The Design of ManageWORKS: A User |nterface Framework

by Dennis G G okas and John C. Rokick

ABSTRACT

The ManageWORKS Wor kgroup Admi ni strator for Wndows software
product is Digital's integration platformfor system and network
managenent of heterogeneous | ocal area networks. The ManageWORKS
product enables multiple, heterogeneous network operating system
and network interconnect device nanagenent from a single PC
runni ng under the M crosoft Wndows operating system The
ManageWORKS software is a user interface franmework; that is, the
services it provides are primarily targeted at the integration of
the user interface el enents of managenent applications. It
mani f ests the organi zati onal, navigational, and functiona

el enents of system and network managenment in a coherent whol e.

Vi ewers, such as the hierarchical outline viewer and the

t opol ogi cal relationships viewer that are conponents of the
ManageWORKS software, provide the organizational and navigationa
el enents of the system Managenent applications devel oped by
Digital and by third parties through the ManageWORKS Sof t war e
Devel oper's Kit provide the functional elenents to nmanage network
entities. This paper discusses the user interface design that

i mpl enments these three elenents and the software system design
that supports the user interface framework.

| NTRODUCTI ON

The ManageWORKS Wor kgroup Admi ni strator for Wndows software
product is Digital's strategic tool for providing system and

net wor k managenent of heterogeneous | ocal area networks (LANs).
It serves as Digital's platformfor the integration of PC LAN
managenment. From the perspective of the end user, i.e., the LAN
system adni ni strator and network manager, the ManageWORKS product
conprises a suite of nmodules that integrates a diverse set of
managenment activities into one workspace. Fromthe perspective of
t he devel oper of system and networ k managenment applications, the
ManageWORKS product is an extensible and flexible software
framework for the rapid devel opnent of integrated managenent
nmodul es, all of which presents a consistent user interface.

The design of the nmanagenment system was user centric, i.e.,
usability was the top priority. Thus, we began the design work
wi t hout any preconcei ved notions about the managenent software
system desi gn. The design that enmerged and that is docunmented in
this paper was driven solely by the user interface paradi gm
devel oped and tested with our custoners.

Thi s paper focuses on how t he ManageWORKS software presents and

integrates its functionality to the end user. Specifically, the
paper presents details of the user interface paradi gm and

di scusses the design rationale and the design nmethods enpl oyed.
The paper al so discusses the design of ManageWORKS software in

support of the user interface franmework.

DRI VI NG FORCES BEHI ND THE DESI GN

The ManageWORKS software was originally released as a conponent
of the PATHWORKS version 5.0 for DOS and W ndows product. The
foci for that PATHWORKS rel ease set the tone for the ManageWORKS
desi gn. The PATHWORKS version 5.0 design objectives were to

1. Enhance the usability of the PATHWORKS product. Since
t he PATHWORKS system was rooted in a conmand |ine-based
user interface, the goal was to devel op a graphical user
interface for the systemthat was based on the M crosoft
W ndows operating system Such a user interface would be
contenporary, easier to learn, and easier to use

2. Enhance the manageability of the PATHWORKS product. The
goal was to reduce the cost of ownership by inproving the
installation, configuration, and administration of the
system

The ManageWORKS design team used two voi ce-of -t he-cust onmer

techni ques to provide nore depth and detail for the two

hi gh-1evel product design objectives. First, the team used
Contextual Inquiry to determne a custonmer profile and to devel op
a clearer statement of the user's work.[1l] Then, the teamtested
user interface prototypes with custoners by neans of formnal
usability testing. From 15 to 20 custoners and users partici pated
in each of three rounds of usability testing.

Early in the investigation, Contextual Inquiry reveal ed that the
profile of the PATHWORKS system adm ni strator had changed
drastically during the five years since the PATHWORKS product was
first released. A typical systemadm nistrator in the era of
PATHWORKS version 1.0 had been a VAX/ VMS syst em nmanager who
inherited the responsibility of installing and managing a PC file
and print-sharing product. The interface into the systemwas a
VT-class term nal running command |ine-based utilities. Today, a
system administrator is usually a PC user who is quite famliar

wi th graphical user interfaces. Such an administrator is nore
likely to be trained in the installation, configuration, and
managenment of PCs and PC networking software than his/her
predecessors. This change in the profile encouraged us to shift

t he PATHWORKS focus from usi ng host-based command line utilities
to manage the systemto using client-based graphical utilities.

We al so profiled the customer network configuration. During the
same five years, it changed froma very sinple and honpgeneous
environnent with just a few PATHWORKS servers to a

medi umto-1 arge heterogeneous PC LAN. At present, configurations
conprise network operating systens that consist of Novel

Net Ware, M crosoft LAN Manager, and Appl e AppleShare file and
print services, as well as other services that are emerging in
the PC LAN environnent. The network operating systens are

depl oyed on their native platforns and by Digital on the OpenVMsS
and DEC OSF/ 1 platfornms. Each systemhas its own tools to manage
the clients and the servers. Each has a different user interface
that results in a long | earning curve and thus high training
costs or |ow productivity for system adm ni strators. Custoners
reported that they desired tools with a consistent user interface
to manage this diversity.

The team enpl oyed software usability testing throughout the

devel opnent life cycle. Two usability tests were perforned with
early design prototypes; the final test was performed wi th our
first pass at a detailed concept design. W perforned the
usability testing with custonmers to test user interface and
functional el enent design concepts that we devel oped as a result
of the Contextual Inquiry. The user thus served as a design
participant. Wth each iteration of the formal testing, we tested
speci fic functional concepts in three key areas: (1) nechani sns
to navi gate anong the managed entities, (2) nmechanisns to
organi ze these entities, and (3) the functional capability

i nherent in the managenent directives supported. (Note that, in
this paper, the servers, services, and resources managed by neans
of the ManageWORKS software are collectively referred to as
managed entities.) The ngjor | essons that we |learned fromthis
testing effort and then applied to the user interface and
software designs are as foll ows:

1. The ManageWORKS software had to provide nechani sns to
navi gate anong a diverse set of managed entities on the
LAN or in sonme user-defined managenent donmain. Users want
to be able to view and thus "di scover” the entities that
are to be managed. The system had to present the nanaged
entities in graphical display formats that were famliar
and enticing to users. Users welcone the ability to
support different styles of presentation. Finally, users
need easy mechani snms to navigate through the hierarchy of
an entity.

2. Navigation nmechani sns, as just described, work well for
novi ce users but becone tedi ous and constraining for nore
experienced users, as we could attest to after our
experience with the prototypes. The solution that we
presented to users allowed themto create custom vi ews of
their managed entities, i.e., to organize their
managenment domai ns. This concept was well received by
users during usability testing.

3. The ManageWORKS product had to provide nechani sns that
consistently performed the functions that were conmon
anong a diverse set of mmnagenent applications. The

product design presents users with an object-oriented

vi ew of the managed environnent. The buil ding bl ock of
this design is the object, an abstraction of a manageable
entity such as a server or a network router. Each object
is a nenber of a single object class that describes the
set of object instances within it. The ManageWORKS
application renders objects to the user as icons in a

vi ewer. For exanple, for a LAN that contains three

Net Ware servers, the object class called NetWare Servers
woul d contain three objects, each of which represents one
of the three individual NetWare servers on the LAN. When
users focus on an object, the tool reveals which actions
are valid in the object's current context. This approach
differs fromthe traditional command |ine approach in
which the user first selects the utility (action) and
then specifies the objects upon which to act.
Interestingly, whereas novice users found this

obj ect-focused concept easy to grasp, those who

consi dered thensel ves strong users of the traditiona
command |ine managenment utilities experienced difficulty
in grasping the new concept.

4. The typical custonmer has a diverse and large (200 to
1,000) nunber of entities to manage. To address this
need, the prototype testing presented users with the
ability to manage nore than one entity at the sanme tine
and the ability to manage nany entities as one. Users
i ked being able to view and nodify the properties of
multiple entities at the sane tine as well as being able
to nodi fy the sane property across a set of like
entities.

5. In addition to providing a consistent user interface, the
ManageWORKS product should integrate the managenent tools
into one workspace. User feedback led to the design of
the user interface framework as the delivery vehicle for
a diverse set of mmnagenent applications.

THE KEY SOFTWARE DESI GN PRI NCI PLES

At this point in the devel opment cycle, the design focus shifted
from devel opi ng and testing user interface and functionality
concepts to designing the ManageWORKS software itself. Wth what
we considered to be a good understandi ng of the user's needs, we
proceeded to design a software architecture to support those
requi renents.

Prior architectures that were famliar to the design team served
as starting points for the design. The foll ow ng two exanples
represent sources of design concepts that we enpl oyed and adapted
to suit our objectives. Each represents an opposing end of the
spectrumwith respect to design objectives and inplenentation

The ManageWORKS t eam adopted the concept of plug-in nodules, a
software design that is supported by the W ndows Dynam c Link

Li brary (DLL) architecture.[2] The design is also in commn use
by many W ndows applications including the Wndows Control Panel
the utility that manages the | ocal desktop's configuration and
user preferences.[3]

The next chall enge was to deci de how nmuch constraint to i mpose on
the design of the ManageWORKS' plug-in nodul es and how consi st ent
the nodul es nust be. Digital's extensible enterprise managenment
director, the DECnhcc product, incorporated sone excell ent
concepts.[4] In particular, our design was influenced by the way
in which DECntc | ayered the managenent responsibility into
presentati on nodul es, functional nodul es, and access nodul es.
Early in the design process, we decided to separate the

navi gati on and presentati on of managed entities fromthe access
and functional managenment of the entities.

Anot her DECncc concept, which is used, for exanple, in the access
nodul e | ayer, was the presentation of a consistent view to the

| ayers above.[4] This concept, however, was not suitable for the
ManageWORKS desi gn because it woul d have placed constraints on
the user interface design, in particular, on the presentation of
the attributes of nanaged entities. The design team was not
willing to conprom se on this aspect of the design

Thus, we deci ded on a ManageWORKS desi gn that can best be
described as a user interface franework. The initial release,

whi ch was a conponent of PATHWORKS version 5.0 for DOS and

W ndows, offered few services other than to tie together the user
interface elenents required for system and network nmanagenent.
The user interface services needed were dictated by the five user
interface requirenents previously described.

The ManageWORKS design incorporates two types of plug-in nodul es:
navi gati on nodules, referred to in the ManageWORKS product as

Obj ect Navigation Mdul es (ONMs), and application nodul es,
referred to as Obj ect Managenent Modul es (OMVs). The ManageWORKS
framework controls the control flow and nessagi ng between the
nodul es.

ONMs al | ow for any nunmber of navigation nodels to be supported
and used singly or simultaneously by the user. Although, by

desi gn, ONMs possess no know edge of the managed entities or
entity relationships they display, they do possess the ability to
display entities with the relationships inherent in them ONMVs

al so provide the nmechani snms for browsing and navi gati ng through

t he managenent hierarchy. In addition to navigation capabilities,
ONMs provide the user interface for organizing entities into a
user-defi ned managenent domain.

The OMMB are responsible for managing the entities. The OW
desi gn has three key conmponents.

1. OWs provide the nethods used to nmanage the entities.
These nethods include the functions of discover, create,
view, nodify, and delete. The OMMs al so have the option
of presenting to the user additional nmethods. That is,
since each OW knows how to manage the entities for which
it is responsible, it knows which actions can be applied
to an entity based on the entity's current state and the
user's context.

2. OWEs provide access to the managed entities. An OW can
use any interprocess conmuni cati on mechanismto access or
to manage an entity. Exanples include the task-to-task,
renote procedure call, and object request broker
mechani sns. Since a PC LAN environnent affords no conmon
way for a managenment director to conmunicate with all the
types of devices present, the design team decided to
| eave the choice of access nechanismup to the OW

3. OWEs provide the user interfaces required for managi ng
the entities. This design conmponent allows devel opers to
present an interface that best suits the needs of the
user and best maps to the entity being managed. It al so
allows for flexibility, evolution, and innovation in the
user interface of OMs. The ManageWORKS design team did
not want to inpose a user interface style or present a
user interface that was conprom sed by the diversity of
applications that we envisioned running within the
context of the framework, e.g., by being the | east conmon
denom nator. Even though one of the key product design
goal s was a consistent user interface, we felt that it
was inmportant to allow the OMV to control the user
interfaces. First, we thought the design benefits
out wei ghed the risk of any inconsistency. Second, we
encouraged, but did not enforce, consistency by means of
a user interface style guide and common |ibraries that
i mpl enment ed those guidelines.[5, 6]

The plug-in nodul es al so have a residual benefit. Because these
nodul es can easily be added to or renoved fromthe environment,
they provide an easy way to extend and to custonize the
ManageWORKS product. Digital and third parties can devel op new
ONMs and OMWs and sinply enroll theminto the system Users have
the additional benefit of being able to custom ze the product to
support only the ONMs and OMMs that are useful in their

envi ronnent .

THE USER | NTERFACE OF ONME AND OMMVs

G ven the key software design elenents presented in the previous
section, the focus of the paper now returns to the user
interface. This section describes what was inplenmented to support
the customer requirenents and the design framework.

The user interface framework mani fests the organi zati onal

navi gati onal, and functional elenents of system and network
managenment in a coherent whole. For exanple, the first three
menus on the ManageWORKS nenu bar -- Viewer, Edit Viewer, and
Actions -- are all the tools the user needs to manage entities.
A discussion of the Viewer and Edit Viewer menus foll ows.

By means of the ManageWORKS Vi ewer menu, ONMs present display

el ements, called viewers, to the user. Each instance of a w ndow
that an ONM creates is considered a viewer. A ManageWORKS vi ewer
is one of the organizational elenents for the user and is the
root-1l evel object for navigation. Each viewer is a viewport into
a set of nmmnaged entities that the user may be browsi ng and

navi gating through. A viewer is analogous to a word processor's
docunent, i.e., a viewer is a ManageWORKS "docunent." Just as you
can create new docunents and open, close, or edit existing
docunents when you use a word processing application, you can
performthe sanme functions on viewers when using the ManageWORKS
sof t war e.

ManageWORKS ONMs are responsi ble for the navigational and

organi zati onal display properties. The current ManageWORKS

rel ease comes with two ONMs. One ONM supports a hierarchica

di spl ay of managed entities. This display is rendered in a single
vi ewer wi ndow graphically as a tree or textually as an outline.
The other avail able ONM supports the rel ational display of
managed entities, rendered as a map. The map ONM can al so support
a hierarchy; each map is rendered in a new vi ewer instance.
Figure 1 shows ManageWORKS with two hierarchical viewer styles
and a map viewer. The hierarchical views are the Qutline view
(shown in the Browser viewer) and the Qutline Tree view (shown in
the P Hierarchical View viewer). In addition to the map viewer
(shown in the I P Discovery viewer), note the navigation w ndow
for the map viewer (shown in the IP Discovery (Navigator)

viewer). This view shows a scaled map; the entire contents of the
map vi ewer appears in a rectangular outline, which represents the
user's current viewport into the data. The user can use the PC
poi nting device to drag and reposition the viewport.

[Figure 1 (ManageWORKS Viewers) is not available in ASCI
format.]

Because the ONM mmi ntai ns context when the user "edits," i.e.,
nodi fies, the contents of a viewer, the user can custom ze or
organi ze the managed entities as desired. By neans of the Edit
Viewer, ONMs all ow user custom zation within a viewer with the
support of user-definable hierarchies. For exanple, each instance
of a viewer can represent a different management domain for the
user. The benefit is that the user can find objects and then
arrange theminto hierarchies that are nost useful

As stated earlier, OMM control the user interfaces for
di spl ayi ng and nodi fyi ng managed entity properties. The
ManageWORKS franmewor k provides for consistency in how the OMMs

i nvoke the user interfaces and in how the user interfaces
interrelate to the ONM.

The consistency starts with the ManageWORKS Acti ons nenu. The
basi ¢ managenent directives on managed entities originate from
this menu. The mmjor challenge in designing this nmenu was to
avoid using too many nmenu itens, nmenu itens that woul d change
constantly (i.e., by addition or deletion), nmenu itens that had
three or four levels of hierarchy, and nenu itens that were not
context sensitive to what the user was doing. The objective was
to find a small set of words that conveyed the managenent
functions the user would nost often perform W felt that these
wor ds shoul d al ways be present in the Actions nenu, but to
elimnate confusion for the user, they should be rendered

i nactive when not valid. On the other hand, we realized that this
smal | set of menu choices could never fully support the actions
on managed entities; therefore, the software had to provide an
extensibility nechanism

We began the design process by devel oping an entity/action
matri x. One axis contained a list of the entities that we
envi si oned bei ng managed fromthe ManageWORKS software. The ot her
axis contained a list of the actions that could be perforned on
the entities. We marked the intersections of the axes. In formng
the list of actions, we chose words that were used in existing
products that managed the sane entities, words that we thought
shoul d be considered in a good user interface, and finally,
synonyns to those words already listed. This approach gave us a
clear picture of the common actions and al so provided a thesaurus
of words fromwhich to choose. The commn actions on nanaged
entities that enmerged fromthis exercise were

1. Make a new entity of some type

2. Display all the managed entities.

3. View and nodify the entity's properties.
4. Elimnate the entity.

The ManageWORKS sof tware supports these common actions through
the foll owing Action nmenu choices:

1. Create. Choose Create to nake a new entity.

2. Expand. Choose Expand to view all the entities that the
ManageWORKS software i s managi ng.

3. Properties. Choose Properties to display a dial og box
that manifests all the entity's properties. The user can
then view the properties and nake nodifications, as
appropri ate.

4. Delete. Choose Delete to elimnate the entity.

The design of the Properties dialog box is one of the key user
interface style elenents of the ManageWORKS product; however,
ManageWORKS does not enforce or provide for this el enment. Rather
the consistency is a function of a user interface style guide for
OWs and sone comon |ibrary routines that support this user
interface style.[5,6] Figure 2 shows the dial og boxes of two of
the three OMM that cone with the current ManageWORKS product:
the Sinple Network Management Protocol (SNMP) Manager OWM and t he
LAN Manager (LM server managenent OVMM (The third OW for

Net Ware servers, is not shown.) Note the Selected Objects field
in the SNWP di al og box. The ManageWORKS software all ows the user
to select nultiple objects of the sane class froma viewer and to
i nvoke an OW nethod. The |ist of selected objects is contained
within this drop-down |ist box. The user can easily view the
attributes of different objects fromthe sane dial og box. The
di al og box displays various sets of nmnaged entity properties.
The user can select the desired set of properties fromthe View
or Modify drop-down |ist boxes.

[Figure 2 (ManageWORKS OW Properties Dial og Boxes) is not
available in ASCI| format.]

Figure 2 denonstrates that two di al og boxes can be active at the
same time. This feature supports the ManageWORKS desi gn

requi renent that the user be able to nmanage nore than one entity
at a tine. The ManageWORKS product supports, in effect, threads
of execution to allow nultiple OMs to be active sinultaneously.
Support for the design principle of nmanagi ng many entities as
easily as one is not a function of the ManageWORKS sof tware but
of the OMVs, since OMMs control the nethods used to nmanage
entities.

THE SOFTWARE SYSTEM DESI GN OF ManageWORKS

The focus of the paper now shifts to the ManageWORKS i nternal s
that support the design principles and user interface just
descri bed.

The Application Framework

As an application, the ManageWORKS product is nerely a software
framework for integrating its top-level user interface with the
user interfaces of the OMMs and ONMs. The ManageWORKS application
consists of two main conponents: (1) the user interface shell and
(2) the dispatcher. Figure 3 depicts the rel ationship between

t hese ManageWORKS conponents and the OMVe and ONMs.

Figure 3 ManageWORKS Application Architecture

T +
| OBJECT |
| NAVI GATI ON
| MODULE |
+----- Ao +
|
I I +

I I
I I
| R T A e +
| | Dl SPATCHER IR
| A I A e e e Neeee o - + | |
I I I I |
to----- |-----mmmmmee oo |----mmmmme oo |-----mm---- +
I I I I
F--- - - V-mmmm - - + H------ V------ + H------ V------ + |
OBJECT		OBJECT		OBJECT	
MANAGEMENT		MANAGEMENT		MANAGEMENT	
MODULE		MODULE		MODULE	
+-]------ Ao +	- A I T L [Ayspp—				
I I I I I I I					
+----v----+	+----v----+	+----v----+			
	MANAGED			MANEGED	
	ENTITY			ENTITY	
+--------- +	+--------- +	+--------- +			
I I I I					
L R T L L +					
DATABASE	<-+				
o m m m e m oo oo +
The user interface shell is a standard M crosoft W ndows
application that supports the top-level Wndows user interface
conponents -- the main application wi ndow and its nmenu bar, too

ri bbon, and status bar. The user interface shell translates al
user interaction by neans of the nmenus, tool ribbon, and nouse
actions into OW and ONM application programr ng interfaces
(API's) to performwork for the end user. The shell is also
responsible for initializing and term nating the application,

i ncl udi ng the dispatcher

The di spatcher is responsible for maintaining a |ink between the
user interface shell and all the OMs, as well as for providing
service routines. The dispatcher loads and initializes all OWs
present based on an initialization file that the end user
configures at installation time (or, if subsequent nodul es are
added, by neans of the Managenent Modul e Setup progran). To
enable this routing to occur, the dispatcher maintains a |list of
all OV | oaded and the object classes that they support.

One service that the dispatcher provides for OMB and ONMs is the
ability to nodify the nenu bar. OMV and ONMs nmay add and set
menu itens but only through the APIs. The ManageWORKS software
ultimately controls what gets displayed in the nmenus based on
what objects are selected in a viewer, which prevents the nodul es
fromdirectly manipul ating the nenu bar.

The Application Progranm ng Interfaces

Once we had defined the concepts of the ManageWORKS user

i nterface and object classes, we designed a conmon set of APIs
that all OWM and ONM devel opers woul d enpl oy. The APIs that
energed focused primarily on the object -- both its class and its
i nstance. Because the current set of object-oriented | anguages
and tools does not map well to the services supplied by the

W ndows system these APIs are in a nore conventional C Pasca
programm ng | anguage style rather than in a C++ style.

The APIs that an OWM nust support fall into three categories
based upon their scope of operation: (1) nodule based, (2) class
based, and (3) object based. Al APIs have paraneters that
contain information pertinent to the APl call, including the
object identifier (OD), which identifies the object on which to
perform the operation.

Modul e-based APIs performinitialization, termnation, and
informati on reporting for the entire OWM The initialization

i ncl udes determ ning how many obj ect classes an OW supports.
This function is inportant because an OVWM can support nore than
one class, e.g., a hierarchy of classes. By checking for software
dependenci es on the operating system or support libraries, the
OW can al so make sure that the conputer environnment is capable
of supporting the OMM For exanple, Digital's inplenentation of
the OMWM t hat manages NetWare servers requires that the NetWare
client be installed and configured on the PC. Mddule termnation
occurs before the ManageWORKS software term nates, which all ows
OWSs to clean up any resources they may have used. The

i nformati on function provides information such as the nodul e's
name and copyright information.

Cl ass-based APIs support the actions that apply to all objects
within a class. These functions include initialization

term nation, configuration, and reporting information about what
actions and properties can be accessed by the end user in the
ManageWORKS user interface. A class-based configuration API
presents a configuration wi ndow for each class to the user; the
user can then change the behavior of the object class. For
exanpl e, the user can indicate whether or not files on a disk

wi th hidden or system attri butes or hidden LAN Manager file
servi ces shoul d be displ ayed.

bj ect -based APlIs provide the ability to mani pul ate individua
objects within the ManageWORKS software. Wth these APls, OWsb

can acconplish all the base actions and those operations provi ded
for in the user interface. These APIs include functions to
create, delete, insert, renove, copy, get and set properties,

di splay a properties dialog box, maintain containership

rel ati onships (e.g., technol ogy-based hierarchies), and maintain
cl asses that can be created and inserted into an object.

Approxi mately 30 APIs (a small manageabl e set) nust be

i mpl emented to be ManageWORKS conpl i ant.

Each cl ass- or object-based APl requires an OD or list of ODs
on which to performthe operation. When called, each class API
acts on a single object class. The caller nmanages all nenory
needed for the successful conpletion of an API, i.e., no API
returns a pointer to data. APIs that can return a variabl e anmount
of information use a two-step calling convention. The first cal
deternmines the buffer size required to hold all the data; the
second call retrieves that data. This two-call approach requires
OWs to efficiently gather information using OMMspecific

i nformati on caches to store information retrieved fromthe
managed entity.

ONMs contain all the nodul e-, class-, and object-based APIs that
exist in a standard OW but al so contain sonme viewer-specific
APl's. These APls include functions to display viewers, select
di spl ayed objects, expand objects, update objects, and retrieve
di spl ayed objects. New ONMs can be devel oped using these APIs.

The Object ldentifier

To represent objects within the ManageWORKS software, we chose
t he approach of assigning an O D to each object in the system
Thi's nunber enbodies the informati on of the class to which the
obj ect belongs as well as the uniqueness of the individua

i nstance of an object within the class.

The assignnent of an O D to an object is the responsibility of
the OM The ManageWORKS software dynamically assigns to an
object class an O D that represents the class, and the OW is
responsi ble for creating the unique instance values within the
context of that class. This approach allows OMMs the flexibility
of using any strategy to assign these values, e.g., sequentia
assignment or mapping to a particular technol ogy, such as an

ext ernal database record.

Each O Dis a 32-bit nunber; the high 12 bits contain infornmation
that identifies the class to which the object belongs to. This
bit arrangenent places a limt, (2**12)-1, i.e., 4095 (a val ue of
O is invalid), on the nunber of classes that can be active with
ManageWORKS at any one tine. The | ow 20 bits provide the

uni queness for each object instance within the class, providing
for up to (2**20)-1, i.e., nmore than 1 nmillion, individua

i nstances within a single class. The advantages to using an O D
lie in allowi ng objects to store information in any format they

wi sh and using access functions to get at that information in a
consi stent manner.

Storing Informati on about Objects

Al t hough the OMMs are responsible for assigning O Ds to objects
within a class and for storing information about each object that
can be nmanaged, we did not want every OWM under devel opnment to
have to create its own nechanismto acconplish these tasks. W
decided to create an object database that would store information
about objects and generate new O Ds for the OWVs.

Initial designs of this object database were to support nultiple
users and thus allow the sharing of information between multiple
ManageWORKS users and ot her applications. Because the schedul e
for the first release of the ManageWORKS software did not give us
anple time to enploy a commercially avail abl e dat abase, we
decided to create our own database to support the managenent of
obj ect classes and object instances. This database supports only
a single user and consists of indexed files for (1) object
information, (2) class information, and (3) containership

i nformati on. The exi stence of these files is hidden under a

dat abase API, which supports all the managenent aspects of
objects, fromcreating and deleting classes and objects to
readi ng and nodifying attributes of those objects.

To all ow future changes in the underlying technol ogy of the

dat abase, we pl aced the database code into a DLL. For the second
rel ease, we created a new database DLL, with the same APIs, that
works with Borland's dBase |V database inplenentation. By sinply
repl aci ng the database DLL, all OMMs can now take advantage of
havi ng i nformati on shared bet ween ManageWORKS users across the
network. This design allows for comanagenent of the LAN by
mul ti ple network administrators who have the sanme information
avail able. The OMM do not have to make any source code changes
to work with this new database DLL, but additional APIs are
present to allow for the use of advanced dat abase features.

Bef ore an OWM can create objects in the database, the object
class itself must be created in the database. Because it
dynam cal ly assigns O Ds, the object database must store unique

i nformati on about the class along with the O D. Each OW nust

regi ster an object class, where each class has a nane that can be
presented to the user in the user interface, and a class tag. The
class tag is a 64-byte character string that nust be uni que anong
all OWs. The database dynamically assigns an ODto a nemy
created class and maintains that mapping to the class tag. W
deci ded that using a unique 64-byte character string would result
in less conflict among OW devel opers than assigni ng hard-coded
O D values to each custoner that wanted to devel op an OVW By not
har d- codi ng the val ues, we ensured that each newy created object
cl ass woul d receive the next O D value. Thus, different end users
who are using different sets of OMMs may have different O D

val ues assigned to each of the object classes.

OWMMs can use this object database to create object classes or
objects within those classes, and to store any amunt of
informati on with each object. Mst objects store enough
information to get to another data source, thereby preventing
information in the database from becomning inconsistent with the
managed entity. For exanple, a NetWare Server OW saves only the
server nane in the database because with that nane the OVWM can
make NetWare APl calls to retrieve other information.

When the object database creates an object, it assigns the object
an ODwthin the space of that object class. Thus, OWs can rely
on the database for creating unique O Ds for each object in the
system

Anot her feature of the object database is the concept of

transi ent and pernmanent objects. The object database DLL wites
transi ent objects not into the database files but rather to

gl obal system nmenory in the Wndows operating system Having the
objects in nenory creates a | arge performance gain and avoids the
probl enms associated with di sk thrashing. To indicate the type of
object that is created, the object database reserves bit 19 of
the ODto use as a flag. If the bit is set by the OV or ONM
the object is transient. Wen an object is created in the

dat abase, the O D for the class is passed to the database DLL
with or without bit 19 set, thus determ ning whet her the object
is transient or pernanent.

In our initial devel opment work, we quickly discovered that
creating all the O D entries in a database file dim nished
performance. This problem was npst evident in the devel opnent of
the DOS file system OM This OW enunerates directories, which
causes a di sk seek operation and a disk read operation for the
enuneration. Next a wite of the object to the database file on
the sane di sk causes another disk seek/wite operation. This
resulted in trenendous di sk thrashing. W envisioned that many
OWs woul d enunerate and create a |list of contained objects each
time an object is expanded, so we wanted this operation to be
fast and efficient.

I nt roduci ng New OMMs and ONMs i nto the ManageWORKS Sof t war e

In traditional software devel opnent, the addition of new
functionality into an application generally requires source code
nodi fication and reconpilation. Clearly, this approach woul d not
al | ow ManageWORKS devel opers to neet the goal of providing an
extensi bl e application framework. Devel opers needed a way to
write software that could becone part of the ManageWORKS
application without requiring changes to the application.

Si nce the ManageWORKS software runs in the Mcrosoft W ndows
operating system environnent, software devel opers were able to

t ake advantage of nmany features of the Wndows system W used
DLLs to provide an extensible framework for the ManageWORKS
product .

By creating a DLL that confornms to the set of APlIs needed to
manage an object or to inplenent a viewer, we can add new DLLs at
any tinme to add functionality to the ManageWORKS sof t war e.
Therefore, all OV and ONMs nust be inplenmented as DLLs. The
regi stration process needed to be sinple and dynam c for these
DLLs. Using a Wndows application initialization (IN) file, the
di spatcher reads the list of entries in the file and attenpts to
load and initialize all OMW and ONMs defined. End users can add
new OMMs by runni ng the ManageWORKS Managenent Mbdul e Set up
program which sinplifies the installation of any OMMs provided
by either Digital or a third-party vendor

When a new OM is introduced, the ManageWORKS software needs to
assign an O D to each object class that the OMW handles. This is
acconpl i shed by asking the dispatcher for an O D for the class
based upon a supplied class tag. The dispatcher then uses the

obj ect database to have the O D assigned. The di spatcher's use of
t he object database ensures that the O D for the class is unique
to that class. OMs can ask the object database directly, but
this is nerely a side effect of the dispatcher's use of the

obj ect database and is not recomended.

I nteractions between ManageWORKS Conponent s

Most ManageWORKS events occur when the user interacts with the
user interface, although OMM and ONMs can generate events that
cause comuni cation to occur between the conponents of the
system The usual flow of control through the ManageWORKS
software begins with a viewer, the set of selected objects in a
viewer, and the valid nmanaged entity actions in the Action menu.
The application uses the dispatcher to call a particular APl to
the correct OMWM for the class of object being operated upon. In
this section, we walk through three typical user interaction
scenari os. For each scenario, we describe key el enments of contro
fl ow between the user interface shell, the dispatcher, the ONM
i nvol ved, and the OMM invol ved. These scenarios illustrate how
t he ManageWORKS el enments fit and work together to achi eve our
primary objective, i.e., to design a user interface framework

wi th consistent mechani sns to display, organize, and navi gate

t hrough managenent entities for the purpose of nmanagi ng one or
nore of those entities.

Scenario 1. This scenario outlines the process of displaying the
properties dialog box of the selected object(s) in a viewer.

1. The user has selected one or nore objects of the sane
class in a viewer by clicking with the npuse.

2. The user then chooses the Properties nenu itemfromthe
Actions nenu. As a rem nder, this action invokes the
properties dialog box, which by style guide conventi on,
supports the viewi ng and nodification of a nmanaged
entity's properties.

3. The ManageWORKS software queries the selected viewer for
the list of selected objects and obtains the O Ds of the
objects fromthe viewer.

4. The ManageWORKS di spat cher decodes the object class
portion of the O D.

5. The ManageWORKS software tells the OW of that object
class to display the properties dialog box for the |ist
of objects (O Ds) supplied.

6. The OWM di spl ays a properties dialog box that contains
all the supplied objects. The OM has conpl ete control of
the user interface for this w ndow and conplete contro
over the access to the nmanaged entity nmechanismto get
and set the properties fromthe nanaged entities.

Scenario 2. This scenario outlines the process of expanding a
sel ected set of objects in a hierarchical viewer. Expanding an
object results in the display of the object's descendants within
the hierarchy defined by the OMM The user may render this
display in a hierarchical fashion with one of the hierarchica
view styles or as a descendant portion of a topol ogical view

1. The user has selected one or nore objects in a viewer by
clicking with the nouse. The objects may be of the sane
class or of different classes.

2. The user then chooses the Expand nenu item fromthe
Acti ons nenu.

3. The ManageWORKS software queries the selected viewer for
the list of selected objects and obtains the O Ds of the
objects fromthe viewer.

4. The ManageWORKS software tells the selected viewer to
expand the list of objects supplied (the selected objects
fromthe last call).

5. For each sel ected object to be expanded, the viewer
queries the object by neans of the dispatcher for the
list of contained objects within that object. The
di spatcher calls the OMM that supports the object to get
the list of contained objects. The viewer repeats this
process for all O Ds to be expanded.

6. For a hierarchical view, the viewer places the list of

objects into the viewer in a hierarchical fashion. For a
t opol ogi cal map view, the viewer either creates a new

wi ndow or replaces the current wi ndow, depending on the
choi ce the user has indicated through the custoni zation
di al og box. The wi ndow shows the descendant set of
objects with their topological relationships.

For each of the contained objects, the viewer queries the
object's OW by neans of the dispatcher for its name and
bitmap, and to determ ne whether it can potentially be
expanded by the user. The viewer repeats this process for
each contained object to be displayed and then renders
each item

Scenario 3. This scenario outlines the process of draggi ng and
droppi ng an object onto another object in a viewer. The OW of
the target object controls the semantics of this operation.

1

2.

The viewer controls the drag-and-drop operations.

The viewer deternmines the O Ds of the object(s) that the
user is dragging.

As the user nmoves the nmouse, the viewer receives nouse
nove nessages fromthe Wndows system and determnes if
the nouse is over a viewer. The w ndow nessages are sent
directly to the viewer w ndow.

If it is over a viewer, the nouse tells the target viewer
what objects the user is dragging over it. The source ONM
sends a ManageWORKS- defi ned W ndows nessage to the target
viewer window with the |ist of O Ds being dragged.

The target viewer determ nes what object the nouse is
over and if that object is selected. The set of objects
targeted to receive the dropped object conprises either
the individual object, or if selected, all the selected
objects in the viewer.

The target viewer queries the OW of each target object
about what class of object can be dropped on it. If al
the target objects can accept the dragged objects, the
cursor changes shape to reflect a potentially successfu
drop. O herwi se, the cursor changes to reflect that the
drop woul d not succeed at this nouse |ocation

When the user drops the objects, the same verification
occurs as during the drag operation. If the drop is not
going to be successful, the viewer that initiated the
drag operation returns the nouse cursor to the origina
| ocati on.

If the drop operation passes the verification step, each

object that the user is dragging is copied by the OW to
each target object. This is done iteratively for each
dragged object, and each copy has the potential for
failure. For exanple, a DOS file can be dragged to a DOS
di sk class object, but when the copy is attenpted, the
di sk may not have enough free space to successfully copy
the file. Wen each dragged object is copied, the OwW of
the target object is told that it should now contain the
new obj ect. This causes the hierarchy to be properly
updat ed. A drag-and-drop operation that is intended to
nove an object is inplenented as a copy followed by a
removal of the original

CONCLUSI ONS

We feel that we have been successful at building a unique user
interface framework that integrates a diverse set of

applications; the design essentially neets all but one of the

obj ectives we established. Because by design we limted the scope
of services provided by the framework, we could not neet all of
our end-user objectives. Specifically, the responsibility of

al l owi ng the user to manage nmany entities as though they were one
fell on the OMB and not on the franmework itself. Although we
woul d have liked the framework to provide this service, such a
desi gn was not feasible, given that the OM controlled both the
access to the managed entity and the user interface to view and
nodi fy entity properties.

The reader should observe that the first two mj or rel eases of

t he ManageWORKS software provide few core services. The core
services include the user interface shell, the viewers, and the
obj ect dat abase that ship with the ManageWORKS product and the
ManageWORKS Sof t ware Devel oper's Kit. These conponents serve as a
uni fying framework for the functional nodul es, which provide the
user with tools to nanage entities and are thus the "heart and
soul " of the environnment. Future devel opment of core franmework
services is under consideration. Anong the areas under active
consi deration are Wndows Object Linking and Enbeddi ng (OLE)
support and scripting support for inter- and intra-QOw control
Such services would nake ONMs and OMMs nore consistent, useful
and powerful for the end user. At the same tine, these services
woul d free the individual developer fromwiting this code and

t hus provi de the devel oper the freedomto focus on the

val ue- added functionality.

ACKNOW.EDGVENTS

Many people contributed a great deal to the design and

i mpl enentation of the ManageWORKS product. Although the
contributors are too nunmerous to nmention individually, we would
like to acknowl edge the functional groups within the PATHWORKS
organi zation to which they belong, nanely, Business Managenent,

Mar keti ng, Human Factors Engi neering, Systems Quality
Engi neeri ng, Docunentation, Release Engineering, Field Test
Admi ni stration, and, of course, Software Devel opnent Engi neeri ng.

REFERENCES

1. K Holtzblat and S. Jones, "Contextual Inquiry: A
Partici patory Technique for System Design" in Participatory
Design: Principles and Practice, A. Nanmi oka and D. Schul er,
eds. (Hillsdale, NJ: Lawence Erl baum Associ ates, Inc.,
1993).

2. Mcrosoft Wndows Guide to Programr ng (Rednond, WA:
M crosoft Press, 1990).

3. Wndows 3.1 Software Developer's Kit, Control Panel Applets
in Online Help (Rednond, WA: M crosoft Press, 1992).

4, C. Strutt, and D. Shurtleff, "Architecture for an Integrated,
Ext ensi bl e Enterpri se Managenent Director" in Integrated
Net wor k Managenent, vol. 1, B. Meandzja and J. Westcott, eds.
(Anmsterdam North-Hol | and, El sevier, 1989): 61-72.

5. ManageWORKS Progranmmi ng Guide (Maynard, MA: Digital Equi pnent
Corporation, Oder No. AA-QADFB-TE, 1994).

6. ManageWORKS Progranmmer's Reference (Maynard, MA: Digital
Equi pment Corporation, Oder No. AA- QADGB-TE, 1994).

Bl OGRAPHI ES

Dennis G G okas Dennis G okas is currently a senior associate
with Symmetrix, Inc. Wile at Digital from 1984 to 1995, he was a
consul ting engineer in the PATHWORKS group. He co-led PATHWORKS
V5.0 and architected the user interface and system managenent
tools. He was al so architect and manager for the PC DECw ndows
program Previously, Dennis worked at Arco Ol & Gas and The
Foxboro Conpany devel opi ng process control software. He holds a
Bachel or of Music fromthe University of Massachusetts at Lowel |,
a Master of Miusic fromthe New Engl and Conservatory, and a

M S.C. S. from Boston University.

John C. Rokicki John Rokicki, the project |eader for ManageWORKS
Wor kgroup Administrator, is a principal software engineer within
Digital's Network Operating Systens engi neering organi zation. His
primary responsibility is the design and inplenentation of the
base services of the ManageWORKS product. Before joining Digital
in 1990, he was enployed by Data General Corp. and Sytron Inc.
John holds a B.S. (1989) in conmputer science from Wrcester

Pol ytechnic Institute.

TRADEMARKS

The following are trademarks of Digital Equi pnment Corporation
DEC, DEC OSF/ 1, DECnctc, Digital, ManageWORKS, OpenVMS, PATHWORKS,
VAX, and VMS.

Appl e and Appl eShare are regi stered trademarks of Apple Conputer
I nc.

dBase IV is a registered tradenark of Borland International, Inc.

M crosoft is a registered trademark and Wndows is a trademark of
M crosoft Corporation

Net Ware and Novel |l are registered trademarks of Novell, Inc.

OSF/1 is a registered trademark of the Open Software Foundati on,
I nc.

Copyright 1995 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equiprment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

