The Structure of the OpenVMS Managenent Station

by Janes E. Johnson

ABSTRACT

The OpenVMS Managenent Station software provides a robust
client-server application between a PC running the M crosoft

W ndows operating system and several OpenVMs cluster systens. The
initial version of the OpenVMs Managenent Station software
concentrated on allowi ng custoners to handle the system
managenment functionality associated with user account managemnent.
To achieve these attributes, the OpenVMS Managenent Station
software uses the data-sharing aspects of OpenVMS cl uster
systens, a communi cations design that is secure and that scal es
well with additional target systens, and a nmanagenent displ ay
that is geared for the simultaneous nmanagenent of multiple
simlar systens.

OVERVI EW

The OpenVMS Managenent Station version 1.0 software provides a
robust, scal able, and secure client-server application between a
personal conputer (PC) running the Mcrosoft Wndows operating
system and several OpenVMS systens. This nmanagenment tool was
devel oped to solve sonme very specific problens concerning the
managenment of multiple systems. At the sanme tine, the project
engi neers strove for a release cycle that could bring tinely
relief to custoners in installnents.

Before the advent of this new software, all OpenVMS base system
managenment tools have either executed agai nst one system such as
AUTHORI ZE, or against a set of systenms in sequence, such as
SYSMAN. Furthernore, the existing tools that do provi de sone
primtive support for the managenent of nultiple systens either
do not take advantage of or do not take into account the inherent
structure of a VMsScluster system

In contrast, the OpenVMS Managenent Station product was designed
fromthe outset for efficient execution in a distributed,

mul tiple system configuration. The OpenVMsS Managenent Station
tool supports parallel execution of system management requests
agai nst several target OpenVMS systens or VMsScl uster systens.
Furthernore, the software incorporates several features that nake
such multiple target requests natural and easy for the system
manager .

Data from custoner surveys indicated the need for a quick
response to the problenms of managi ng OpenVMsS systens. For this
reason, the project team chose a phased delivery approach, in

which a series of frequent rel eases woul d be shipped, with
support for a small nunber of system nmanagenent tasks provided in
an individual release

The initial version of the OpenVMS Managenent Station software
concentrated on providing the system managenent functionality
associated with user account managenent. This goal was achieved
by using a project infrastructure that supported frequent product
rel eases. This paper describes the OpenVMs Managenent Station
software, concentrating on the client-server structure. It also
presents the issues and trade-offs that needed to be faced for
successful delivery.

MANAG NG OPENVMS USER ACCOUNTS

Managi ng user accounts on an OpenVMS operating systemis a
relatively conplicated task.[1l] The nmanner in which the user is
represented to the system nmanager is the cause of much
conplexity. The attributes that define a user are not located in
one place, nor is nmuch enphasis placed on ensuring consistency
bet ween the various attributes.

For exanple, Table 1 gives the attributes of an OpenVMS user
stored in various files, including the user authorization file
(SYSUAF. DAT), the rightslist file (Rl GHTSLI ST. DAT), and the
DECnet network proxy file (NET$PROXY.DAT). Prior to the OpenVMS
Management Station product, these files were managed by a
collection of lowlevel utilities, such as AUTHORI ZE. Al though
these utilities provide the ability to manipul ate the individua
user attributes, they offer little support for ensuring that the
overall collection of user attributes is consistent. For

i nstance, none of these utilities would detect that a user's
account had been created with the user's hone directory |ocated
on a disk to which the user had no access.

Table 1 Breakdown of Data Stores and Managenent Utilities for
OpenVMS Users

Data Store Attributes Management Utility

SYSUAF. DAT User nane, AUTHORI ZE
Aut hori zati on data
(e.g., passwords),
process quot as,
| ogi n device, and
directory

Rl GHTSLI ST. DAT Ri ghts identifiers AUTHORI ZE

NET$PROXY. DAT Renot e<- >| ocal user AUTHORI ZE

DECnet proxy mappi ngs

VMS$MAI L_PROFI LE. DAT User's mail profile MAI L

QUOTA. SYS (per disk) User's di sk quota DI SKQUOTA

Login directory User's hone directory CREATE/ DI RECTORY

TNT$UADB. DAT User's | ocation, <new wi t h OpenVMS
phone nunber, and Managenment Station
or gani zati on sof t war e>

i nf ormati on

Al of these factors create additional conplexity for an OpenVMS
system manager. This conplexity is conpounded when a nunber of

| oosely rel ated OpenVMS systens nust be nanaged at various sites.
The user account managenent features of the OpenVMS Managenent
Station product are designed to alleviate or renove these
additional conplexities for the OpenVMS system nanager

OPENVMS SYSTEM CONFI GURATI ONS

The OpenVMS operating system can be used in many ways. The
features of the VMsScluster nmethod all ow systens to expand by

i ncrenental |l y addi ng storage or processing capacity. In addition
the OpenVMS operating systemis frequently used in networked
configurations. Its inherent richness leads to a | arge and

di verse range in the possible OpenVMs configurations. The skil
and effort required to manage the larger configurations is
consi der abl e.

For instance, Figure 1 shows a possible customer configuration,
in which a nunber of VMScluster systens extend across a prinary
and a backup site. Each cluster has a somewhat different purpose,
as given in Table 2. Here OpenVMsS workstations are depl oyed to
users who need dedi cated processi ng power or graphics support,
and personal conmputers are deployed in other departnents for data
access and storage. Finally, the table |lists sone groups of users
who need access to nultiple systens, sonmetinmes with changed
attributes. The system nmanager for this type of configuration
woul d repeatedly perform nmany tasks across several targets, such
as systenms or users, with small variations fromtarget to target.
The OpenVMS Managenent Station product was designed to operate
well in configurations such as this.

[Figure 1 (Distributed OpenVMs System Configuration) is not
available in ASCI| format.]
Table 2 Usage and User Conmmunity for Sanple Configuration

Name Usage User Comrunity

A Mai n production cluster Oper ations group
Production group
Devel opnent group (unprivil eged)

B Devel opnent cl uster Operations group
Devel opnent group
(full devel opnent privil eges)

C Backup production cluster Operations group
and mai n accounting Devel opnent group (unprivil eged)
cluster Production group

Accounting group

Wor kst ati ons Wor kst ati on owner
Some of operations group

A distributed systemis clearly necessary to support effective
and efficient systenms managenent for configurations such as the
one shown in Figure 1. A distributed system should support
paral |l el execution of requests, |everage the clusterw de

attri butes of sonme system nanagenent operations, and provide for
wi de area support. These characteristics are expanded in the
remai nder of this section.

Supporting Parallel Execution

Support of parallel execution has two different inplications.
First, the execution tine should rise slowmy, or preferably
remai n constant, as systens are added. This inplies that the
execution agai nst any given target system should be overl apped by
the execution against the other target systens.

Second, for parallel execution to be usable in a wi der range of
cases, it should be easy and straightforward to nmake a request
that will have similar, but not identical, behavior on the target
systenms. For instance, consider adding a user for a new nenber of
t he devel opnent staff in the configuration shown in Figure 1. The
new user would be privileged on the devel opnment VMscl uster
system but unprivileged on the production cluster. It should be
straightforward to express this as a single request, rather than
as two di sparate ones.

Leveragi ng VMScl uster Attributes

OpenVMS system nanagenent tasks operate agai nst sonme resources
and attributes that are shared clusterw de, such as nodifications
to the user authorization file, and sone that are not shared,
such as the system paraneter settings.

In the first case, the scope of the resource extends throughout
the VMScl uster system Here, it is desirable (and when the
operation is not idenpotent, it is necessary) for the operation

to execute once within the VMScluster system In the |atter case,
the operation nust execute agai nst every systemwi thin the
cluster that the system manager wants to affect. Also, the set of
resources that falls into the first case or the second is not
fixed. In the OpenVMS operating systemrel eases, the ongoing
trend is to share resources that were node-specific throughout a
VMScl uster system The OpenVMS Managenent Station software mnust
handl e resources that have different scopes on different systens
that it is managing at the sane tine.

W de Area Support

Managenment of a group of OpenVMS systens is not necessarily
limted to one site or to one |local area network (LAN).
Frequently there are renote backup systens, or the devel opnent
site is renote fromthe production site. Alnpst certainly, the
syst em manager needs to be able to perform sone managenent tasks
renmotely (from hone). Therefore, any solution nust be able to
operate outside of the LAN environnent. It should also be able to
function reasonably in bandwi dth-linmted networks, regardless of
whet her or not the slower speed lines are to a few renote
systens, or between the system manager and all the managed

syst ens.

OPENVMS MANAGEMENT STATI ON STRUCTURE

The resulting structure for the OpenVMS Managenent Station
software is shown in Figure 2. The conponents contai ned within
the dashed box are present in the final version 1.0 product. The
ot her conponents were specified in the design, but were
unnecessary for the initial rel ease.

[Figure 2 (OpenVMS Managenment Station Structure) is not available
in ASCII format.]

The client software on the PC uses the ManageWORKS managenent
framework from Digital's PATHWORKS product. This extensible
framewor k provi des hierarchical navigation and presentation
support, as well as a local configuration database.[2] The
framewor k di spatches to Obj ect Managenent Modules (OWMs) to
manage i ndi vi dual objects. OpenVMs Managenent Station has three
OWMMs that are used to organize the system manager's view of the
managed systens. These are Managenent Donmi ns, VMScl uster
Systens, and OpenVMsS Nodes. In addition, two OMVs manage user
accounts: OpenVMS Accounts and OpenVMS User. The first OW s
used to retrieve the user accounts and to create subordinate
OpenVMS User objects in the ManageWORKS franmewor k hi erarchy. The
second contains the client portion of the OpenVMS user account
managenment support. Underlying the last two OMs is the client
comuni cations |ayer. This provides authenticated comunications
to a server.

The server software on the OpenVMS systens consists of a
message- di spat chi ng mechani sm and a collection of server OWsk
that enact the various managenent requests. The dispatcher is
al so responsi ble for forwardi ng the managenent request to al
target VMscl uster systems and i ndependent systens, and for
gathering the responses and returning themto the client. The
version 1.0 server contains two OWG; UAServer and Spook. The
former inplenents the server support for both the OpenVMS
Accounts and OpenVMS User OWMs. The Spook OW i npl enents the
server component of the authentication protocol

O her clients were not built for version 1.0, but were planned
into the design. Specifically, these itens are (1) a local client
to provide a local application progranmng interface (API) to the
functions in the server, and (2) a proxy agent to provide a
mappi ng between Sinple Network Managenent Protocol (SNWP)
requests and server functions.

Design Alternatives

Before this structure was accepted, the designers considered a
nunber of alternatives. The two areas with many variables to
consi der were the placenent of the comrunications |ayer and the
use of a managenent protocol

Communi cations Layer Placenent. The first major structura
gquestion concerned the placenent of the communications |ayer in
the overall application.

At one extrenme, the client could have been a display engine, with
all the application know edge in the servers. This design is
simlar to the approach used for the X Wndow System and i s
sufficient for the degenerate case of a single managed system

W t hout application knowl edge in the client, however, there was
no opportunity for reduction of data, or for the sinplification
of its display, when attenpting to perform managenent requests to
several target systens.

At the other extreme, the application know edge coul d have been
whol Iy contained within the client. The server systems would
have provided sinple file or disk services, such as Distributed
Comput i ng Environment (DCE) distributed file server (DFS) or
Sun's Network File Service (NFS). Since application know edge
woul d be in the client, these services would provi de managenent
requests to either a single managed systemor to nmultiple
systenms. However, they scale poorly. For instance, in the case
of user account managenent, seven active file service connections
woul d be required for each nanaged system Furthernore, these
services exhibit very poor responsiveness if the system nanager
is remptely | ocated across slower speed |ines fromthe nmanaged
systenms. Finally, they require that the client understand the
scope of a mmnagenent resource for all possible target OpenVMS

systenms that it nmay ever manage.

These various difficulties led the project teamto place the data
gathering, reduction, and display logic in the client. The client
comuni cates to one of the managed systens, which then forwards
the requests to all affected i ndependent systenms or VMScl uster
systenms. Simlarly, replies are passed through the forwarding
system and sent back to the client. The chosen systemis one that
the system nmanager has deternmined is a reasonable choice as a
forwar di ng hub.

Note that the forwardi ng system sends a request to one systemin
a VMscluster. That system nust deternmine if the request concerns
actions that occur throughout the VMsScluster or if the request
needs to be forwarded further within the VMScluster. In the
second case, that node then acts as an internedi ate forwardi ng
system

This structure allows the client to scale reasonably with

i ncreasi ng nunbers of managed systens. The nunber of active
comuni cation links is constant, although the anpbunt of data that
is transferred on the replies increases with the nunber of
targeted managed systens. The anount of local state information
increases simlarly. Although it is not a general routing system
its responsiveness is affected | ess by either a system nanager
renmote fromall the managed systems, or by the managenent of a
few systens at a backup site. Finally, it allows the managed
VMScl uster systemto determ ne which nanagenent requests do or do
not need to be propagated to each individual node.

Use of Standard Protocols. The second nmmjor structural question
concerned the use of de facto or de jure standard enterprise
managenment protocols, such as SNMP or Conmon Managenent

I nformati on Protocol (CMP).[3,4] Both protocols are sufficient
to name the various nmanagenent objects and to encode their
attributes. Neither can direct a request to multiple nanaged
systens. Al so, neither can handl e the conplexities of determnning
i f managenent operations are inherently clusterwi de or not. The
project team could have worked around the shortcom ngs by using
additional logic within the nanagenent objects. This alternative
woul d have reduced the nanagenent software's use of either
protocol to little nore than a nmessage encodi ng scheme. However,
it was not clear that the result would have been useful and
manageabl e to clients of other managenent systems, such as

Net Vi ew.

On a purely pragmatic | evel, an SNMP engi ne was not present on
the OpenVMS operating system The CM P-based extensi bl e agent

that was avail abl e exceeded the managenent software's limts for
resource consunption and responsi veness. For instance, wth
responsi veness, a sinple operation using AUTHORI ZE, such as "show
account attributes," typically takes a second to |ist the first
user account and is then linmted by display bandw dth. For

successful adoption by system managers, the project teamfelt
that any operation needed to be close to that |evel of

responsi veness. Early tests using the CM P-based comopn agent
showed response tines for equival ent operations varied from 10 to
30 seconds before the first user was displayed. Renmi ning user
accounts were al so displayed nore slowy, but not as noticeably.

In the final analysis, the project engineers could have either
ported an SNMP engine or corrected the resource and

responsi veness issues with the CM P-based conmon agent. However,
ei ther choice woul d have required diverting considerabl e project
resources for questionable payback. As a result, the product
devel opers chose to use a sinple, private request-response
protocol, encodi ng the managenment object attributes as
type- | engt h-val ue sequences (TLVS).

CLI ENT COVPONENT

Wth the OpenVMS Managenent Station, the client is the conponent
that directly interacts with the system manager. As such, it is
primarily responsible for structuring the display of nanagenent

i nformati on and for gathering input to update such managenent
informati on. This specifically includes capabilities for grouping
the vari ous OpenVMS systenms according to the needs of the system
manager, for participating in the authentication protocol, and
for displaying and updating user account information.

Groupi ng OpenVMs Systens for Managenent Operations

The system nmanager is able to group individual systenms and

VMScl uster systens into | oose associations called domains. These
domei ns thensel ves may be grouped together to produce a

hi erarchy. The system manager uses hierarchies to indicate the
targets for a request.

Not e that these hierarchies do not inply any form of close
coupling. Their only purpose is to aid the system manager in
organi zation. Several different hierarchies may be used. For a
gi ven set of systens, a system manager may have one hierarchy
that reflects physical |ocation and another that reflects
organi zati on boundari es.

Figure 3 shows a typical hierarchy. In the figure, the system
manager has grouped the VMScl uster systens, PSWAPM and PCAPT,
into a domain called My Managenent Donmin. The display al so shows
the results of a "list users" request at the domain | evel of the
hi erarchy. A "list users" request can al so be executed against a
single system For instance, to obtain the list of users on the
PCAPT VMscl uster system the system nanager need only expand the
"OpenVMS Accounts" itemdirectly belowit.

[Figure 3 (Managenent Domain View) is not available in ASCl

format.]

Participation in the Authentication Protoco

It was an essential requirenent fromthe start for the OpenVMS
Managenment Station software to be at |east as secure as the
traditi onal OpenVMS system nanagenent tools. Furthernore, due to
the relatively insecure nature of PCs, the product could not
safely store sensitive data on the client system For usability,
however, the product had to limt the amount and frequency of
aut hentication data the system manager needed to present.

As a result, two OMMB, the VMsScluster and the OpenVMS Node, store
t he OpenVMS usernane that the system nanager w shes to use when
accessing those systens. For a given session within the
ManageWORKS software, the first conmunication attenpt to the
managed systemresults in a request for a password for that
usernanme. Once the password is entered, the client and the server
perform a chal | enge-response protocol. The protocol establishes
that both the client and the server know t he sane password

Wi t hout exchanging it in plain text across the network. Only
after this authentication exchange has successfully conpleted,
does the server process any managenent requests.

The hashed password is stored in nenory at the client and used
for two further purposes. First, if the server connection fails,
the client attenpts to silently reconnect at the next request (if
a request is outstanding when the failure occurs, that request
reports a failure). This reconnection attenpt al so undergoes the
same aut hentication exchange. |If the hashed password is stil
valid, however, the reconnection is made w thout apparent
interruption or requests for input fromthe system manager
Second, the hashed password is used as a key to encrypt
particularly sensitive data, such as new passwords for user
accounts, prior to their transnmi ssion to the server.

The resulting | evel of security is quite high. It certainly
exceeds the common practice of renmotely logging in to OpenVMS
systens to manage them

Di spl ay and Update of User Account |nfornmation

The OpenVMS Managenent Station version 1.0 client software
primarily supports user account nmanagenent. This support is

| argely contained in the OpenVMs User OMM This nodul e presents
the OpenVMS user account attributes in a consistent, unified

Vi ew.

The main view fromthe OpenVMS User OWM is called the zoom

di splay. This series of related wi ndows di splays and al |l ows
nodi fication to the user account attributes. The displays are
organi zed so that related attributes appear in the sane w ndow.

For instance, all the mail profile information is in one w ndow.

The first window to be displayed is the characteristics display,
which is shown in Figure 4. This w ndow contai ns genera

i nformati on about the user that was found during usability
testing to be needed frequently by the system manager
Occasionally, informati on was needed in places that did not match
its internal structure. For instance, the "new mail count" was
found to have two wi ndows: the user flags display, which had the
I ogin display attributes, and the mail profile display.

[Figure 4 (User Characteristics Display) is not available in
ASClI | format.]

The OpenVMS User OWM and the zoom di splay organize the attributes
into |l ogical groupings, sinplify the display and nodification of
those attributes, and provide fairly basic attribute consistency
enforcenent. The project team did encounter one case in which no
standard text display proved sufficiently usable. This was in the
area of access time restrictions. Al attenpts to list the access
times as text proved too confusing during usability testing. As a
result, the project devel opers produced a specialized screen
control that displayed the tinme range directly, as shown in the
Time Restrictions section of Figure 5. Later, system managers who
participated in the usability testing found this to be very
usabl e.

[Figure 5 (User Tinme Restrictions Display) is not available in
ASClI | format.]

The di splay and presentation work for the OpenVMS User OWM was
necessary for usability. However, this does not directly address
the need to support requests against nultiple sinmultaneous
targets. For the OpenVMS User OMM these targets may be either
mul tiple VMScl uster systens or independent systems, multiple
users, or a conbination of either configuration with multiple
users.

At its sinplest, this support consisted of sinply triggering a
request to have nmultiple targets. This is done through the Apply
to All button on any of the zoom wi ndows. By pressing this
button, the system nanager directs the updates to be sent to al
user accounts on all target systenms |isted in the user nane
field. This action is sufficient if the system manager is
performng a straightforward task, such as "set these users
accounts to disabled.” It is not sufficient in a nunber of cases.

For exanple, one interesting case involves user account resource
guotas. One reason a system nanager changes these settings is to
accompdat e a new version of an application that needs increased
values to function correctly. Prior to the devel opnent of the
OpenVMS Managenent Station tool, the system manager had to | ocate
all the users of this application, exam ne each account, and

i ncrease the resource quotas if they were below the application's

needs. Conversely, with the OpenVMS Managenent Station product,
the system nmanager selects the users of the application in the
domai n display (Figure 3), and requests the zoom display for the
entire set. The system nmanager then proceeds to the user quota

di splay and selects the quotas to change. The sel ection takes the
formof a conditional request--in this case an At Least
condition--and the value to set. The system manager then presses
the Apply to Al button, and the changes are carried out for al
sel ected users. Figure 6 shows the user quota display.

[Figure 6 (User Quota Display) is not available in ASCII format.]

COVMUNI CATI ONS COVPONENT

The commruni cati ons conponent is responsible for managi ng
comuni cations between the client and servers. It provides
support for transport-independent, request-response

communi cations, automated reconnection on failure, and support
routines for formatting and decoding attributes in nessages.

Because of the request-response nature of the comuni cations, the
project teamis first approach was to use renote procedure calls
for comrunications, using DCE s renpte procedure call (RPC)
mechani sm [5] This matches the nessage traffic for the degenerate
case of a single managed system Managenment of multiple systens
can easily be nodel ed by adding a continuation routine for any

gi ven managenment service. This routine returns the next response,
or a "no nore" indication.

The RPC nechani sm al so handl es nuch of the basic data type
encodi ng and decodi ng. A form of version support allows the
services to evolve over time and still interoperate with previous
versi ons.

The project team s eventual decision not to use DCE's RPC was nhot
due to technical concerns. The technol ogy was, and is, a good

mat ch for the needs of the OpenVMsS Managenent Station software.

I nstead, the decision was pronpted by concerns for system cost
and project risk. At the tinme, both the OpenVMS Managenent
Station product and the OpenVMs DCE port were under devel opment.
The DCE on OpenVMS product has since been delivered, and many of
the system cost concerns, such as the license fees for the RPC
run time and the need for non-OpenVMS nane and security server
systenms, have been corrected.

In the end, the OpenVMs Managenent Station software contained a
comuni cations layer that hid nany of the details of the
underlying inplenmentation, offering a sinple request-response
paradi gm The only difference with an RPC-style nmodel is that the
data encodi ng and decodi ng operations were noved into support
routines called directly by the sender or receiver, rather than
by the comrunications layer itself. In future versions, the goa
for this layer is to support additional transports, such as

sinmpl e Transm ssion Control Protocol/Internet Protocol (TCP/IP)
nmessages or DCE's RPC. An investigation into providing additiona
transports is currently underway.

The remai nder of this section describes the comunications |ayer
in more detail, including the nechanisns provided to the client
OWs, how reconnection on failure operates, and the nessage
encodi ng and decodi ng support routines.

Client Request-response Mechani sns

The OMMB in the client systemcall the conmunications |ayer
directly. To make a request, an OW first updates the collection
of systens that are to receive any future managenment requests.
Assuning this was successful, the OMW then begins the request
processing by retrieving the version nunber for the current
forwardi ng server. Based on that, the OM then formats and issues
the request. Once the request has been issued, the OW
periodically checks to see if either the response has arrived or
the system manager has cancel ed the request. Upon arrival of the
response, it is retrieved and the nessage data decoded.

To performthis nessagi ng sequence, the OW uses a pair of
interfaces. The first is used to establish and maintain the
collection of systenms that are to receive any managenent

requests. The second interface, which is conpatible with X/ Open's
XTIl standard, is used to issue the request, determne if the
response is available, and to retrieve it when it is.[6] Athird
interface that supports the encodi ng and decodi ng of nessage data
is described in a follow ng section.

Reconnection on Failure

The OpenVMS Managenent Station product attenpts to recover from
comuni cations failures with little disruption to the system
manager through the use of an automated reconnecti on nechani sm
Thi s mechani sm pl aces constraints on the behavior of the request
and response nessages. Each request nust be able to be issued
after a reconnection. Therefore, each request is nmarked as either
an initial request, which does not depend on server state from
previ ous requests, or as a continuation request, which is used to
retrieve the second or later responses froma nultiple target
request and does depend on existing server state.

If an existing comrunications link fails, that link is marked as
unconnected. If a response were outstanding, an error would be
returned instead of a response nmessage. When the comruni cations
| ayer is next called to send a request across the unconnected
link, an autonmated reconnection is attenpted. This invol ves
establishing a network connection to a target systemin the
request. Once the connection has been established, the

aut henti cation protocol is executed, using the previously

suppl i ed authentication data. |If authentication succeeds, the
request is sent. If it is a continuation request, and the target
server has no existing state for that request, an error response
i s returned.

At nost, the resulting behavior for the system manager is to
return an error on a nmanagenment request, indicating that

comuni cation was | ost during that request's execution. |If no
request was in progress, then there is no apparent disruption of
servi ce.

Message Encodi ng and Decodi ng

Messages from the OpenVMS Managenent Station tool are divided
into three sections. The first section contains a nmessage header
that describes the length of the nessage, the protocol version
nunber in use, and the nanme of the target OMM The second section
contains the collection of target systens for the request. The
third section contains the data for the OMM This |ast section
forms the request and is the only section of the nmessage that is
vVisible to the OWMVs.

The OMWM data for a request is typically constructed as a comuand,
foll owed by sone nunber of attributes and comrand qualifiers.

For instance, a request to list all known users on a system
returning their usernanmes and |last login time, could be described
as this:

COVIVAND LI ST_USERS
MODI FI ER USERNAME = "*"
ATTRI BUTES USERNAME,

LAST_LOG N_TI ME

The OMM data for a response is typically a status code, the |ist
of attributes fromthe request, and the attributes' associated
val ues. There may be many responses for a single request. Using
the LI ST_USERS exanpl e from above, the responses woul d each | ook
i ke a sequence of:

STATUS SUCCESS
ATTRI BUTES USERNAME (<val ue>)
LAST_LOG N_TI ME (<val ue>)

There are many possible attributes for an OpenVMS user. To neke

| ater extensions easier and to limt the nunmber of attributes
that must be retrieved or updated by a request, the OW data
fields are self-describing. They consist of a sequence of nessage
items that are stored as attribute code/itemlength/item val ue.
The base data type of each attribute is known and fi xed.

Message encoding is supported by a set of routines. The first
accepts an attribute code and its associated data item It
appends the appropriate nessage itemat the end of the current

nmessage. This is used to encode both requests and responses. The
second routine takes a nmessage buffer and an attribute code,
returning the attribute's value and a status code indicating if
the attribute was present in the nessage buffer. The client uses
this routine to locate data in a response. The third routine
takes a nessage buffer, a table listing the attribute codes that
are of interest to the caller, and an action routine that is
called for each nessage itemthat has an attribute code found in
the table. The server OWEs use this routine to process incomng
requests.

Handl i ng of Conpl ex Data Types

In general, the interpretation of data between the client and
server systens did not pose a significant concern. There was no
floating-point data, and the integer and string data types were
sufficiently simlar not to require special treatment. However,

t he OpenVMS Managenent Station software did need a few data types
to process that were not sinple atom c val ues. These required
speci al processing to handle. This processing typically consisted
of formatting the data type into sone internediate formthat both
client and server systens could deal with equally well

For instance, one such data type is the tinestanp. In the OpenVMS
operating system tines are stored as 64-bit quadword val ues t hat
are 100 nanosecond of fsets from ni dni ght, November 18, 1858.

This is not a natural format for a Mcrosoft Wndows client. Date
and tinme display formats vary greatly depending on |ocalization
options, so the data needed to be formatted on the local client.
The devel opers used an approach that deconposed the native
OpenVMS tinme into a set of conponents, simlar to the output from
the $NUMII M system or the UNI X tm structure. This deconposed
time structure was the format used to transnmit tinestanp

i nformati on between the client and server.

SERVER COVMPONENT

Wth the OpenVMS Managenent Station product, the server conponent
is responsible for enacting managenent requests that target its

| ocal system The server also nust forward requests to all other
VMScl uster systens or independent systens that any incom ng
request may target. The server is a nultithreaded, privileged
application running on the managed OpenVMS systens. |t consists
of an infrastructure |layer that receives incom ng requests and

di spatches them the server OWEs that enact the managenent
requests for the local system and a forwarding |ayer that routes
managenment requests to other target systens and returns their
responses.

Server Infrastructure

The server infrastructure, shown in Figure 7, is responsible for
di spat ching incomi ng requests to the server OMMs and the
forwarding layer. It has a set of threads, one for each inbound
connection, a pair of work queues that buffer individual requests
and responses, and a linmted set of worker threads that either
call the appropriate OW or forward the request.

[Figure 7 (Server Infrastructue and Message Flow) is not
available in ASCI| format.]

The inbound connection threads are responsible for ensuring that
the request identifies a knowmn OMWM and neets its nessage

requi renents. The connection threads nust also ensure that the
OW version nunber is within an acceptabl e range and that the
link is sufficiently authenticated. The inbound threads are then
responsi ble for replicating the request and pl acing requests that
have only one target systemin the request work queue. Once a
response appears in the response work queue, these threads return
the response to the client system

A fixed nunber of worker threads are responsible for taking
nmessages fromthe request work queue and either forwarding them
or calling the appropriate local OMM Each result is placed in
the response queue as a response nessage. A fixed nunber of five
wor ker threads was chosen to ensure that nessages with many
targets could not exhaust the server's resources. Responsiveness
and resource usage were acceptabl e throughout the devel opment and
testing phases of the project, and the nunber of worker threads
was kept at five.

In addition to the basic thread structure, the infrastructure is
responsi ble for participating in the authentication exchange for

i nbound connections. This is acconplished through the use of a
speci ali zed server OW call ed Spook. The Spook OWM uses the
basi ¢ server infrastructure to ensure that authentication
requests are forwarded to the appropriate target system This
mechani sm reduced the anount of specialized | ogic needed for the
aut hentication protocol: for this reason, the server OWs nust
declare if they require an authenticated |ink before accepting an
i ncom ng request.

Server OW Structure

The server OMMs are at the heart of the server. These OWEG are
| oaded dynam cally when the server initializes.

Figure 8 shows the structure of the UAServer OW in OpenVMsS
Managenment Station version 1.0. The server OW consists of the
mai n application nodule, the preprocessing routine, and the

post processing routine. The interfaces are synchronous, passing
OW data sections fromthe request and response nessage buffers.
In addition, the main application nmodul e executes in the security
context, called a persona, of the authenticated caller. This

al l ows normal access checking and auditing in the OpenVMS
operating systemto work transparently.

[Figure 8 (UAServer OW) is not available in ASCII format.]

The preprocessing and postprocessing routines are used to ease

i nteroperation of nmultiple versions. They are called if the

i ncom ng request has a different, but supported, OW version
nunber than the one for the local OM The resulting OW data
section is at the local OM s version. These routines hide any
version differences in the OMW s data itens and free the nain
application fromthe need to handl e out-of-version data itens. If
the preprocessing routine is called, the server infrastructure

al ways calls the postprocessing routine, even if an error
occurred that prevented the nain OV application from being
called (for instance, by a link failure during forwarding). This
allows the two routines to work in tandem wi th shared state.

The actual managenent operations take place in the nmain
application portion of the server OW It is structured with an
application layer that provides the interface to the nanagenent
obj ect, such as the user account. This uses underlying resource
managers that encapsulate the primitive data stores, such as the
authorization file. The application | ayer knows what resources
are affected by a gi ven nmanagenent request. Each resource manager
knows how to performrequested nodifications to the specific
resource that it nanages.

For instance, the UAServer application |layer knows that the
creation of a new user involves several resource nanagers,

i ncluding the authorization file and file systemresource
managers. However, it does not specifically know how to perform
| ow- | evel operations such as creating a hone directory or

nodi fying a disk quota entry. In conparison, the file system
resource nmanager knows how to do these | ow | evel operations, but
it does not recognize the higher |evel requests, such as user
creation.

The application layer for all OMMs offers an interface and a
buffer. The request nmessage passes the OV data section to the
interface, and the buffer holds the OMM data section for the
response nessage. Simlarly, all resource nanagers accept an OW
data section for input and output paranmeters, ignoring any OW
data itens for attributes outside their specific resource.
Because of the | oose coupling between the resource nmanagers and
the application |ayer, the resource nmanagers can be easily reused
by server OMMs devel oped | ater

SUMVARY

The OpenVMS Managenent Station tool has denonstrated a robust
client-server solution to the nanagenent of user accounts for the
OpenVMS operating system It provides increases in functionality

and data consi stency over system managenent tools previously
avail abl e on the OpenVMs operating system In addition, the
OpenVMS Managenent Station software is focused on the managenent
of several |oosely associated VMsScl uster systens and i ndependent
systenms. It has addressed the issues concerning perfornmnce,
usability, and functionality that arose fromthe need to issue
managenent requests to execute on several target systens.

ACKNOW.EDGMVENTS

I wish to thank the Argus project teamof Gary Allison, Lee
Barton, George Claborn, Nestor Dutko, Tony Dziedzic, Bill Fisher
Sue Ceorge, Keith Giffin, Dana Joly, Kevin MDonough, and Connie
Pawel czak for giving nme a chance to work on such an interesting
and exciting project. | also wish to thank Rich Marcell o and Jack
Fall on for providing support and encouragenent to the team

t hroughout the project, and for their further encouragenent in
writing about this experience.

REFERENCES

1. OpenVMs AXP Cuide to System Security (Maynard, MA: Digita
Equi pment Corporation, May 1993): 5-1 to 5-37.

2. D. G okas and J. Rokicki, "The Design of ManageWORKS: A User
Interface Framework," Digital Technical Journal, vol. 6, no.
4 (Fall 1994, this issue): 63-74.

3. J. Case, M Fedor, M Schoffstall, and J. Davin,
Net wor k Wor ki ng Group, Internet Engi neering Task Force RFC
1157 (May 1990).

4, DECnet Digital Network Architecture, Commopbn Managenent
I nformati on Protocol (CMP), Version 1.0.0 (Maynard, MA
Di gital Equi pnment Corporation, Oder No. EK-DNAOl-FS-001
July 1991).

5. J. Shirley, Guide to Witing DCE Applications (Sebastopol
CA: OReilly & Associates, Inc., 1992).

6. X/ Open CAE Specification, X/ Open Transport Interface
(XTI), 1SBN 1-872630-29-4 (Reading, U K. : X Open Conpany
Ltd., January 1992).

Bl OGRAPHY

James E. Johnson A consulting software engineer, Jim Johnson has
wor ked in the OpenVMS Engi neering Group since joining Digital in
1984. He is currently a nmenber of the OpenVMS Engi neering teamin
Scot | and, where he is a technical consultant for transaction
processing and file services. H s work has spanned several areas

across OpenVMs, including RMS, the DECdtmtransaction services,
the port of OpenVMS to the Al pha architecture, and OpenVMS system
managenent. Jim has retained an active interest in transaction
processing, especially the area of commit protocols. Jimholds
one patent on comrit protocol optimzations. He is a nenber of

t he ACM

TRADEMARKS

The following are trademarks of Digital Equi pnment Corporation
DECnet, Digital, ManageWORKS, OpenVMS, PATHWORKS, and VMscl uster

M crosoft is a registered trademark and Wndows is a trademark of
M crosoft Corporation

NetView is a registered trademark of |nternational Business
Machi nes Cor porati on.

NFS is a registered trademark of Sun M crosystens, Inc.

UNI X is a registered trademark in the United States and ot her
countries, licensed exclusively through X/ Open Conpany Ltd.

X W ndow Systemis a trademark of the Massachusetts Institute of
Technol ogy.

Copyright 1995 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi prment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permtted. All rights reserved.

