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ABSTRACT

The KAP preprocessor optimizes DEC Fortran and DEC C programs to 
achieve their best performance on Digital Alpha systems. One key 
optimization that KAP performs is the parallelization of programs 
for Alpha shared memory multiprocessors that use the new 
capabilities of the DEC OSF/1 version 3.0 operating system with 
DECthreads. The heart of the optimizer is a sophisticated 
decision process that selects the best loop to parallelize from 
the many loops in a program. The preprocessor implements a robust 
data dependence analysis to determine whether a loop is 
inherently serial or parallel. In engineering a high-quality 
optimizer, the designers specified the KAP software architecture 
as a sequence of modular optimization passes. These passes are 
designed to restructure the program to resolve many of the 
apparent serializations that are artifacts of coding in Fortran 
or C. End users can also annotate their DEC Fortran or DEC C 
programs with directives or pragmas to guide KAP's decision 
process. As an alternative to using KAP's automatic 
parallelization capability, end users can explicitly identify 
parallelism to KAP using the emerging industry-standard X3H5 
directives.

INTRODUCTION

The KAP preprocessor developed by Kuck & Associates, Inc. (KAI) 
is used on Digital Alpha systems to increase the performance of 
DEC Fortran and DEC C programs. KAP accomplishes this by 
restructuring fragments of code that are not efficient for the 
Alpha architecture. Essentially a superoptimizer, KAP performs 
optimizations at the source code level that augment those 
performed by the DEC Fortran or DEC C compilers.[1]

To enhance the performance of DEC Fortran and DEC C programs on 
Alpha systems, KAI engineers selected two challenging aspects of 
the Alpha architecture as KAP targets: symmetric multiprocessing 
(SMP) and cache memory. An additional design goal was to assist 
the compiler in optimizing source code for the reduced 
instruction set computer (RISC) instruction processing pipeline 
and multiple functional units.
     
This paper discusses how the KAP preprocessor design was adapted 
to parallelize programs for SMP systems running under the DEC 



OSF/1 version 3.0 operating system. This version of the DEC OSF/1 
system contains the DECthreads product, Digital's POSIX-compliant 
multithreading library. The first part of the paper describes the 
process of mapping parallel programs to DECthreads. The paper 
then discusses the key techniques used in the KAP design. 
Finally, the paper presents examples of how KAP performs on 
actual code and mentions some remaining challenges. Readers with 
a compiler background may wish to explore Optimizing 
Supercompilers for Supercomputers for more details on KAP's 
techniques.[2] 

In this paper, the term directive is used interchangeably to mean 
directive, when referring to DEC Fortran programs, and pragma, 
when referring to DEC C programs. The term processor generally 
represents the system component used in parallel processing. In 
discussions in which it is significant to distinguish the 
operating system component used for parallel processing, the term 
thread is used.
  

THE PARALLELISM MAPPING PROCESS

Figure 1 shows the input modes and major phases of the 
compilation process. Parallelism is represented at three levels 
in programs using the KAP preprocessor on an Alpha SMP system. 
The first two are input to the KAP preprocessor; the third is the 
representation of parallelism that KAP generates. The three 
levels of parallelism are

    1.  Implicit parallelism.  Starting from DEC Fortran or DEC C 
        programs, KAP automatically detects parallelism. 
        
    2.  Explicit high-level parallelism.  As an advanced feature, 
        users can provide any of three forms: KAP guiding 
        directives, KAP assertions, or X3H5 directives. KAP 
        guiding directives give KAP hints on which program 
        constructs to parallelize. KAP assertions are used to 
        convey information about the program that cannot be 
        described in the DEC Fortran or DEC C language. This 
        information can sometimes be used by KAP to optimize the 
        program. Using X3H5 directives, the user can force KAP to 
        parallelize the program in a certain way.[3] 

    3. Explicit low-level parallelism.  KAP translates either of 
        the above forms to DECthreads with the help of an SMP 
        support library. (The user could specify parallelism 
        directly, using DECthreads; however, KAP does not perform 
        any optimization of source code with DECthreads. 
        Therefore, the user should not mix this form of 
        parallelism with the others.) 



Figure 1   Parallelism Mapping Process

+----------------------+
+-----------------------------------------------------+
| IMPLICIT PARALLELISM | | EXPLICIT HIGH-LEVEL PARALLELISM                    
|
| +------------------+ | | +-------------+ +----------------+
+---------------+|
| |  ORDINARY DEC    | | | | KAP GUIDING | | KAP ASSERTIONS | |X3H5
DIRECTIVES||
| |  FORTRAN OR      | | | | DIRECTIVES  | |                | |              
||
| |  DEC C PROGRAM   | | | +------+------+ +--------+-------+
+-------+-------+|
| +----------+-------+ | |        |                 |                 |       
|
+------------|---------+
+--------|-----------------|-----------------|--------+
             |                    |                 |                 |
+------------|--------------------|-----------------|-----------------|-------
-+
|            |                    |                 |                 |       
|
|   +--------V-------+            |                 |                 |       
|
|   |   SCANNERS     |            |                 |                 |       
|
|   +--------+-------+            |                 |                 |       
|
|            |                    |                 |                 |       
| 
|   +--------V-------+            |                 |                 |       
| 
|   |  KAP SCALAR    |<-----------+-----+           |                 |       
|
|   |  OPTIMIZATIONS |            |     |           |                 |       
|
|   +--------+-------+            |     |   +-------V--------+        |       
|
|            |                    |     +---|   DEPENDENCE   |        |       
|
|   +--------V-------+            |     +---|   ANALYSIS     |        |       
|
|   | KAP PARALLELISM|<-----------+     |   +----------------+        |       
|
|   | DETECTION AND  |                  |                             |       
|
|   | OPTIMIZATION   |<-----------------+                             |       
|
|   +--------+-------+                                                |       
|
|            |                                                        |       



|
|   +--------V-------+                                                |       
|
|   | KAP PARALLELISM|<-----------------------------------------------+       
|
|   | TRANSLATION    |                                                        
|
|   +--------+-------+                                        KAP PREPROCESSOR
|   
+------------|----------------------------------------------------------------
-+
             +--+
+---------------V----------------+
| EXPLICIT LOW-LEVEL PARALLELISM |
|       +---------------+        |
|       | KAP-OPTIMIZED |        |
|       | FORTRAN OR    |        |
|       | C OUTPUT FILE |        |
|       +-------+-------+        |
+---------------|----------------+
                |
        +-------V-------+
        |  DEC FORTRAN  |
        |  OR DEC C     |
        |  COMPILER     |
        +-------+-------+
                |
        +-------V-------+ +-----------------+
        |  APPLICATION  | | KAP SMP SUPPORT |
        |  LIBRARY      | | LIBRARY         |
        +-------+-------+ +--------+--------+
                |                  |
        +-------V------------------V--------+
        |  DEC OSF/1 V3.0 OPERATING SYSTEM  |
        |  WITH DECTHREADS                  |
        +-----------------------------------+

Because the user can employ parallelism at any of the three 
levels, a discussion of the trade-offs involved with using each 
level follows.

From DEC Fortran or DEC C Programs

The KAP preprocessor accepts DEC Fortran and DEC C programs as input. Although
starting with such programs requires the compilers to intelligently utilize a 
high-performance SMP system, there are several reasons why this is a natural 
point at which to start.

    o   Lots of software.  Since DEC Fortran and DEC C are de 
        facto standards, there exists a large base of 
        applications that can be parallelized relatively easily 
        and inexpensively.



    
    o Ease of use.  Given the high rate at which hardware costs 
        are decreasing, every workstation may soon have multiple 
        processors. At that point, it will be critical that 
        programming a multiprocessor be as easy as programming a 
        single processor. 

    o Portability.  Many software developers with access to a 
        multiprocessor already work in a heterogeneous networking 
        environment. Some systems in such an environment do not 
        support explicit forms of parallelism (either X3H5 or 
        DECthreads). The developers would probably like to have 
        one version of their code that runs well on all their 
        systems, whether uniprocessor or multiprocessor, and 
        using DECthreads would cause their uniprocessors to slow 
        down.
     
    o Maintainability.  Using an intricate programming model of 
        parallelism such as X3H5 or DECthreads makes it more 
        difficult to maintain the software. 

KAP produces KAP-optimized DEC Fortran or DEC C as output. This 
fact is important for the following reasons:

    o   Performance.  Users can leverage optimizations from both 
        Digital's compilers and KAP.
     
    o Integration.  Users can employ all of Digital's 
        performance tools. 

    o Ease of use.  Expert users like to "tweak" the output of 
        KAP to fine-tune the optimizations performed.

With KAP Guiding Directives, KAP Assertions, or X3H5 Directives

Although the automatic detection of parallelism is frequently 
within the range of KAP capabilities on SMP systems, in some 
cases, as described below, users may wish to specify the 
parallelism.

    o In the SMP environment, coarse-grained parallelism is 
        sometimes important. The higher in the call tree of a 
        program a preprocessor (or compiler, as well) operates, 
        the more difficult it is for a preprocessor to 
        parallelize automatically. Even though the KAP 
        preprocessor performs both inlining and interprocedural 
        analysis, the higher in the call tree KAP operates, the 
        more likely it is that KAP will conservatively assume 
        that the parallelization is invalid.
     
    o Sometimes information that is available only at run time 
        precludes the preprocessor from automatically finding 
        parallelism. 



    o  Occasionally, experts can fine-tune the parallelism to 
        get the highest efficiency for programs that are run 
        frequently. 

    o  For software that is more portable between systems, it is 
        sometimes important to get repeatable parallel 
        performance or to indicate where parallelism has been 
        applied. In such cases, explicit parallelism may be 
        preferable. 

Three mechanisms are available to the user for directing KAP to 
parallelism. The first mechanism uses KAP guiding directives to 
guide KAP to the preferred way to parallelize the program. The 
second mechanism uses KAP assertions. The third mechanism uses 
X3H5-compliant directives to directly describe the parallelism. 
The first two mechanisms differ significantly from the third. 
With the first two, KAP analyzes the program for the feasibility 
of parallelism. With the third, KAP assumes that parallelism is 
feasible and restricts itself to managing the details of 
implementing parallelism. In particular, the user does not have 
to be concerned with either the scoping of variables across 
processors, i.e., designating which are private and which are 
shared, or the synchronization of accesses to shared 
variables.[4] KAP guiding directives will not be discussed in 
this paper. KAP assertions and how they are implemented are 
discussed later in the section Advanced Ways to Affect 
Dependences. A description of the X3H5 directives follows. 

The X3H5 model of parallelism is well structured; all operations 
have a begin operation--end operation format. The parallel region 
construct identifies the fork and join points for parallel 
processing. Parallel loops identify units of work to be 
distributed to the available processors. The critical section and 
one processor section constructs are used to synchronize 
processors where necessary. Table 1 shows the X3H5 directives as 
implemented in KAP.



Table 1  X3H5 Directives As Implemented in KAP

Function                             X3H5 Directives

To specify regions of parallel execution    C*KAP* PARALLEL REGION
                                     C*KAP* END PARALLEL REGION
                                 
To specify parallel loops     C*KAP* PARALLEL DO
                                     C*KAP* END PARALLEL DO
                                 
To specify synchronized sections of code    C*KAP* BARRIER
such that all processors synchronize      
                                 
To specify that all processors execute      C*KAP* CRITICAL SECTION
sequentially     C*KAP* END CRITICAL SECTION

To specify that only the first processor    C*KAP* ONE PROCESSOR SECTION
executes     C*KAP* END ONE PROCESSOR SECTION



                                 

To the DEC OSF/1 Operating System with DECthreads

Although KAP does not optimize programs that use DECthreads directly, there 
may be some benefits to specifying parallelism explicitly using DECthreads.

    o   DECthreads allows a user to construct almost any model of 
        parallel processing fairly efficiently. The high-level 
        approaches described above are limited to loop-structured 
        parallel processing. Some applications obtain more 
        parallelism by using an unstructured model. It can even 
        be argued that for some cases, unstructured parallelism 
        is easier to understand and maintain.

    o   A user who invests the time to analyze exactly where 
        parallelism exists in a program may wish to forego the 
        benefits mentioned above and to capture the parallelism 
        in detail with DECthreads. In that manner, no efficiency 
        is lost because the preprocessor misses an optimization. 

    o   The POSIX threads standard to which DECthreads conforms 
        is available on several platforms. Because this standard 
        is broadly adopted and language independent, it is only 
        slightly less portable than implicit parallelism.

The KAP preprocessor translates a program in which KAP has 
detected implicit parallelism or a program in which the user 
explicitly directs parallelism to DECthreads. KAP performs this 
translation in two steps. First, it translates the internal 
representation into calls to a parallel SMP support library. 
Second, the support library makes calls to DECthreads.

The SMP support library implements various aspects of X3H5 
notation, as can be seen by comparing Tables 1 and 2.



Table 2  KAP SMP Support Library

C Entry Point Name  Fortran  Function    OSF/1 DECthreads
    Name        Subroutines Used

__kmp_enter_csec    mppecs   To enter a critical section   pthread_mutex_lock

__kmp_exit_csec     mppxcs   To exit a critical section   
pthread_mutex_unlock

__kmp_fork        mppfrk   To fork to several threads   
pthread_attr_create,
                                pthread_create

__kmp_fork_active   mppfkd   To inquire if already         (none)
                               parallel

__kmp_end     mppend   To join threads    pthread_join,
                thread_detach

__kmp_enter_onepsec mppbop   To enter a single processor   pthread_mutex_lock,
         section            

pthread_mutex_unlock

__kmp_exit_onepsec  mppeop   To exit a single processor    pthread_mutex_lock,
         section   

pthread_mutex_unlock

__kmp_barrier     mppbar   To execute a barrier wait    pthread_mutex_lock,
                pthread_cond_wait, 
               

pthread_mutex_unlock



In the parallelism translation phase, KAP significantly 
restructures a program by moving the code in a parallel region to 
a separate subroutine. A call to the SMP support library replaces 
the parallel region. This call references the new subroutine. KAP 
examines the scope of each variable used in the parallel region 
and, if possible, converts each variable to a local variable of 
the new subroutine. Otherwise, the variable becomes an argument 
to the subroutine so that it can be passed back out of the 
parallel region.

Converting variables to local variables makes accessing these 
variables more efficient. A variable that is referenced outside 
the parallel region cannot be made local and must be passed as an 
argument.

Shared Memory Multiprocessor Architecture Concerns

Given its parallelism model, the KAP preprocessor requires 
operating system and hardware support from the system for 
efficient parallel execution. There are three areas of concern: 
thread creation and scheduling, synchronization between threads, 
and data caching and system bus bandwidth. 

Thread Creation and Scheduling.  Thread creation is the most 
expensive operation. The X3H5 standard minimizes the need for 
creating threads through the use of parallel regions. The SMP 
support library goes further by reusing threads from one parallel 
region to the next. The SMP support library examines the value of 
an environment variable to determine how many threads to use. The 
appropriate scheduling of threads onto hardware processors is 
extremely important for efficient execution. The support library 
relies on the DECthreads implementation to achieve this. For the 
most efficient operation, the library should schedule at most one 
thread per processor.

Synchronization between Threads.  In the KAP model of 
parallelism, threads can synchronize at

    o   A point where loop iterations are scheduled 
     
    o   A point where data passes between iterations (for 
        collection of local reduction variables only)

    o A barrier point leaving a work-sharing construct

    o   Single processor sections

Two versions of the SMP support library have been developed: one 



with spin locks for a single-user environment and the second with 
mutex locks for a multiuser environment. Either library works in 
either environment; however, using the spin lock version in a 
single-user environment yields the most efficient parallelism.

Using spin locks in a multiuser environment may waste processor 
cycles when there are other users who could use them. Using mutex 
locks for a single-user environment creates unnecessary operating 
system overhead. In practice, however, a system may shift from 
single-user to multiuser and back again in the course of a single 
run of a large program. Therefore, KAP supports all 
lock-environment combinations.

Data Caching and System Bus Bandwidth.  Multiprocessor Alpha 
systems support coherent caches between processors.[5] To use 
these caches efficiently, as a policy, KAP localizes data as much 
as possible, keeping repeated references within the same 
processor. Localizing data reduces the load on the system bus and 
reduces the chances of cache thrashing.

When all the processors simultaneously request data from the 
memory, system bus bandwidth can limit SMP performance. If 
optimizations enhance cache locality, less system bus bandwidth 
is used, and therefore SMP performance is less likely to be 
limited.

KAP TECHNOLOGY

This section covers the issues of data dependence analysis, 
preprocessor architecture, and the selection of loops to 
parallelize.

Data Dependence Analysis---The Kernel of Parallelism Detection

DEC Fortran and DEC C have standard rules for the order of 
execution of statements and expressions. These rules are based on 
a serial model of program execution. Data dependence analysis 
allows a compiler to see where this serial order of execution can 
be modified without changing the meaning of the program.

Types of Dependence.  KAP works with the four basic types of 
dependence:[6]

    1.  Flow dependence, i.e., when a program writes a variable  
        before it reads the variable
     
    2. Antidependence, i.e., when a program reads a variable 
        before it writes the variable
       
    3. Output dependence, i.e., when a program writes the same 



        variable twice

    4. Control dependence, i.e., when a program statement 
        depends on a previous conditional

Because dependences involve two actions on the same variable, for 
example, a write and then a read, KAP uses the term dependence 
arc to represent information flow, in this example from the write 
to the read.

Since these dependences can prevent parallelization, KAP uses 
various optimizations to eliminate the different dependences. For 
example, an optimization called scalar renaming removes some but 
not all antidependences.

Loop-related Dependences.  When dependences occur within a loop, 
the control flow relations are captured with direction vector 
symbols tagged to each dependence arc.[2] The transformations 
that can be applied to a loop depend on what dependence direction 
vectors exist for that loop. The symbols used in KAP and their 
meanings are

    =  The dependence occurs within the same loop iteration.
  
    >  The dependence crosses one or several iterations.
    
    < The dependence goes to a preceding iteration of the loop.
    
    *  The dependence relation between iterations is not clear.

or a combination of the above, for example,

    <> The dependence is known not to be on the same iteration.

When a dependence occurs in a nested loop, KAP uses one symbol 
for each level in the loop nest. A dependence is said to be 
carried by a loop if the corresponding direction vector symbol 
for that loop includes <, >, or *.

In the following program segment

    1  for (i=1; i<=n; i++) {
    2     temp = a[i];
    3     a[i] = b[i];
    4     b[i] = temp; }

there is a flow dependence from statement 2 to statement 4.  
There is an antidependence from statement 2 to statement 3 and 
from statement 3 to statement 4. There are control dependences 
from statement 1 to statements 2, 3, and 4 because executing 2, 
3, and 4 depends on the i<=n condition. All these dependences are 
on the same loop iteration; their direction vector is =.



Some dependences in this program cross loop iterations. Because 
temp is reused on each iteration, there is an output dependence 
from statement 2 to statement 2, and there is an antidependence 
from statement 4 to statement 2. These two dependences are 
carried by the loop in the program segment and have the direction 
vector >.

Data Dependence Analysis.  The purpose of dependence analysis is 
to build a dependence graph, i.e., the collection of all the 
dependence arcs in the program. KAP builds the dependence graph 
in two stages. First, it builds the best possible conservative 
dependence graph.[7] Then, it applies filters that identify and 
remove dependences that are known to be conservative, based on 
special circumstances.

What does the phrase "best possible conservative dependence 
graph" mean? Because the values of a program's variables are not 
known at preprocessing time, in some situations it may not be 
clear whether a dependence actually exists. KAP reflects this 
situation in terms of assumed dependences based on imperfect 
information. Therefore, a dependence graph must be conservative 
so that KAP does not optimize a program incorrectly. On the other 
hand, a dependence graph that is too conservative results in 
insufficient optimization.

In building the best possible dependence graph, KAP uses the 
following optimizations: constant propagation, variable forward 
substitution, and scalar expansion. KAP does not, however, leave 
the program optimized in this manner unless the optimizations 
will improve performance.

Advanced Ways to Affect Dependences.  When there are assumed 
dependences in the program, KAP may not have enough information 
to decide on parallelism opportunities. KAP implements two 
techniques to mitigate the effects of imperfect information at 
preprocessing time: assertions and alternate code sequences.

Assertions, which are similar to directives in syntax, are used 
to provide information not otherwise known at preprocessing time. 
KAP supports many assertions that have the effect of removing 
assumed dependences. Table 3 shows KAP assertions and their 
effects.[8,9] When the user specifies an assertion, the 
information contained in the assertion is saved by a data 
abstraction called the oracle. When an optimization requests that 
a data dependence graph be built for a loop, the dependence 
analyzer inquires whether the oracle has any information about 
certain arcs that it wants to remove.



Table 3  KAP Assertions

Assertion              Specifiers            Primary Effect
                                     
[NO] ARGUMENT ALIASING      Removes assumed dependence arcs

[NO] BOUNDS VIOLATIONS      Removes assumed dependence arcs

CONCURRENT CALL                   Removes assumed dependence arcs

DO (<specifier>)       SERIAL, CONCURRENT    Guides selection of loop order 
            strongly

DO PREFER        SERIAL, CONCURRENT    Guides selection of loop order 
(<specifier>)             loosely

[NO] EQUIVALENCE            Removes assumed dependence arcs
HAZARD                                       (Fortran only)

[NO] LAST VALUE        Variable names for    Tunes the parallel code and
NEEDED (<specifier>)   which [no] last       sometimes removes assumed 

       value is needed       dependences

PERMUTATION        Names of permutation  Removes assumed dependence arcs
(<specifier>)          variables       

NO RECURRENCE        Names of recurrence   Removes assumed dependence arcs
(<specifier>)        variables       
                    
RELATION(<specifier>)  Relation loop index   Removes assumed dependence arcs

       known to be true         
NO SYNC             Tunes the parallel code which 

            is produced



                                     

When accurate information is not known at compile time, a few KAP 
optimizations generate two versions of the source program loop: 
one assumes that the assumed dependence exists; the other assumes 
that it does not exist. In the latter case, KAP can apply 
subsequent optimizations, such as parallelizing the loop. KAP 
applies the two-version loop optimizations selectively to avoid 
dramatically increasing the size of the program. However, the 
payback of parallelizing a frequently executed loop warrants 
their use.

For example, the KAP C pointer disambiguation optimization is 
employed in cases in which C pointers are used as a base address 
and then incremented in a loop. Neither the base address of a 
pointer nor how many times the pointer will be incremented is 
usually known at compile time. At run time, however, they can be 
computed in terms of a loop index. KAP generates code that checks 
the range of the pointer references at the tail and at the head 
of a dependence. If the two ranges do not overlap, the dependence 
does not exist and the optimized code is executed. 

KAP Preprocessor Architecture

A controversial control architecture decision in KAP is to 
organize the preprocessor as a sequence of passes, generally one 
for each optimization performed. This design decision was 
controversial because of the following concerns:

    o   Run-time inefficiency would occur in processing programs 
        because each pass would sweep through the intermediate 
        representation for the program being processed, causing 
        some amount of virtual memory thrashing.
     
    o Added software development cost would be incurred because 
        the KAP code that loops through the intermediate 
        representation would be repeated in each pass.     
 
The second concern has been dispelled. The added modularity of 
KAP, provided by its multipass structure, has saved development 
time as KAP has grown from a moderately complex piece of code to 
an extremely complex piece of code.

The KAP preprocessor uses more than 50 major optimizations. The 
pass structure has helped to organize them. In some cases, such 
as cache management, one optimization is broken into several 
passes. KAP performs some basic optimizations, e.g., deadcode 
elimination, more than once in different ways. In some cases, 
such as scalar expansion, KAP performs an optimization to uncover 
other optimizations and then performs the reverse optimization to 
tighten up the program again.



The run-time efficiency issue is still of interest. There is 
always some benefit to making the preprocessor smaller and 
faster.

Selecting Loops to Parallelize

Parallelizing a loop can greatly enhance the performance of the 
program. Testing whether a loop can be parallelized is actually 
quite simple, given the data dependence analysis that KAP 
performs. A loop can be parallelized if there are no dependence 
arcs carried by that loop. The situation, however, can be more 
complicated. If the program contains several nested loops, it is 
important to pick the best loop to parallelize. Additionally, it 
may be possible not only to parallelize the loop but also to 
optimize the loop to enhance its performance. Moreover, the loops 
in a program can be nested in very complex structures so that 
there are many different ways to parallelize the same program. In 
fact, the best option may be to leave all the loops serial 
because the overhead of parallel execution may outweigh the 
performance improvement of using multiple processors.

The KAP preprocessor optimizes programs for parallelism by 
searching for the optimum program in a set of possible 
configurations, i.e., ways in which the original program can be 
transformed for parallel execution. (In this regard, KAP 
optimizes programs from a classical definition of numerical 
optimization.) There is an objective function for evaluating each 
configuration. Each member of the set of configurations is called 
a loop order. The optimum program is the loop order whose 
objective function has the highest performance score, as 
discussed later in this section.

Descriptions of loop orders, the role of dependence analysis, and 
the objective function, i.e., how each program is scored, follow. 

Loop Orders.  A loop order is a combination of loop 
transformations that the KAP preprocessor has performed on the 
program. The loop transformations that KAP performs while 
searching for the optimal parallel form are

    o Loop distribution
     
    o Loop fusion
     
    o Loop interchange

Loop distribution splits a loop into two or more loops. Loop 
fusion merges two loops. Loop fusion is used to combine loops to 
increase the size of the parallel tasks and to reduce loop 
overhead.

Loop interchange occurs between a pair of loops. This 



transformation takes the inner loop outside the outer loop, 
reversing their relation. If a loop is triply nested, there are 
three factorial (3!), i.e., six, different ways to interchange 
the loops. Each order is arrived at by a sequence of pairwise 
interchanges.

To increase the opportunities to interchange loops, KAP tries to 
make a loop nest into one that is perfectly nested. This means 
that there are no executable statements between nested loop 
statements. Loop distribution is used to create perfectly nested 
loops.

KAP examines all possible loop orders for each loop nest. Each 
loop nest is treated independently because no transformations 
between loop nests occur at this phase of optimization.

For example, an LU factorization program consists of one 
loop nest that is three deep and not perfectly nested. Figure 2 
shows the loop orders. Loop order (a) is the original LU program. 
The KAP preprocessor first distributes the outer loop in loop 
orders (b) and (c). Next, KAP performs a loop interchange on the 
second loop nest which is two deep, as shown in loop order (d). 
Then, KAP interchanges the third loop nest in loop orders (e) 
through (i). Note that KAP eliminates some loop orders, (i) for 
example, when the loop-bound expressions cannot be interchanged. 
As explained above, there are six different loop orders because 
the nest is triply nested. Since the loop nest in (d) was 
originally nested with the triply nested loop at the outermost do 
loop, KAP will reexamine these six loop orders after the 
interchange in (d).



Figure 2   Loop Orders for LU Factorization

+-----------------------------+   +-------------------------------+   
|(a) ORIGINAL LU (OUTLINED):  |   |(b) DISTRIBUTED do i LOOP:     |   
|do i=1,n                     |   |do i=1,n                       |
|   /*Invert Eliminator*/     |   |   /*Invert Eliminator*/       |
|   ...                       |   |   enddo                       |
|   do k=i+1,n                |   |do i=1,n                       |
|      /*Compute Multipliers*/|   |   do k=i+1,n                  |
|      ...                    +-->|      /*Compute Multipliers*/  |
|      enddo                  |   |      enddo                    |
|   do j=i+1,n                |   |   do j=i+1,n                  |
|      do k=i+1,n             |   |      do k=i+1,n               |
|         /*Update Matrix*/   |   |         /*Update Matrix*/     |
|         ...                 |   |         enddo                 |
|         enddo               |   |      enddo                    |
|      enddo                  |   |   enddo                       |
|   enddo                     |   |                               |
+-----------------------------+   +---------------+---------------+
                                                  |
+-----------------------------+   +---------------V---------------+
|(d) FOR 2ND NEST INTERCHANGE |   |(c) DISTRIBUTE do i LOOP AGAIN:|
|    2ND do i LOOP:           |   |do i=1,n                       |
|do k=1,n                     |-->|   /*Invert Eliminator*/       |
|   do i=1,k-1                |   |do i=1,n                       |
|      /*Compute Multipliers*/|   |   do k=i+1,n                  |
|      ...                    |   |      /*Compute Multipliers*/  |
+-------+--------------+------+   |do i=1,n                       |
        |              |          |   do j=i+1,n                  |
   +----V--------------V---+      |      do k=i+1,n               |
   | REEXAMINE LOOP ORDERS |      |         /*Update Matrix*/     |
   | (e) THROUGH (i)       |      |         ...                   |
   +-----------------------+      +--+---------------+------------+
                                     |               |
         +---------------------------V-+ +-----------V-----------------+
         |(e) FOR 3RD NEST INTERCHANGE | |(g) FOR 3RD NEST INTERCHANGE |
         |    do i AND do j:           | |    do j AND do k:           |
         |do j=1,n                     | |do i=1,n                     |
         |   do i=1,j-1                | |   do k=i+1,n                |
         |      do k=i+1,n             | |      do j=i+1,n             |
         |         /*Update Matrix*/   | |         /*Update Matrix*/   |
         |         ...                 | |         ...                 |
         +-------+---------------------+ +-----------+-----------------+
                 |                                   |
+----------------V------------+          +-----------V-----------------+
|(f) FOR 3RD NEST INTERCHANGE |          |(h) FOR 3RD NEST INTERCHANGE |
|    do i AND do k:           |          |    do i AND do k:           |
|Loop Order Rejected --       |          |do k=1,n                     |
|New bounds split loop.       |          |   do i=1,k-1                |
|do j=1,n                     |          |      do j=i+1,n             |
|   do k=2,j                  |          |         /*Update Matrix*/   |
|      do i=1,k-1             |          |         ...                 |
|         /*Update Matrix*/   |          +--------+--------------------+



|      do k=j,n               |                   |
|         do i=1,j-1          |       +-----------V-----------------+
|            /*Update Matrix*/|       |(i) FOR 3RD NEST INTERCHANGE |
|            ...              |       |    do i AND do j:           |
+-----------------------------+       |Loop Order Rejected --       |
                                      |New bounds split loop.       |
                                      |do k=1,n                     |
                                      |   do j=2,k                  |
                                      |      do i=1,k-1             |
                                      |         /*Update Matrix*/   |
                                      |   do j=k,n                  |
                                      |      do i=1,k-1             |
                                      |         /*Update Matrix*/   |
                                      |         ...                 |
                                      +-----------------------------+



Dependence Analysis for Loop Orders.  Before a loop order can be 
evaluated for efficiency, KAP determines the validity of the loop 
order. A loop order is valid if the resulting program would 
produce equivalent behavior. KAP tests validity by examining the 
dependences in the dependence graph according to the 
transformation being applied.

For example, the test for loop interchange validity involves 
searching for dependence direction vectors of a certain type. The 
direction vector (<,>) indicates that a loop interchange is 
invalid. The direction vectors (<,*), (*,>), or (*,*), if 
present, also indicate that the loop interchange may be invalid.

Evaluation of a Loop Order.  After the KAP preprocessor 
determines that a loop order is valid, it scores the loop order 
for performance. KAP considers two major factors: (1) the amount 
of work that will be performed in parallel and (2) the memory 
reference efficiency.

The memory reference efficiency of a loop order can degrade 
performance so much that it outweighs the performance gained by 
executing a loop in parallel. On an SMP, if a processor 
references one word on a cache line, it should reference all the 
words contiguously on that line. In Fortran, a two-dimensional 
array reference, A(i,j), should be parallelized so that the j 
loop is parallel and each processor references contiguous columns 
of memory. If a loop order indicated that the i loop is parallel, 
this reference would score low. If a loop order indicated that 
the j loop is parallel, it would score high. The score for the 
loop order is the sum of the scores for all the references, and 
the highest-scoring loop order is preferred.
 
The score for a loop order depends on which loops in the order 
can be parallelized. For a given loop nest, there may be several 
(or no) loops that can be parallelized. The first step is to 
determine if any loops can be parallelized. If multiple loops can 
be parallelized, KAP selects the best one. KAP chooses at most 
one loop for parallel execution.

KAP tests loops to determine whether they can be executed in 
parallel by analyzing both the statements in the loop and the 
dependence graph. The loop may contain certain statements that 
block concurrentization. I/O statements or a call to a function 
or subroutine are examples. (Users can code KAP assertions to 
flag these statements as parallelizable.) Second, data dependence 
conditions may preclude parallelization. In general, a loop that 
carries a dependence is not parallelizable. (In some cases, the 
user may override the data dependence condition by allowing 
synchronization between loop iterations.) Finally, the user may 
give assertions that indicate a preference for making a loop 
parallel or for keeping it serial.



 
Barring data dependence conditions that would prevent 
parallelization, the amount of work that will be performed in 
parallel determines the score of parallelizing a loop. (The user 
can also specify with a directive that loops should not be 
parallelized unless they score greater than a specified value.)  
In this manner, KAP prefers to parallelize outer loops or loops 
that are interchanged to the outside because they contain the 
most work to amortize the overhead of creating threads for 
parallelism.

The actual parallelization process is even more complex than this 
discussion indicates. KAP applies a number of optimizations to 
improve the quality of the parallel code. If there is a reduction 
operation across a loop, KAP parallelizes the loop. Too much loop 
distribution can decrease program efficiency, so loop fusion is 
run to try to coalesce loops.

PERFORMANCE ANALYSIS

How does the KAP preprocessor perform on real applications? The 
answer is as complex as the software written for these 
applications. Consider the real-world example, DYNA3D, which 
demonstrates some KAP strengths and weaknesses.

DYNA3D is nonlinear structural dynamics code that uses the finite 
element analysis method. The code was developed by the Lawrence 
Livermore National Laboratory Methods Development Group and has 
been used extensively for a broad range of structural analysis 
problems. DYNA3D contains about 70,000 lines of Fortran code in 
more than 700 subroutines.

When KAP is being used on a large program, it is sometimes 
preferable to concentrate on the compute-intensive kernels. For 
example, KAP developers ran six of the standard benchmarks for 
DYNA3D through a performance profiling tool and isolated two 
groups of three subroutines that account for approximately 75 
percent of the run time in these cases. This data is shown in 
Table 4.



Table 4  Performance Profiles of Six DYNA3D Problems

Problem      Profile (First Two Initials of the Key Call 
 Subroutine and Percent of Run Time) Sequences*

                                                
NIKE2D       ST 19%, FO 15%, FE 12%, PR 10%, HG 7%, HR 5%   (a) and (b) 
Example                          
               
Cylinder Drop  ST 20%, FO 15%, FE 11%, PR 10%, HG 7%, HR 5%   (a) and (b) 

Bar Impact   WR 17%, ST 7%, FE 6% None of
interest
                                                
Impacted Plate  SH 22%, TN 16%, TA 16%, YH 14%, BL 7%  (c) 

Single Contact  YH 24%, SH 21%, TN 7%, TA 7%, BL 6% (c) 

Clamped Beam  EL 12%, SH 12%, TN 8%, TA 8%, BL 6% (c) 

*Call Sequences                                      

(a) ST is called; ST calls PR; and then FE is called.                    
(b) HR is called; HR calls HG; and then FO is called.                    
(c) BL calls SH, then TA, and then TN.                                        



         
KAP's performance on some of these key subroutines appears in 
Table 5. KAP parallelized all the loops in these subroutines. 
Since DYNA3D was designed for a CRAY-1 vector processor, it is 
perhaps to be expected that the KAP preprocessor would perform 
well. KAP, however, is intended for a shared memory 
multiprocessor rather than for a vector machine. For this reason, 
KAP does more than parallelize the loops. The entries in the 
column labeled "Number of Loops after Fusion" show how KAP 
reduced loop overhead by fusing as many loops together as it 
could. KAP fused the five loops in subroutine STRAIN into three 
loops and fused all nine loops in subroutine PRTAL. 



Table 5  KAP's Performance on Key Subroutines

Subroutine    Number of    Number of Loops    Maximum  Number of
Loops   

      Loops    Parallelized       Nest Depth  after Fusion  
                                              
STRAIN        5    5       1 3 
PRTAL       9    9       1 1
FELEN       6    6       1 1
FORCE       9    9       2 2
HRGMD       5    5       1 3
HGX       4    4       1 1



 

Another example of KAP's optimization for an SMP system is that 
in the doubly nested loop cases, such as subroutine FORCE (see 
Figure 3), the KAP preprocessor automatically selects the outer 
loop for parallel execution. In contrast, a vector machine such 
as the CRAY-1 prefers the inner loop. 



Figure 3   Parallel Loop Selection

    subroutine FORCE                 / OUTER LOOP PARALLIZED
    ...                             / 
    do 60 n = 1,nnc <--------------+
       lcn = lczc + n + nh12 - 1
       i0 = ia(lnc)
       i1 = ia(lcn + 1) - 1
    cdir$ ivdep
       do 50 i = i0,i1
         e(1,ix(i)) =
         e(1,ix1(i)) + ep11(i)
         ...
    50 continue
       ...
    60 continue



Because the kernels of DYNA3D code span multiple subroutines, 
cross compilation optimization is suggested. There are three ways 
to do this: inlining, interprocedural analysis, and directives 
specifying that the inner subroutines can be concurrentized. 
Using KAP's inlining capability gives KAP the most freedom to 
optimize the program because in this manner KAP can restructure 
code across subroutines.

Figure 4 shows part of the call sequence of subroutine SOLDE. 
(Subroutine SOLDE contains call sequence (b) of Table 4.) 
Subroutine SOLDE calls subroutine HRGMD which calls subroutine 
HGX. Then subroutine SOLDE calls subroutine FORCE. KAP supports 
inlining to an arbitrary depth. Inlining in KAP can be automatic 
or controlled from the command line. In this case, we did not 
want to enable inlining automatically to depth two of subroutine 
SOLDE because it contains calls to many other subroutines that 
are not in the kernel. Here, the user specified the subroutines 
to inline on the command line. When the user specified inlining, 
KAP fused all the loops in subroutines HRGMD, HGX, and FORCE to 
minimize loop overhead, and then it parallelized the fused loop.



Figure 4   Inlining a Kernel

   subroutine SOLDE
      ...
      call HRGMD <--------+
      subroutine HRGMD    | WHOLE CALL
       ...              | SEQUENCE
       call HGX <-------+ INLINED
       ...              |
      call FORCE <--------+
      ...



In some cases, the user can make simple restructuring changes 
that improve KAP's optimizations. Figure 5 shows a case in which 
fusion was blocked by two scalar statements between a pair of 
loops. The first loop does not assign any values to the variables 
used to create these scalars, so the user can move the 
assignments above the loop to enable KAP to fuse them.



Figure 5   Assisted Loop Fusion

   subroutine STRAIN      subroutine STRAIN
      do 5 i = lft,llt    MOVE UP    +---> {dt1d2 = .5 * dt1
      ...    STATEMENTS +---> {crho - .0625 * rho(lft)
      enddo               |      do 5 i = lft,llt
      dt1d2 = .5 * dt1} --------------+      ...
      crho = .0625 * rho(lft)} -------+      enddo
      do 6 i = lft,llt         do 6 i = lft,llt
      ...         ...
      enddo         enddo



Finally, the user can elect to specify the parallelism directly.  
Figure 6 shows subroutine STRAIN with X3H5 directives used to 
describe the parallelism. In this case, the user elected to keep 
the same unfused loop structure as in the original code. This 
case is not dramatically less efficient than the fused version 
because the parallel region causes KAP to fork threads only once.



Figure 6  X3H5 Explicit Parallelism

       subroutine STRAIN
       c*kap* parallel region
       c*kap*& shared(dxy,dyx,d1)
       c*kap*& local(i,dt1d2)
       c*kap* parallel do  
       do 5 i = lft,llt
       dyx(i) = ...
  ALL c*kap* STATEMENTS      5 continue
  ARE X3H5 EXPLICIT      c*kap* end parallel do
  PARALLEL DIRECIVES.      c*kap* barrier
       dt1d2 = ...
       c*kap* parallel do
       do 6 i = lft,llt
          d1 = dt1d2 * (dxy(i) + dyx(i))
       6 continue
       c*kap* end parallel do
       c*kap* end parallel region



A very sophisticated example of KAP usage occurs when a user 
inputs a program to KAP that has already been optimized by KAP. 
This is an advantage of a preprocessor that does not apply to a 
compiler because a preprocessor produces source code output. In 
this case, the statements shown in Figure 6 were generated by KAP 
to illustrate X3H5 parallelism. A user may want to perform some 
hand optimization on this output, such as removing the barrier 
statement, and then optimize the modified program with KAP again.

CHALLENGES THAT REMAIN

Although the KAP preprocessor is a robust tool that performs well 
in a production software development environment, several 
challenges remain. Among them are adding new languages, further 
enhancing the optimization technology, and improving KAP's 
everyday usability.

As the popular programming languages evolve, KAP evolves also.  
KAI will soon extend KAP support for DEC Fortran to Fortran 90 
and is developing C++ optimization capabilities.

In optimization technology, KAI's goal is to make an SMP server 
as easy to use as a single-processor workstation is today. 
"Automatic Detection of Parallelism: A Grand Challenge for 
High-Performance Computing" contains a leading-edge analysis of 
parallelization technology.[10] The research reported shows that 
further developing current techniques can improve optimization 
technology. These techniques frequently involve the grand 
challenge of compiler optimization---whole program analysis.

In a much more pragmatic direction, the KAP preprocessor should 
be integrated with Digital's compiler technology at the 
intermediate representation level. Such integration would 
increase processing efficiency because the compiler would not 
have to reparse the source code. In addition, integration would 
increase the coordination between KAP and the compiler to improve 
performance for the end user.

Increasing the usability of the KAP preprocessor, however, 
benefits the end user directly. KAP engineers frequently talk to 
beta users and encourage feedback. The following are examples of 
user comments: 

    o Optimizing programs is difficult when no subroutine in 
        the program takes more than a few percent of the run 
        time. As its usability in this area improves, KAP will 
        become a substantial productivity aid. If a program is 
        generally slow, optimizing repeated usage patterns will 
        allow the programmer to use a comfortable programming 
        style and still expect peak system performance.
     



    o Increasing feedback to the user would improve KAP's 
        usability. When KAP cannot perform an optimization, often 
        the user can help in several ways (e.g., by providing 
        more information at compile time, by changing the options 
        or directives, or by making small changes to the source 
        code). KAP does not always make it clear to the user what 
        needs to be done. Providing such feedback would improve 
        KAP's usability.
 
    o Integration with other performance tools would be useful.  
        Alpha systems have a good set of performance monitoring 
        tools that can provide clues about what to optimize in a 
        program and how. The next release of the KAP preprocessor 
        will provide some simple tools that a user can employ to 
        integrate KAP with tools like prof and to track down 
        performance differences. 

On a final note, the fact that KAP does not speed up a program 
should not always be cause for disappointment. Some programs 
already run as fast as possible without the benefit of a KAP 
preprocessor.
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