlphaServer 2100 server, not 
        including further overhead due to cache misses or 
        instruction stream stalls. The multiprocessing team felt 
        that this was too large a performance price to pay.

    2. Allowing multiple CPUs to write sequential pointers 
        caused cache thrashing and extra overhead during context 
        switching.

    3. Indexing by CPU number was not a safe practice when 
        kernel-mode preemption is enabled. A thread could switch 
        processors in the middle of an array access, and the 
        wrong pointer would be fetched. Providing additional 
        locking to prevent this had unacceptable performance 
        implications because the operation is so common.

These problems convinced the team that a new algorithm was 
required for accessing the current thread's state.

The solution selected was modeled on the way the OpenVMS VAX 
system uses the processor interrupt stack pointer to derive the 
pointer to per-CPU state.[9] In the OSF/1 system, each thread has 
its own kernel stack. By aligning this stack on a power-of-two 
boundary, a simple masking of the stack pointer yields a pointer 
to the per-thread data, such as the process control block (PCB) 
and uthread structure. Any data item in the per-thread area can 
be accessed with the following code sequence:

lda r16, MASK       # Get mask value
bic sp, r16, r0       # Mask stack pointer to point to stack base
ldq rx, OFFSET(r0)    # Add offset to base and fetch item

Accessing thread state using the kernel stack pointer solves all 
three problems with CPU-number-based indexing. First, this 
technique has very low overhead; accessing the current thread's 
data involves only a simple masking operation and a read 
operation. Second, using the kernel stack pointer incurs no extra 
overhead during context switching because the pointer has to be 



loaded for other uses. Third, because thread stack areas are 
pages, no cache conflicts exist between threads running on 
different processors. Finally, the data access can be preempted 
at any point, and the correct pointer is still fetched. No 
processor-dependent state is used to access the current thread 
state.

Interprocessor Translation Lookaside Buffer Shootdown.  Alpha 
processors employ translation lookaside buffers (TLBs) to speed 
up the translation of physical-to-virtual mappings. The TLB 
caches page table entries (PTEs) that contain virtual-to-physical 
address mappings and access control information. Unlike data 
cache coherency, which the hardware maintains, TLB cache 
coherency is a task of the software. The DEC OSF/1 system uses an 
enhanced version of the TLB shootdown algorithm developed for the 
Mach kernel to maintain TLB coherency.[10] First, a modification 
to the original shootdown algorithm was needed to implement the 
Alpha architecture's address space numbers (ASNs). Second, a 
synchronization feature of the original algorithm was removed 
entirely to enhance shootdown performance. This feature provided 
synchronization for architectures in which the hardware can 
modify PTEs, such as the VAX platform; the added protection is 
unnecessary for the Alpha architecture.

The final shootdown algorithm is as follows. The physical map 
(PMAP) is the software structure that holds the 
virtual-to-physical mapping information. Each task within the 
system has a PMAP; operating system mappings have a special 
kernel PMAP. Each PMAP contains a list of processors currently 
using the associated address space. To initiate a 
virtual-to-physical translation change, a processor (the 
initiator) first locks the PMAP to prevent any other threads from 
modifying it. Next, the initiator updates the PTE mapping in 
memory and flushes the local TLB. The processor then sends an 
interprocessor interrupt to all other processors (the responders) 
that are currently active in the same address space. Each 
responder needs to acknowledge the initiator and invalidate its 
own mapping. Once all responders are accounted for, the initiator 
is free to continue with the knowledge that all TLBs are coherent 
on the system. The initiator marks nonactive processors' ASNs 
inactive, spins while it waits for other processors to check in, 
and then unlocks the PMAP. Figure 1 shows this final TLB 
shootdown algorithm as it progresses from the initiating 
processor to the potential responding processors.



Figure 1  Translation Lookaside Buffer Shootdown Algorithm

Initiator:     Responders:

Lock the PMAP.
Update the translation map (PTE).
Invalidate the processor TLB entry.
Send an interprocessor interrupt to all 
   processors that are using the PMAP.         

    Acknowledge the shootdown.
    Invalidate the processor TLB

entry.
    Return from the interrupt.

Mark the nonactive processors' ASNs
   inactive.
Spin while it waits for other 
   processors to check in.
Unlock the PMAP.



 

DEVELOPING THE LOCK PACKAGE

Key to meeting the performance and reliability goals for the 
multiprocessing portion of the DEC OSF/1 version 3.0 release was 
the development of a lock package with the following 
characteristics:

    o Low execution and memory overhead

    o Flexible support for both uniprocessor and multiprocessor 
        platforms, with and without real-time preemption

    o Automated debugging facilities to detect incorrect 
        locking practices at run time 

    o Statistical facilities to track the number of locks used, 
        how many times a lock is taken, and how long threads wait 
        to obtain locks

Of course, the overall role of the lock package is to provide a 
set of synchronization primitives, that is, the simple and 
complex locks described in earlier sections. To support 
kernel-mode thread preemption, DEC OSF/1 version 1.0 had extended 
the lock package originally delivered with OSF/1 version 1.0. 
Early in the DEC OSF/1 version 3.0 project, the development team 
extended the package again to optimize its performance and to add 
the desired debugging and statistical features.

As previously noted, a major goal for DEC OSF/1 version 3.0 was 
to ship a single version of its kernel objects, instead of the 
base and real-time sets of previous releases. Therefore, simple 
locks would have to be compiled into the kernel, even for kernels 
that would run only on uniprocessor systems. Achieving this goal 
required minimizing the size of the lock structure; it would be 
unacceptable to have hundreds of kilobytes (KB) of memory 
dedicated to lock structures in systems that did not use such 
structures. Further, the simple lock and unlock invocations 
required by the multiprocessing code would have to be present for 
all platforms, which would raise serious performance issues for 
uniprocessor systems. In fact, in the original OSF/1 lock 
package, the CPU overhead cost of compiling in the lock code was 
between 1 and 20 percent. Compute-intensive benchmarks showed the 
cost to be less than 5 percent, but the cost for multiuser 
benchmarks was greater than 10 percent, which represents an 
unacceptable performance degradation. To meet the goal of a 
single set of binaries, the development team had to enhance the 
lock package to be configurable at boot time. That is, the 
package needed to be able to tailor itself to fit the 
configuration and real-time requirements of the platform on which 
it would run.



The lock package supplied by the OSF/1 system was further 
deficient in that it did not support error checking when locks 
were asserted. This deficiency left developers open to the most 
common tormentor of concurrent programmers, i.e., deadlocks. 
Without error checking, potential system hangs caused by locks 
being asserted in the wrong order could go undetected for years 
and be difficult to debug. A formal locking order or hierarchy 
for all locks in the system had to be established, and the lock 
package needed the ability to check the hierarchy on each lock 
taken.

These needs were met by introducing the notion of lock mode to 
the lock package. Developers defined the following five modes and 
associated roles:

    o Mode 0: No lock operations; for production uniprocessor 
        systems

    o Mode 1: Lock counting only to manage kernel preemption; 
        for production real-time uniprocessor systems

    o Mode 2: Locking without kernel preemption; for production 
        multiprocessing systems

    o Mode 3: Locking with kernel preemption; for production 
        real-time multiprocessing systems

    o Mode 4: Full lock debugging with or without preemption; 
        for any development system

The default uniprocessor lock mode is 0; the multiprocessing 
default is lock mode 2. Both selections favor non-real-time 
production systems. The system's lock mode, however, can be 
selected at boot time by a number of mechanisms. Lock modes are 
implemented through a dynamic lock configuration scheme that 
essentially installs the appropriate set of lock primitives for 
the selected lock mode. Installation is realized by patching the 
compiled-in function calls, such as simple_lock(), to dispatch to 
the corresponding lock primitive for the selected lock mode. This 
technique avoids the overhead of dispatching indirectly to 
different sets of lock primitives for each call, based on the 
lock mode. The compiled-in lock function calls to the lock 
package are all entry points that branch to a call-patching 
routine called simple_lock_patch(). This routine changes the 
calling machine instruction to be patched out (for lock mode 0) 
or to branch to the corresponding primitive in the appropriate 
set of actual primitives, and then branches there (for lock modes 
1 through 4). Thus, the overhead for dynamically switching 
between the versions of simple lock primitives occurs only once 
for each code path. In the case of lock mode 0, calls to simple 
lock primitives are "back patched" out. Under this model, 
uniprocessor systems pay a one-time cost to invoke the simple 
lock primitives, after which the expense of executing a lock 
primitive is reduced to executing a few no-op instructions where 



the code for the lock call once resided.

To address memory consumption issues and to provide better system 
debug capabilities, the developers reorganized the lock data 
structures around the concept of the lockinfo structure. This 
structure is an encapsulation of the lock's ordering 
(hierarchical relationship) with surrounding locks and its 
minimum SPL requirement. Lock debugging information and the lock 
statistics were decoupled from the lock structures themselves. To 
facilitate the expression of a lock hierarchy, the developers 
introduced the concept of classes and instances. A lock class is 
a grouping of locks of the same type. For example, the process 
structure lock constitutes a lock class. A lock instance is a 
particular lock of a given class. For example, one process 
structure simple lock is an instance of the class process 
structure lock. Error checking and statistics-gathering are 
performed on a lock-class basis and only in lock mode 4.

Decoupling the lock debugging information from the lock itself 
significantly reduced the sizes of the simple and complex lock 
structures to 8 and 32 bytes, respectively. Embedded in both 
structures is a 16-bit index into the lockinfo structure table 
for that particular lock class. The lockinfo structure is 
dynamically created at system startup in lock mode 4. All classes 
in the system are assigned a relative position in a single 
unified lock hierarchy. A lock class's position in the lockinfo 
table is also its position in the lock hierarchy; that is, locks 
must be taken in the order in which they appear in the table. 
Lock statistics are also maintained on a per-class basis with 
separate entries for each processor. Keeping lock statistics per 
processor and separating this information by cache blocks 
eliminates the need to synchronize lock-primitive access to the 
statistics. This design, which is illustrated in Figure 2, 
prevents negative cache effects that could result from sharing 
this data. 



Figure 2    Lock Structure
 

LOCK INSTANCES    LOCK CLASS        LOCK STATISTICS
+------------+    +--------+          +---------+
|            |--+  |        |            |         |
+------------+  |  |        |            |         |
                |  |        |            +---------+
+------------+  |  |        |   +------->|  CPU 0  |
|            |--+  +--------+   |        +---------+
+------------+  |->|        |---+        |         |
                |  +--------+   |        |         |
+------------+  |  |        |   |        +---------+
|            |--+  |        |   +------->|  CPU 1  |
+------------+     |        |   |        +---------+

   |        |   |        |         |
                   |        |   |        |         |

   |        |   |        +---------+
   |        |   +------->|  CPU N  |
   |        |            +---------+
   |        |            |         |
   |        |            |         |
   +--------+          +---------+



                  

Once this powerful lock package was operational, developers 
analyzed the lock design of their kernel subsystems and attempted 
to place the locks used into classes in the overall system lock 
hierarchy. The position of a class depends on the order in which 
its locks are taken and released in relation to other locks in 
the same code path and in the system. At times, this static lock 
analysis revealed problems in existing lock protocols, in which 
locks were taken in varying orders at different points in the 
code. Clearly, the lock protocol needed to be reworked to produce 
a consistent order that could be codified in the hierarchy. Thus, 
the exercise of producing an overall lock hierarchy resulted in a 
significant cleanup of the original multiprocessing code base. To 
add a new lock to the system, a developer would have to determine 
the hierarchical position for the new lock class and the minimum 
SPL at which the lock must be taken.

Running the system in lock mode 4 and exercising code paths of 
interest provided developers with immediate feedback on their 
lock protocols. Using the hierarchy and SPL information stored in 
the run-time lockinfo table, the lock primitives aggressively 
check for a variety of locking errors, which include the 
following:

    o Locking a lock out of hierarchical order

    o Locking a simple lock at an SPL below the required 
        minimum

    o Locking a simple lock already held by the caller

    o Unlocking an unlocked simple lock

    o Unlocking a simple lock owned by another CPU

    o Locking a complex lock with a simple lock held

    o Locking a complex lock at interrupt level

    o Sleeping with a simple lock held

    o Locking or unlocking an uninitialized lock

Encountering any of these types of violation results in a lock 
fault, i.e., a system bug check that records the information 
required by the developer to quickly track down the lock error.

The reduction in lock sizes and the major enhancement of the lock 
package enabled the team to realize its goal of a single set of 
kernel binaries. Benchmarks that compare a pure uniprocessor 
kernel and a kernel in lock mode 0 that are both running on the 
same hardware show a less than 3 percent difference in 



performance, a cost considered by the team to be well worth the 
many advantages to returning to a unified kernel. Moreover, the 
debugging capabilities of the lock package with its hierarchical 
scheme streamlined the process of lock analysis and provided 
precise and immediate feedback as developers adapted their 
subsystems to the multiprocessing environment.

ADAPTING THE SCHEDULER FOR MULTIPROCESSING

The normal scheduling behavior, i.e., policy, of the OSF/1 system 
is traditional UNIX time-sharing. The system time-slices 
processes based on a time quantum and adjusts process priorities 
to favor interactive jobs over compute-intensive jobs. To support 
the POSIX real-time standard, the DEC OSF/1 system incorporates 
two additional fixed-priority scheduling policies: first in, 
first out (POLICY_FIFO) and round robin (POLICY_RR).

A time-share thread's priority degrades with CPU usage; the more 
recent the thread's CPU usage, the more its priority degrades. 
(Note that OSF/1 scheduling entities are threads rather than 
processes.) In contrast, a fixed-priority thread never suffers 
priority degradation. Instead, a POLICY_RR thread runs until it 
blocks voluntarily, is preempted by a higher-priority thread, or 
exhausts a quantum (and even then, the round robin scheduling 
applies only to threads of equal priority). A POLICY_FIFO thread 
has no scheduling quantum; it runs until it blocks or is 
preempted. These specialized policies are used by real-time 
applications and by threads created and managed by the kernel. 
Examples of these kernel threads include the swapper and paging 
threads, device driver threads, and network protocol handlers. A 
feature called thread binding, or hard affinity, was added to DEC 
OSF/1 version 3.0. Binding allows a user or the kernel to force a 
thread to run only on a specified processor. Binding supports the 
funneling feature used by unparallelized code and the 
bind_to_cpu() system call.

The goal of a multiprocessing operating system in scheduling 
threads is to run the top N priority threads on N processors at 
any given time. A simple way to accomplish this would be to 
schedule threads that are not bound to a CPU in a single, global 
run queue and schedule bound threads in a run queue local to its 
bound processor. When a processor reschedules, it would select 
the highest-priority thread available in the local or the global 
run queue.

Scheduling threads out of a global run queue is highly effective 
at keeping the N highest-priority threads running; however, two 
problems arise with this approach:

    1. A single run queue leads to contention between processors 
        that are attempting to reschedule, as they race to lock 
        the run queue and remove the highest-priority thread.



    2. Scheduling with a global run queue does not take 
        advantage of the cache state that a thread builds on the 
        CPU where it last ran. A thread that migrates to a 
        different processor must reload its state into the new 
        processor's cache. This can substantially degrade 
        performance.

To help preserve cache state and reduce wasteful global run queue 
contention, the developers enhanced the multiprocessing scheduler 
by adding two new scheduling models: a soft-affinity scheduling 
model for time-share threads and a last-processor-preference 
model for fixed-priority threads. Under these models, each 
processor schedules time-share and bound threads in its local run 
queue, and it schedules unbound fixed-priority threads out of a 
global run queue.

Fixed-priority threads scheduled from a global run queue are able 
to run as soon as possible. This behavior is required for 
high-priority tasks like kernel threads and real-time 
applications. The last-processor-preference model gives a 
fixed-priority thread a preference for running on the processor 
where it last ran; if that processor is busy, the thread runs on 
the next available processor. Each time-share thread is softly 
bound to the processor on which it last ran; that is, the thread 
shows an affinity for that processor. Unlike funneling or user 
binding, which support hard (mandatory) affinity, soft affinity 
allows a thread to run elsewhere if it is advantageous, i.e., if 
such activity balances the load. Otherwise, the softly bound 
thread tries to return to the processor where it last ran and 
where its recent cache state may still reside.

Under load, however, a soft affinity model used alone can 
degenerate to a state where one processor builds up a large queue 
of threads, leaving the other processors with little to do and 
thus diminishing the performance of the multiprocessing system. 
To mitigate these side effects of soft affinity, developers 
paired the soft affinity feature with the ability to load-balance 
the runnable threads in the system. To keep the load of 
time-share jobs spread evenly across processors, the scheduler 
must periodically load-balance the system. In addition to 
distributing threads evenly across the local run queues in the 
system, this load-balancing activity must

    o Cost no more in processing time than it saves 

    o Prevent excessive thread movement among processors 

    o Recognize and effectively accommodate changes in the job 
        mix

To implement load balancing, each processor maintains a 
time-share load average, i.e., the average local run queue depth 
over the last five seconds. Each processor updates its own load 
average on each system clock tick. Processors also keep track of 



the time they spend handling interrupts and running 
fixed-priority threads, which are not accounted for in the local 
run queue depth. Taking a processor's total potential execution 
time for a scheduling period and subtracting from this time the 
interrupt-processing and fixed-priority run times yields the 
total time available on a processor (processor ticks available) 
to run time-share threads. In the worse case, a processor could 
be completely consumed by fixed-priority threads and/or interrupt 
processing and have no time to run time-share threads. In this 
extreme case, the scheduler should give no time-share load to 
that processor.

Adding the time-share load averages of all processors determines 
the aggregate time-share load for the system. Similarly, summing 
the processor ticks available yields the total time available on 
the system for handling time-share tasks. Using this data, the 
scheduler calculates the desired load for each processor once per 
second, as follows:

   Processor ticks   System time-share  
Desired    available       X load 
load    =  -----------------------------------

System ticks available

Load balancing is called for when at least one processor is above 
and one is below its desired load by a minimal amount. If this 
condition arises, then those processors under their desired loads 
are declared to be "out of balance." The next time an 
out-of-balance processor reschedules, it will try to take a 
thread from the local run queue of a processor that is above its 
desired load ("thread stealing"). A processor can declare itself 
back in balance when its current load is above its desired load 
or when there are no eligible threads to steal. Figure 3 shows a 
simplified load-balancing scenario, in which a processor below 
its desired load steals a thread from a processor above its 
desired load.



Figure 3   Load Balancing

     +---------+   +---------+       +---------+
     |  CPU 1  |   |  CPU 2  |   ...   |  CPU N  |
     +---------+   +---------+       +---------+

CURRENT LOAD +---------+   +---------+       +---------+
(NUMBER OF   |    5    | CPU 1 IS |    3    |       |    4 |
THREADS)     |        | OUT OF   |     |       | |

     |        | BALANCE  |     |       | |
DESIRED LOAD |    4    |   |    4    |       |    4 |

     |        |   |     |   ...   | |
     |        |   |     |       | |
     |  LOCAL  |<---------|  LOCAL  |       |  LOCAL |
     |  RUN    |--------->|  RUN    |       |  RUN |
     |  QUEUE  |CPU 2   |  QUEUE  |       |  QUEUE |
     +----+----+STEALS   +----+----+       +----+----+
          |     ONE THREAD     |               |
          |     FROM CPU 1     |               |

HIGHEST PRIORITY  |           |               |
THREAD BETWEEN    +-----------------+  +  +----------------+
LOCAL RUN QUEUES           |  |  |
AND GLOBAL RUN QUEUE     +-+-----+-+
WINS THE PROCESSOR       |     |

              |     |
              |     |
              |  GLOBAL |
              |  RUN    |
              |  QUEUE  |
              |     |
              |     |
              |     |
              +---------+       



To help preserve the cache benefits of soft affinity, a thread is 
eligible for stealing only when it has not run on its current 
processor for some configurable number of clock ticks. After this 
time has elapsed without a thread running, the chance of it 
having significant cache state remaining has diminished 
sufficiently that the thread is more likely to benefit from 
migrating to another processor and running immediately than from 
waiting longer to run on its current processor.

To demonstrate that soft affinity with load balancing improves 
multiprocessing performance through cache benefits and the 
elimination of run queue contention, developers ran a simple test 
program. The program, which writes 128 KB of data, yields the 
processor, and then reads the same data back, was run on a 
four-processor DEC 7000 system. Table 1 shows the results of 
running multiple versions of this program with and without soft 
affinity and load balancing in operation. Performance benefits 
appear only when multiple copies of the program begin piling up 
in the run queues at the 16-job level. Prior to this point, each 
job keeps running on the same processor, i.e., the cache it had 
just filled still had its data cached when the program read it 
back---the ideal case. At the 16-job level, the four processors 
must be time-shared. The jobs that are running with soft affinity 
now benefit significantly because they continue to run on the 
same processor and thus find some of their cache state preserved 
from when they last ran. The systems that schedule from a global 
run queue provide no such benefit. Jobs take longer to complete, 
since they are likely to run on a different processor for each 
time slice and find no cache state that they can reuse.



Table 1    Benefits of Soft Affinity with Load Balancing (SA/LB)

Number       Time with SA/LB   Time without        Benefit from
of Jobs       (Seconds)   SA/LB (Seconds)     SA/LB (Percent)
   1              25.9        26.0              0
   4               25.9        26.0             0
  16           106.5       141.9            25

The soft affinity and load-balancing features improved many other 
multiuser benchmarks. For example, a transaction processing 
benchmark showed a 17 percent performance improvement.



FOCUSING ON QUALITY

The error-checking focus of the lock package is just one example 
of how the DEC OSF/1 version 3.0 project focused on the quality 
and stability of the product. Most members of the multiprocessing 
team had been involved in an SMP development effort prior to 
their DEC OSF/1 effort. This past experience, coupled with the 
difficulties other vendors had experienced with their own 
multiprocessing implementations, reinforced the need to have a 
strong quality focus in the SMP project.

Developers took multiple steps to ensure that the SMP solution 
delivered in DEC OSF/1 version 3.0 would be production quality, 
including 

    o Code reviews

    o Lock debugging

    o In-line assertion checking

    o Multithreaded test suite development for SMP 
        qualification

The base kernel code was reviewed for multiprocessing 
correctness. During this review phase, checks were made to ensure 
that the proper level of synchronization was employed to protect 
global data structures. Numerous defects were uncovered during 
this process and corrected. Running code with lock checking 
enabled provided empirical evidence of the incremental 
improvements of the multiprocessing implementation.

Beyond code reviews and lock debugging, internal consistency 
checks (assertions) were coded into the kernel to verify 
correctness of operations at key points. Assertion checking was 
enabled during the development process to ensure that the kernel 
was functioning correctly; it was then compiled out for the 
production version of the kernel.

In parallel with the operating system development effort, new 
component tests were designed to force as much concurrency as 
possible through particular code paths. The core of the test 
suite is a thread-race library, which consists of a set of 
routines that can be used to construct multithreaded system-call 
exercisers. The library provides the ability to commence multiple 
test instances simultaneously. The individual tests are then 
combined to form focused subsystem tests and systemwide tests.  
These tests have been used to uncover multiple race conditions in 
the operating system.

The UNIX development organization had a four-processor DEC 7000 
system deployed in its development environment for more than 7 



months prior to releasing the SMP product. This system has been 
extremely stable, with few complaints from the user community. 
Extensive internal and external field testing produced similar 
results.

MEASURING MULTIPROCESSING PERFORMANCE OUTCOMES

The major functionality delivered with SMP is improved 
performance through application concurrency. The goal of the SMP 
project was to provide leadership performance in the areas of 
compute and data servers. To gauge success in this effort, 
several industry-standard benchmarks were utilized. These 
benchmarks include SPECrate_INT92, SPECrate_FP92, and AIM Suite 
III.

SMP performance is measured in terms of the incremental 
performance gained as processors are added to the system. Adding 
processors by no means guarantees increased system performance.  
Systems that have I/O or memory limitations rarely benefit from 
introducing additional CPUs. Systems that are compute bound tend 
to have the largest potential for gain from additional 
processors. Note that large, monolithic applications tend to see 
little performance improvement as processors are added because 
such applications employ little concurrency in their designs.

Performance tuning for SMP was an iterative process that can be 
characterized as follows:

    1. Collect and analyze performance data.
    
    o CPU utilization across the processors
    
    o Lock statistics
    
    o I/O rates
    
    o Context switch rates
    
    o Kernel profiling

    2. Identify areas that require improvement.

    3. Prototype changes.

    4. Incorporate changes that demonstrate improvement.

    5. Repeat steps 1 through 4.

In reality, the process has two stages for each benchmark. The 
initial phase was devoted to driving the system to become compute 
bound. The second phase improved code efficiencies.

Figures 4 and 5 show that, as expected, the SPECrate_INT92 and 



SPECrate_FP92 benchmarks scale almost linearly. Both of these 
benchmarks are compute intensive and make only nominal demands on 
the operating system.

[Figure 4 (SPECrate Integer Scaling for Four-CPU Systems) is not 
available in ASCII format.]

[Figure 5 (SPECrate Floating-point Scaling for Four-CPU Systems) 
is not available in ASCII format.]

AIM Suite III is a multiuser benchmark that stresses multiple 
components of an operating system, including the virtual memory 
system, the scheduler, UNIX pipes, and the I/O subsystem. Figure 
6 shows AIM III results for one and four processors, with a 
resulting 3.27 to 4 scaling factor. This equates to a greater 
than 80 percent scaling factor, a figure well within the goals 
for this benchmark at first multiprocessing release. Efforts to 
produce still better results are under way.

[Figure 6 (AIM Suite III Scaling) is not available in ASCII 
format.]

AIM Suite III scaling appears to be gated by a single test in the 
AIM Suite III benchmark, i.e., directory search. The goal of this 
test is to create and remove a set of files across a limited 
number of directories.[10] Because these operations require 
updating directory information, only one thread of execution can 
perform these operations on a directory at a time. Some 
improvements have been applied to mitigate this contention, but 
this single test still impacts the overall scaling results.

CONCLUSION

The focus of the first release of SMP capabilities for the DEC 
OSF/1 operating system was to provide leadership SMP performance 
without compromising overall system quality. The project team 
accomplished this goal by carefully modifying the base operating 
system to take advantage of the additional processing power 
provided. The team paid particular attention to synchronization, 
parallel algorithms, and error and inconsistency detection.

Work for future releases will continue to focus on performance 
and quality improvements. Other areas of investigation include 
features such as processor sets, stopping and starting CPUs, and 
more flexible handling of interrupts as processors are added.
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