
The Structure of the OpenVMS Management Station

by James E. Johnson

ABSTRACT

The OpenVMS Management Station software provides a robust
client-server application between a PC running the Microsoft
Windows operating system and several OpenVMS cluster systems. The
initial version of the OpenVMS Management Station software
concentrated on allowing customers to handle the system
management functionality associated with user account management.
To achieve these attributes, the OpenVMS Management Station
software uses the data-sharing aspects of OpenVMS cluster
systems, a communications design that is secure and that scales
well with additional target systems, and a management display
that is geared for the simultaneous management of multiple
similar systems.

OVERVIEW

The OpenVMS Management Station version 1.0 software provides a
robust, scalable, and secure client-server application between a
personal computer (PC) running the Microsoft Windows operating
system and several OpenVMS systems. This management tool was
developed to solve some very specific problems concerning the
management of multiple systems. At the same time, the project
engineers strove for a release cycle that could bring timely
relief to customers in installments.

Before the advent of this new software, all OpenVMS base system
management tools have either executed against one system, such as
AUTHORIZE, or against a set of systems in sequence, such as
SYSMAN. Furthermore, the existing tools that do provide some
primitive support for the management of multiple systems either
do not take advantage of or do not take into account the inherent
structure of a VMScluster system.

In contrast, the OpenVMS Management Station product was designed
from the outset for efficient execution in a distributed,
multiple system configuration. The OpenVMS Management Station
tool supports parallel execution of system management requests
against several target OpenVMS systems or VMScluster systems.
Furthermore, the software incorporates several features that make
such multiple target requests natural and easy for the system
manager.

Data from customer surveys indicated the need for a quick
response to the problems of managing OpenVMS systems. For this
reason, the project team chose a phased delivery approach, in

which a series of frequent releases would be shipped, with
support for a small number of system management tasks provided in
an individual release.

The initial version of the OpenVMS Management Station software
concentrated on providing the system management functionality
associated with user account management. This goal was achieved
by using a project infrastructure that supported frequent product
releases. This paper describes the OpenVMS Management Station
software, concentrating on the client-server structure. It also
presents the issues and trade-offs that needed to be faced for
successful delivery.

MANAGING OPENVMS USER ACCOUNTS

Managing user accounts on an OpenVMS operating system is a
relatively complicated task.[1] The manner in which the user is
represented to the system manager is the cause of much
complexity. The attributes that define a user are not located in
one place, nor is much emphasis placed on ensuring consistency
between the various attributes.

For example, Table 1 gives the attributes of an OpenVMS user
stored in various files, including the user authorization file
(SYSUAF.DAT), the rightslist file (RIGHTSLIST.DAT), and the
DECnet network proxy file (NET$PROXY.DAT). Prior to the OpenVMS
Management Station product, these files were managed by a
collection of low-level utilities, such as AUTHORIZE. Although
these utilities provide the ability to manipulate the individual
user attributes, they offer little support for ensuring that the
overall collection of user attributes is consistent. For
instance, none of these utilities would detect that a user's
account had been created with the user's home directory located
on a disk to which the user had no access.

Table 1 Breakdown of Data Stores and Management Utilities for
 OpenVMS Users

Data Store Attributes Management Utility
---------- ---------- ------------------

SYSUAF.DAT Username, AUTHORIZE
 Authorization data
 (e.g., passwords),
 process quotas,
 login device, and
 directory

RIGHTSLIST.DAT Rights identifiers AUTHORIZE

NET$PROXY.DAT Remote<->local user AUTHORIZE

 DECnet proxy mappings

VMS$MAIL_PROFILE.DAT User's mail profile MAIL

QUOTA.SYS (per disk) User's disk quota DISKQUOTA

Login directory User's home directory CREATE/DIRECTORY

TNT$UADB.DAT User's location, <new with OpenVMS
 phone number, and Management Station
 organization software>
 information

All of these factors create additional complexity for an OpenVMS
system manager. This complexity is compounded when a number of
loosely related OpenVMS systems must be managed at various sites.
The user account management features of the OpenVMS Management
Station product are designed to alleviate or remove these
additional complexities for the OpenVMS system manager.

OPENVMS SYSTEM CONFIGURATIONS

The OpenVMS operating system can be used in many ways. The
features of the VMScluster method allow systems to expand by
incrementally adding storage or processing capacity. In addition,
the OpenVMS operating system is frequently used in networked
configurations. Its inherent richness leads to a large and
diverse range in the possible OpenVMS configurations. The skill
and effort required to manage the larger configurations is
considerable.

For instance, Figure 1 shows a possible customer configuration,
in which a number of VMScluster systems extend across a primary
and a backup site. Each cluster has a somewhat different purpose,
as given in Table 2. Here OpenVMS workstations are deployed to
users who need dedicated processing power or graphics support,
and personal computers are deployed in other departments for data
access and storage. Finally, the table lists some groups of users
who need access to multiple systems, sometimes with changed
attributes. The system manager for this type of configuration
would repeatedly perform many tasks across several targets, such
as systems or users, with small variations from target to target.
The OpenVMS Management Station product was designed to operate
well in configurations such as this.

[Figure 1 (Distributed OpenVMS System Configuration) is not
available in ASCII format.]

Table 2 Usage and User Community for Sample Configuration

Name Usage User Community
---- ------------------------- ----------------------------------

A Main production cluster Operations group
 Production group
 Development group (unprivileged)

B Development cluster Operations group
 Development group
 (full development privileges)

C Backup production cluster Operations group
 and main accounting Development group (unprivileged)
 cluster Production group
 Accounting group

 Workstations Workstation owner
 Some of operations group

A distributed system is clearly necessary to support effective
and efficient systems management for configurations such as the
one shown in Figure 1. A distributed system should support
parallel execution of requests, leverage the clusterwide
attributes of some system management operations, and provide for
wide area support. These characteristics are expanded in the
remainder of this section.

Supporting Parallel Execution

Support of parallel execution has two different implications.
First, the execution time should rise slowly, or preferably
remain constant, as systems are added. This implies that the
execution against any given target system should be overlapped by
the execution against the other target systems.
Second, for parallel execution to be usable in a wider range of
cases, it should be easy and straightforward to make a request
that will have similar, but not identical, behavior on the target
systems. For instance, consider adding a user for a new member of
the development staff in the configuration shown in Figure 1. The
new user would be privileged on the development VMScluster
system, but unprivileged on the production cluster. It should be
straightforward to express this as a single request, rather than
as two disparate ones.

Leveraging VMScluster Attributes

OpenVMS system management tasks operate against some resources
and attributes that are shared clusterwide, such as modifications
to the user authorization file, and some that are not shared,
such as the system parameter settings.

In the first case, the scope of the resource extends throughout
the VMScluster system. Here, it is desirable (and when the
operation is not idempotent, it is necessary) for the operation

to execute once within the VMScluster system. In the latter case,
the operation must execute against every system within the
cluster that the system manager wants to affect. Also, the set of
resources that falls into the first case or the second is not
fixed. In the OpenVMS operating system releases, the ongoing
trend is to share resources that were node-specific throughout a
VMScluster system. The OpenVMS Management Station software must
handle resources that have different scopes on different systems
that it is managing at the same time.

Wide Area Support

Management of a group of OpenVMS systems is not necessarily
limited to one site or to one local area network (LAN).
Frequently there are remote backup systems, or the development
site is remote from the production site. Almost certainly, the
system manager needs to be able to perform some management tasks
remotely (from home). Therefore, any solution must be able to
operate outside of the LAN environment. It should also be able to
function reasonably in bandwidth-limited networks, regardless of
whether or not the slower speed lines are to a few remote
systems, or between the system manager and all the managed
systems.

OPENVMS MANAGEMENT STATION STRUCTURE

The resulting structure for the OpenVMS Management Station
software is shown in Figure 2. The components contained within
the dashed box are present in the final version 1.0 product. The
other components were specified in the design, but were
unnecessary for the initial release.

[Figure 2 (OpenVMS Management Station Structure) is not available
in ASCII format.]

The client software on the PC uses the ManageWORKS management
framework from Digital's PATHWORKS product. This extensible
framework provides hierarchical navigation and presentation
support, as well as a local configuration database.[2] The
framework dispatches to Object Management Modules (OMMs) to
manage individual objects. OpenVMS Management Station has three
OMMs that are used to organize the system manager's view of the
managed systems. These are Management Domains, VMScluster
Systems, and OpenVMS Nodes. In addition, two OMMs manage user
accounts: OpenVMS Accounts and OpenVMS User. The first OMM is
used to retrieve the user accounts and to create subordinate
OpenVMS User objects in the ManageWORKS framework hierarchy. The
second contains the client portion of the OpenVMS user account
management support. Underlying the last two OMMs is the client
communications layer. This provides authenticated communications
to a server.

The server software on the OpenVMS systems consists of a
message-dispatching mechanism and a collection of server OMMs
that enact the various management requests. The dispatcher is
also responsible for forwarding the management request to all
target VMScluster systems and independent systems, and for
gathering the responses and returning them to the client. The
version 1.0 server contains two OMMs; UAServer and Spook. The
former implements the server support for both the OpenVMS
Accounts and OpenVMS User OMMs. The Spook OMM implements the
server component of the authentication protocol.

Other clients were not built for version 1.0, but were planned
into the design. Specifically, these items are (1) a local client
to provide a local application programming interface (API) to the
functions in the server, and (2) a proxy agent to provide a
mapping between Simple Network Management Protocol (SNMP)
requests and server functions.

Design Alternatives

Before this structure was accepted, the designers considered a
number of alternatives. The two areas with many variables to
consider were the placement of the communications layer and the
use of a management protocol.

Communications Layer Placement. The first major structural
question concerned the placement of the communications layer in
the overall application.

At one extreme, the client could have been a display engine, with
all the application knowledge in the servers. This design is
similar to the approach used for the X Window System and is
sufficient for the degenerate case of a single managed system.
Without application knowledge in the client, however, there was
no opportunity for reduction of data, or for the simplification
of its display, when attempting to perform management requests to
several target systems.

At the other extreme, the application knowledge could have been
wholly contained within the client. The server systems would
have provided simple file or disk services, such as Distributed
Computing Environment (DCE) distributed file server (DFS) or
Sun's Network File Service (NFS). Since application knowledge
would be in the client, these services would provide management
requests to either a single managed system or to multiple
systems. However, they scale poorly. For instance, in the case
of user account management, seven active file service connections
would be required for each managed system! Furthermore, these
services exhibit very poor responsiveness if the system manager
is remotely located across slower speed lines from the managed
systems. Finally, they require that the client understand the
scope of a management resource for all possible target OpenVMS

systems that it may ever manage.

These various difficulties led the project team to place the data
gathering, reduction, and display logic in the client. The client
communicates to one of the managed systems, which then forwards
the requests to all affected independent systems or VMScluster
systems. Similarly, replies are passed through the forwarding
system and sent back to the client. The chosen system is one that
the system manager has determined is a reasonable choice as a
forwarding hub.

Note that the forwarding system sends a request to one system in
a VMScluster. That system must determine if the request concerns
actions that occur throughout the VMScluster or if the request
needs to be forwarded further within the VMScluster. In the
second case, that node then acts as an intermediate forwarding
system.

This structure allows the client to scale reasonably with
increasing numbers of managed systems. The number of active
communication links is constant, although the amount of data that
is transferred on the replies increases with the number of
targeted managed systems. The amount of local state information
increases similarly. Although it is not a general routing system,
its responsiveness is affected less by either a system manager
remote from all the managed systems, or by the management of a
few systems at a backup site. Finally, it allows the managed
VMScluster system to determine which management requests do or do
not need to be propagated to each individual node.

Use of Standard Protocols. The second major structural question
concerned the use of de facto or de jure standard enterprise
management protocols, such as SNMP or Common Management
Information Protocol (CMIP).[3,4] Both protocols are sufficient
to name the various management objects and to encode their
attributes. Neither can direct a request to multiple managed
systems. Also, neither can handle the complexities of determining
if management operations are inherently clusterwide or not. The
project team could have worked around the shortcomings by using
additional logic within the management objects. This alternative
would have reduced the management software's use of either
protocol to little more than a message encoding scheme. However,
it was not clear that the result would have been useful and
manageable to clients of other management systems, such as
NetView.

On a purely pragmatic level, an SNMP engine was not present on
the OpenVMS operating system. The CMIP-based extensible agent
that was available exceeded the management software's limits for
resource consumption and responsiveness. For instance, with
responsiveness, a simple operation using AUTHORIZE, such as "show
account attributes," typically takes a second to list the first
user account and is then limited by display bandwidth. For

successful adoption by system managers, the project team felt
that any operation needed to be close to that level of
responsiveness. Early tests using the CMIP-based common agent
showed response times for equivalent operations varied from 10 to
30 seconds before the first user was displayed. Remaining user
accounts were also displayed more slowly, but not as noticeably.

In the final analysis, the project engineers could have either
ported an SNMP engine or corrected the resource and
responsiveness issues with the CMIP-based common agent. However,
either choice would have required diverting considerable project
resources for questionable payback. As a result, the product
developers chose to use a simple, private request-response
protocol, encoding the management object attributes as
type-length-value sequences (TLVs).

CLIENT COMPONENT

With the OpenVMS Management Station, the client is the component
that directly interacts with the system manager. As such, it is
primarily responsible for structuring the display of management
information and for gathering input to update such management
information. This specifically includes capabilities for grouping
the various OpenVMS systems according to the needs of the system
manager, for participating in the authentication protocol, and
for displaying and updating user account information.

Grouping OpenVMS Systems for Management Operations

The system manager is able to group individual systems and
VMScluster systems into loose associations called domains. These
domains themselves may be grouped together to produce a
hierarchy. The system manager uses hierarchies to indicate the
targets for a request.

Note that these hierarchies do not imply any form of close
coupling. Their only purpose is to aid the system manager in
organization. Several different hierarchies may be used. For a
given set of systems, a system manager may have one hierarchy
that reflects physical location and another that reflects
organization boundaries.

Figure 3 shows a typical hierarchy. In the figure, the system
manager has grouped the VMScluster systems, PSWAPM and PCAPT,
into a domain called My Management Domain. The display also shows
the results of a "list users" request at the domain level of the
hierarchy. A "list users" request can also be executed against a
single system. For instance, to obtain the list of users on the
PCAPT VMScluster system, the system manager need only expand the
"OpenVMS Accounts" item directly below it.

[Figure 3 (Management Domain View) is not available in ASCII

format.]

Participation in the Authentication Protocol

It was an essential requirement from the start for the OpenVMS
Management Station software to be at least as secure as the
traditional OpenVMS system management tools. Furthermore, due to
the relatively insecure nature of PCs, the product could not
safely store sensitive data on the client system. For usability,
however, the product had to limit the amount and frequency of
authentication data the system manager needed to present.

As a result, two OMMs, the VMScluster and the OpenVMS Node, store
the OpenVMS username that the system manager wishes to use when
accessing those systems. For a given session within the
ManageWORKS software, the first communication attempt to the
managed system results in a request for a password for that
username. Once the password is entered, the client and the server
perform a challenge-response protocol. The protocol establishes
that both the client and the server know the same password
without exchanging it in plain text across the network. Only
after this authentication exchange has successfully completed,
does the server process any management requests.

The hashed password is stored in memory at the client and used
for two further purposes. First, if the server connection fails,
the client attempts to silently reconnect at the next request (if
a request is outstanding when the failure occurs, that request
reports a failure). This reconnection attempt also undergoes the
same authentication exchange. If the hashed password is still
valid, however, the reconnection is made without apparent
interruption or requests for input from the system manager.
Second, the hashed password is used as a key to encrypt
particularly sensitive data, such as new passwords for user
accounts, prior to their transmission to the server.

The resulting level of security is quite high. It certainly
exceeds the common practice of remotely logging in to OpenVMS
systems to manage them.

Display and Update of User Account Information

The OpenVMS Management Station version 1.0 client software
primarily supports user account management. This support is
largely contained in the OpenVMS User OMM. This module presents
the OpenVMS user account attributes in a consistent, unified
view.

The main view from the OpenVMS User OMM is called the zoom
display. This series of related windows displays and allows
modification to the user account attributes. The displays are
organized so that related attributes appear in the same window.

For instance, all the mail profile information is in one window.

The first window to be displayed is the characteristics display,
which is shown in Figure 4. This window contains general
information about the user that was found during usability
testing to be needed frequently by the system manager.
Occasionally, information was needed in places that did not match
its internal structure. For instance, the "new mail count" was
found to have two windows: the user flags display, which had the
login display attributes, and the mail profile display.

[Figure 4 (User Characteristics Display) is not available in
ASCII format.]

The OpenVMS User OMM and the zoom display organize the attributes
into logical groupings, simplify the display and modification of
those attributes, and provide fairly basic attribute consistency
enforcement. The project team did encounter one case in which no
standard text display proved sufficiently usable. This was in the
area of access time restrictions. All attempts to list the access
times as text proved too confusing during usability testing. As a
result, the project developers produced a specialized screen
control that displayed the time range directly, as shown in the
Time Restrictions section of Figure 5. Later, system managers who
participated in the usability testing found this to be very
usable.

[Figure 5 (User Time Restrictions Display) is not available in
ASCII format.]

The display and presentation work for the OpenVMS User OMM was
necessary for usability. However, this does not directly address
the need to support requests against multiple simultaneous
targets. For the OpenVMS User OMM, these targets may be either
multiple VMScluster systems or independent systems, multiple
users, or a combination of either configuration with multiple
users.

At its simplest, this support consisted of simply triggering a
request to have multiple targets. This is done through the Apply
to All button on any of the zoom windows. By pressing this
button, the system manager directs the updates to be sent to all
user accounts on all target systems listed in the user name
field. This action is sufficient if the system manager is
performing a straightforward task, such as "set these users'
accounts to disabled." It is not sufficient in a number of cases.

For example, one interesting case involves user account resource
quotas. One reason a system manager changes these settings is to
accommodate a new version of an application that needs increased
values to function correctly. Prior to the development of the
OpenVMS Management Station tool, the system manager had to locate
all the users of this application, examine each account, and
increase the resource quotas if they were below the application's

needs. Conversely, with the OpenVMS Management Station product,
the system manager selects the users of the application in the
domain display (Figure 3), and requests the zoom display for the
entire set. The system manager then proceeds to the user quota
display and selects the quotas to change. The selection takes the
form of a conditional request--in this case an At Least
condition--and the value to set. The system manager then presses
the Apply to All button, and the changes are carried out for all
selected users. Figure 6 shows the user quota display.

[Figure 6 (User Quota Display) is not available in ASCII format.]

COMMUNICATIONS COMPONENT

The communications component is responsible for managing
communications between the client and servers. It provides
support for transport-independent, request-response
communications, automated reconnection on failure, and support
routines for formatting and decoding attributes in messages.

Because of the request-response nature of the communications, the
project team's first approach was to use remote procedure calls
for communications, using DCE's remote procedure call (RPC)
mechanism.[5] This matches the message traffic for the degenerate
case of a single managed system. Management of multiple systems
can easily be modeled by adding a continuation routine for any
given management service. This routine returns the next response,
or a "no more" indication.

The RPC mechanism also handles much of the basic data type
encoding and decoding. A form of version support allows the
services to evolve over time and still interoperate with previous
versions.

The project team's eventual decision not to use DCE's RPC was not
due to technical concerns. The technology was, and is, a good
match for the needs of the OpenVMS Management Station software.
Instead, the decision was prompted by concerns for system cost
and project risk. At the time, both the OpenVMS Management
Station product and the OpenVMS DCE port were under development.
The DCE on OpenVMS product has since been delivered, and many of
the system cost concerns, such as the license fees for the RPC
run time and the need for non-OpenVMS name and security server
systems, have been corrected.

In the end, the OpenVMS Management Station software contained a
communications layer that hid many of the details of the
underlying implementation, offering a simple request-response
paradigm. The only difference with an RPC-style model is that the
data encoding and decoding operations were moved into support
routines called directly by the sender or receiver, rather than
by the communications layer itself. In future versions, the goal
for this layer is to support additional transports, such as

simple Transmission Control Protocol/Internet Protocol (TCP/IP)
messages or DCE's RPC. An investigation into providing additional
transports is currently underway.

The remainder of this section describes the communications layer
in more detail, including the mechanisms provided to the client
OMMs, how reconnection on failure operates, and the message
encoding and decoding support routines.

Client Request-response Mechanisms

The OMMs in the client system call the communications layer
directly. To make a request, an OMM first updates the collection
of systems that are to receive any future management requests.
Assuming this was successful, the OMM then begins the request
processing by retrieving the version number for the current
forwarding server. Based on that, the OMM then formats and issues
the request. Once the request has been issued, the OMM
periodically checks to see if either the response has arrived or
the system manager has canceled the request. Upon arrival of the
response, it is retrieved and the message data decoded.

To perform this messaging sequence, the OMM uses a pair of
interfaces. The first is used to establish and maintain the
collection of systems that are to receive any management
requests. The second interface, which is compatible with X/Open's
XTI standard, is used to issue the request, determine if the
response is available, and to retrieve it when it is.[6] A third
interface that supports the encoding and decoding of message data
is described in a following section.

Reconnection on Failure

The OpenVMS Management Station product attempts to recover from
communications failures with little disruption to the system
manager through the use of an automated reconnection mechanism.
This mechanism places constraints on the behavior of the request
and response messages. Each request must be able to be issued
after a reconnection. Therefore, each request is marked as either
an initial request, which does not depend on server state from
previous requests, or as a continuation request, which is used to
retrieve the second or later responses from a multiple target
request and does depend on existing server state.

If an existing communications link fails, that link is marked as
unconnected. If a response were outstanding, an error would be
returned instead of a response message. When the communications
layer is next called to send a request across the unconnected
link, an automated reconnection is attempted. This involves
establishing a network connection to a target system in the
request. Once the connection has been established, the
authentication protocol is executed, using the previously

supplied authentication data. If authentication succeeds, the
request is sent. If it is a continuation request, and the target
server has no existing state for that request, an error response
is returned.

At most, the resulting behavior for the system manager is to
return an error on a management request, indicating that
communication was lost during that request's execution. If no
request was in progress, then there is no apparent disruption of
service.

Message Encoding and Decoding

Messages from the OpenVMS Management Station tool are divided
into three sections. The first section contains a message header
that describes the length of the message, the protocol version
number in use, and the name of the target OMM. The second section
contains the collection of target systems for the request. The
third section contains the data for the OMM. This last section
forms the request and is the only section of the message that is
visible to the OMMs.

The OMM data for a request is typically constructed as a command,
followed by some number of attributes and command qualifiers.
For instance, a request to list all known users on a system,
returning their usernames and last login time, could be described
as this:

 COMMAND LIST_USERS
 MODIFIER USERNAME = "*"
 ATTRIBUTES USERNAME,
 LAST_LOGIN_TIME

The OMM data for a response is typically a status code, the list
of attributes from the request, and the attributes' associated
values. There may be many responses for a single request. Using
the LIST_USERS example from above, the responses would each look
like a sequence of:

 STATUS SUCCESS
 ATTRIBUTES USERNAME (<value>)
 LAST_LOGIN_TIME (<value>)

There are many possible attributes for an OpenVMS user. To make
later extensions easier and to limit the number of attributes
that must be retrieved or updated by a request, the OMM data
fields are self-describing. They consist of a sequence of message
items that are stored as attribute code/item length/item value.
The base data type of each attribute is known and fixed.

Message encoding is supported by a set of routines. The first
accepts an attribute code and its associated data item. It
appends the appropriate message item at the end of the current

message. This is used to encode both requests and responses. The
second routine takes a message buffer and an attribute code,
returning the attribute's value and a status code indicating if
the attribute was present in the message buffer. The client uses
this routine to locate data in a response. The third routine
takes a message buffer, a table listing the attribute codes that
are of interest to the caller, and an action routine that is
called for each message item that has an attribute code found in
the table. The server OMMs use this routine to process incoming
requests.

Handling of Complex Data Types

In general, the interpretation of data between the client and
server systems did not pose a significant concern. There was no
floating-point data, and the integer and string data types were
sufficiently similar not to require special treatment. However,
the OpenVMS Management Station software did need a few data types
to process that were not simple atomic values. These required
special processing to handle. This processing typically consisted
of formatting the data type into some intermediate form that both
client and server systems could deal with equally well.

For instance, one such data type is the timestamp. In the OpenVMS
operating system, times are stored as 64-bit quadword values that
are 100 nanosecond offsets from midnight, November 18, 1858.
This is not a natural format for a Microsoft Windows client. Date
and time display formats vary greatly depending on localization
options, so the data needed to be formatted on the local client.
The developers used an approach that decomposed the native
OpenVMS time into a set of components, similar to the output from
the $NUMTIM system or the UNIX tm structure. This decomposed
time structure was the format used to transmit timestamp
information between the client and server.

SERVER COMPONENT

With the OpenVMS Management Station product, the server component
is responsible for enacting management requests that target its
local system. The server also must forward requests to all other
VMScluster systems or independent systems that any incoming
request may target. The server is a multithreaded, privileged
application running on the managed OpenVMS systems. It consists
of an infrastructure layer that receives incoming requests and
dispatches them, the server OMMs that enact the management
requests for the local system, and a forwarding layer that routes
management requests to other target systems and returns their
responses.

Server Infrastructure

The server infrastructure, shown in Figure 7, is responsible for
dispatching incoming requests to the server OMMs and the
forwarding layer. It has a set of threads, one for each inbound
connection, a pair of work queues that buffer individual requests
and responses, and a limited set of worker threads that either
call the appropriate OMM or forward the request.

[Figure 7 (Server Infrastructue and Message Flow) is not
available in ASCII format.]

The inbound connection threads are responsible for ensuring that
the request identifies a known OMM and meets its message
requirements. The connection threads must also ensure that the
OMM version number is within an acceptable range and that the
link is sufficiently authenticated. The inbound threads are then
responsible for replicating the request and placing requests that
have only one target system in the request work queue. Once a
response appears in the response work queue, these threads return
the response to the client system.

A fixed number of worker threads are responsible for taking
messages from the request work queue and either forwarding them
or calling the appropriate local OMM. Each result is placed in
the response queue as a response message. A fixed number of five
worker threads was chosen to ensure that messages with many
targets could not exhaust the server's resources. Responsiveness
and resource usage were acceptable throughout the development and
testing phases of the project, and the number of worker threads
was kept at five.

In addition to the basic thread structure, the infrastructure is
responsible for participating in the authentication exchange for
inbound connections. This is accomplished through the use of a
specialized server OMM, called Spook. The Spook OMM uses the
basic server infrastructure to ensure that authentication
requests are forwarded to the appropriate target system. This
mechanism reduced the amount of specialized logic needed for the
authentication protocol: for this reason, the server OMMs must
declare if they require an authenticated link before accepting an
incoming request.

Server OMM Structure

The server OMMs are at the heart of the server. These OMMs are
loaded dynamically when the server initializes.

Figure 8 shows the structure of the UAServer OMM in OpenVMS
Management Station version 1.0. The server OMM consists of the
main application module, the preprocessing routine, and the
postprocessing routine. The interfaces are synchronous, passing
OMM data sections from the request and response message buffers.
In addition, the main application module executes in the security
context, called a persona, of the authenticated caller. This

allows normal access checking and auditing in the OpenVMS
operating system to work transparently.

[Figure 8 (UAServer OMM) is not available in ASCII format.]

The preprocessing and postprocessing routines are used to ease
interoperation of multiple versions. They are called if the
incoming request has a different, but supported, OMM version
number than the one for the local OMM. The resulting OMM data
section is at the local OMM's version. These routines hide any
version differences in the OMM's data items and free the main
application from the need to handle out-of-version data items. If
the preprocessing routine is called, the server infrastructure
always calls the postprocessing routine, even if an error
occurred that prevented the main OMM application from being
called (for instance, by a link failure during forwarding). This
allows the two routines to work in tandem, with shared state.

The actual management operations take place in the main
application portion of the server OMM. It is structured with an
application layer that provides the interface to the management
object, such as the user account. This uses underlying resource
managers that encapsulate the primitive data stores, such as the
authorization file. The application layer knows what resources
are affected by a given management request. Each resource manager
knows how to perform requested modifications to the specific
resource that it manages.

For instance, the UAServer application layer knows that the
creation of a new user involves several resource managers,
including the authorization file and file system resource
managers. However, it does not specifically know how to perform
low-level operations such as creating a home directory or
modifying a disk quota entry. In comparison, the file system
resource manager knows how to do these low-level operations, but
it does not recognize the higher level requests, such as user
creation.

The application layer for all OMMs offers an interface and a
buffer. The request message passes the OMM data section to the
interface, and the buffer holds the OMM data section for the
response message. Similarly, all resource managers accept an OMM
data section for input and output parameters, ignoring any OMM
data items for attributes outside their specific resource.
Because of the loose coupling between the resource managers and
the application layer, the resource managers can be easily reused
by server OMMs developed later.

SUMMARY

The OpenVMS Management Station tool has demonstrated a robust
client-server solution to the management of user accounts for the
OpenVMS operating system. It provides increases in functionality

and data consistency over system management tools previously
available on the OpenVMS operating system. In addition, the
OpenVMS Management Station software is focused on the management
of several loosely associated VMScluster systems and independent
systems. It has addressed the issues concerning performance,
usability, and functionality that arose from the need to issue
management requests to execute on several target systems.

ACKNOWLEDGMENTS

I wish to thank the Argus project team of Gary Allison, Lee
Barton, George Claborn, Nestor Dutko, Tony Dziedzic, Bill Fisher,
Sue George, Keith Griffin, Dana Joly, Kevin McDonough, and Connie
Pawelczak for giving me a chance to work on such an interesting
and exciting project. I also wish to thank Rich Marcello and Jack
Fallon for providing support and encouragement to the team
throughout the project, and for their further encouragement in
writing about this experience.

REFERENCES

1. OpenVMS AXP Guide to System Security (Maynard, MA: Digital
 Equipment Corporation, May 1993): 5-1 to 5-37.

2. D. Giokas and J. Rokicki, "The Design of ManageWORKS: A User
 Interface Framework," Digital Technical Journal, vol. 6, no.
 4 (Fall 1994, this issue): 63-74.

3. J. Case, M. Fedor, M. Schoffstall, and J. Davin,
 Network Working Group, Internet Engineering Task Force RFC
 1157 (May 1990).

4. DECnet Digital Network Architecture, Common Management
 Information Protocol (CMIP), Version 1.0.0 (Maynard, MA:
 Digital Equipment Corporation, Order No. EK-DNA01-FS-001,
 July 1991).

5. J. Shirley, Guide to Writing DCE Applications (Sebastopol,
 CA: O'Reilly & Associates, Inc., 1992).

6. X/Open CAE Specification, X/Open Transport Interface
 (XTI), ISBN 1-872630-29-4 (Reading, U.K.: X/Open Company
 Ltd., January 1992).

BIOGRAPHY

James E. Johnson A consulting software engineer, Jim Johnson has
worked in the OpenVMS Engineering Group since joining Digital in
1984. He is currently a member of the OpenVMS Engineering team in
Scotland, where he is a technical consultant for transaction
processing and file services. His work has spanned several areas

across OpenVMS, including RMS, the DECdtm transaction services,
the port of OpenVMS to the Alpha architecture, and OpenVMS system
management. Jim has retained an active interest in transaction
processing, especially the area of commit protocols. Jim holds
one patent on commit protocol optimizations. He is a member of
the ACM.

TRADEMARKS

The following are trademarks of Digital Equipment Corporation:
DECnet, Digital, ManageWORKS, OpenVMS, PATHWORKS, and VMScluster.

Microsoft is a registered trademark and Windows is a trademark of
Microsoft Corporation.

NetView is a registered trademark of International Business
Machines Corporation.

NFS is a registered trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Ltd.

X Window System is a trademark of the Massachusetts Institute of
Technology.

===
Copyright 1995 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

