
 DB Integrator: Open Middleware for Data Access

 by

 Richard Pledereder, Vishu Krishnamurthy,
 Michael Gagnon, and Mayank Vadodaria

ABSTRACT

During the last few years, access to heterogeneous data sources
and integration of the disparate data has emerged as one of the
major areas for growth of database management software. Digital's
DB Integrator provides robust data access by supporting
heterogeneous query optimization, location transparency, global
consistency, resolution of semantic differences, and security
checks. A global catalog provides location transparency and
operates as an autonomous metadata repository. Global
transactions are coordinated through two-phase commit. Highly
available horizontal partitioned views support continuous
distributed processing in the presence of loss of connectivity.
The DB Integrator enables security checks without interfering
with the access controls specified in the underlying data
sources.

INTRODUCTION

A problem faced by organizations today is how to uniformly access
data that is stored in a variety of databases managed by
relational and nonrelational data systems and then transform it
into an information resource that is manageable, functional, and
readily accessible. Digital's DB Integrator (DBI) is a
multidatabase management system designed to provide
production-quality data access and integration for heterogeneous
and distributed data sources.

This paper describes the data integration needs of the enterprise
and how the DBI product fulfills those needs. It then presents
the DBI approach to multidatabase systems and a technical
overview of DBI concepts and terminology. The next section
outlines the system architecture of the DBI. The paper concludes
with highlights of some of the technologies incorporated in DBI.

DATA INTEGRATION NEEDS

Companies often find themselves data rich, but information poor.
Propelled by diverse application and end-user requirements,
companies have made significant investments in incompatible,
fragmented, and geographically distributed database systems that
need to be integrated. Companies with centralized information
systems are seeking methods to distribute this data to
inexpensive, departmental platforms, which would maximize

performance, lower cost, and increase availability.

The DB Integrator product family is specifically designed and
implemented to address the following data integration needs:

 o Data access. The data integration product must provide
 uniform access to both relational and nonrelational data
 regardless of location or storage form. Data access must
 be extensible to allow the user to write special-purpose
 methods.

 o Location and functional transparency. The location of the
 data and the functional differences of the various
 database systems must be hidden to provide end users with
 a single, logical view of the data and a uniformly
 functional data access system.

 o Schema integration and translation. Users of data
 integration software must be presented with an
 environment that lets them easily determine what data is
 available. Such an environment is frequently referred to
 as a federated database. A data integration product must
 be flexible enough to help resolve semantic
 inconsistencies such as variances in field names, data
 types, and units of measurement.

 o Data consistency. Maintaining data consistency is one of
 the most important aspects of any database system. This
 is also true for a federated database.

 o Performance. Integrating data from multiple data sources
 can be an expensive operation. The two primary goals are
 to minimize the amount of data that is transferred across
 the network and to maximize the amount of rows that are
 processed within a given unit of time.

 o Security. Access to distributed data must not compromise
 the security of data in the target databases. The
 security model must provide authorized access to an
 integrated schema without violating the security of the
 autonomous data sources that have been integrated.

 o Openness. Any data integration product must accommodate
 tools and applications with standard SQL (structured
 query language) interfaces, both at the call level (e.g.,
 Open Database Connectivity [ODBC] for personal computer
 clients) and the language level (e.g., ANSI SQL).[1,2] It
 must be able to provide and enable access to data over
 the most commonly deployed transports such as
 transmission control protocol/internet protocol (TCP/IP),
 DECnet, or Systems Network Architecture (SNA).[3]

 o Administration. The integrated database must provide
 flexibility in configuration and be easy to set up,

 maintain, and use.

Figure 1 illustrates the current set of client-server data access
supported by the DB Integrator product family.

[Figure 1 (Client-Server Data Access with the DB Integrator)
is not available in ASCII format.]

MULTIDATABASE MANAGEMENT SYSTEMS

A multidatabase management system (MDBMS) enables operations
across multiple autonomous component databases. Based on the
taxonomy for multidatabase systems presented in Reference 4, we
can describe DBI as a loosely coupled, heterogeneous, and
federated multidatabase system. DBI is loosely coupled compared
to the component databases: The database administrator (DBA) that
is responsible for DBI and the DBAs that are responsible for the
component databases manage their environments independently of
one another. DBI is heterogeneous because it supports different
types of component database systems. DBI is federated because
each component database exists as an independent entity.

Reference Architecture

The MDBMS provides users with a single system view of data
distributed over a large number of heterogeneous databases and
file systems. The MDBMS interoperates with the individual
component databases similar to the way that the SQL query
processing engine in a relational DBMS interoperates with the
record storage system. Thus, a relational MDBMS, such as DBI, is
typically composed of the following processing units:

 o Language application programming interface (API) and SQL
 parser

 o Relational data system

 - Global catalog manager

 - Distributed query optimizer and compiler

 - Distributed execution system

 - Distributed transaction management

 o Gateways to access data sources

Catalog Management

One of the key differentiators between MDBMS architectures is the
way that the metadata catalog is organized. Metadata is defined
as the attributes of the data that are accessible (e.g., naming,

location, data types, or statistics). The metadata is stored in a
catalog. Two common approaches for catalog management are
described below:

 o Autonomous catalog. The MDBMS maintains its own catalog
 in a separate database. This catalog describes the data
 available in the multidatabase. For data that resides in
 a relational database, the metadata definitions of table
 objects, index objects, and so forth, are imported (i.e.,
 replicated) into the multidatabase catalog. For data that
 resides in some other data source such as a record file
 system (e.g., record management system [RMS]) or a spread
 sheet, the MDBMS catalog contains a relational
 description of that data source.

 o Integrated catalog. The MDBMS is integrated with a
 regular database system that is capable of accessing
 objects (both data and metadata) in remote and foreign
 databases. A gateway server is responsible for making a
 foreign database appear as a homogeneous, remote database
 instance. For data that resides in a relational database,
 the gateway server stores views of its system relations
 into that database. For data that resides in a record
 file system or spread sheet, the gateway server stores
 the relational metadata description of the data in a
 separate data store.

DBI Approach

The DBI approach to multidatabase management very closely follows
the reference architecture presented earlier. The DBI approach
emphasizes the following design directions:

 o Global, autonomous catalog for metadata management

 o Three-tier integration model (described later in this
 section)

 o Simple, mapped-in gateway drivers to access data sources

 o Support of distributed database features for the Oracle
 Rdb relational database as well as support of existing
 Oracle Rdb applications in the multidatabase environment

Global Catalog. DBI is addressable as a single integration
server. Integration clients such as tools and applications do not
need to deal with the complexities of the distributed data. The
DBI global catalog is a repository in which DBI maintains the
description of the distributed data. It enables DBI to provide
tools and applications with a single access point to the
federated database environment. The global catalog enables DBI to
tell users what data is available without requiring immediate
connectivity to the data or its data source. It can be managed
and maintained as an independent database. The maintenance of the

DBI global catalog is not inherently tied to a specific data
manager; currently, the DBI catalog may reside in ORACLE, SYBASE,
or Oracle Rdb databases.

The use of a global catalog may result in a system with a single
point of failure. To eliminate its potential failure within a
node, a disk, or a network, standard high-availability mechanisms
may be employed. These include shadowed disks with shared access
(e.g., clustered nodes) and data replication of the DBI catalog
tables with products such as the Digital Data Distributor.[5]

Three-tier versus Two-tier Architecture. With a two-tier data
integration model, once the data has been retrieved from the
server tier, the actual integration occurs on the client tier.
This may result in massive integration operations at the client
site. In contrast, the DBI is based on a three-tier architecture
that performs most integration functions on a middle tier between
the client and the various database servers. The three-tier
approach avoids unnecessary transfer of data to the client and is
essential to providing production-quality data integration. In
another comparison, all clients in the two-tier approach need to
be configured to access the various data sources; however, the
three-tier approach significantly reduces such management
complexities.

Gateway Driver Model. DBI deploys a set of gateway drivers to
access specific data sources, including other DBI databases.
These drivers share a single operating system process space with
DBI to avoid unnecessary interprocess communications. When DBI
performs parallel query processing, however, gateway drivers may
reside in a separate process space. The core of DBI interacts
with the actual gateway drivers (e.g., a SYBASE gateway driver)
through the Strategic Data Interface (SDI), an architected
interface that is used within the DBI product family as a design
center.[6] A gateway driver is implemented as a relatively thin
software layer that is SDI compliant and that is responsible for
handling impedance mismatches in data models (e.g., RMS versus
relational), query language (e.g., different dialects of SQL),
and run-time capabilities (e.g., SQL statement atomicity).

Distributed Rdb. One of the design goals for DBI was to enable
distributed database processing for DEC Rdb (now Oracle Rdb).[7]
From the perspective of an application, DBI therefore looks like
a distributed Rdb database system.

DBI CONCEPTS AND TERMINOLOGY

In this section, we present a brief overview of the concepts and
terminology relevant to DBI.

DBI Database

A DBI database consists of (1) a set of tables that DBI creates
to maintain the DBI metadata (also referred to as the catalog)
and (2) the distributed data that is available to the user when
connected to the DBI catalog.

A DBA creates a DBI database using the DEC SQL CREATE DATABASE
statement. This statement has been extended for DBI to allow the
user to indicate the physical database (e.g., a SYBASE database)
that will be used to hold the DBI metadata tables.

The creator of a DBI database automatically becomes the owner and
system administrator of that database. A DBI system administrator
may grant access privileges on the DBI database to other users.
Depending on the level of privilege, a user may then perform
system administration functions, execute data definition language
(DDL) operations, and/or query the tables in the virtual
database.

DBI Objects

In addition to regular SQL objects such as tables or columns, DBI
uses objects, links, and proxies that are outside the scope of
the SQL language standard.

Links and Proxies. The link object tells DBI how to connect to
an underlying data source (referred to as the link database). A
link object has three components: a link name, the access string
used to attach to the link database, and, optionally, security
information used by the DBI gateway driver to provide
authentication information to the link database system. The proxy
object is associated with a link object. It can be used to
specify user-specific authentication information for individual
links. When users do not want to use proxies for their links,
they must specify the authentication information for a specific
database at the time they connect to DBI.

Tables. With link and proxy objects in place, the user can
import metadata definitions of underlying tables into the DBI
catalog. The metadata imported for a table includes statistics,
and constraint and index information, all of which are used by
the DBI optimizer. The import step is performed with a CREATE
TABLE statement that has been extended to allow for a link
reference. For example:

-- Import "rdb_emp" table into DBI database as "emp"
-- from the link database represented by the link
-- named "link_rdb".

--
CREATE TABLE emp LINK TO rdb_emp USING link_rdb;

Views. View objects are useful for making multiple tables from
different link databases appear as a single table. In DBI, views
serve as powerful mechanisms to resolve semantic differences in
tables from disparate databases. DBI supports two types of views:
regular SQL views and horizontally partitioned views (HPVs).
Regular views are compliant with ANSI SQL92 Level 1; they support
full query expression capabilities and updatability.[2] HPVs
consist of a view name, a partitioning column, and partition
specifications. Figure 2 is an example of an HPV definition.

Figure 2 Example of an HPV Definition

 CREATE VIEW emp (emp_id, first_name, last_name, country)
 USING HORIZONTAL PARTITIONING ON (country)

 PARTITION us WHERE country = 'US' COMPOSE AS
 SELECT employeeid, firstname, lastname, 'US'
 FROM emp_us

 PARTITION europe WHERE OTHERWISE COMPOSE AS
 SELECT emp_id, first_name, last_name, country_code
 FROM emp_eur;

HPVs provide a very powerful construct for defining a logical
table composed of horizontal partitions that may span tables from
disparate data sources. Both retrieval and update operations on
HPVs are optimized such that unnecessary partition access is
eliminated. In addition, HPVs may be used to implement a
shared-nothing computing model on top of both homogeneous and
heterogeneous databases.[8]

Stored Procedures. DBI supports stored procedure objects. Stored
procedures allow the user to embed application logic in the
database. They make application code easily shareable and
facilitate DBI to maintain dependencies between the application
code and database objects. Furthermore, stored procedures reduce
message traffic between the client and the server. Figure 3 is an
example of a stored procedure.

Figure 3 Example of a Stored Procedure

 procedure maintain_salaries(:state char(2) in,
 :n_decreased integer out);
 begin
 set :n_decreased = 0;
 for :empfor as each row of
 select * from employees emp where state = :state;
 do
 set :last_salary = 0;
 history_loop:

 for :salfor as for each row of
 select salary_amount from salary history s
 where s.employee_id = :empfor.employee_id
 do
 if :salfor.salary_amount < :last_salary then
 set :n_decreased = :n_decreased + 1;
 leave history_loop;
 end if;
 set :last_salary = :salfor.salary_amount
 end for;
 end for;
 end;

DBI Database Administration

DBI supports statements that keep the imported metadata
consistent with the link database. The extended ALTER TABLE
statement may be used to regularly refresh the table metadata
information or update the table's statistics. The ALTER LINK
statement may be used to modify the link database specification
or a proxy for a given link object.

DBI Configuration Capabilities

Figure 4 shows the power of configuration options supported by
DBI. Following the three-tier model for data integration, the DBI
server may access a very large number of databases, including
other DBI databases.

[Figure 4 (DBI Configuration Capabilities) is not available in
ASCII format.]

The DBI server is accessible through SQL APIs that are available
on popular client platforms. DBI's client-server protocol is
supported on all common transports such as TCP/IP, Novell's
sequenced packet exchange/internetwork packet exchange (SPX/IPX),
DECnet, or Windows Sockets. DBI itself may be deployed on Digital
UNIX (formerly DEC OSF/1) and OpenVMS platforms today. Support
for additional platforms is being added.

DBI SYSTEM ARCHITECTURE

In this section, we describe the system architecture of the DBI
product family and present some of its specific designs.

Interfaces

As shown in Figure 5, the DBI system architecture is anchored by
two external interfaces, SQL and metadata driver interfaces/data
driver interfaces (MDI/DDI), and two internal interfaces, Digital

Standard Relational Interface (DSRI) and SDI.

The SQL interface is used by DBI clients to issue requests to the
integration server. The MDI/DDI interface is used by DBI to call
gateway drivers that are provided by a user. The MDI/DDI
interface specifies a simple, record-oriented data access
interface provided by Digital to assist users in the access and
integration of data sources for which no Digital-supplied gateway
drivers are available.

DSRI is the interface between DBI's SQL parser and the DBI
processing engine.[9] The SDI interface specifies a canonical
data interface that shields the DBI core from
data-source-specific interfaces and facilitates modular
development.[6]

[Figure 5 (DB Integrator Architecture) is not available in ASCII
format.]

Components

The component architecture of DBI in Figure 6 closely resembles
the multidatabase reference architecture presented earlier:

 o The SQL and ODBC client-server environment provides
 language API and SQL parser functions.

 o The API driver and context manager support distributed
 transaction management and part of the distributed
 execution system.

 o The metadata manager provides global catalog management.

 o The compiler supports the distributed query optimizer and
 compilation.

 o The executor supports the remaining part of the
 distributed execution system.

 o The SDI dispatcher and gateway drivers provide the access
 to data sources.

[Figure 6 (DB Integrator Components) is not available in ASCII
format.]

SQL Environment and Server Infrastructure. The SQL parser
supports DEC SQL, an ANSI/National Institute for Science and
Technology (NIST)-compliant SQL implementation by mapping DEC SQL
syntax into an internal query graph representation.[9] In a
client-server environment, the DBI server infrastructure is used
to manage, monitor, and maintain a DBI server configuration that
supports workstation and desktop clients.

API Driver and Context Manager. The API driver is responsible

for the top-level control flow of client requests within the DBI
core. It currently accepts DSRI calls from applications such as
DEC SQL and dispatches them within DBI. The context manager
performs demand-driven propagation of execution context to the
gateway drivers and maintains the distributed context of active
sessions, transactions, and requests.

Metadata Manager. The metadata manager is responsible for the
overall management and access to metadata. The services provided
fall into the categories of catalog management, data definition,
metadata cache management, and query access to DBI system
relations. The metadata catalog manager maintains the DBI catalog
in the form of DBI-created tables in an underlying database
(e.g., SYBASE or ORACLE). The DDL processor executes the data
definition statements. The metadata cache manager is responsible
for maintaining metadata in a volatile cache that provides
high-speed access to metadata objects.

Compiler. The compiler provides services for translating SQL
statements and stored procedures into DBI execution plans. A
rule-based query optimizer performs query rewrite operations,
enumerates different execution strategies, and factors in
functional capabilities of the underlying data sources. Each
execution strategy is associated with a cost that is based on
predicate selectivity estimates, table cardinalities,
availability of indices, network bandwidth, and so forth. The
lowest cost strategy is chosen as the final execution plan. Above
a certain threshold of query complexity, the optimizer switches
from an exhaustive search method to a greedy search method to
limit the computational complexity of the optimization phase. The
compiler generates code that can be processed by the executor
component and the gateway drivers.

Executor. The executor component is responsible for processing
the execution plan that the compiler produces. These activities
include

 o Exchanging data between the DBI and the client

 o Streaming data between the DBI core and the link
 databases

 o Performing intermediate data manipulation steps such as
 joins or aggregates

 o Managing workspace and buffer pool to efficiently handle
 large amounts of transient and intermediate data

 o Supporting parallel processing

SDI Dispatcher and Gateway Drivers. The SDI dispatcher separates
the core of DBI from the gateway driver space. It locates and
loads shareable images that represent gateway drivers and routes
SDI calls to the corresponding entries in the gateway driver
image.

TECHNICAL CONSIDERATIONS

The DBI development team selected several designs and
technologies that it believes to be crucial for distributed and
heterogeneous data processing. This section summarizes those
designs within the following functional units: distributed
execution; distributed metadata handling; distributed,
heterogeneous query processing; high availability; performance;
and DBI server configuration.

Distributed Execution

To support transparent distributed query processing, DBI
propagates execution context such as connection context or
transaction context to the target data sources. Tools and
applications see only the simple user session and transaction
that they establish with the DBI integration server.

DBI uses a tree organization to track the distributed execution
context. When a user connects to a DBI database, a DBI user
session context is created. This session context is subsequently
used to anchor active transactions, compiled SQL statements, as
well as the metadata cache that is created for every user
attaching to DBI. When DBI passes control to a gateway driver,
both session and transaction context are established at the
target data source.

Distributed transactions must support consistency and concurrency
across autonomous database managers. Consistency requires that a
distributed transaction manager with two-phase commit logic is
available. DBI uses the Digital Distributed Transaction Manager
(DDTM) for that purpose and is adding support for the distributed
transaction processing (DTP) XA standard integration.[10,11]

Concurrency requires that distributed deadlocks are detected. In
a multidatabase system, distributed deadlock prevention is not
feasible because no database manager exposes external interfaces
to its lock management services -- a procedure required to
perform deadlock detection. DBI therefore relies on the simple
technique of transaction time-out to detect deadlocks. In
addition, a DBI application may choose to specify isolation
levels lower than serializability or repeatable read. This is
done with the SQL SET TRANSACTION statement. The DBI context
manager records the transaction attributes specified and forwards
them to the underlying data sources as part of propagating
transaction context. Lower isolation levels will, in general,
result in fewer lock requests and thus fewer deadlock situations.

Distributed Request Activation. DBI supports SQL statement
atomicity. This requires either that a single SQL statement
executes in its entirety or, in the case of a failure, that the
database is reset to its state prior to the execution of the
statement. With DBI, the SQL statement may be executed as a
series of database requests at multiple data sources. DBI
internally uses the concept of markpoints to track SQL statement
boundaries. Gateway drivers are informed of markpoint boundaries,
and the driver attempts to map the markpoint SDI operations into
semantically equivalent constructs (e.g., savepoints) at the
target data source. Some databases support SQL3-style savepoints,
which are atomic units of work within a transaction. When DBI
decides to roll back a markpoint, the gateway driver may then
inform such a data source to roll back to the last savepoint. In
the absence of markpoint primitives in the target data source,
the gateway driver may elect to roll back the entire transaction
to meet the roll-back markpoint semantics.

Gateway Drivers. In contrast with other data integration
architectures, the DBI gateway drivers are designed to be simple
protocol and data translators. Their primary task is to report
the capabilities of the data-source interface (API and SQL
language) to the DBI core and subsequently map between the SDI
interface protocol and the data-source interface. The gateway
drivers typically share process context with the DBI server
process, thus avoiding the need for an intermediate gateway
server process that would otherwise reside between the DBI server
and the data-source server (e.g., SYBASE SQL Server). This
reduces the amount of context switching and interprocess message
transfer.

The gateway drivers are responsible for mapping the SDI semantics
to the interface primitives provided at the target data source.
For relational databases such as Oracle Rdb, ORACLE, INFORMIX,
SYBASE, or DB2, this requires primarily a mapping to the
product-specific SQL dialect and the product-specific data types.
For file systems such as RMS, the gateway driver maps the SDI
semantics to calls to the RMS run-time library.

Distributed Metadata Handling

In this section, we discuss three areas of importance to the
handling of metadata in DBI: catalog management, security, and
metadata caching.

Catalog Management. The DBI requirement of database independence
implies that DBI cannot require the presence of a particular DBMS
for its persistence metadata storage. Rather than devising a
private storage and retrieval system, DBI was designed to layer

on top of common relational DBMSs.

Static, precompiled native applications are used to access
metadata from a given catalog DBMS for two reasons: (1) The
pattern of metadata access for the catalog database is known, and
(2) The tables housing the DBI metadata in the catalog database
are predetermined. Although this approach does not take advantage
of the existing gateway drivers, it results in high-performance
access to the metadata store.

To simplify the development of a catalog application, the set of
primitive operations on the catalog database was isolated, and a
catalog application interface (CI) was defined. Catalog
applications are developed according to the CI specification and
implemented as shareable images. DBI dynamically loads the
appropriate catalog application image based on the catalog type
specified by a user attaching to a DBI database.

Security. The security support in the currently released version
3.1 of DBI is simple but effective. It uses the security
mechanisms of the underlying link database systems in the
following areas:

 o Authorization to connect to an underlying database
 through DBI and access data from it.

 Access to the data that is manipulated through DBI is
 controlled by the underlying DBMS. Typically, underlying
 database systems control access to data based on the
 identity of the user attached to its database. DBI
 supports objects called proxies that enable the client to
 specify its user identity (i.e., username/password),
 which is then used to attach to the underlying database.

 o Authorization to perform various DBI operations.

 All privileges for a DBI database are for the database
 itself, rather than for tables or columns. The privileges
 are based on hierarchically organized categories of
 users:

 - The DBADM privilege is given to users responsible for
 setting up and maintaining a DBI database.

 - The CREATE, DROP privilege is granted to interactive
 users and application developers with database design
 responsibility who must perform data definition
 operations.

 - The SELECT privilege is reserved for interactive
 users and application developers who perform data
 manipulation operations but do not perform any data
 definition operations.

When a DBI administrator grants or revokes privileges for a DBI
database, DBI, in turn, grants or revokes the appropriate set of
privileges on the DBI tables in the database system that manages
the DBI catalog. The enforcement of privileges is therefore
carried out by that database system. For example, when the SELECT
privilege is granted on the logical database, DBI grants the
SELECT privilege on the tables that represent the DBI catalog.
This ensures that the user has access to the metadata for
processing queries. Similarly, when a user is granted the CREATE,
DROP privilege on the DBI database, DBI grants SELECT, INSERT,
UPDATE, and DELETE on the appropriate tables in the catalog
database to the user. This ensures that any DDL actions executed
by the user will enable DBI to modify the tables in the catalog
database.

Metadata Manager Cache. The in-memory metadata cache serves a
dual purpose. First, it facilitates rapid access to the metadata
by the DBI compiler. Second, it serves as a data store for the
DBI system relations that can be queried by tools and
applications. For example, DEC SQL obtains metadata for semantic
analysis of SQL statements by querying the DBI system relations.

The metadata cache is structured as a single hash table
representing a flat namespace across all DBI objects. An open
hashing scheme is employed in which the hash-table entries hang
off the buckets in the hash table in a linked list.

To optimize the use of the cache as well as to accelerate the
attach operation, the metadata manager initially obtains only
minimal, high-level metadata information from the catalog
database; for example, only names of tables are fetched into the
cache during the DBI database attach operation. Subsequently, the
metadata manager obtains further metadata information from the
catalog database on a demand basis.

DBI allows the creation of new metadata objects. These operations
are typically performed within markpoint and transaction
boundaries to enforce proper statement and transaction
demarcation. The metadata manager maintains a physical log in
cache to denote transaction and markpoint boundaries. The log is
an ordered list of structures, each representing a DDL action, a
pointer to the cache structure that was changed, and either the
previous values of fields that were updated or a pointer to a
previous image of an entire structure. When a markpoint or
transaction is committed, the corresponding log part is reset;
when a markpoint or transaction is rolled back, the log is used
to restore the cache to its state prior to the start of the
markpoint or transaction.

An object in cache can become stale when another user attaches to
the DBI database and causes an object's metadata to be changed in
the catalog database. To ensure consistency of the cached version
of an object's metadata with the actual version in the catalog

database, the metadata manager uses a time stamp to check the
currency of the cached object when performing incremental
fetching of the object's metadata. If the object in cache is
stale, the object is not accessible in the session, and an error
message is issued to the user indicating that the object in cache
is inconsistent with the catalog database. In a production
environment, this would be a rare event, given the low frequency
of data definition operations.

The metadata cache is also the data source for the DBI system
relation queries. The metadata manager navigates the cache
structures to obtain data for the system relations, making use of
the hash table for efficient access and using DBI's execution
component for evaluating search conditions and expressions.

Distributed, Heterogeneous Query Processing

Distributed query processing in a heterogeneous database
environment poses certain unique problems. Data sources behave
differently in terms of data transfer cost, and they support
different language constructs. Many systems employ rudimentary
techniques for decomposing a query, frequently pulling in all the
data from underlying tables to the processing node, and then
performing all the operations in the integration engine. Others
simply use syntactic transformations, thereby providing the least
common denominator in language functionality. DBI, on the other
hand, provides a robust query optimizer that includes
decomposition algorithms to reduce the data flow and provide
high-performance query execution.

Cost-based Plan Generation. When a query has several equivalent
means of producing the result, the plan that has the least
estimated cost is chosen. Statistics for table, column, and index
objects are used for estimating result size after various
relational operations.[12,13] Data transmission costs from the
underlying link database to DBI are taken into account when
estimating how much of the query is to be sent to the gateway
database. The network transmission cost is measured dynamically
for each user session, once per gateway connection. The cost
associated with performing a relational operation is also
aggregated into the overall cost. This crucial step ensures that
the plan is not skewed toward one database engine, which would be
the case if only the network transmission costs were taken into
account.

Rule-based Transformations. A query result may be produced with
different sequences of relational operations. These sequences are
generated using rule-based transformations. The starting point is
the original operation set in which the query was syntactically
represented. From this, permutations are generated to form
equivalence sets, which then lead to the various combinations of
execution plans that need to be examined for cost. Finally, the

least costly plan is chosen for the query. Heuristics are applied
to limit the amount of search space.

Capability-based Decomposition. The critical characteristic of a
heterogeneous environment is that the data sources are nonuniform
in their ability to perform certain operations and in their
support of various language constructs. For example, most
databases cannot support derived table expressions (i.e., select
expressions in the FROM clause of another SELECT statement).

The plan generation and decomposition phases of the optimizer
must recognize the underlying databases' capabilities. Consider
the query example shown in Figure 7 and the indicated locations
of the tables.

Figure 7 Example of an SQL Query

 select *
 from T1, T2, T3
 where (T1.c1 = T2.c2)
 and (T1.c3 = T3.c3)
 and (T1.c5 = (select avg(T4.c5) from T4)
 + (select T5.c7 from T5 where T5.c8 = 'a'));

 T1, T3, T4 and T5 are located in a Oracle database.
 Table T2 is located in a DB2 database.

First, with T1 and T3 located in the same database, the optimizer
can generate a subplan in which the join between these two tables
can be executed in the ORACLE database. An examination of the
last (third) AND predicate indicates that all the tables involved
in that predicate are located in the same ORACLE database. Due to
the limitations in ORACLE's SQL language support, however, it
cannot evaluate the combined expression between two subqueries in
the WHERE clause, where the arithmetic result is to be compared
to the column T1.c5.

The DBI optimizer employs a more sophisticated alternative. It
evaluates the two subqueries separately and then substitutes them
in the predicate in the subplan for ORACLE as run-time parameter
values. This technique leads to the most efficient plan:

 1. Retrieve value for (select avg(T4.c5) from T4) from
 ORACLE.

 2. Assign value to variable X.

 3. Retrieve value for (select T5.c7 from T5 where T5.c8 =
 'a') from ORACLE.

 4. Assign value to variable Y.

 5. Assign param_1 := variable X.

 6. Assign param_2 := variable Y.

 7. Execute the SELECT statement below in ORACLE and fetch
 the result rows.

 select *
 from T1, T3
 where (T1.c3 = T3.c3)
 and (T1.c5 = param_1 + param_2);

 8. Fetch the rows of T2 from DB2 into DBI.

 9. Perform the join in DBI between the results of steps 7
 and 8.

Query Unnesting. A nested SQL query, in its simplest form, is a
SELECT query with the WHERE clause predicate containing a
subquery (i.e., another SELECT query). The following are examples
of nested SQL queries:

Example 1, Table Subquery

select *
 from A
 where A.c1 IN (select (B.c2 + 5)
 from B
 where B.c3 = A.c3);

Example 2, Scalar Subquery

select *
 from A
 where A.c1 = (select max(B.c2)
 from B
 where B.c3 = A.c3);

Using strict SQL semantics, we can evaluate this nested query by
computing the results of the inner subquery for every tuple in
the outer (containing) query block. The value for the column A.c3
is substituted in the inner subquery, and the resulting value (or

values) are computed for the select list and used to evaluate the
Boolean condition on column A.c1: this is repeated for every
tuple of A. This method of evaluating the results is very
expensive, especially in a distributed environment.

Query unnesting algorithms provide other methods of evaluation
that are semantically equivalent but much more efficient in both
time and space. Unnesting deals with the transformation of nested
SQL queries into an equivalent sequence of relational operations.
These relational operations are performed as set operations,
thereby avoiding the expensive tuple iteration operators during
execution and providing large performance gains in most cases.
The background and motivation behind the use of unnesting has
been presented in several research papers.[14,15]

Depending on the type of operations and constructs found in the
nested select block and its parent select block, several
different algorithms can be used. Some of these require no
special operators over and above the regular join operator. Other
transformations require a special semijoin operator. Consider the
examples shown in Figure 8.

Figure 8 Query Unnesting Algorithm

--
-- Q1 - query that will not require a special join after transformation
--
select snum, city, status
 from S
 where status = (select avg(weight) + 5 -- nesting predicate
 from P
 where P.city = S.city); -- correlation predicate

--
-- Q1-U - the unnested version
--
select snum, city, status
 from S, (select city, avg(weight) + 5
 from P
 group by city) as T1(c1,c2)
 where T1.c1 = S.city
 and S.status = T1.c2;

-- Algorithm:
--
-- 1) Take the inner block's FROM table that has a correlation predicate.
-- 2) Add a Group-By to the inner block containing all attributes of this
-- table that appear in one or more correlation predicates. The order of
-- the attributes in the Group-By does not matter.
-- 3) Also, add these elements to the select list of the inner block; at the
-- beginning or at the end, whatever is convenient.
-- 4) Next, add this block to the FROM list of the outer block - effectively

-- doing a regular join with the tables in the outer FROM list.
-- 5) Lastly, rewrite the correlation and nesting predicates as shown.

In the example shown in Figure 9, a special operator called
semijoin is necessary. The semijoin of table R with S on
condition J is defined as the subset of R-tuples for which there
is at least one matching S-tuple satisfying J. Note that this
makes the operator asymmetric, in that (R semijoin S) is not the
same as (S semijoin R), whereas the regular join is symmetric.
By implementing the special semantics required for this semijoin
operator, we can transform the nested query into this join
operator that can again make use of high-performance techniques
like hash joins within the DBI execution engine.

Figure 9 Algorithm with Semijoin Operator

-
- Q2 - query requiring a semi-join
-
select snum
 from S
 where city IN (select city
 from P
 where P.weight = S.status);

-
- Q2-U - the unnested version
-
select snum
 from (S semi-join P
 on (P.weight = S.status AND S.city = P.city)
);

-- Algorithm:
--
-- 1) Do a semi-join between S and P using the following (combined) condition:
-- "(P.weight = S.status) AND (S.city = P.city)"
-- In reality, this is actually specified as 2 separate semi-joins between
-- S and P, one with the correlation predicate and one with the form of
-- the nesting predicate. But these get combined using rules.
-- 2) Project out S.snum from the result

Predicate Analysis. When a query against an HPV can be satisfied
by simply accessing a single logical partition, then the rest of
the partitions can be eliminated from the execution plan.
Partition elimination algorithms in DBI are used both at compile
time, when the predicates on the HPV query involve comparison of
the partitioning column with literals, as well as at query
execution time (run time), when the partitioning column is

compared with run-time parameters.

During affinity analysis, predicates are situated as close to the
inner table operation as feasible. For example, consider the
following view definition, and the subsequent select statement on
that view:

create view V1 (a, b) as
 select T1.c1, avg(T2.c2)
 from T1, T2
 where (T1.c4 = T2.c4)
 group by T1.c1;

select * from V1 where (a = 5 and b > 10);

The predicate a = 5 (upon further conjunctive normal form [CNF]
analysis) can be applied on the base table scan itself as T1.c1 =
5.

Index join is one of the efficient join techniques used in DBI.
This join technique minimizes the movement of data from the link
databases by taking advantage of the indexing schemes in the link
database to facilitate the join process. Consider the following
query:

select *
 from T1, T2
 where T1.c1 = T2.c2 + 5
 and (...some restrict predicate(s) on T2...)

Given an index on column c1 of table T1, and with cardinality and
cost estimates permitting, the query optimizer can generate an
alternate plan. This plan allows the join to be performed by
using efficiently indexed access retrieval for table T1.

High Availability

High availability in DBI results from the use of horizontal
partitioned views and catalog replication.

Horizontal Partitioned Views. An HPV is a special kind of view
in which DBI is provided with information about how data is
distributed among tables in link databases. HPVs offer many
advantages over normal views, one of them being improved
performance through partition elimination and use of parallelism.
The other advantage is high availability.

If a partitioned view has multiple partitions and if some
partitions are unavailable when the view is queried, then DBI

does not fail the query but returns data from the available
partitions. An example is shown in Figure 10. The example creates
a partitioned view named ALL_EMPLOYEES, with four columns and
three partitions, each of which obtains rows from three different
tables. The partitioning is based on a specific column, in this
case the CITY column, as specified in the USING HORIZONTAL
PARTITIONING ON clause.

Figure 10 Example of a Partitioned View

 CREATE VIEW ALL_EMPLOYEES(ID, NAME, ADDRESS, CITY)
 USING HORIZONTAL PARTITIONING ON CITY
 PARTITION P1 WHERE CITY = 'MUNICH'
 COMPOSE AS SELECT ID, LAST_NAME, ADDRESS, 'MUNICH'
 FROM MUNICH_EMPLOYEES
 WHERE STATUS = 'Y'

 PARTITION P2 WHERE CITY = 'PARIS'
 COMPOSE AS SELECT ID, FULL_NAME, ADDRESS, 'PARIS'
 FROM PARIS_EMPLOYEES
 WHERE STATUS = 'Y';

 PARTITION P3 WHERE CITY = 'NASHUA'
 COMPOSE AS SELECT ID, FULL_NAME, ADDRESS, LOCATION
 FROM NH_EMPLOYEES
 WHERE STATUS = 'Y';

Suppose the following query is submitted

SQL> SELECT * FROM ALL_EMPLOYEES
 WHERE (CITY = 'MUNICH')
 OR (CITY = 'NASHUA');

First, partition P2 is eliminated at compile time. Now suppose
partition P3 is presently not available due to network
connectivity problems (Figure 11). For each partition that is
unavailable, a message is returned indicating that some rows are
missing from the result table: %DBI-W-HAHPV_UNAVAILABLE Partition
P3 is currently unavailable. However, DBI still attempts to
return as much data as is accessible.

[Figure 11 (High Availability with Partitioned Views) is not
available in ASCII format.]

Catalog Replication. To prevent the DBI global catalog from

becoming a single point of failure, multiple copies of a catalog
table can be maintained by using replication techniques. Catalog
table copies can be created easily and maintained using
replication tools such as the DEC Data Distributor.[5]

Performance

In addition to its distributed query optimizer, DBI uses a series
of techniques to increase the speed of query processing, most
notably in the areas of data transfer, memory management, join
processing, parallelism, and stored procedures.

Data Transfer. The DBI execution engine performs bulk data
transfer using the bulk fetch mechanisms provided by the SDI
interface. With bulk data transfer, a single request message to a
local or remote data source returns many tuples with a single
response message. Bulk transfer techniques are mandatory in a
distributed environment; they reduce both message traffic and
stall waits due to message delays. The data transfer bandwidth
between the DBI engine and the gateway drivers is further
increased through the use of asynchronous SDI operations.

Memory Management. An MDBMS needs to be able to process large
amounts of data efficiently without exceeding platform- or
user-specific operational quotas such as the page file size or
the working set limit. In addition, standard operating system
paging techniques may easily result in heavy I/O thrashing for
database-centric work loads.

The DBI executor places data streams, intermediate query results,
or hash buckets into individual workspaces. A workspace is
organized as a linear sequence of fixed-size pages. A standard
page-table mechanism identifies the allocated pages and records
status such as whether a page is present in memory or whether it
is paged out to secondary storage. The workspace manager operates
as an intelligent buffer manager and paging system that controls
fair access to memory across all active workspaces of a given DBI
user. A buffer pool manager holds the workspace pages that reside
in memory.

The buffer pool manager supports multiple buffer replacement
policies, which is important for database workloads that involve
sequential access to data that is subsequently no longer needed.
The two supported strategies are least recently used (LRU) and
most recently used (MRU).[16] Finally, the workspace manager
supports write-behind for newly allocated pages. This allows
newly allocated pages that have been filled to be written
asynchronously.

Join Processing. Highly efficient processing of joins and unions
is important in any commercial database; it is crucial for a

multidatabase system. DBI supports nested loop join, index join,
and hash join. In fact, DBI supports both a regular hash-join
mechanism and a hybrid, hash-partitioned variant that is
augmented with Bloom filtering.[17,18,19]

For both hash-join variants, the inner table rows are read
asynchronously into a DBI workspace. This first pass is used to
estimate whether or not to use the hash-partitioned variant. An
exact estimate for the number of partitions to use is well worth
the overhead of this initial pass.[20] In addition, a Bloom
filter with 64 kilobits is populated as part of this pass. The
inner table cardinality, an estimate for the outer table
cardinality, and an estimate of the presently available memory
are used to determine whether the simple hash-join technique is
sufficient, or whether the use of the hybrid hash-partitioned
join technique is warranted.

In general, hash-partitioned join processing is indicated when
the inner table and its hash-table buckets do not fit in memory.
In this case, both the build phase for the inner-table hash
buckets as well as the probe phase of outer-table tuples against
the inner-table hash buckets may incur massive amounts of random
I/O. When the hash-partitioned variant is selected, the following
steps are performed.

 o Each partition receives a separate workspace.

 o The inner table is partitioned first. During this
 partitioning step, a Bloom filter is generated from the
 join column of inner-table tuples and is applied when the
 outer table rows are partitioned. This results in a
 potentially massive reduction of the number of rows that
 are placed into the outer partitions, thus eliminating
 expensive I/O operations.

 o The workspaces that hold the inner-table partition 1 and
 the hash-table buckets for that partition are aged LRU,
 which keeps them in memory for the join operation on the
 first partition pair.

 o The workspaces that hold the remaining inner-table
 partitions 2 through (n) are aged MRU; these pages become
 immediately available for buffer replacement selection
 once they have been filled and their frames unpinned.

 o Once the partitioning phase is complete, each pair of
 inner and outer partitions is joined starting with
 partition pair 1. The inner partitions are aged LRU, and
 the outer partitions are aged MRU to keep the inner
 partition tuples in memory.

The use of flexible buffer replacement strategies is crucial for
good buffer cache behavior.

Parallelism. DBI employs two types of parallelism: pipelined
parallelism and independent parallelism.[8]

With hash-join processing, for instance, the outer table rows are
read by separate DBI execution threads from the underlying
database. This means that the outer table tuple stream is
effectively generated in parallel with the probe phase processing
of the hash-join operator on the inner table rows. The
outer-table tuple stream is directed into the hash-join probe
phase.

For UNION processing on partitioned views, the individual input
streams to the UNION operator are generated by separate DBI
execution threads. The streams are provided in parallel and
independently to the UNION operator.

Stored Procedures. Stored procedures provide a critical
performance enhancement for client-server processing. They allow
the DBA to encapsulate a set of SQL statements plus control
logic. The client sends one message containing a stored procedure
rather than several messages, each containing one SQL statement.
This reduces processing delays that otherwise would be incurred
due to network traffic.

DBI Server Configuration

In a standard DBI configuration, one execution process is created
for each DBI client. As the number of clients increases, more and
more operating system resources are consumed. The DBI server
configuration addresses this problem.

Server Components. A DBI server configuration includes minimally
a monitor process, a dispatcher process, and a set of DBI
executor processes. The monitor process supports on-line system
management of the server configuration. One or more dispatcher
processes manage all client communications context. Dispatchers
route client messages to an appropriate DBI executor process
through high-speed shared memory queues. Figure 12 shows a
typical DBI server configuration.

[Figure 12 (DBI Server Configuration) is not available in ASCII
format.]

Server Infrastructure. In the DBI server environment, an ODBC
client logically connects to a service object that provides
access to a specific DBI database.[1] A service is instantiated
by a pool of DBI executor processes that contain the DBI image.
The amount of processes of the pool is configurable, both
off-line and on-line. This allows the administrator to match the
throughput requirements for a given DBI database with the

appropriate amount of executor processes.

Multithreading. DBI executor processes may presently
be configured as session-reusable or transaction-reusable.
Session-reusable means that a client is bound to an executor
process for the duration of the entire database session.
Transaction-reusable means that multiple clients may share the
same executor process; a client is scheduled to a DBI
executor for one transaction at a time.

SUMMARY

The DB Integrator product contains many features that enable it
to provide open, robust, and high-performance data access. DBI
guarantees open data access by supporting de facto and de jure
interface standards such as SQL92 and ODBC. Client-server
connectivity is available over the DECnet, TCP/IP, and SPX/IPX
transports. The MDI/DDI interface allows users to extend the use
of DBI to gain access to any number of data sources.

DBI provides robust data access by supporting heterogeneous query
optimization, location transparency, global consistency,
resolution of semantic differences, and security checks. The DBI
query optimizer takes cost factors and capabilities into account
to determine the optimal plan. A global catalog provides location
transparency and operates as an autonomous metadata repository.
Global transactions are coordinated through two-phase commit.
Highly available horizontal partitioned views support continuous
distributed processing in the presence of loss of connectivity.
Definitions of views and stored procedures allow the user to hide
semantic differences among the underlying databases. Finally, DBI
enables security checks without interfering with the access
controls specified in the underlying data sources.

DBI offers high-performance data access through a combination of
sophisticated query optimization, advanced query execution
algorithms, and efficient use of network resources. The query
optimizer decomposes a distributed query by using as many
features of the underlying database as possible and by employing
state-of-the-art techniques such as query unnesting and partition
elimination. The DBI query processor is capable of driving index
joins and hybrid hash-partitioned joins. All intermediate data is
cached I/O optimized. Connections to remote data sources are
established solely on demand. Finally, parallel query execution
is supported.

In the future, performance will continue to be an important
factor for any data access product as will support for
object-oriented data models. By combining data-integration
technologies such as DBI with application-integration standards
such as Object Request Brokers, a merger of data integration and
application integration will be feasible.

ACKNOWLEDGMENTS

The authors would like to recognize everyone who contributed to
the DBI project. Jim Gray, Hal Berenson, Dave Lomet, and Gayn
Winters helped to establish the product vision. Russ Holden and
Dan Dietterich lent their technical guidance and project
leadership. The DBI engineering team designed, implemented, and
delivered the product on schedule. The DBI management team of
Steve Serra, Rich Bourdeau, Arlene Lacharite, and Trish Pendleton
contributed their commitment to delivering the vision. We would
also like to thank the anonymous referees for their invaluable
comments on the content and presentation of this paper.

REFERENCES

1. Microsoft Open Database Connectivity, Programmer's Reference,
 Version 2.0 (Redmond, Wash.: Microsoft Corporation, 1993).

2. Information Technology--Database Language SQL, ANSI
 X3H2-92-154/DBL CBR-002 (New York: American National
 Standards Institute, 1992).

3. "Middleware: Panacea or Boondoggle?," Strategic Analysis
 Report (Gartner Group, July 5, 1994).

4. A. Sheth and J. Larson, "Federated Database Systems for
 Managing Distributed, Heterogeneous, and Autonomous
 Databases," ACM Computing Surveys, vol. 22, no. 3 (1990).

5. Digital Data Distributor Handbook (Maynard, Mass.: Digital
 Equipment Corporation, Order No. AA-HZ65Fl-TE, 1994).

6. Strategic Data Interface, Version 3.1 (Maynard, Mass.:
 Digital Equipment Corporation, 1994). This internal DB
 integrator specification is not available to external
 readers.

7. DEC Rdb Documentation Set for DEC Rdb Version 6.0 (Maynard,
 Mass.: Digital Equipment Corporation, 1994).

8. D. J. DeWitt and J. Gray, "Parallel Database Systems: The
 Future of High Performance Database Systems,"
 Communications of the ACM, vol. 35, no. 6 (1992): 85-98.

9. Digital DSRI Handbook, Version 5.1 (Maynard, Mass.: Digital
 Equipment Corporation, 1994). This internal document is not
 available to external readers.

10. Digital Distributed Transaction Manager, OpenVMS
 Documentation, Version 5.5 (Maynard, Mass.: Digital Equipment
 Corporation, 1992).

11. Distributed Transaction Processing: The XA
 Specification, X/Open CAE Specification: C193, ISBN
 1-872630-24-3 (1992).

12. P. Selinger et al., "Access Path Selection in a Relational
 Database Management System," Proceedings of the ACM SIGMOD
 Conference (1979).

13. P. Selinger and M. Adiba, "Access Path Selection in
 Distributed Database Management Systems," IBM Research
 Report (1980).

14. W. Kim, "On Optimizing an SQL-like Nested Query," ACM
 Transactions on Database Systems, vol. 7, no. 3 (1982).

15. U. Dayal, "Of Nests and Trees: A Unified Approach to
 Processing Queries That Contain Nested Subqueries, Aggregates
 and Quantifiers," Proceedings of the 13th Conference on Very
 Large Databases (VLDB), Brighton (1987).

16. M. Stonebraker, "Operating System Support for Database
 Management Systems," Communications of the ACM, vol. 24, no.
 7 (1981): 412.

17. G. Graefe, "Query Evaluation Techniques for Large Databases,"
 ACM Computing Surveys, vol. 25, no. 2 (1993).

18. B. H. Bloom, "Space/time Tradeoffs in Hash Coding with
 Allowable Errors," Communications of the ACM, vol. 13, no. 7
 (1970): 422-426.

19. M. Ramakrishna, "Practical Performance of Bloom Filters and
 Parallel Free-text Searching," Communications of the
 ACM, vol. 32, no. 10 (1989): 1237.

20. S. Christodoulakis, "Estimating Block Transfers and Join
 Sizes," Proceedings of the ACM SIGMOD Conference (1983).

BIOGRAPHIES

Richard Pledereder

As a consulting software engineer in Digital's Software Products
Group, Richard Pledereder was the system architect on the DB
Integrator product family and contributed to the architecture and
implementation of common DBI and Rdb features such as SQL stored
procedures. Richard also initiated the architecture, design, and
development effort of a multithreaded database server
environment, which is now part of the DBI/OSF and Rdb/OSF
products. He received a B.S. and an M.S. in computer science from
the Technical University Munich, Bavaria. Richard also collects
tapes of operas by the Bavarian composer Richard Wagner.

Vishu Krishnamurthy

Vishu Krishnamurthy is a principal engineer in Digital's Database
Integration and Interoperability Group, where he is currently the
project leader for the DB Integrator product. Vishu was the
technical leader for the metadata and catalog management
components of DBI. Since joining Digital in 1988, he has held
senior development positions in the Distributed Compiler Group,
in the RdbStar project, and in the DEC Data Distributor project.
Vishu holds a B.E. (honors) in mechanical engineering from the
University of Madras and M.S. degrees in computer and information
sciences and in mechanical engineering (robotics) from the
University of Florida.

Michael Gagnon

Mike Gagnon joined Digital in 1981 and worked on the design and
development of Digital's transaction processing and database
systems. Mike contributed to the development of ACMS, Digital's
transaction processing monitor for VMS systems, and more recently
he contributed to the development of a distributed heterogeneous
database system. When that system was refocused as the DB
Integrator product, Mike led the team that produced the execution
engine for all relational processing. Mike assumed project
leadership responsibility for DBI version 1.0 and led the project
through version 3.1.

Mayank Vadodaria

As a principal software engineer in Digital's Database
Integration and Interoperability Group, Mayank Vadodaria was the
technical group leader for the query processing components of
Digital's DB Integrator product family. He was also responsible
for Digital's SQL development environment products. He has been
instrumental in the design of many key features in the
compilation and query optimization within DBI. Mayank holds a B.
Tech. from the Indian Institute of Technology, Madras, and an

M.S. in computer science from the University of Illinois at
Urbana-Champaign.

TRADEMARKS

DEC OSF/1, DECnet, Digital, OpenVMS, PATHWORKS, and ULTRIX are
trademarks of Digital Equipment Corporation.

ADABAS is a registered trademark of Software AG of North America,
Inc.

AIX and OS/2 are registered trademarks and AS/400 and DB2 are
trademarks of International Business Machines Corporation.

AppleTalk and Macintosh are registered trademarks of Apple
Computer Inc.

dBASE is a trademark and Paradox is a registered trademark of
Borland International, Inc.

EDA/SQL is a trademark of Information Builders, Inc.

Excel is a registered trademark and Windows and Windows NT are
trademarks of Microsoft Corporation.

HP-UX is a registered trademark of Hewlett-Packard Company.

INGRES is a registered trademark of Ingres Corporation.

INFORMIX is a registered trademark of Informix Software, Inc.

Novell is a registered trademark of Novell, Inc.

OFS is a registered trademark of Open Software Foundation, Inc.

ORACLE is a registered trademark of Oracle Corporation.

SCO is a trademark of Santa Cruz Operations, Inc.

SequeLink is a registered trademark of TechGnosis, Inc.

Solaris and Sun are registered trademarks and SunOS is a
trademark of Sun Microsystems, Inc.

SPX/IPX is a trademark of Novell, Inc.

SYBASE is a registered trademark of Sybase, Inc.

UNIX is a registered trademark licensed exclusively by X/Open
Company, Ltd.

===

Copyright 1995 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

