
 DXML: A High-performance Scientific Subroutine Library

 by

 Chandrika Kamath, Roy Ho, and Dwight P. Manley

ABSTRACT

Mathematical subroutine libraries for science and engineering
applications are an important tool in high-performance computing.
By identifying and optimizing frequently used, numerically
intensive operations, these libraries help in reducing the cost
of computation, enhancing portability, and improving
productivity. The Digital eXtended Math Library is a set of
public domain and Digital proprietary software that has been
optimized for high performance on Alpha systems. In this paper,
DXML and the issues related to library software technology are
described. Specific examples illustrate how algorithms can be
optimized to take advantage of the architecture of Alpha systems.
Modern algorithms that effectively exploit the memory hierarchy
enable DXML routines to provide substantial improvements in
performance.

INTRODUCTION

The Digital eXtended Math Library (DXML) is a set of mathematical
subroutines, optimized for high performance on Alpha systems.
These subroutines perform numerically intensive subtasks that
occur frequently in scientific computing. They can therefore be
used as building blocks for the optimization of various science
and engineering applications in industries such as chemical,
aerospace, petroleum, automotive, electronics, finance, and
transportation.

In this paper, we discuss the role of mathematical software
libraries, followed by an overview of the contents of the Digital
eXtended Math Library. DXML includes optimized versions of both
the standard BLAS and LAPACK libraries as well as libraries
designed and developed by Digital for signal processing and the
solution of sparse linear systems of equations. Next, we describe
various aspects of library software technology, including the
design and testing of DXML subroutines. Using key routines as
examples, we illustrate the techniques used in the performance
optimization of the library. Finally, we present data that
demonstrates the performance improvement obtained through the use
of DXML.

THE ROLE OF MATH LIBRARIES

Early mathematical libraries concentrated on supplementing the
functionality provided by the Fortran compilers. In addition to
routines such as sin and exp, which were included in the run-time
math library, more complicated special functions, linear algebra
algorithms, and Fourier transform algorithms were included in the
software layer between the hardware and the user application.

Then, in the early 1970s, there was a concerted effort to produce
high-quality numerical software, with the aim of providing end
users with implementations of numerical algorithms that were
stable, robust, and accurate. This led to the development of
several math libraries, with the public domain LINPACK and
EISPACK libraries for the solution of linear and eigen systems,
setting the standards for future development of math
software.[1-4]

The late 1970s and early 1980s saw the availability of advanced
architectures, including vector and parallel computers, as well
as high-performance workstations. This added another facet to the
development of math libraries, namely, the implementation of
algorithms for high efficiency on an underlying architecture.

The effort to produce mathematical software thus became a task of
building bridges between numerical analysts, who devise
algorithms, computer architects, who design high-performance
computer systems, and computer users, who need efficient,
reliable software for solving their problems. Consequently, these
libraries embody expert knowledge in applied mathematics,
numerical analysis, data structures, software engineering,
compilers, operating systems, and computer architecture and are
an important programming tool in the use of high-performance
computers.

Modern superscalar RISC architectures with floating-point
pipelines, such as the Alpha, have deep memory hierarchies. These
include floating-point registers, multiple levels of caches, and
virtual memory. The significant latency and bandwidth differences
between these memory levels imply that numerical algorithms have
to be restructured to make effective use of the data brought into
any one level. The performance of an algorithm is also
susceptible to the order in which computations are scheduled as
well as the higher cost associated with some operations such as
floating-point square-root and division.

The architecture of the Alpha systems and the technology of the
Fortran and C compilers usually provide an efficient computing
environment with adequate performance. However, there is often
room for improvement, especially in engineering and science
applications, where vast amounts of data are processed and
repeated operations are performed on each data element. One way
to achieve these improvements is through the use of optimized
subroutine libraries.

The Digital eXtended Math Library is a collection of routines
that performs frequently occurring, numerically intensive
operations. By identifying such operations and optimizing them
for high performance on Alpha systems, DXML provides several
benefits to the computational scientist.

 o It allows definition of functions at a sufficiently high
 level and therefore optimization beyond the capabilities
 of the compiler.

 o It makes the architecture of the systems more transparent
 to the user.

 o It improves productivity by providing easy access to
 highly optimized, efficient code.

 o It enhances the portability of user software through the
 support of standard libraries and interfaces.

 o It promotes good software engineering practice and avoids
 duplication of work by identifying and optimizing common
 functions across several application areas.

OVERVIEW OF DXML

DXML contains almost 400 user-callable routines, optimized for
Alpha systems.[5] This includes both software developed by
Digital as well as the BLAS and LAPACK libraries. Most routines
are available in four versions: real single precision, real
double precision, complex single precision, and complex double
precision.

DXML is available on both OpenVMS and DEC OSF/1 operating
systems. Its routines can be called from either Fortran or C,
provided the difference in array storage between these languages
is taken into account. DXML is available as a shareable library,
with a simple interface, enabling easy access to the routines. On
DEC OSF/1 systems, DXML supports the IEEE floating-point format.
On OpenVMS systems, either the IEEE floating-point format or the
VAX F-float/G-float format can be selected.

DXML routines can be broadly categorized into the following four
areas:

 o BLAS. The Basic Linear Algebra Subroutines include the
 standard BLAS and Digital enhancements.

 o LAPACK. The Linear Algebra PACKage includes linear and
 eigen-system solvers.

 o Signal processing. This includes fast Fourier transforms
 (FFTs), convolution, and correlation.

 o Sparse linear system solvers. These include direct and
 iterative solvers.

Of these, the signal-processing library and the sparse linear
system solvers are designed, developed, and optimized by Digital.
The majority of the BLAS routines and the LAPACK library are
versions of the public domain standard that were optimized for
the Alpha architecture. By supporting the industry standard
interfaces of these libraries, DXML provides both portability of
user code and high performance of the optimized software.

We next provide a brief description of the functionality provided
by each subcomponent of DXML. Further details are available in
the Digital eXtended Math Library Reference Manual.[5]

VLIB

The vector library consists of seven double-precision routines
that perform operations such as sine, cosine, and natural
logarithm, on data stored as vectors.

BLAS 1

The Basic Linear Algebra level 1 subprograms perform
low-granularity operations on vectors that involve one or two
vectors as input and return either a vector or a scalar as
output.[6] Examples of BLAS 1 routines include dot product, index
of the maximum element in a vector, and so on.

BLAS 1 Extensions (BLAS 1E)

Digital has extended the functionality of the BLAS 1 routines by
including 13 similar operations. These include index of the
minimum element of a vector, sum of the elements of a vector, and
so on.

BLAS 1 Sparse (BLAS 1S)

DXML also includes nine routines that are sparse extensions of
the BLAS 1 routines. Of these, six are from the sparse BLAS 1
standard and three are enhancements.[7] These routines operate on
two vectors, one of which is sparse and stored in a compressed
form. As most of the elements in a sparse vector are zero, both
computational time and memory are reduced by storing and
operating on only the nonzeros. BLAS 1S routines include
construction of a sparse vector from the specified elements of a
dense vector, dot product, and so on.

BLAS 2

The BLAS level 2 routines perform operations of a higher
granularity than the level 1 routines.[8] These include
matrix-vector operations such as matrix-vector product, rank-one
and rank-two updates, and solutions of triangular systems of
equations. Various storage schemes are supported, including
general, symmetric, banded, and packed.

BLAS 3

The BLAS level 3 routines perform matrix-matrix operations, which
are of a higher granularity than the BLAS 2 operations. These
routines include matrix-matrix product, rank-k updates, solution
of triangular systems with multiple right-hand sides, and
multiplication of a matrix by a triangular matrix. Where
appropriate, these operations are defined for matrices that may
be general, symmetric, or triangular.[9] The functionality of the
public domain BLAS 3 library has been enhanced by three
additional routines for matrix addition, subtraction, and
transpose.

LAPACK

DXML includes the standard Linear Algebra PACKage, LAPACK, which
supercedes the LINPACK and EISPACK packages by extending the
functionality, using algorithms with higher accuracy, and
improving the performance through the use of the optimized BLAS
library.[10] LAPACK can be used for solving many common linear
algebra problems, including solution of linear systems, linear
least-squares problems, eigenvalue problems, and singular value
problems. Various storage schemes are supported, including
general, band, tridiagonal, symmetric positive definite, and so
on.

Signal Processing

The signal-processing subcomponent of DXML includes FFTs,
convolutions, and correlations. A comprehensive set of Fourier
transforms is provided, including

 o FFTs in one, two, and three dimensions

 o FFTs in forward and inverse directions

 o Multiple one-dimensional transforms

There is no limit on the number of elements being transformed,
though the performance is best when the data length is a power of
2. Popular storage formats for the input and output data are
supported, allowing for possible symmetry in the output data and
consequent reduction in the storage required. Further efficiency
is provided through the use of the three-step FFT, which

separates the process of setting up and deallocating the internal
data structures from the actual application of the FFT. This
results in significant performance gain when repeated application
of FFTs is required.

The convolution and correlation routines in DXML support both
periodic (circular) and nonperiodic (linear) definition. A
discrete summing technique is used for calculation. Special
versions of the routines allow control of output options such as
the range of coefficients computed, scaling of the output, and
addition of the output to an array.

All FFT, convolution, and correlation routines are available in
both single and double precision and support both real and
complex data.

Sparse Iterative Solvers

DXML includes a set of routines for the iterative solution of
sparse linear systems of equations using preconditioned,
conjugate-gradient-like methods.[11,12] A flexible user
interface, based on a matrix-free formulation of the solver,
allows a choice among various solvers, storage schemes, and
preconditioners. This formulation permits the user to define his
or her own preconditioner and/or storage scheme for the matrix.
It also allows the user to store the matrix using one of the
storage schemes defined by DXML and/or use the preconditioners
provided. A driver routine provides a simple interface to the
iterative solvers when the DXML storage schemes and
preconditioners are used.

The different iterative methods provided are (1) conjugate
gradient, (2) least-squares conjugate gradient, (3) biconjugate
gradient, (4) conjugate-gradient squared, and (5) generalized
minimum residual. Each method supports various applications of
the preconditioner: left, right, split, and no preconditioning.

The matrix can be stored in the symmetric diagonal storage
scheme, the unsymmetric diagonal storage scheme or the general
storage (by rows) scheme. Three preconditioners are provided for
each storage scheme: diagonal, polynomial (Neumann), and
incomplete LU with zero diagonals added.

A choice of four stopping criteria is provided, in addition to a
user-defined stopping criterion. The iteration process can be
controlled by setting various input parameters such as the
maximum number of iterations, the degree of polynomial
preconditioning, the level of output provided, and the tolerance
for convergence. These solvers are available in real double
precision only.

Sparse Skyline Solvers

The sparse skyline solver library in DXML includes a set of
routines for the direct solution of a sparse linear system of
equations with the matrix stored using the skyline storage
scheme.[13,14] The following functions are provided.

 o LDU factorization, which includes options for the
 evaluation of the determinant and inertia, partial
 factorization, statistics on the matrix, and options for
 handling small pivots.

 o Solve, which includes multiple right-hand sides and
 solves systems involving either the matrix or its
 transpose.

 o Norm evaluation, including 1-norm, infinity-norm,
 Frobenius norm, and the maximum absolute value of the
 matrix.

 o Condition number estimation, which includes both the
 1-norm and the infinity norm.

 o Iterative refinement, including the component-wise
 relative backward error and the estimated forward error
 bound for each solution vector.

 o Simple and expert drivers.

This functionality is provided for each of the following storage
schemes:

 o For symmetric matrices:

 - Profile-in storage mode

 - Diagonal-out storage mode

 o For unsymmetric matrices:

 - Profile-in storage mode

 - Diagonal-out storage mode

 - Structurally symmetric profile-in storage mode

These solvers are available in real double precision only.

SOFTWARE CONSIDERATIONS

As with any software effort, many software engineering issues
were encountered during the design and development of DXML. Some
issues were specific to math libraries such as the numerical
accuracy and stability of the routines, while others were more
general such as the design of a user interface, testing of the

software, error checking, ease of use, and portability. We next
discuss some of these key design issues in further detail.

Designing the Interface

The first task in creating a library was to decide the
functionality, followed by the design of the interface. This
included both the naming of the subroutines as well as the design
of the parameter list. For each subcomponent in DXML, the calling
sequence was designed to be consistent across all routines in
that subcomponent. In the case of the BLAS and LAPACK libraries,
the public domain interface was maintained to enable portability
of user code.

For the routines added by Digital, the routine names were chosen
to indicate the function being performed as well as the precision
of the data. Furthermore, the parameter lists were chosen to
provide a simple interface, yet allow flexibility for the
sophisticated user. For example, the sparse solvers require
various real and integer parameters. By using arrays instead of
scalar variables, a more concise interface that did not vary from
routine to routine was obtained. In addition, all solver routines
have arguments for real and integer work arrays, even if these
are not used in the code. This not only provides a uniform
interface but also acts as a placeholder for work arrays, should
they be required in the future.

Accuracy

The numerical accuracy of the routines in DXML is dependent on
the problem size as well as the algorithm used, which may vary
within a routine. Since performance optimization often changes
the order in which a computation is performed, identical results
between the DXML routines and the public domain BLAS and LAPACK
routines may not occur. The accuracy of the results obtained is
checked by ensuring that the optimized versions of the BLAS and
LAPACK routines pass the public domain tests to within the
specified tolerance.

Error Processing

Most of the routines in DXML trap usage errors and provide
sufficient information so that the user can identify and fix the
problem. The low-level, fine-grained computational routines, such
as the BLAS level 1, do not provide this function because the
overhead of testing and error trapping would seriously degrade
the performance.

In the case of BLAS 2, BLAS 3, and LAPACK, the public domain
error-reporting mechanism has been maintained. If an input
argument is invalid, such as a negative value for the order of

the matrix, the routine prints out an error message and stops. If
a failure occurs in the course of the algorithm, such as a matrix
being singular to working precision, an error flag is set and
control is returned to the calling program.

The signal-processing routines report success or failure using a
status function value. Further information on the error can be
obtained by using a user-callable routine that prints out an
error message and an error flag. The user documentation indicates
the actions to be taken to recover from the error.

In the case of the sparse solvers, error is indicated by setting
an error flag and printing an appropriate message if the printing
option is enabled. Control is always returned to the calling
program.

Testing

DXML routines are tested for correctness and accuracy using a
regression test suite. This includes both test code developed by
Digital, as well as the public domain test codes for BLAS and
LAPACK. These codes are used not only during the implementation
and performance optimization of the routines, but also during the
building of the complete library from each of the subcomponents.

The test codes check each routine extensively, including checks
for error exits, accuracy of the results obtained, invariance of
read-only data and the correctness of all paths through the code.
As the complete regression tests take over 20 hours to execute,
two input data sets are used: a short one that tests each routine
and can be used to make a quick check that all subcomponents
compiled and built correctly, and a long data set that tests each
path through a routine and is thus more exhaustive.

Many of the routines, such as the FFTs and BLAS 3, are tested
using random input data. However, some routines, such as the
sparse solvers, operate on specific data structures or matrices
with specific properties. These have been tested using matrices
generated from the finite difference discretization of partial
differential equations or using the matrices in the
Harwell-Boeing test suite.[15]

Another aspect to the DXML regression test package is the
inclusion of a performance test gauge. This software tests the
performance of key routines in each component of DXML and is used
to ensure that the performance of DXML routines is not adversely
affected by changes in compilers or the operating systems.

Performance Trade-offs

The design and optimization of the routines in DXML often
prompted a trade-off between performance on one hand, and

accuracy and generality on the other. Although every effort has
been made not to sacrifice accuracy for performance, the
reordering of computations during performance optimization may
lead to results before optimization that are not bit-for-bit
identical to the results after optimization. In other cases,
performance has been sacrificed to ensure generality of a
routine. For example, although the matrix-free formulation of the
iterative solvers permits the use of any sparse matrix storage
scheme, it could result in a slight degradation in performance
due to less efficient use of the instruction cache and the
inability to reuse some of the data in the registers.

PERFORMANCE OPTIMIZATION

DXML routines have been designed to provide high performance on
the Alpha systems.[16] These routines are tailored to take
advantage of the system characteristics such as the number of
floating-point registers, the size of the primary and secondary
data caches, and the page size. This optimization involves
changes to data structures and the use of new algorithms as well
as the restructuring of computation to effectively manage the
memory hierarchy.

Several general techniques are used across all DXML subcomponents
to improve the performance.[17] These include the following
techniques:

 o Unrolling loops to make better use of the floating-point
 pipelines

 o Reusing data in registers and caches whenever possible

 o Managing the data caches effectively so that the cache
 hit ratio is maximized

 o Accessing data using stride-1 computation

 o Using algorithms that exploit the memory hierarchy
 effectively

 o Reordering computations to minimize cache and translation
 buffer thrashing

Although many of these optimizations are done by the compiler,
occasionally, for example in the case of the skyline solver, the
data structures or the implementation of the algorithm are such
that they do not lend themselves to optimization by the compiler.
In these cases, explicit reordering of the computations is
required.

We next discuss these optimization techniques as used in specific
examples. All performance data is for the DEC 3000 Model 900
system using the DEC OSF/1 version 3.0 operating system. This

workstation uses the Alpha 21064A chip, running at 275 megahertz
(MHz). The on-chip data and instruction caches are each 16
kilobytes (KB) in size, and the secondary cache is 2 megabytes
(MB) in size.

In the next section, we compare the performance of DXML BLAS and
LAPACK routines with the corresponding public domain routines.
Both versions are written in standard Fortran and compiled using
identical compiler options.

Optimization of BLAS 1

BLAS 1 routines operate on vector and scalar data only. As the
operations and data structures are simple, there is little
opportunity to use advanced data blocking and register reuse
techniques. Nevertheless, as the plots in Figure 1 demonstrate,
it is possible to optimize the BLAS 1 routines by careful coding
that takes advantage of the data prefetch features of the Alpha
21064A chip and avoids data-path-related stalls.[16,18]

Generally, the DXML routines are 10 percent to 15 percent faster
than the corresponding public domain routines. Occasionally, as
in the case of DDOT for very short, cache-resident vectors, the
benefits can be much greater.

The shapes of the plots in Figure 1 rather dramatically
demonstrate the benefits of data caches. Each plot shows very
high performance for short vectors that reside in the 16-KB,
on-chip data cache, much lower performance for data vectors that
reside in the 2-MB, on-board secondary data cache, and even lower
performance when the vectors reside completely in memory.

[Figure 1 (Performance of BLAS 1 Routines DDOT and DAXPY) is not
available in ASCII format.]

Optimization of BLAS 2

BLAS 2 routines operate on matrix, vector, and scalar data. The
data structures are larger and more complex than the BLAS 1 data
structures and the operations more complicated. Accordingly,
these routines lend themselves to more sophisticated optimization
techniques.

Optimized DXML BLAS 2 routines are typically 20 percent to 100
percent faster than the public domain routines. Figure 2
illustrates this performance improvement for the matrix-vector
multiply routine, DGEMV, and the triangular solve routine,
DTRSV.[8]

[Figure 2 (Performance of BLAS 2 Routines DGEMV and DTRSV) is not
available in ASCII format.]

The DXML DGEMV uses a data-blocking technique that asymptotically
performs two floating-point operations for each memory access,
compared to the public domain version, which performs two
floating-point operations for every three memory accesses.[19]
This technique is designed to minimize translation buffer and
data cache misses and maximize the use of floating-point
registers.[16,18,20] The same data prefetch considerations used
on the BLAS 1 routines are also used on the BLAS 2 routines.

The DXML version of the DTRSV routine partitions the problem such
that a small triangular solve operation is performed. The result
of this solve operation is then used in a DGEMV operation to
update the remainder of the vector. The process is repeated until
the final triangular update completes the operation. Thus the
DTRSV routine relies heavily on the optimizations used in the
DGEMV routine.

As with BLAS 1 routines, BLAS 2 routines benefit greatly from
data cache. Although the effect is less dramatic for the BLAS 2
routines, Figure 2 clearly shows the three-step profile observed
in Figure 1. Best performance is achieved when both matrix and
vector fit in the primary cache. Performance is lower but flat
over the region where the data fits on the secondary board level
cache. The final performance plateau is reached when data resides
entirely in memory.

Optimization of BLAS 3

BLAS 3 routines operate primarily on matrices. The operations and
data structures are more complicated that those of BLAS 1 and
BLAS 2 routines. Typically, BLAS 3 routines perform many
computations on each data element. These routines exhibit a great
deal of data reuse and thus naturally lend themselves to
sophisticated optimization techniques.

DXML BLAS 3 routines are generally two to ten times faster than
their public domain counterparts. The plots in Figure 3 show
these performance differences for the matrix-matrix multiply
routine, DGEMM, and the triangular solve routine with multiple
right-hand sides, DTRSM.[9]

[Figure 3 (Performance of BLAS 3 Routines DGEMM and DTRSM) is not
available in ASCII format.]

All performance optimization techniques used for the DXML BLAS 1
and BLAS 2 routines are used on the DXML BLAS 3 routines. In
particular, data-blocking techniques are used extensively.
Portions of matrices are copied to page-aligned work areas where
secondary cache and translation buffer misses are eliminated and
primary cache misses are absolutely minimized.

As an example, within the primary compute loop of the DXML DGEMM
routine, there are no translation buffer misses, no secondary

cache misses, and, on average, only one primary cache miss for
every 42 floating-point operations. Performance within this key
loop is also enhanced by carefully using floating-point registers
so that four floating-point operations are performed for each
memory read access. Much of the DXML BLAS 3 performance advantage
over the public domain routines is a direct consequence of a
greatly improved ratio of floating-point operations per memory
access.

The DXML DTRSM routine is optimized in a manner similar to its
BLAS 2 counterpart, DTRSV. A small triangular system is solved.
The resulting matrix is then used by DGEMM to update the
remainder of the right-hand-side matrix. Consequently, most of
the DXML DTRSM performance is directly attributable to the DXML
DGEMM routine. In fact, the techniques used in DGEMM pervade DXML
BLAS 3 routines.

Figure 3 illustrates a key feature of DXML BLAS 3 routines.
Whereas the performance of public domain routines degrades
significantly as the matrices become too large to fit in caches,
DXML routines are relatively insensitive to array size, shape, or
orientation.[5,9] The performance of a DXML BLAS 3 routine
typically reaches an asymptote and remains there regardless of
problem size.

Optimization of LAPACK

The LAPACK subroutine library derives a large part of its high
performance by using the optimized BLAS as building blocks.[10]
The DXML version of LAPACK is largely unmodified from the public
domain version. However, in the case of the factorization routine
for general matrices, DGETRF, we have introduced changes to the
algorithm to improve the performance on Alpha systems.

For example, while the original public domain DGETRF routine uses
Crout's method to factor a matrix, the DXML version uses a
left-looking method.[11] Left-looking methods make better use of
the secondary cache and translation buffers than the Crout
method. Furthermore, the public domain version of the DLASWP
routine swaps a single matrix row across an entire matrix. This
is a very bad technique for RISC machines; it causes severe cache
and translation buffer thrashing. To avoid this, the DXML version
of DLASWP performs all swaps within columns, which makes much
better use of the caches and the translation buffer and results
in a much improved performance of the DXML DGETRF routine.

The DGETRS routine was not modified. Its performance is solely
attributable to use of optimized DXML routines.

Figure 4 shows the benefits of the optimizations made to DGETRF
and the BLAS routines. DGETRF makes extensive use of the BLAS 3
DGEMM and DTRSM routines. The performance of DXML DGETRF improves
with increasing problem size largely because DXML BLAS 3 routines

do not degrade in the face of larger problems.

The plots of Figure 4 also show the performance of DGETRS when
processing a single right-hand-side vector. In this case, DTRSV
is the dominant BLAS routine, and the performance differences
between the public domain and DXML DGETRS routines reflect the
performance of the respective DTRSV routines. Finally, although
not shown, we note that the performance of DXML DGETRS is much
better than the public domain version when many right-hand sides
are used and DTRSM becomes the dominant BLAS routine.

[Figure 4 Performance of LAPACK Routines DGETRF and DGETRS (LDA =
N+1) is not available in ASCII format.]

Optimization of the Signal-processing Routines

We illustrate the techniques used in optimizing the
signal-processing routines using the one-dimensional, power-of-2,
complex FFT.[21] The algorithm used is a version of Stockham's
autosorting algorithm, which was originally designed for vector
computers but works well, with a few modifications, on a RISC
architecture such as Alpha.[22,23]

The main advantage in using an autosorting algorithm is that it
avoids the initial bit-reversal permutation stage characteristic
of the Cooley-Tukey algorithm or the Sande-Tukey algorithm. This
stage is implemented by either precalculating and loading the
permutation indices or calculating them on-the-fly. In either
case, substantial amounts of integer multiplications are needed.
By avoiding these multiplications, the autosorting algorithm
provides better performance on Alpha systems.

This algorithm does have the disadvantage that it cannot be done
in-place, resulting in the use of a temporary work space, which
makes more demands on the cache than an algorithm that can be
done in-place. However, this disadvantage is more than offset by
the avoidance of the bit-reversal stage.

The implementation of the FFT on the Alpha makes effective use of
the hierarchical memory of the system, specifically, the 31
usable floating-point registers, which are at the lowest, and
therefore the fastest, level of this hierarchy. These registers
are utilized as much as possible, and any data brought into these
registers is reused to the extent possible. To accomplish this,
the FFT routines implement the largest radices possible for all
stages of the power-of-2 FFT calculation. Radix-8 was used for
all stages except the first, utilizing 16 registers for the data
and 14 for the twiddle factors.[21] For the first stage, as all
twiddle factors are 1, radix-16 was used.

Figure 5 illustrates the performance of this algorithm for
various sizes. Although the performance is very good for small
data sizes that fit into the primary, 16-KB data cache, it drops

off quickly as the data exceeds the primary cache. To remedy
this, a blocking algorithm was used to better utilize the primary
cache.

[Figure 5 (Performance of 1-D Complex FFT) is not available in
ASCII format.]

The blocking algorithm, which was developed for computers with
hierarchical memory systems, decomposes a large FFT into two sets
of smaller FFTs.[24] The algorithm is implemented using four
steps:

 1. Compute N1 sets of FFTs of size N2

 2. Apply twiddle factors

 3. Compute N2 sets of FFTs of size N1

 4. Transpose the N1 by N2 matrix into an N2 by N1 matrix

In the above, N = N1 X N2. Steps (1) and (3), use the autosorting
algorithm for small sizes. In step (2), instead of precomputing
all N twiddle factors, a table of selected twiddle factors is
computed and the rest calculated using trigonometric identities.

Figure 5 compares the performance of the blocking algorithm with
the autosorting algorithm. Due to the added cost of steps (2) and
(4), the maximum computation speed for the blocking algorithm
(115 million floating-point operations per second [Mflops] at
N=2**12) is lower than the maximum computation speed of the
autosorting algorithm (192 Mflops at N = 2**9). The crossover
point between the two algorithms is at a size of approximately
2K, with the autosorting algorithm performing better at smaller
sizes. Based on the length of the FFT, the DXML routine
automatically picks the faster algorithm. Note that at N=2**16,
as the size of the data and workspace exceeds the 2-MB secondary
cache, the performance of the blocking algorithm drops off.

Optimization of the Skyline Solvers

A skyline matrix (Figure 6) is one where only the elements within
the envelope of the sparse matrix are stored. This storage scheme
exploits the fact that zeros that occur before the first nonzero
element in a row or column of the matrix, remain zero during the
factorization of the matrix, provided no row or column
interchanges are made.[14] Thus, by storing the envelope of the
matrix, no additional storage is required for the fill-in that
occurs during the factorization. Though the skyline storage
scheme does not exploit the sparsity within the envelope, it
allows for a static data structure, and is therefore a reasonable
compromise between organizational simplicity and computational
efficiency.

[Figure 6 (Skyline Column Storage of a Symmetric Matrix) is not
available in ASCII format.]

In the skyline solver, the system, Ax = b, where A is an N by N
matrix, and b and x are N-vectors, is solved by first factorizing
A as A = LDU, where L and U are unit lower and upper triangular
matrices, and D is a diagonal matrix. The solution x is then
calculated by solving in order, Ly = b, Dz = y, and Ux = z, where
y and z are N-vectors.

In our discussion of performance optimization, we concentrate on
the factorization routine as it is often the most time-consuming
part of an application. The algorithm implemented in DXML uses a
technique that generates a column (or row) of the factorization
using an inner product formulation. Specifically, for a symmetric
matrix A, let

[Equation 1 is not available in ASCII format.]

where the symmetric factorization of the leading (N-1) by (N-1)
leading principal submatrix M has already been obtained as

[Equation 2 is not available in ASCII format.]

Since the vector v, of length (N-1), and the scalar s are known,
the vector w, of length (N-1) and the scalar d can be determined
as

[Equation 3 is not available in ASCII format.]

and

[Equation 4 is not available in ASCII format.]

The definition of w indicates that a column of the factorization
is obtained by taking the inner product of the appropriate
segment of that column with one of the previous columns that has
already been calculated. Referring to Figure 7, the value of the
element in location (i,j) is calculated by taking the inner
product of the elements in column j above the element in location
(i,j) with the corresponding elements in column i. The entire
column j is thus calculated starting with the first nonzero
element in the column and moving down to the diagonal entry.

[Figure 7 (Unoptimized Skyline Computational Kernel) is not
available in ASCII format.]

The optimization of the skyline factorization is based on the
following two observations [25,26]:

 o The elements of column j, used in the evaluation of the
 element in location (i,j), are also used in the
 evaluation of the element in location (i+1,j).

 o The elements of column i, used in the evaluation of the
 element in location (i,j), are also used in the
 evaluation of the element in location (i,j+1).

Therefore, by unrolling both the inner loop on i and the outer
loop on j, twice, we can generate the entries in locations (i,j),
(i+1,j), (i,j+1), (i+1,j+1) at the same time, as shown in Figure
8. These four elements are generated using only half the memory
references made by the standard algorithm. The memory references
can be reduced further by increasing the level of unrolling. This
is, however, limited by two factors:

 o The number of floating-point registers required to store
 the elements being calculated and the elements in the
 columns.

 o The length of consecutive columns in the matrix, which
 should be close to each other to derive full benefit from
 the unrolling.

Based on these factors, we have unrolled to a depth of 4,
generating 16 elements at a time.

A similar technique is used in optimizing the forward elimination
and the backward substitution.

[Figure 8 (Optimized Skyline Computational Kernel) is not
available in ASCII format.]

Table 1 gives the performance improvements obtained with the
above techniques for a symmetric and an unsymmetric matrix from
the Harwell-Boeing collection.[15] The characteristics of the
matrix are generated using DXML routines and were included
because the performance is dependent on the profile of the
skyline. The data presented is for a single right-hand side,
which has been generated using a known random solution vector.

The results show that for the matrices under consideration, the
technique of reducing memory references by unrolling loops at two
levels leads to a factor of 2 improvement in performance.

Table 1 Performance Improvement in the Solution of Ax = b, Using the
 Skyline Solver on the DEC 3000 Model 900 System

 Example 1 Example 2

 Harwell-Boeing matrix[15] BCSSTK24 ORSREG1

 Description Stiffness matrix of Jacobian from a
 the Calgary Olympic model of an oil

 Saddledome Arena reservoir

 Storage scheme Symmetric Unsymmetric
 diagonal-out profile-in

 Matrix characteristics

 Order 3562 2205

 Type Symmetric Unsymmetric with
 structural
 symmetry

 Condition number estimate 6.37E+11 1.54E+4

 Number of nonzeros 81736 14133

 Size of skyline 2031722 1575733

 Sparsity of skyline 95.98% 99.10%

 Maximum row (column) height 3334 442 (442)

 Average row (column) height 570.39 357.81 (357.81)

 RMS row (column) height 1135.69 395.45 (395.45)

 Factorization time (in seconds)

 Before optimization 66.80 23.12

 After optimization 35.02 13.02

 Solution time (in seconds)

 Before optimization 0.82 0.32

 After optimization 0.43 0.17

 Maximum component-wise relative 0.16E-5 0.50E-10
 error in solution (See equation
 below.)

 _
 | x(i) - x(i) |
 max --------------- , where x(i) is the i-th component of the true
 i | x(i) |

 _
 solution, and x(i) is the i-th component of the calculated solution.

SUMMARY

In this paper, we have shown that optimized mathematical
subroutine libraries can be a useful tool in improving the
performance of science and engineering applications on Alpha
systems. We have described the functionality provided by DXML,
discussed various software engineering issues and illustrated
techniques used in performance optimization.

Future enhancements to DXML include symmetric multiprocessing
support for key routines, enhancements in the areas of signal
processing and sparse solvers, as well as further optimization of
routines as warranted by changes in hardware and system software.

ACKNOWLEDGMENT

DXML is the joint effort of a number of individuals over the past
several years. We would like to acknowledge the contributions of
our colleagues, both past and present. The engineers: Luca
Broglio, Richard Chase, Claudio Deiro, Laura Farinetti, Leo
Lavin, Ping-Charng Lue, Joe O'Connor, Mark Schure, Linda Tella,
Sisira Weeratunga and John Wilson; the technical writers: Cheryl
Barabani, Barbara Higgins, Marll McDonald, Barbara Schott and
Richard Wolanske; and the management: Ned Anderson, Carlos
Baradello, Gerald Haigh, Buren Hoffman, Tomas Lofgren, Vehbi
Tasar and David Velten. We would also like to thank Roger Grimes
at Boeing Computer Services for making the Harwell-Boeing
matrices so readily available.

REFERENCES

 1. W. Cowell, ed., Sources and Development of Mathematical
 Software (Englewood Cliffs, NJ: Prentice-Hall, 1984).

 2. D. Jacobs, ed., Numerical Software -- Needs and
 Availability (New York: Academic Press, 1978).

 3. J. Dongarra, J. Bunch, C. Moler, and G. Stewart,
 LINPACK Users' Guide (Philadelphia: Society for Industrial
 and Applied Mathematics [SIAM], 1979).

 4. B. Smith et al., Matrix Eigensystem Routines -- EISPACK
 Guide (Berlin: Springer-Verlag, 1976).

 5. Digital eXtended Math Library Reference Manual (Maynard, MA:
 Digital Equipment Corporation, Order No. AA-Q0MBB-TE for VMS
 and AA-Q0NHB-TE for OSF/1).

 6. C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, "Basic Linear
 Algebra Subprograms for Fortran Usage," ACM Transactions on
 Mathematical Software, vol. 5, no. 3 (September 1979):
 308-323.

 7. D. Dodson, R. Grimes, and J. Lewis, "Sparse Extensions to the
 FORTRAN Basic Linear Algebra Subprograms," ACM Transactions
 on Mathematical Software, vol. 17, no. 2 (June 1991):
 253-263.

 8. J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson, "An
 Extended Set of FORTRAN Basic Linear Algebra Subprograms,"
 ACM Transactions on Mathematical Software, vol. 14, no. 1
 (March 1988): 1-17.

 9. J. Dongarra, J. DuCroz, S. Hammarling, and I. Duff, "A Set of
 Level 3 Basic Linear Algebra Subprograms," ACM Transactions
 on Mathematical Software, vol. 16, no. 1 (March 1990):
 1-17.

10. E. Anderson et al., LAPACK Users' Guide (Philadelphia:
 Society for Industrial and Applied Mathematics [SIAM], 1992).

11. J. Dongarra, I. Duff, D. Sorensen, and H. van der Vorst,
 Solving Linear Systems on Vector and Shared Memory
 Computers (Philadelphia: Society for Industrial and Applied
 Mathematics [SIAM], 1991).

12. R. Barrett et al., Templates for the Solution of Linear
 Systems: Building Blocks for Iterative Methods (Philadelphia:
 Society for Industrial and Applied Mathematics [SIAM], 1993).

13. C. Felippa, "Solution of Linear Equations with Skyline Stored
 Symmetric Matrix," Computer and Structures, vol. 5, no. 1
 (April 1975): 13-29.

14. I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse
 Matrices (New York: Oxford University Press, 1986).

15. I. Duff, R. Grimes, and J. Lewis, "Sparse Matrix Test
 Problems," ACM Transactions on Mathematical Software, vol.
 15, no. 1 (March 1989): 1-14.

16. Alpha AXP Architecture and Systems, Digital Technical
 Journal, vol. 4, no. 4 (Special Issue 1992).

17. K. Dowd, High Performance Computing (Sebastopol, CA: O'Reilly
 & Associates, Inc., 1993).

18. DECchip 21064-AA Microprocessor -- Hardware Reference Manual
 (Maynard, MA: Digital Equipment Corporation, Order No.
 EC-N0079-72, October 1992).

19. J. Dongarra and S. Eisenstat, "Squeezing the Most Out of an
 Algorithm in CRAY FORTRAN," ACM Transactions on Mathematical
 Software, vol. 10, no. 3 (September 1984): 219-230.

20. R. Sites, ed., Alpha Architecture Reference Manual
 (Burlington, MA: Digital Press, 1992).

21. H. Nussbaumer, Fast Fourier Transforms and Convolution
 Algorithms, Second Edition (New York: Springer Verlag, 1982).

22. D. Bailey, "A High-performance FFT Algorithm for Vector
 Supercomputers," The International Journal of Supercomputer
 Applications, vol. 2, no. 1 (Spring 1988): 82-87.

23. P. Swarztrauber, "FFT Algorithms for Vector Computers,"
 Parallel Computing, vol. 1, no. 1 (August 1984): 45-63.

24. D. Bailey, "FFTs in External or Hierarchical Memory,"
 The Journal of Supercomputing, vol. 4, no. 1 (March 1990):
 23-35.

25. O. Storaasli, D. Nguyen, and T. Agarwal, "Parallel-Vector
 Solution of Large-Scale Structural Analysis Problems on
 Supercomputers," American Institute of Aeronautics and
 Astronautics (AIAA) Journal, vol. 28, no. 7 (July 1990):
 1211-1216.

26. H. Samukawa, "A Proposal of Level 3 Interface for Band and
 Skyline Matrix Factorization Subroutine," Proceedings of the
 1993 ACM International Conference on Super Computing, Tokyo,
 Japan (July 1993): 397-406.

BIOGRAPHIES

Chandrika Kamath Chandrika Kamath is a member of the Applied
Computational Mathematics Group. She has designed and implemented
the sparse linear solver packages that are included in DXML. She
has also optimized customer benchmarks for Alpha systems.
Chandrika holds a Bachelor of Technology in electrical
engineering (1981) from the Indian Institute of Technology, an
M.S. in computer science (1984) and a Ph.D. in computer science
(1986), both from the University of Illinois at Urbana-Champaign.
She has published several papers on numerical algorithms for
parallel computers.

Roy Ho As a principal software engineer in Digital's High
Performance Computing Group, Roy Ho developed the
signal-processing routines used in DXML. Prior to this work, he
was a member of the High Performance Computing Technology Group.
There he designed the clock distribution system for the VAX fault
tolerant system and the delay estimation software package for the
VAX 9000 system boards. Roy has B.S. (1985) and M.S. (1987)
degrees in electrical engineering from the Rensselaer Polytechnic
Institute. He joined Digital in 1987.

Dwight P. Manley Dwight Manley is a consulting software engineer
in the Applied Computational Mathematics Group. He joined the
DXML Group at its inception in 1989 and continues to support and
enhance the DXML and KAPF products. Since joining Digital in

1979, he has worked on system measurement and modeling projects
and was responsible for all performance modeling of the VAX 9000
CPU design. He is listed as a coinventor on 11 patents and as a
coauthor of a paper on matrix computation theory. Dwight has a
B.S. in mathematics from the University of Massachusetts and an
M.S. in operations research from Northeastern University.

===
Copyright 1994 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

