
The Design of ManageWORKS: A User Interface Framework

by Dennis G. Giokas and John C. Rokicki

ABSTRACT

The ManageWORKS Workgroup Administrator for Windows software 
product is Digital's integration platform for system and network 
management of heterogeneous local area networks. The ManageWORKS 
product enables multiple, heterogeneous network operating system 
and network interconnect device management from a single PC 
running under the Microsoft Windows operating system. The 
ManageWORKS software is a user interface framework; that is, the 
services it provides are primarily targeted at the integration of 
the user interface elements of management applications. It 
manifests the organizational, navigational, and functional 
elements of system and network management in a coherent whole. 
Viewers, such as the hierarchical outline viewer and the 
topological relationships viewer that are components of the 
ManageWORKS software, provide the organizational and navigational 
elements of the system. Management applications developed by 
Digital and by third parties through the ManageWORKS Software 
Developer's Kit provide the functional elements to manage network 
entities. This paper discusses the user interface design that 
implements these three elements and the software system design 
that supports the user interface framework.

INTRODUCTION

The ManageWORKS Workgroup Administrator for Windows software 
product is Digital's strategic tool for providing system and 
network management of heterogeneous local area networks (LANs). 
It serves as Digital's platform for the integration of PC LAN 
management. From the perspective of the end user, i.e., the LAN 
system administrator and network manager, the ManageWORKS product  
comprises a suite of modules that integrates a diverse set of 
management activities into one workspace. From the perspective of 
the developer of system and network management applications, the 
ManageWORKS product is an extensible and flexible software 
framework for the rapid development of integrated management 
modules, all of which presents a consistent user interface. 
 
The design of the management system was user centric, i.e., 
usability was the top priority. Thus, we began the design work 
without any preconceived notions about the management software 
system design. The design that emerged and that is documented in 
this paper was driven solely by the user interface paradigm 
developed and tested with our customers.

This paper focuses on how the ManageWORKS software presents and 



integrates its functionality to the end user. Specifically, the 
paper presents details of the user interface paradigm and 
discusses the design rationale and the design methods employed. 
The paper also discusses the design of ManageWORKS software in 
support of the user interface framework.

DRIVING FORCES BEHIND THE DESIGN

The ManageWORKS software was originally released as a component 
of the PATHWORKS version 5.0 for DOS and Windows product. The 
foci for that PATHWORKS release set the tone for the ManageWORKS 
design. The PATHWORKS version 5.0 design objectives were to

    1.  Enhance the usability of the PATHWORKS product.  Since 
        the PATHWORKS system was rooted in a command line-based 
        user interface, the goal was to develop a graphical user 
        interface for the system that was based on the Microsoft 
        Windows operating system. Such a user interface would be 
        contemporary, easier to learn, and easier to use.
 
    2.  Enhance the manageability of the PATHWORKS product. The 
        goal was to reduce the cost of ownership by improving the 
        installation, configuration, and administration of the 
        system. 

The ManageWORKS design team used two voice-of-the-customer 
techniques to provide more depth and detail for the two 
high-level product design objectives. First, the team used 
Contextual Inquiry to determine a customer profile and to develop 
a clearer statement of the user's work.[1] Then, the team tested 
user interface prototypes with customers by means of formal 
usability testing. From 15 to 20 customers and users participated 
in each of three rounds of usability testing.

Early in the investigation, Contextual Inquiry revealed that the 
profile of the PATHWORKS system administrator had changed 
drastically during the five years since the PATHWORKS product was 
first released. A typical system administrator in the era of 
PATHWORKS version 1.0 had been a VAX/VMS system manager who 
inherited the responsibility of installing and managing a PC file 
and print-sharing product. The interface into the system was a 
VT-class terminal running command line-based utilities. Today, a 
system administrator is usually a PC user who is quite familiar 
with graphical user interfaces. Such an administrator is more 
likely to be trained in the installation, configuration, and 
management of PCs and PC networking software than his/her 
predecessors. This change in the profile encouraged us to shift 
the PATHWORKS focus from using host-based command line utilities 
to manage the system to using client-based graphical utilities.

We also profiled the customer network configuration. During the 
same five years, it changed from a very simple and homogeneous 
environment with just a few PATHWORKS servers to a 



medium-to-large heterogeneous PC LAN. At present, configurations 
comprise network operating systems that consist of Novell 
NetWare, Microsoft LAN Manager, and Apple AppleShare file and 
print services, as well as other services that are emerging in 
the PC LAN environment. The network operating systems are 
deployed on their native platforms and by Digital on the OpenVMS 
and DEC OSF/1 platforms. Each system has its own tools to manage 
the clients and the servers. Each has a different user interface 
that results in a long learning curve and thus high training 
costs or low productivity for system administrators. Customers 
reported that they desired tools with a consistent user interface 
to manage this diversity.

The team employed software usability testing throughout the 
development life cycle. Two usability tests were performed with 
early design prototypes; the final test was performed with our 
first pass at a detailed concept design. We performed the 
usability testing with customers to test user interface and 
functional element design concepts that we developed as a result 
of the Contextual Inquiry. The user thus served as a design 
participant. With each iteration of the formal testing, we tested 
specific functional concepts in three key areas: (1) mechanisms 
to navigate among the managed entities, (2) mechanisms to 
organize these entities, and (3) the functional capability 
inherent in the management directives supported. (Note that, in 
this paper, the servers, services, and resources managed by means 
of the ManageWORKS software are collectively referred to as 
managed entities.) The major lessons that we learned from this 
testing effort and then applied to the user interface and 
software designs are as follows:

    1.  The ManageWORKS software had to provide mechanisms to 
        navigate among a diverse set of managed entities on the 
        LAN or in some user-defined management domain. Users want 
        to be able to view and thus "discover" the entities that 
        are to be managed. The system had to present the managed 
        entities in graphical display formats that were familiar 
        and enticing to users. Users welcome the ability to 
        support different styles of presentation. Finally, users 
        need easy mechanisms to navigate through the hierarchy of 
        an entity.

    2.  Navigation mechanisms, as just described, work well for 
        novice users but become tedious and constraining for more 
        experienced users, as we could attest to after our 
        experience with the prototypes. The solution that we 
        presented to users allowed them to create custom views of 
        their managed entities, i.e., to organize their 
        management domains. This concept was well received by 
        users during usability testing.
  
    3.  The ManageWORKS product had to provide mechanisms that 
        consistently performed the functions that were common 
        among a diverse set of management applications. The 



        product design presents users with an object-oriented 
        view of the managed environment. The building block of 
        this design is the object, an abstraction of a manageable 
        entity such as a server or a network router. Each object 
        is a member of a single object class that describes the 
        set of object instances within it. The ManageWORKS 
        application renders objects to the user as icons in a 
        viewer. For example, for a LAN that contains three 
        NetWare servers, the object class called NetWare Servers 
        would contain three objects, each of which represents one 
        of the three individual NetWare servers on the LAN. When 
        users focus on an object, the tool reveals which actions 
        are valid in the object's current context. This approach 
        differs from the traditional command line approach in 
        which the user first selects the utility (action) and 
        then specifies the objects upon which to act. 
        Interestingly, whereas novice users found this 
        object-focused concept easy to grasp, those who 
        considered themselves strong users of the traditional 
        command line management utilities experienced difficulty 
        in grasping the new concept. 
 
    4.  The typical customer has a diverse and large (200 to 
        1,000) number of entities to manage. To address this 
        need, the prototype testing presented users with the 
        ability to manage more than one entity at the same time 
        and the ability to manage many entities as one. Users 
        liked being able to view and modify the properties of 
        multiple entities at the same time as well as being able 
        to modify the same property across a set of like 
        entities.

    5.  In addition to providing a consistent user interface, the 
        ManageWORKS product should integrate the management tools 
        into one workspace. User feedback led to the design of 
        the user interface framework as the delivery vehicle for 
        a diverse set of management applications.

THE KEY SOFTWARE DESIGN PRINCIPLES

At this point in the development cycle, the design focus shifted 
from developing and testing user interface and functionality 
concepts to designing the ManageWORKS software itself. With what 
we considered to be a good understanding of the user's needs, we 
proceeded to design a software architecture to support those 
requirements.

Prior architectures that were familiar to the design team served 
as starting points for the design. The following two examples 
represent sources of design concepts that we employed and adapted 
to suit our objectives. Each represents an opposing end of the 
spectrum with respect to design objectives and implementation.



The ManageWORKS team adopted the concept of plug-in modules, a 
software design that is supported by the Windows Dynamic Link 
Library (DLL) architecture.[2] The design is also in common use 
by many Windows applications including the Windows Control Panel, 
the utility that manages the local desktop's configuration and 
user preferences.[3]

The next challenge was to decide how much constraint to impose on 
the design of the ManageWORKS' plug-in modules and how consistent 
the modules must be. Digital's extensible enterprise management 
director, the DECmcc product, incorporated some excellent 
concepts.[4] In particular, our design was influenced by the way 
in which DECmcc layered the management responsibility into 
presentation modules, functional modules, and access modules. 
Early in the design process, we decided to separate the 
navigation and presentation of managed entities from the access 
and functional management of the entities.

Another DECmcc concept, which is used, for example, in the access 
module layer, was the presentation of a consistent view to the 
layers above.[4] This concept, however, was not suitable for the 
ManageWORKS design because it would have placed constraints on 
the user interface design, in particular, on the presentation of 
the attributes of managed entities. The design team was not 
willing to compromise on this aspect of the design.

Thus, we decided on a ManageWORKS design that can best be 
described as a user interface framework. The initial release, 
which was a component of PATHWORKS version 5.0 for DOS and 
Windows, offered few services other than to tie together the user 
interface elements required for system and network management. 
The user interface services needed were dictated by the five user 
interface requirements previously described. 

The ManageWORKS design incorporates two types of plug-in modules: 
navigation modules, referred to in the ManageWORKS product as 
Object Navigation Modules (ONMs), and application modules, 
referred to as Object Management Modules (OMMs). The ManageWORKS 
framework controls the control flow and messaging between the 
modules.

ONMs allow for any number of navigation models to be supported 
and used singly or simultaneously by the user. Although, by 
design, ONMs possess no knowledge of the managed entities or 
entity relationships they display, they do possess the ability to 
display entities with the relationships inherent in them. ONMs 
also provide the mechanisms for browsing and navigating through 
the management hierarchy. In addition to navigation capabilities, 
ONMs provide the user interface for organizing entities into a 
user-defined management domain.

The OMMs are responsible for managing the entities. The OMM 
design has three key components.



    1.  OMMs provide the methods used to manage the entities. 
        These methods include the functions of discover, create, 
        view, modify, and delete. The OMMs also have the option 
        of presenting to the user additional methods. That is, 
        since each OMM knows how to manage the entities for which 
        it is responsible, it knows which actions can be applied 
        to an entity based on the entity's current state and the 
        user's context.
 
    2.  OMMs provide access to the managed entities. An OMM can 
        use any interprocess communication mechanism to access or 
        to manage an entity. Examples include the task-to-task, 
        remote procedure call, and object request broker 
        mechanisms. Since a PC LAN environment affords no common 
        way for a management director to communicate with all the 
        types of devices present, the design team decided to 
        leave the choice of access mechanism up to the OMM.

    3.  OMMs provide the user interfaces required for managing 
        the entities. This design component allows developers to 
        present an interface that best suits the needs of the 
        user and best maps to the entity being managed. It also 
        allows for flexibility, evolution, and innovation in the 
        user interface of OMMs. The ManageWORKS design team did 
        not want to impose a user interface style or present a 
        user interface that was compromised by the diversity of 
        applications that we envisioned running within the 
        context of the framework, e.g., by being the least common 
        denominator. Even though one of the key product design 
        goals was a consistent user interface, we felt that it 
        was important to allow the OMMs to control the user 
        interfaces. First, we thought the design benefits 
        outweighed the risk of any inconsistency. Second, we 
        encouraged, but did not enforce, consistency by means of 
        a user interface style guide and common libraries that 
        implemented those guidelines.[5,6]

The plug-in modules also have a residual benefit. Because these 
modules can easily be added to or removed from the environment, 
they provide an easy way to extend and to customize the 
ManageWORKS product. Digital and third parties can develop new 
ONMs and OMMs and simply enroll them into the system. Users have 
the additional benefit of being able to customize the product to 
support only the ONMs and OMMs that are useful in their 
environment.

THE USER INTERFACE OF ONMs AND OMMs

Given the key software design elements presented in the previous 
section, the focus of the paper now returns to the user 
interface. This section describes what was implemented to support 
the customer requirements and the design framework. 



The user interface framework manifests the organizational, 
navigational, and functional elements of system and network 
management in a coherent whole. For example, the first three 
menus on the ManageWORKS menu bar -- Viewer, Edit Viewer, and 
Actions -- are all the tools the user needs to manage entities.
A discussion of the Viewer and Edit Viewer menus follows. 

By means of the ManageWORKS Viewer menu, ONMs present display 
elements, called viewers, to the user. Each instance of a window 
that an ONM creates is considered a viewer. A ManageWORKS viewer 
is one of the organizational elements for the user and is the 
root-level object for navigation. Each viewer is a viewport into 
a set of managed entities that the user may be browsing and 
navigating through. A viewer is analogous to a word processor's 
document, i.e., a viewer is a ManageWORKS "document." Just as you 
can create new documents and open, close, or edit existing 
documents when you use a word processing application, you can 
perform the same functions on viewers when using the ManageWORKS 
software.

ManageWORKS ONMs are responsible for the navigational and 
organizational display properties. The current ManageWORKS 
release comes with two ONMs. One ONM supports a hierarchical 
display of managed entities. This display is rendered in a single 
viewer window graphically as a tree or textually as an outline. 
The other available ONM supports the relational display of 
managed entities, rendered as a map. The map ONM can also support 
a hierarchy; each map is rendered in a new viewer instance. 
Figure 1 shows ManageWORKS with two hierarchical viewer styles 
and a map viewer. The hierarchical views are the Outline view 
(shown in the Browser viewer) and the Outline Tree view (shown in 
the IP Hierarchical View viewer). In addition to the map viewer 
(shown in the IP Discovery viewer), note the navigation window 
for the map viewer (shown in the IP Discovery (Navigator) 
viewer). This view shows a scaled map; the entire contents of the 
map viewer appears in a rectangular outline, which represents the 
user's current viewport into the data. The user can use the PC 
pointing device to drag and reposition the viewport.

[Figure 1 (ManageWORKS Viewers) is not available in ASCII 
format.]

Because the ONM maintains context when the user "edits," i.e., 
modifies, the contents of a viewer, the user can customize or 
organize the managed entities as desired. By means of the Edit 
Viewer, ONMs allow user customization within a viewer with the 
support of user-definable hierarchies. For example, each instance 
of a viewer can represent a different management domain for the 
user. The benefit is that the user can find objects and then 
arrange them into hierarchies that are most useful.

As stated earlier, OMMs control the user interfaces for 
displaying and modifying managed entity properties. The 
ManageWORKS framework provides for consistency in how the OMMs 



invoke the user interfaces and in how the user interfaces 
interrelate to the ONMs.

The consistency starts with the ManageWORKS Actions menu. The 
basic management directives on managed entities originate from 
this menu. The major challenge in designing this menu was to 
avoid using too many menu items, menu items that would change 
constantly (i.e., by addition or deletion), menu items that had 
three or four levels of hierarchy, and menu items that were not 
context sensitive to what the user was doing. The objective was 
to find a small set of words that conveyed the management 
functions the user would most often perform. We felt that these 
words should always be present in the Actions menu, but to 
eliminate confusion for the user, they should be rendered 
inactive when not valid. On the other hand, we realized that this 
small set of menu choices could never fully support the actions 
on managed entities; therefore, the software had to provide an 
extensibility mechanism.

We began the design process by developing an entity/action 
matrix. One axis contained a list of the entities that we 
envisioned being managed from the ManageWORKS software. The other 
axis contained a list of the actions that could be performed on 
the entities. We marked the intersections of the axes. In forming 
the list of actions, we chose words that were used in existing 
products that managed the same entities, words that we thought 
should be considered in a good user interface, and finally, 
synonyms to those words already listed. This approach gave us a 
clear picture of the common actions and also provided a thesaurus 
of words from which to choose. The common actions on managed 
entities that emerged from this exercise were
 
    1.  Make a new entity of some type.

    2.  Display all the managed entities.

    3.  View and modify the entity's properties.

    4.  Eliminate the entity.

The ManageWORKS software supports these common actions through 
the following Action menu choices:

    1.  Create.  Choose Create to make a new entity. 
  
    2.  Expand.  Choose Expand to view all the entities that the 
        ManageWORKS software is managing.

    3.  Properties.  Choose Properties to display a dialog box 
        that manifests all the entity's properties. The user can 
        then view the properties and make modifications, as 
        appropriate.

    4.  Delete.  Choose Delete to eliminate the entity.



The design of the Properties dialog box is one of the key user 
interface style elements of the ManageWORKS product; however, 
ManageWORKS does not enforce or provide for this element. Rather, 
the consistency is a function of a user interface style guide for 
OMMs and some common library routines that support this user 
interface style.[5,6] Figure 2 shows the dialog boxes of two of 
the three OMMs that come with the current ManageWORKS product: 
the Simple Network Management Protocol (SNMP) Manager OMM and the 
LAN Manager (LM) server management OMM. (The third OMM, for 
NetWare servers, is not shown.) Note the Selected Objects field 
in the SNMP dialog box. The ManageWORKS software allows the user 
to select multiple objects of the same class from a viewer and to 
invoke an OMM method. The list of selected objects is contained 
within this drop-down list box. The user can easily view the 
attributes of different objects from the same dialog box. The 
dialog box displays various sets of managed entity properties. 
The user can select the desired set of properties from the View 
or Modify drop-down list boxes.

[Figure 2 (ManageWORKS OMM Properties Dialog Boxes) is not 
available in ASCII format.]

Figure 2 demonstrates that two dialog boxes can be active at the 
same time. This feature supports the ManageWORKS design 
requirement that the user be able to manage more than one entity 
at a time. The ManageWORKS product supports, in effect, threads 
of execution to allow multiple OMMs to be active simultaneously.
Support for the design principle of managing many entities as 
easily as one is not a function of the ManageWORKS software but 
of the OMMs, since OMMs control the methods used to manage 
entities.

THE SOFTWARE SYSTEM DESIGN OF ManageWORKS 

The focus of the paper now shifts to the ManageWORKS internals 
that support the design principles and user interface just 
described.

The Application Framework

As an application, the ManageWORKS product is merely a software 
framework for integrating its top-level user interface with the 
user interfaces of the OMMs and ONMs. The ManageWORKS application 
consists of two main components: (1) the user interface shell and 
(2) the dispatcher. Figure 3 depicts the relationship between 
these ManageWORKS components and the OMMs and ONMs. 



Figure 3   ManageWORKS Application Architecture

                   +------------+      
                   | OBJECT     |
                   | NAVIGATION |
                   | MODULE     |
                   +-----^------+
                         |
+------------------------|----------------------------+
| USER INTERFACE SHELL   |                            |
|                        |                            |
|    +-------------------v-----------------------+    |
|    |               DISPATCHER                  |----|--+          
|    +-^-----------------^----------------^------+    |  |
|      |                 |                |           |  |
+------|-----------------|----------------|-----------+  |
       |                 |                |              |
+------v-------+  +------v------+  +------v------+       |
| OBJECT       |  | OBJECT      |  | OBJECT      |       |       
| MANAGEMENT   |  | MANAGEMENT  |  | MANAGEMENT  |       |
| MODULE       |  | MODULE      |  | MODULE      |       |
+-|------^-----+  +-|------^----+  +-|------^----+       |
  |      |          |      |         |      |            |
  | +----v----+     | +----v----+    | +----v----+       |
  | | MANAGED |     | | MANEGED |    | | MANAGED |       |
  | | ENTITY  |     | | ENTITY  |    | | ENTITY  |       |
  | +---------+     | +---------+    | +---------+       |
  |                 |                |                   |
+-v-----------------v----------------v----------------+  |
|                      DATABASE                       |<-+ 
+-----------------------------------------------------+                    

The user interface shell is a standard Microsoft Windows 
application that supports the top-level Windows user interface 
components -- the main application window and its menu bar, tool 
ribbon, and status bar. The user interface shell translates all 
user interaction by means of the menus, tool ribbon, and mouse 
actions into OMM and ONM application programming interfaces 
(APIs) to perform work for the end user. The shell is also 
responsible for initializing and terminating the application, 
including the dispatcher.

The dispatcher is responsible for maintaining a link between the 
user interface shell and all the OMMs, as well as for providing 
service routines. The dispatcher loads and initializes all OMMs 
present based on an initialization file that the end user 
configures at installation time (or, if subsequent modules are 
added, by means of the Management Module Setup program). To 
enable this routing to occur, the dispatcher maintains a list of 
all OMMs loaded and the object classes that they support.



One service that the dispatcher provides for OMMs and ONMs is the 
ability to modify the menu bar. OMMs and ONMs may add and set 
menu items but only through the APIs. The ManageWORKS software 
ultimately controls what gets displayed in the menus based on 
what objects are selected in a viewer, which prevents the modules 
from directly manipulating the menu bar.

The Application Programming Interfaces

Once we had defined the concepts of the ManageWORKS user 
interface and object classes, we designed a common set of APIs 
that all OMM and ONM developers would employ. The APIs that 
emerged focused primarily on the object -- both its class and its 
instance. Because the current set of object-oriented languages 
and tools does not map well to the services supplied by the 
Windows system, these APIs are in a more conventional C/Pascal 
programming language style rather than in a C++ style.

The APIs that an OMM must support fall into three categories 
based upon their scope of operation: (1) module based, (2) class 
based, and (3) object based. All APIs have parameters that 
contain information pertinent to the API call, including the 
object identifier (OID), which identifies the object on which to 
perform the operation.

Module-based APIs perform initialization, termination, and 
information reporting for the entire OMM. The initialization 
includes determining how many object classes an OMM supports. 
This function is important because an OMM can support more than 
one class, e.g., a hierarchy of classes. By checking for software 
dependencies on the operating system or support libraries, the 
OMM can also make sure that the computer environment is capable 
of supporting the OMM. For example, Digital's implementation of 
the OMM that manages NetWare servers requires that the NetWare 
client be installed and configured on the PC. Module termination 
occurs before the ManageWORKS software terminates, which allows 
OMMs to clean up any resources they may have used. The 
information function provides information such as the module's 
name and copyright information.

Class-based APIs support the actions that apply to all objects 
within a class. These functions include initialization, 
termination, configuration, and reporting information about what 
actions and properties can be accessed by the end user in the 
ManageWORKS user interface. A class-based configuration API 
presents a configuration window for each class to the user; the 
user can then change the behavior of the object class. For 
example, the user can indicate whether or not files on a disk 
with hidden or system attributes or hidden LAN Manager file 
services should be displayed.

Object-based APIs provide the ability to manipulate individual 
objects within the ManageWORKS software. With these APIs, OMMs 



can accomplish all the base actions and those operations provided 
for in the user interface. These APIs include functions to 
create, delete, insert, remove, copy, get and set properties, 
display a properties dialog box, maintain containership 
relationships (e.g., technology-based hierarchies), and maintain 
classes that can be created and inserted into an object. 
Approximately 30 APIs (a small manageable set) must be 
implemented to be ManageWORKS compliant.

Each class- or object-based API requires an OID or list of OIDs 
on which to perform the operation. When called, each class API 
acts on a single object class. The caller manages all memory 
needed for the successful completion of an API, i.e., no API 
returns a pointer to data. APIs that can return a variable amount 
of information use a two-step calling convention. The first call 
determines the buffer size required to hold all the data; the 
second call retrieves that data. This two-call approach requires 
OMMs to efficiently gather information using OMM-specific 
information caches to store information retrieved from the 
managed entity.  

ONMs contain all the module-, class-, and object-based APIs that 
exist in a standard OMM but also contain some viewer-specific 
APIs. These APIs include functions to display viewers, select 
displayed objects, expand objects, update objects, and retrieve 
displayed objects. New ONMs can be developed using these APIs.

The Object Identifier

To represent objects within the ManageWORKS software, we chose 
the approach of assigning an OID to each object in the system. 
This number embodies the information of the class to which the 
object belongs as well as the uniqueness of the individual 
instance of an object within the class.  

The assignment of an OID to an object is the responsibility of 
the OMM. The ManageWORKS software dynamically assigns to an 
object class an OID that represents the class, and the OMM is 
responsible for creating the unique instance values within the 
context of that class. This approach allows OMMs the flexibility 
of using any strategy to assign these values, e.g., sequential 
assignment or mapping to a particular technology, such as an 
external database record.

Each OID is a 32-bit number; the high 12 bits contain information 
that identifies the class to which the object belongs to. This 
bit arrangement places a limit, (2**12)-1, i.e., 4095 (a value of 
0 is invalid), on the number of classes that can be active with 
ManageWORKS at any one time. The low 20 bits provide the 
uniqueness for each object instance within the class, providing 
for up to (2**20)-1, i.e., more than 1 million, individual 
instances within a single class. The advantages to using an OID 
lie in allowing objects to store information in any format they 



wish and using access functions to get at that information in a 
consistent manner.

Storing Information about Objects

Although the OMMs are responsible for assigning OIDs to objects 
within a class and for storing information about each object that 
can be managed, we did not want every OMM under development to 
have to create its own mechanism to accomplish these tasks. We 
decided to create an object database that would store information 
about objects and generate new OIDs for the OMMs.

Initial designs of this object database were to support multiple 
users and thus allow the sharing of information between multiple 
ManageWORKS users and other applications. Because the schedule 
for the first release of the ManageWORKS software did not give us 
ample time to employ a commercially available database, we 
decided to create our own database to support the management of 
object classes and object instances. This database supports only 
a single user and consists of indexed files for (1) object 
information, (2) class information, and (3) containership 
information. The existence of these files is hidden under a 
database API, which supports all the management aspects of 
objects, from creating and deleting classes and objects to 
reading and modifying attributes of those objects. 

To allow future changes in the underlying technology of the 
database, we placed the database code into a DLL. For the second 
release, we created a new database DLL, with the same APIs, that 
works with Borland's dBase IV database implementation. By simply 
replacing the database DLL, all OMMs can now take advantage of 
having information shared between ManageWORKS users across the 
network. This design allows for comanagement of the LAN by 
multiple network administrators who have the same information 
available. The OMMs do not have to make any source code changes 
to work with this new database DLL, but additional APIs are 
present to allow for the use of advanced database features.

Before an OMM can create objects in the database, the object 
class itself must be created in the database. Because it 
dynamically assigns OIDs, the object database must store unique 
information about the class along with the OID. Each OMM must 
register an object class, where each class has a name that can be 
presented to the user in the user interface, and a class tag. The 
class tag is a 64-byte character string that must be unique among 
all OMMs. The database dynamically assigns an OID to a newly 
created class and maintains that mapping to the class tag. We 
decided that using a unique 64-byte character string would result 
in less conflict among OMM developers than assigning hard-coded 
OID values to each customer that wanted to develop an OMM. By not 
hard-coding the values, we ensured that each newly created object 
class would receive the next OID value. Thus, different end users 
who are using different sets of OMMs may have different OID 



values assigned to each of the object classes.

OMMs can use this object database to create object classes or 
objects within those classes, and to store any amount of 
information with each object. Most objects store enough 
information to get to another data source, thereby preventing 
information in the database from becoming inconsistent with the 
managed entity. For example, a NetWare Server OMM saves only the 
server name in the database because with that name the OMM can 
make NetWare API calls to retrieve other information.

When the object database creates an object, it assigns the object 
an OID within the space of that object class. Thus, OMMs can rely 
on the database for creating unique OIDs for each object in the 
system.  

Another feature of the object database is the concept of 
transient and permanent objects. The object database DLL writes 
transient objects not into the database files but rather to 
global system memory in the Windows operating system. Having the 
objects in memory creates a large performance gain and avoids the 
problems associated with disk thrashing. To indicate the type of 
object that is created, the object database reserves bit 19 of 
the OID to use as a flag. If the bit is set by the OMM or ONM, 
the object is transient. When an object is created in the 
database, the OID for the class is passed to the database DLL 
with or without bit 19 set, thus determining whether the object 
is transient or permanent.

In our initial development work, we quickly discovered that 
creating all the OID entries in a database file diminished 
performance. This problem was most evident in the development of 
the DOS file system OMM. This OMM enumerates directories, which 
causes a disk seek operation and a disk read operation for the 
enumeration. Next a write of the object to the database file on 
the same disk causes another disk seek/write operation. This 
resulted in tremendous disk thrashing. We envisioned that many 
OMMs would enumerate and create a list of contained objects each 
time an object is expanded, so we wanted this operation to be 
fast and efficient. 

Introducing New OMMs and ONMs into the ManageWORKS Software

In traditional software development, the addition of new 
functionality into an application generally requires source code 
modification and recompilation. Clearly, this approach would not 
allow ManageWORKS developers to meet the goal of providing an 
extensible application framework. Developers needed a way to 
write software that could become part of the ManageWORKS 
application without requiring changes to the application. 

Since the ManageWORKS software runs in the Microsoft Windows 
operating system environment, software developers were able to 



take advantage of many features of the Windows system. We used 
DLLs to provide an extensible framework for the ManageWORKS 
product.

By creating a DLL that conforms to the set of APIs needed to 
manage an object or to implement a viewer, we can add new DLLs at 
any time to add functionality to the ManageWORKS software. 
Therefore, all OMMs and ONMs must be implemented as DLLs. The 
registration process needed to be simple and dynamic for these 
DLLs. Using a Windows application initialization (INI) file, the 
dispatcher reads the list of entries in the file and attempts to 
load and initialize all OMMs and ONMs defined. End users can add 
new OMMs by running the ManageWORKS Management Module Setup 
program, which simplifies the installation of any OMMs provided 
by either Digital or a third-party vendor.

When a new OMM is introduced, the ManageWORKS software needs to 
assign an OID to each object class that the OMM handles. This is 
accomplished by asking the dispatcher for an OID for the class 
based upon a supplied class tag. The dispatcher then uses the 
object database to have the OID assigned. The dispatcher's use of 
the object database ensures that the OID for the class is unique 
to that class. OMMs can ask the object database directly, but 
this is merely a side effect of the dispatcher's use of the 
object database and is not recommended.

Interactions between ManageWORKS Components

Most ManageWORKS events occur when the user interacts with the 
user interface, although OMMs and ONMs can generate events that 
cause communication to occur between the components of the 
system. The usual flow of control through the ManageWORKS 
software begins with a viewer, the set of selected objects in a 
viewer, and the valid managed entity actions in the Action menu. 
The application uses the dispatcher to call a particular API to 
the correct OMM for the class of object being operated upon. In 
this section, we walk through three typical user interaction 
scenarios. For each scenario, we describe key elements of control 
flow between the user interface shell, the dispatcher, the ONM 
involved, and the OMM involved. These scenarios illustrate how 
the ManageWORKS elements fit and work together to achieve our 
primary objective, i.e., to design a user interface framework 
with consistent mechanisms to display, organize, and navigate 
through management entities for the purpose of managing one or 
more of those entities.

Scenario 1.  This scenario outlines the process of displaying the 
properties dialog box of the selected object(s) in a viewer. 

    1.  The user has selected one or more objects of the same 
        class in a viewer by clicking with the mouse.



    2.  The user then chooses the Properties menu item from the 
        Actions menu. As a reminder, this action invokes the 
        properties dialog box, which by style guide convention, 
        supports the viewing and modification of a managed 
        entity's properties.

    3.  The ManageWORKS software queries the selected viewer for 
        the list of selected objects and obtains the OIDs of the 
        objects from the viewer.

    4.  The ManageWORKS dispatcher decodes the object class 
        portion of the OID.

    5.  The ManageWORKS software tells the OMM of that object 
        class to display the properties dialog box for the list 
        of objects (OIDs) supplied.

    6.  The OMM displays a properties dialog box that contains 
        all the supplied objects. The OMM has complete control of 
        the user interface for this window and complete control 
        over the access to the managed entity mechanism to get 
        and set the properties from the managed entities.

Scenario 2.  This scenario outlines the process of expanding a 
selected set of objects in a hierarchical viewer. Expanding an 
object results in the display of the object's descendants within 
the hierarchy defined by the OMM. The user may render this 
display in a hierarchical fashion with one of the hierarchical 
view styles or as a descendant portion of a topological view.

    1.  The user has selected one or more objects in a viewer by 
        clicking with the mouse. The objects may be of the same 
        class or of different classes.

    2.  The user then chooses the Expand menu item from the 
        Actions menu.

    3.  The ManageWORKS software queries the selected viewer for 
        the list of selected objects and obtains the OIDs of the 
        objects from the viewer.

    4.  The ManageWORKS software tells the selected viewer to 
        expand the list of objects supplied (the selected objects 
        from the last call).

    5.  For each selected object to be expanded, the viewer 
        queries the object by means of the dispatcher for the 
        list of contained objects within that object. The 
        dispatcher calls the OMM that supports the object to get 
        the list of contained objects. The viewer repeats this 
        process for all OIDs to be expanded.

    6.  For a hierarchical view, the viewer places the list of 



        objects into the viewer in a hierarchical fashion. For a 
        topological map view, the viewer either creates a new 
        window or replaces the current window, depending on the 
        choice the user has indicated through the customization 
        dialog box. The window shows the descendant set of 
        objects with their topological relationships.

    7.  For each of the contained objects, the viewer queries the 
        object's OMM by means of the dispatcher for its name and 
        bitmap, and to determine whether it can potentially be 
        expanded by the user. The viewer repeats this process for 
        each contained object to be displayed and then renders 
        each item.

Scenario 3.  This scenario outlines the process of dragging and 
dropping an object onto another object in a viewer. The OMM of 
the target object controls the semantics of this operation.

    1.  The viewer controls the drag-and-drop operations.

    2.  The viewer determines the OIDs of the object(s) that the 
        user is dragging.

    3.  As the user moves the mouse, the viewer receives mouse 
        move messages from the Windows system and determines if 
        the mouse is over a viewer. The window messages are sent 
        directly to the viewer window.

    4.  If it is over a viewer, the mouse tells the target viewer 
        what objects the user is dragging over it. The source ONM 
        sends a ManageWORKS-defined Windows message to the target 
        viewer window with the list of OIDs being dragged.

    5.  The target viewer determines what object the mouse is 
        over and if that object is selected. The set of objects 
        targeted to receive the dropped object comprises either 
        the individual object, or if selected, all the selected 
        objects in the viewer. 

    6.  The target viewer queries the OMM of each target object 
        about what class of object can be dropped on it. If all 
        the target objects can accept the dragged objects, the 
        cursor changes shape to reflect a potentially successful 
        drop.  Otherwise, the cursor changes to reflect that the 
        drop would not succeed at this mouse location.

    7.  When the user drops the objects, the same verification 
        occurs as during the drag operation. If the drop is not 
        going to be successful, the viewer that initiated the 
        drag operation returns the mouse cursor to the original 
        location.

    8.  If the drop operation passes the verification step, each 



        object that the user is dragging is copied by the OMM to 
        each target object. This is done iteratively for each 
        dragged object, and each copy has the potential for 
        failure. For example, a DOS file can be dragged to a DOS 
        disk class object, but when the copy is attempted, the 
        disk may not have enough free space to successfully copy 
        the file. When each dragged object is copied, the OMM of 
        the target object is told that it should now contain the 
        new object. This causes the hierarchy to be properly 
        updated. A drag-and-drop operation that is intended to 
        move an object is implemented as a copy followed by a 
        removal of the original.  

CONCLUSIONS

We feel that we have been successful at building a unique user 
interface framework that integrates a diverse set of 
applications; the design essentially meets all but one of the 
objectives we established. Because by design we limited the scope 
of services provided by the framework, we could not meet all of 
our end-user objectives. Specifically, the responsibility of 
allowing the user to manage many entities as though they were one 
fell on the OMMs and not on the framework itself. Although we 
would have liked the framework to provide this service, such a 
design was not feasible, given that the OMM controlled both the 
access to the managed entity and the user interface to view and 
modify entity properties.

The reader should observe that the first two major releases of 
the ManageWORKS software provide few core services. The core 
services include the user interface shell, the viewers, and the 
object database that ship with the ManageWORKS product and the 
ManageWORKS Software Developer's Kit. These components serve as a 
unifying framework for the functional modules, which provide the 
user with tools to manage entities and are thus the "heart and 
soul" of the environment. Future development of core framework 
services is under consideration. Among the areas under active 
consideration are Windows Object Linking and Embedding (OLE) 
support and scripting support for inter- and intra-OMM control. 
Such services would make ONMs and OMMs more consistent, useful, 
and powerful for the end user. At the same time, these services 
would free the individual developer from writing this code and 
thus provide the developer the freedom to focus on the 
value-added functionality.

ACKNOWLEDGMENTS

Many people contributed a great deal to the design and 
implementation of the ManageWORKS product. Although the 
contributors are too numerous to mention individually, we would 
like to acknowledge the functional groups within the PATHWORKS 
organization to which they belong, namely, Business Management, 



Marketing, Human Factors Engineering, Systems Quality 
Engineering, Documentation, Release Engineering, Field Test 
Administration, and, of course, Software Development Engineering.
 

REFERENCES

1.  K. Holtzblat and S. Jones, "Contextual Inquiry: A 
    Participatory Technique for System Design" in Participatory 
    Design: Principles and Practice, A. Namioka and D. Schuler, 
    eds. (Hillsdale, NJ: Lawrence Erlbaum Associates, Inc., 
    1993).

2.  Microsoft Windows Guide to Programming (Redmond, WA: 
    Microsoft Press, 1990).

3.  Windows 3.1 Software Developer's Kit, Control Panel Applets 
    in Online Help (Redmond, WA: Microsoft Press, 1992).

4.  C. Strutt, and D. Shurtleff, "Architecture for an Integrated, 
    Extensible Enterprise Management Director" in Integrated 
    Network Management, vol. 1, B. Meandzja and J. Westcott, eds. 
    (Amsterdam: North-Holland, Elsevier, 1989): 61-72.

5.  ManageWORKS Programming Guide (Maynard, MA: Digital Equipment 
    Corporation, Order No. AA-QADFB-TE, 1994).

6.  ManageWORKS Programmer's Reference (Maynard, MA: Digital 
    Equipment Corporation, Order No. AA-QADGB-TE, 1994).

BIOGRAPHIES

Dennis G. Giokas   Dennis Giokas is currently a senior associate
with Symmetrix, Inc. While at Digital from 1984 to 1995, he was a
consulting engineer in the PATHWORKS group. He co-led PATHWORKS
V5.0 and architected the user interface and system management
tools. He was also architect and manager for the PC DECwindows
program. Previously, Dennis worked at Arco Oil & Gas and The
Foxboro Company developing process control software. He holds a
Bachelor of Music from the University of Massachusetts at Lowell,
a Master of Music from the New England Conservatory, and a
M.S.C.S. from Boston University.

John C. Rokicki  John Rokicki, the project leader for ManageWORKS 
Workgroup Administrator, is a principal software engineer within 
Digital's Network Operating Systems engineering organization. His 
primary responsibility is the design and implementation of the 
base services of the ManageWORKS product. Before joining Digital 
in 1990, he was employed by Data General Corp. and Sytron Inc. 
John holds a B.S. (1989) in computer science from Worcester 
Polytechnic Institute.



TRADEMARKS 

The following are trademarks of Digital Equipment Corporation: 
DEC, DEC OSF/1, DECmcc, Digital, ManageWORKS, OpenVMS, PATHWORKS, 
VAX, and VMS. 

Apple and AppleShare are registered trademarks of Apple Computer, 
Inc.

dBase IV is a registered trademark of Borland International, Inc.

Microsoft is a registered trademark and Windows is a trademark of 
Microsoft Corporation.

NetWare and Novell are registered trademarks of Novell, Inc.

OSF/1 is a registered trademark of the Open Software Foundation, 
Inc.

=============================================================================
Copyright 1995 Digital Equipment Corporation.  Forwarding and copying of this 
article is permitted for personal and educational purposes without fee 
provided that Digital Equipment Corporation's copyright is retained with the 
article and that the content is not modified. This article is not to be 
distributed for commercial advantage. Abstracting with credit of Digital 
Equipment Corporation's authorship is permitted.  All rights reserved.
=============================================================================


