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ABSTRACT
  
During the last few years, access to heterogeneous data sources 
and integration of the disparate data has emerged as one of the 
major areas for growth of database management software. Digital's 
DB Integrator provides robust data access by supporting 
heterogeneous query optimization, location transparency, global 
consistency, resolution of semantic differences, and security 
checks. A global catalog provides location transparency and 
operates as an autonomous metadata repository. Global 
transactions are coordinated through two-phase commit. Highly 
available horizontal partitioned views support continuous 
distributed processing in the presence of loss of connectivity. 
The DB Integrator enables security checks without interfering 
with the access controls specified in the underlying data 
sources.

INTRODUCTION

A problem faced by organizations today is how to uniformly access 
data that is stored in a variety of databases managed by 
relational and nonrelational data systems and then transform it 
into an information resource that is manageable, functional, and 
readily accessible. Digital's DB Integrator (DBI) is a 
multidatabase management system designed to provide 
production-quality data access and integration for heterogeneous 
and distributed data sources.

This paper describes the data integration needs of the enterprise 
and how the DBI product fulfills those needs. It then presents 
the DBI approach to multidatabase systems and a technical 
overview of DBI concepts and terminology. The next section 
outlines the system architecture of the DBI. The paper concludes 
with highlights of some of the technologies incorporated in DBI.

DATA INTEGRATION NEEDS

Companies often find themselves data rich, but information poor. 
Propelled by diverse application and end-user requirements, 
companies have made significant investments in incompatible, 
fragmented, and geographically distributed database systems that 
need to be integrated. Companies with centralized information 
systems are seeking methods to distribute this data to 
inexpensive, departmental platforms, which would maximize 



performance, lower cost, and increase availability.
 
The DB Integrator product family is specifically designed and 
implemented to address the following data integration needs:

    o   Data access. The data integration product must provide 
        uniform access to both relational and nonrelational data 
        regardless of location or storage form. Data access must 
        be extensible to allow the user to write special-purpose 
        methods.

    o   Location and functional transparency. The location of the 
        data and the functional differences of the various 
        database systems must be hidden to provide end users with 
        a single, logical view of the data and a uniformly 
        functional data access system.

    o   Schema integration and translation. Users of data 
        integration software must be presented with an 
        environment that lets them easily determine what data is 
        available. Such an environment is frequently referred to 
        as a federated database. A data integration product  must 
        be flexible enough to help resolve semantic 
        inconsistencies such as variances in field names, data 
        types, and units of measurement.

    o   Data consistency. Maintaining data consistency is one of 
        the most important aspects of any database system. This 
        is also true for a federated database.

    o   Performance. Integrating data from multiple data sources 
        can be an expensive operation. The two primary goals are 
        to minimize the amount of data that is transferred across 
        the network and to maximize the amount of rows that are 
        processed within a given unit of time.

    o   Security. Access to distributed data must not compromise 
        the security of data in the target databases. The 
        security model must provide authorized access to an 
        integrated schema without violating the security of the 
        autonomous data sources that have been integrated.

    o   Openness. Any data integration product must accommodate 
        tools and applications with standard SQL (structured 
        query language) interfaces, both at the call level (e.g., 
        Open Database Connectivity [ODBC] for personal computer 
        clients) and the language level (e.g., ANSI SQL).[1,2] It 
        must be able to provide and enable access to data over 
        the most commonly deployed transports such as 
        transmission control protocol/internet protocol (TCP/IP), 
        DECnet, or Systems Network Architecture (SNA).[3]

    o   Administration. The integrated database must provide 
        flexibility in configuration and be easy to set up, 



        maintain, and use.

Figure 1 illustrates the current set of client-server data access 
supported by the DB Integrator product family.

[Figure 1 (Client-Server Data Access with the DB Integrator) 
is not available in ASCII format.]

MULTIDATABASE MANAGEMENT SYSTEMS

A multidatabase management system (MDBMS) enables operations 
across multiple autonomous component databases. Based on the 
taxonomy for multidatabase systems presented in Reference 4, we 
can describe DBI as a loosely coupled, heterogeneous, and 
federated multidatabase system. DBI is loosely coupled compared 
to the component databases: The database administrator (DBA) that 
is responsible for DBI and the DBAs that are responsible for the 
component databases manage their environments independently of 
one another. DBI is heterogeneous because it supports different 
types of component database systems. DBI is federated because 
each component database exists as an independent entity. 

Reference Architecture

The MDBMS provides users with a single system view of data 
distributed over a large number of heterogeneous databases and 
file systems. The MDBMS interoperates with the individual 
component databases similar to the way that the SQL query 
processing engine in a relational DBMS interoperates with the 
record storage system. Thus, a relational MDBMS, such as DBI, is 
typically composed of the following processing units:

    o   Language application programming interface (API) and SQL 
        parser

    o   Relational data system

        -  Global catalog manager

        -  Distributed query optimizer and compiler

        -  Distributed execution system

        -  Distributed transaction management

    o   Gateways to access data sources

Catalog Management

One of the key differentiators between MDBMS architectures is the 
way that the metadata catalog is organized. Metadata is defined 
as the attributes of the data that are accessible (e.g., naming, 



location, data types, or statistics). The metadata is stored in a 
catalog. Two common approaches for catalog management are 
described below:

    o   Autonomous catalog. The MDBMS maintains its own catalog 
        in a separate database. This catalog describes the data 
        available in the multidatabase. For data that resides in 
        a relational database, the metadata definitions of table 
        objects, index objects, and so forth, are imported (i.e., 
        replicated) into the multidatabase catalog. For data that 
        resides in some other data source such as a record file 
        system (e.g., record management system [RMS]) or a spread 
        sheet, the MDBMS catalog contains a relational 
        description of that data source.

    o   Integrated catalog. The MDBMS is integrated with a 
        regular database system that is capable of accessing 
        objects (both data and metadata) in remote and foreign 
        databases. A gateway server is responsible for making a 
        foreign database appear as a homogeneous, remote database 
        instance. For data that resides in a relational database, 
        the gateway server stores views of its system relations 
        into that database. For data that resides in a record 
        file system or spread sheet, the gateway server stores 
        the relational metadata description of the data in a 
        separate data store.

DBI Approach

The DBI approach to multidatabase management very closely follows 
the reference architecture presented earlier. The DBI approach 
emphasizes the following design directions:

    o   Global, autonomous catalog for metadata management

    o   Three-tier integration model (described later in this 
        section)

    o   Simple, mapped-in gateway drivers to access data sources

    o   Support of distributed database features for the Oracle 
        Rdb relational database as well as support of existing 
        Oracle Rdb applications in the multidatabase environment

Global Catalog.  DBI is addressable as a single integration 
server. Integration clients such as tools and applications do not 
need to deal with the complexities of the distributed data. The 
DBI global catalog is a repository in which DBI maintains the 
description of the distributed data. It enables DBI to provide 
tools and applications with a single access point to the 
federated database environment. The global catalog enables DBI to 
tell users what data is available without requiring immediate 
connectivity to the data or its data source. It can be managed 
and maintained as an independent database. The maintenance of the 



DBI global catalog is not inherently tied to a specific data 
manager; currently, the DBI catalog may reside in ORACLE, SYBASE, 
or Oracle Rdb databases.

The use of a global catalog may result in a system with a single 
point of failure. To eliminate its potential failure within a 
node, a disk, or a network, standard high-availability mechanisms 
may be employed. These include shadowed disks with shared access 
(e.g., clustered nodes) and data replication of the DBI catalog 
tables with products such as the Digital Data Distributor.[5] 

Three-tier versus Two-tier Architecture.  With a two-tier data 
integration model, once the data has been retrieved from the 
server tier, the actual integration occurs on the client tier. 
This may result in massive integration operations at the client 
site. In contrast, the DBI is based on a three-tier architecture 
that performs most integration functions on a middle tier between 
the client and the various database servers. The three-tier 
approach avoids unnecessary transfer of data to the client and is 
essential to providing production-quality data integration. In 
another comparison, all clients in the two-tier approach need to 
be configured to access the various data sources; however, the 
three-tier approach significantly reduces such management 
complexities.

Gateway Driver Model.  DBI deploys a set of gateway drivers to 
access specific data sources, including other DBI databases. 
These drivers share a single operating system process space with 
DBI to avoid unnecessary interprocess communications. When DBI 
performs parallel query processing, however, gateway drivers may 
reside in a separate process space. The core of DBI interacts 
with the actual gateway drivers (e.g., a SYBASE gateway driver) 
through the Strategic Data Interface (SDI), an architected 
interface that is used within the DBI product family as a design 
center.[6] A gateway driver is implemented as a relatively thin 
software layer that is SDI compliant and that is responsible for 
handling impedance mismatches in data models (e.g., RMS versus 
relational), query language (e.g., different dialects of SQL), 
and run-time capabilities (e.g., SQL statement atomicity).

Distributed Rdb.  One of the design goals for DBI was to enable 
distributed database processing for DEC Rdb (now Oracle Rdb).[7] 
From the perspective of an application, DBI therefore looks like 
a distributed Rdb database system.

DBI CONCEPTS AND TERMINOLOGY

In this section, we present a brief overview of the concepts and 
terminology relevant to DBI.



DBI Database

A DBI database consists of (1) a set of tables that DBI creates 
to maintain the DBI metadata (also referred to as the catalog) 
and (2) the distributed data that is available to the user when 
connected to the DBI catalog.

A DBA creates a DBI database using the DEC SQL CREATE DATABASE 
statement. This statement has been extended for DBI to allow the 
user to indicate the physical database (e.g., a SYBASE database) 
that will be used to hold the DBI metadata tables.

The creator of a DBI database automatically becomes the owner and 
system administrator of that database. A DBI system administrator 
may grant access privileges on the DBI database to other users. 
Depending on the level of privilege, a user may then perform 
system administration functions, execute data definition language 
(DDL) operations, and/or query the tables in the virtual 
database.

DBI Objects

In addition to regular SQL objects such as tables or columns, DBI 
uses objects, links, and proxies that are outside the scope of 
the SQL language standard. 

Links and Proxies.  The link object tells DBI how to connect to 
an underlying data source (referred to as the link database). A 
link object has three components: a link name, the access string 
used to attach to the link database, and, optionally, security 
information used by the DBI gateway driver to provide 
authentication information to the link database system. The proxy 
object is associated with a link object. It can be used to 
specify user-specific authentication information for individual 
links. When users do not want to use proxies for their links, 
they must specify the authentication information for a specific 
database at the time they connect to DBI.

Tables.  With link and proxy objects in place, the user can 
import metadata definitions of underlying tables into the DBI 
catalog. The metadata imported for a table includes statistics, 
and constraint and index information, all of which are used by 
the DBI optimizer. The import step is performed with a CREATE 
TABLE statement that has been extended to allow for a link 
reference. For example:

-- Import "rdb_emp" table into DBI database as "emp"
-- from the link database represented by the link 
-- named "link_rdb".

-- 
CREATE TABLE emp LINK TO rdb_emp USING link_rdb;



Views.  View objects are useful for making multiple tables from 
different link databases appear as a single table. In DBI, views 
serve as powerful mechanisms to resolve semantic differences in 
tables from disparate databases. DBI supports two types of views: 
regular SQL views and horizontally partitioned views (HPVs). 
Regular views are compliant with ANSI SQL92 Level 1; they support 
full query expression capabilities and updatability.[2] HPVs 
consist of a view name, a partitioning column, and partition 
specifications. Figure 2 is an example of an HPV definition.

Figure 2 Example of an HPV Definition

        CREATE VIEW emp (emp_id, first_name, last_name, country)
               USING HORIZONTAL PARTITIONING ON (country)

               PARTITION us WHERE country = 'US' COMPOSE AS
                         SELECT employeeid, firstname, lastname, 'US'
                         FROM emp_us

               PARTITION europe WHERE OTHERWISE COMPOSE AS
                         SELECT emp_id, first_name, last_name, country_code
                         FROM emp_eur;

HPVs provide a very powerful construct for defining a logical 
table composed of horizontal partitions that may span tables from 
disparate data sources. Both retrieval and update operations on 
HPVs are optimized such that unnecessary partition access is 
eliminated. In addition, HPVs may be used to implement a 
shared-nothing computing model on top of both homogeneous and 
heterogeneous databases.[8]

Stored Procedures.  DBI supports stored procedure objects. Stored 
procedures allow the user to embed application logic in the 
database. They make application code easily shareable and 
facilitate DBI to maintain dependencies between the application 
code and database objects. Furthermore, stored procedures reduce 
message traffic between the client and the server. Figure 3 is an 
example of a stored procedure.

Figure 3 Example of a Stored Procedure

        procedure maintain_salaries(:state char(2) in,
                                    :n_decreased integer out);
        begin
            set :n_decreased = 0;
            for :empfor as each row of
                 select * from employees emp where state = :state;
             do
                  set :last_salary = 0;
                  history_loop:



                  for :salfor as for each row of
                      select salary_amount from salary history s
                      where s.employee_id = :empfor.employee_id
               do
                      if :salfor.salary_amount < :last_salary then
                          set :n_decreased = :n_decreased + 1;
                          leave history_loop;
                      end if;
                       set :last_salary = :salfor.salary_amount
                  end for;
            end for;
        end;

DBI Database Administration

DBI supports statements that keep the imported metadata 
consistent with the link database. The extended ALTER TABLE 
statement may be used to regularly refresh the table metadata 
information or update the table's statistics. The ALTER LINK 
statement may be used to modify the link database specification 
or a proxy for a given link object.

DBI Configuration Capabilities

Figure 4 shows the power of configuration options supported by 
DBI. Following the three-tier model for data integration, the DBI 
server may access a very large number of databases, including 
other DBI databases.

[Figure 4 (DBI Configuration Capabilities) is not available in 
ASCII format.]

The DBI server is accessible through SQL APIs that are available 
on popular client platforms. DBI's client-server protocol is 
supported on all common transports such as TCP/IP, Novell's 
sequenced packet exchange/internetwork packet exchange (SPX/IPX), 
DECnet, or Windows Sockets. DBI itself may be deployed on Digital 
UNIX (formerly DEC OSF/1) and OpenVMS platforms today. Support 
for additional platforms is being added.

DBI SYSTEM ARCHITECTURE

In this section, we describe the system architecture of the DBI 
product family and present some of its specific designs.

Interfaces

As shown in Figure 5, the DBI system architecture is anchored by 
two external interfaces, SQL and metadata driver interfaces/data 
driver interfaces (MDI/DDI), and two internal interfaces, Digital 



Standard Relational Interface (DSRI) and SDI. 

The SQL interface is used by DBI clients to issue requests to the 
integration server. The MDI/DDI interface is used by DBI to call 
gateway drivers that are provided by a user. The MDI/DDI 
interface specifies a simple, record-oriented data access 
interface provided by Digital to assist users in the access and 
integration of data sources for which no Digital-supplied gateway 
drivers are available.

DSRI is the interface between DBI's SQL parser and the DBI 
processing engine.[9] The SDI interface specifies a canonical 
data interface that shields the DBI core from 
data-source-specific interfaces and facilitates modular 
development.[6]

[Figure 5 (DB Integrator Architecture) is not available in ASCII 
format.]

Components

The component architecture of DBI in Figure 6 closely resembles 
the multidatabase reference architecture presented earlier:

    o   The SQL and ODBC client-server environment provides 
        language API and SQL parser functions.

    o   The API driver and context manager support distributed 
        transaction management and part of the distributed 
        execution system.

    o   The metadata manager provides global catalog management.

    o   The compiler supports the distributed query optimizer and 
        compilation.

    o   The executor supports the remaining part of the 
        distributed execution system.

    o   The SDI dispatcher and gateway drivers provide the access 
        to data sources.

[Figure 6 (DB Integrator Components) is not available in ASCII 
format.]

SQL Environment and Server Infrastructure.  The SQL parser 
supports DEC SQL, an ANSI/National Institute for Science and 
Technology (NIST)-compliant SQL implementation by mapping DEC SQL 
syntax into an internal query graph representation.[9] In a 
client-server environment, the DBI server infrastructure is used 
to manage, monitor, and maintain a DBI server configuration that 
supports workstation and desktop clients.

API Driver and Context Manager.  The API driver is responsible 



for the top-level control flow of client requests within the DBI 
core. It currently accepts DSRI calls from applications such as 
DEC SQL and dispatches them within DBI. The context manager 
performs demand-driven propagation of execution context to the 
gateway drivers and maintains the distributed context of active 
sessions, transactions, and requests.

Metadata Manager.  The metadata manager is responsible for the 
overall management and access to metadata. The services provided 
fall into the categories of catalog management, data definition, 
metadata cache management, and query access to DBI system 
relations. The metadata catalog manager maintains the DBI catalog 
in the form of DBI-created tables in an underlying database 
(e.g., SYBASE or ORACLE). The DDL processor executes the data 
definition statements. The metadata cache manager is responsible 
for maintaining metadata in a volatile cache that provides 
high-speed access to metadata objects.

Compiler.  The compiler provides services for translating SQL 
statements and stored procedures into DBI execution plans. A 
rule-based query optimizer performs query rewrite operations, 
enumerates different execution strategies, and factors in 
functional capabilities of the underlying data sources. Each 
execution strategy is associated with a cost that is based on 
predicate selectivity estimates, table cardinalities, 
availability of indices, network bandwidth, and so forth. The 
lowest cost strategy is chosen as the final execution plan. Above 
a certain threshold of query complexity, the optimizer switches 
from an exhaustive search method to a greedy search method to 
limit the computational complexity of the optimization phase. The 
compiler generates code that can be processed by the executor 
component and the gateway drivers.

Executor.  The executor component is responsible for processing 
the execution plan that the compiler produces. These activities 
include
        
    o   Exchanging data between the DBI and the client

    o   Streaming data between the DBI core and the link 
        databases

    o   Performing intermediate data manipulation steps such as 
        joins or aggregates

    o   Managing workspace and buffer pool to efficiently handle 
        large amounts of transient and intermediate data

    o   Supporting parallel processing



SDI Dispatcher and Gateway Drivers.  The SDI dispatcher separates 
the core of DBI from the gateway driver space. It locates and 
loads shareable images that represent gateway drivers and routes 
SDI calls to the corresponding entries in the gateway driver 
image.

TECHNICAL CONSIDERATIONS

The DBI development team selected several designs and 
technologies that it believes to be crucial for distributed and 
heterogeneous data processing. This section summarizes those 
designs within the following functional units: distributed 
execution; distributed metadata handling; distributed, 
heterogeneous query processing; high availability; performance; 
and DBI server configuration. 

Distributed Execution

To support transparent distributed query processing, DBI 
propagates execution context such as connection context or 
transaction context to the target data sources. Tools and 
applications see only the simple user session and transaction 
that they establish with the DBI integration server.

DBI uses a tree organization to track the distributed execution 
context. When a user connects to a DBI database, a DBI user 
session context is created. This session context is subsequently 
used to anchor active transactions, compiled SQL statements, as 
well as the metadata cache that is created for every user 
attaching to DBI. When DBI passes control to a gateway driver, 
both session and transaction context are established at the 
target data source.

Distributed transactions must support consistency and concurrency 
across autonomous database managers. Consistency requires that a 
distributed transaction manager with two-phase commit logic is 
available. DBI uses the Digital Distributed Transaction Manager 
(DDTM) for that purpose and is adding support for the distributed 
transaction processing (DTP) XA standard integration.[10,11]

Concurrency requires that distributed deadlocks are detected. In 
a multidatabase system, distributed deadlock prevention is not 
feasible because no database manager exposes external interfaces 
to its lock management services -- a procedure required to 
perform deadlock detection. DBI therefore relies on the simple 
technique of transaction time-out to detect deadlocks. In 
addition, a DBI application may choose to specify isolation 
levels lower than serializability or repeatable read. This is 
done with the SQL SET TRANSACTION statement. The DBI context 
manager records the transaction attributes specified and forwards 
them to the underlying data sources as part of propagating 
transaction context. Lower isolation levels will, in general, 
result in fewer lock requests and thus fewer deadlock situations.



Distributed Request Activation.  DBI supports SQL statement 
atomicity. This requires either that a single SQL statement 
executes in its entirety or, in the case of a failure, that the 
database is reset to its state prior to the execution of the 
statement. With DBI, the SQL statement may be executed as a 
series of database requests at multiple data sources. DBI 
internally uses the concept of markpoints to track SQL statement 
boundaries. Gateway drivers are informed of markpoint boundaries, 
and the driver attempts to map the markpoint SDI operations into 
semantically equivalent constructs (e.g., savepoints) at the 
target data source. Some databases support SQL3-style savepoints, 
which are atomic units of work within a transaction. When DBI 
decides to roll back a markpoint, the gateway driver may then 
inform such a data source to roll back to the last savepoint. In 
the absence of markpoint primitives in the target data source, 
the gateway driver may elect to roll back the entire transaction 
to meet the roll-back markpoint semantics.

Gateway Drivers.  In contrast with other data integration 
architectures, the DBI gateway drivers are designed to be simple 
protocol and data translators. Their primary task is to report 
the capabilities of the data-source interface (API and SQL 
language) to the DBI core and subsequently map between the SDI 
interface protocol and the data-source interface. The gateway 
drivers typically share process context with the DBI server 
process, thus avoiding the need for an intermediate gateway 
server process that would otherwise reside between the DBI server 
and the data-source server (e.g., SYBASE SQL Server). This 
reduces the amount of context switching and interprocess message 
transfer.

The gateway drivers are responsible for mapping the SDI semantics 
to the interface primitives provided at the target data source. 
For relational databases such as Oracle Rdb, ORACLE, INFORMIX, 
SYBASE, or DB2, this requires primarily a mapping to the 
product-specific SQL dialect and the product-specific data types. 
For file systems such as RMS, the gateway driver maps the SDI 
semantics to calls to the RMS run-time library.

Distributed Metadata Handling

In this section, we discuss three areas of importance to the 
handling of metadata in DBI: catalog management, security, and 
metadata caching.

Catalog Management.  The DBI requirement of database independence 
implies that DBI cannot require the presence of a particular DBMS 
for its persistence metadata storage. Rather than devising a 
private storage and retrieval system, DBI was designed to layer 



on top of common relational DBMSs.

Static, precompiled native applications are used to access 
metadata from a given catalog DBMS for two reasons: (1) The 
pattern of metadata access for the catalog database is known, and 
(2) The tables housing the DBI metadata in the catalog database 
are predetermined. Although this approach does not take advantage 
of the existing gateway drivers, it results in high-performance 
access to the metadata store.

To simplify the development of a catalog application, the set of 
primitive operations on the catalog database was isolated, and a 
catalog application interface (CI) was defined. Catalog 
applications are developed according to the CI specification and 
implemented as shareable images. DBI dynamically loads the 
appropriate catalog application image based on the catalog type 
specified by a user attaching to a DBI database.

Security.  The security support in the currently released version 
3.1 of DBI is simple but effective. It uses the security 
mechanisms of the underlying link database systems in the 
following areas:

    o   Authorization to connect to an underlying database 
        through DBI and access data from it.

        Access to the data that is manipulated through DBI is 
        controlled by the underlying DBMS. Typically, underlying 
        database systems control access to data based on the 
        identity of the user attached to its database. DBI 
        supports objects called proxies that enable the client to 
        specify its user identity (i.e., username/password), 
        which is then used to attach to the underlying database.

    o   Authorization to perform various DBI operations.

        All privileges for a DBI database are for the database 
        itself, rather than for tables or columns. The privileges 
        are based on hierarchically organized categories of 
        users:

        -   The DBADM privilege is given to users responsible for 
            setting up and maintaining a DBI database.

        -   The CREATE, DROP privilege is granted to interactive 
            users and application developers with database design 
            responsibility who must perform data definition 
            operations.

        -   The SELECT privilege is reserved for interactive 
            users and application developers who perform data 
            manipulation operations but do not perform any data 
            definition operations.



When a DBI administrator grants or revokes privileges for a DBI 
database, DBI, in turn, grants or revokes the appropriate set of 
privileges on the DBI tables in the database system that manages 
the DBI catalog. The enforcement of privileges is therefore 
carried out by that database system. For example, when the SELECT 
privilege is granted on the logical database, DBI grants the 
SELECT privilege on the tables that represent the DBI catalog. 
This ensures that the user has access to the metadata for 
processing queries. Similarly, when a user is granted the CREATE, 
DROP privilege on the DBI database, DBI grants SELECT, INSERT, 
UPDATE, and DELETE on the appropriate tables in the catalog 
database to the user. This ensures that any DDL actions executed 
by the user will enable DBI to modify the tables in the catalog 
database.

Metadata Manager Cache.  The in-memory metadata cache serves a 
dual purpose. First, it facilitates rapid access to the metadata 
by the DBI compiler. Second, it serves as a data store for the 
DBI system relations that can be queried by tools and 
applications. For example, DEC SQL obtains metadata for semantic 
analysis of SQL statements by querying the DBI system relations.

The metadata cache is structured as a single hash table 
representing a flat namespace across all DBI objects. An open 
hashing scheme is employed in which the hash-table entries hang 
off the buckets in the hash table in a linked list.

To optimize the use of the cache as well as to accelerate the 
attach operation, the metadata manager initially obtains only 
minimal, high-level metadata information from the catalog 
database; for example, only names of tables are fetched into the 
cache during the DBI database attach operation. Subsequently, the 
metadata manager obtains further metadata information from the 
catalog database on a demand basis.

DBI allows the creation of new metadata objects. These operations 
are typically performed within markpoint and transaction 
boundaries to enforce proper statement and transaction 
demarcation. The metadata manager maintains a physical log in 
cache to denote transaction and markpoint boundaries. The log is 
an ordered list of structures, each representing a DDL action, a 
pointer to the cache structure that was changed, and either the 
previous values of fields that were updated or a pointer to a 
previous image of an entire structure. When a markpoint or 
transaction is committed, the corresponding log part is reset; 
when a markpoint or transaction is rolled back, the log is used 
to restore the cache to its state prior to the start of the 
markpoint or transaction.

An object in cache can become stale when another user attaches to 
the DBI database and causes an object's metadata to be changed in 
the catalog database. To ensure consistency of the cached version 
of an object's metadata with the actual version in the catalog 



database, the metadata manager uses a time stamp to check the 
currency of the cached object when performing incremental 
fetching of the object's metadata. If the object in cache is 
stale, the object is not accessible in the session, and an error 
message is issued to the user indicating that the object in cache 
is inconsistent with the catalog database. In a production 
environment, this would be a rare event, given the low frequency 
of data definition operations.

The metadata cache is also the data source for the DBI system 
relation queries. The metadata manager navigates the cache 
structures to obtain data for the system relations, making use of 
the hash table for efficient access and using DBI's execution 
component for evaluating search conditions and expressions. 

Distributed, Heterogeneous Query Processing

Distributed query processing in a heterogeneous database 
environment poses certain unique problems. Data sources behave 
differently in terms of data transfer cost, and they support 
different language constructs. Many systems employ rudimentary 
techniques for decomposing a query, frequently pulling in all the 
data from underlying tables to the processing node, and then 
performing all the operations in the integration engine. Others 
simply use syntactic transformations, thereby providing the least 
common denominator in language functionality. DBI, on the other 
hand, provides a robust query optimizer that includes 
decomposition algorithms to reduce the data flow and provide 
high-performance query execution.

Cost-based Plan Generation.  When a query has several equivalent 
means of producing the result, the plan that has the least 
estimated cost is chosen. Statistics for table, column, and index 
objects are used for estimating result size after various 
relational operations.[12,13] Data transmission costs from the 
underlying link database to DBI are taken into account when 
estimating how much of the query is to be sent to the gateway 
database. The network transmission cost is measured dynamically 
for each user session, once per gateway connection. The cost 
associated with performing a relational operation is also 
aggregated into the overall cost. This crucial step ensures that 
the plan is not skewed toward one database engine, which would be 
the case if only the network transmission costs were taken into 
account.

Rule-based Transformations.  A query result may be produced with 
different sequences of relational operations. These sequences are 
generated using rule-based transformations. The starting point is 
the original operation set in which the query was syntactically 
represented. From this, permutations are generated to form 
equivalence sets, which then lead to the various combinations of 
execution plans that need to be examined for cost. Finally, the 



least costly plan is chosen for the query. Heuristics are applied 
to limit the amount of search space.

Capability-based Decomposition.  The critical characteristic of a 
heterogeneous environment is that the data sources are nonuniform 
in their ability to perform certain operations and in their 
support of various language constructs. For example, most 
databases cannot support derived table expressions (i.e., select 
expressions in the FROM clause of another SELECT statement).

The plan generation and decomposition phases of the optimizer 
must recognize the underlying databases' capabilities. Consider 
the query example shown in Figure 7 and the indicated locations 
of the tables.

Figure 7 Example of an SQL Query
  
        select *
          from T1, T2, T3
         where (T1.c1 = T2.c2)
           and (T1.c3 = T3.c3)
           and (T1.c5 = (select avg(T4.c5) from T4)
                          + (select T5.c7 from T5 where T5.c8 = 'a') );

        T1, T3, T4 and T5 are located in a Oracle database.
        Table T2 is located in a DB2 database.

First, with T1 and T3 located in the same database, the optimizer 
can generate a subplan in which the join between these two tables 
can be executed in the ORACLE database. An examination of the 
last (third) AND predicate indicates that all the tables involved 
in that predicate are located in the same ORACLE database. Due to 
the limitations in ORACLE's SQL language support, however, it 
cannot evaluate the combined expression between two subqueries in 
the WHERE clause, where the arithmetic result is to be compared 
to the column T1.c5.

The DBI optimizer employs a more sophisticated alternative. It 
evaluates the two subqueries separately and then substitutes them 
in the predicate in the subplan for ORACLE as run-time parameter 
values. This technique leads to the most efficient plan:

    1.  Retrieve value for (select avg(T4.c5) from T4) from 
        ORACLE.

    2.  Assign value to variable X.

    3.  Retrieve value for (select T5.c7 from T5 where T5.c8 = 
        'a') from ORACLE.

    4.  Assign value to variable Y.



    5.  Assign param_1 := variable X.

    6.  Assign param_2 := variable Y.

    7.  Execute the SELECT statement below in ORACLE and fetch 
        the result rows.

 
          select *
            from T1, T3
           where (T1.c3 = T3.c3)
             and (T1.c5 = param_1 + param_2);

    8.  Fetch the rows of T2 from DB2 into DBI.

    9.  Perform the join in DBI between the results of steps 7 
        and 8.

Query Unnesting.  A nested SQL query, in its simplest form, is a 
SELECT query with the WHERE clause predicate containing a 
subquery (i.e., another SELECT query). The following are examples 
of nested SQL queries:

Example 1, Table Subquery

select *
  from A
 where A.c1 IN (select (B.c2 + 5)       
                  from B
                 where B.c3 = A.c3);

Example 2, Scalar Subquery

select *
  from A
 where A.c1 = (select max(B.c2)         
                 from B
                where B.c3 = A.c3);

Using strict SQL semantics, we can evaluate this nested query by 
computing the results of the inner subquery for every tuple in 
the outer (containing) query block. The value for the column A.c3 
is substituted in the inner subquery, and the resulting value (or 



values) are computed for the select list and used to evaluate the 
Boolean condition on column A.c1: this is repeated for every 
tuple of A. This method of evaluating the results is very 
expensive, especially in a distributed environment.

Query unnesting algorithms provide other methods of evaluation 
that are semantically equivalent but much more efficient in both 
time and space. Unnesting deals with the transformation of nested 
SQL queries into an equivalent sequence of relational operations. 
These relational operations are performed as set operations, 
thereby avoiding the expensive tuple iteration operators during 
execution and providing large performance gains in most cases. 
The background and motivation behind the use of unnesting has 
been presented in several research papers.[14,15]

Depending on the type of operations and constructs found in the 
nested select block and its parent select block, several 
different algorithms can be used. Some of these require no 
special operators over and above the regular join operator. Other 
transformations require a special semijoin operator. Consider the 
examples shown in Figure 8.

Figure 8 Query Unnesting Algorithm

--
-- Q1  - query that will not require a special join after transformation
--
select snum, city, status
  from S
 where status = (select avg(weight) + 5      -- nesting predicate
                   from P
                  where P.city = S.city);    -- correlation predicate

--
-- Q1-U - the unnested version
--
select snum, city, status
  from S, (select city, avg(weight) + 5
             from P
            group by city) as T1(c1,c2)
 where T1.c1 = S.city
   and S.status = T1.c2;

-- Algorithm:
--
-- 1) Take the inner block's FROM table that has a correlation predicate.
-- 2) Add a Group-By to the inner block containing all attributes of this
--    table that appear in one or more correlation predicates.  The order of
--    the attributes in the Group-By does not matter.
-- 3) Also, add these elements to the select list of the inner block; at the
--    beginning or at the end, whatever is convenient.
-- 4) Next, add this block to the FROM list of the outer block - effectively



--    doing a regular join with the tables in the outer FROM list.
-- 5) Lastly, rewrite the correlation and nesting predicates as shown.

In the example shown in Figure 9, a special operator called 
semijoin is necessary. The semijoin of table R with S on 
condition J is defined as the subset of R-tuples for which there 
is at least one matching S-tuple satisfying J. Note that this 
makes the operator asymmetric, in that (R semijoin S) is not the 
same as (S semijoin R), whereas the regular join is symmetric.
By implementing the special semantics required for this semijoin 
operator, we can transform the nested query into this join 
operator that can again make use of high-performance techniques 
like hash joins within the DBI execution engine.

Figure 9 Algorithm with Semijoin Operator 

-
- Q2 - query requiring a semi-join
-
select snum
  from S
 where city IN (select city
                  from P
                 where P.weight = S.status);

- 
- Q2-U - the unnested version
-
select snum
  from (S  semi-join  P
           on (P.weight = S.status AND S.city = P.city)
       );

-- Algorithm:
--
-- 1) Do a semi-join between S and P using the following (combined) condition:
--      "(P.weight = S.status) AND (S.city = P.city)"
--    In reality, this is actually specified as 2 separate semi-joins between
--    S and P, one with the correlation predicate and one with the form of
--    the nesting predicate.  But these get combined using rules.
-- 2) Project out S.snum from the result

Predicate Analysis. When a query against an HPV can be satisfied 
by simply accessing a single logical partition, then the rest of 
the partitions can be eliminated from the execution plan. 
Partition elimination algorithms in DBI are used both at compile 
time, when the predicates on the HPV query involve comparison of 
the partitioning column with literals, as well as at query 
execution time (run time), when the partitioning column is 



compared with run-time parameters.

During affinity analysis, predicates are situated as close to the 
inner table operation as feasible. For example, consider the 
following view definition, and the subsequent select statement on 
that view:

create view V1 (a, b) as
  select T1.c1, avg(T2.c2)
    from  T1, T2
   where (T1.c4 = T2.c4)
   group by  T1.c1;

select * from V1 where (a = 5 and b > 10);

The predicate a = 5 (upon further conjunctive normal form [CNF] 
analysis) can be applied on the base table scan itself as T1.c1 = 
5.

Index join is one of the efficient join techniques used in DBI. 
This join technique minimizes the movement of data from the link 
databases by taking advantage of the indexing schemes in the link 
database to facilitate the join process. Consider the following 
query: 

select *
  from  T1, T2
 where  T1.c1 = T2.c2 + 5
   and  (...some restrict predicate(s) on T2...)

Given an index on column c1 of table T1, and with cardinality and 
cost estimates permitting, the query optimizer can generate an 
alternate plan. This plan allows the join to be performed by 
using efficiently indexed access retrieval for table T1.

High Availability

High availability in DBI results from the use of horizontal 
partitioned views and catalog replication.

Horizontal Partitioned Views.  An HPV is a special kind of view 
in which DBI is provided with information about how data is 
distributed among tables in link databases. HPVs offer many 
advantages over normal views, one of them being improved 
performance through partition elimination and use of parallelism. 
The other advantage is high availability.

If a partitioned view has multiple partitions and if some 
partitions are unavailable when the view is queried, then DBI 



does not fail the query but returns data from the available 
partitions. An example is shown in Figure 10. The example creates 
a partitioned view named ALL_EMPLOYEES, with four columns and 
three partitions, each of which obtains rows from three different 
tables. The partitioning is based on a specific column, in this 
case the CITY column, as specified in the USING HORIZONTAL 
PARTITIONING ON clause. 

Figure 10 Example of a Partitioned View

        CREATE VIEW ALL_EMPLOYEES(ID, NAME, ADDRESS, CITY)
        USING HORIZONTAL PARTITIONING ON CITY
        PARTITION P1 WHERE CITY = 'MUNICH'
                  COMPOSE AS SELECT ID, LAST_NAME, ADDRESS, 'MUNICH'
                             FROM   MUNICH_EMPLOYEES
                             WHERE  STATUS = 'Y'

        PARTITION P2 WHERE CITY = 'PARIS'
                  COMPOSE AS SELECT ID, FULL_NAME, ADDRESS, 'PARIS'
                             FROM   PARIS_EMPLOYEES
                             WHERE  STATUS = 'Y';

        PARTITION P3 WHERE CITY = 'NASHUA'
                  COMPOSE AS SELECT ID, FULL_NAME, ADDRESS, LOCATION
                             FROM   NH_EMPLOYEES
                             WHERE  STATUS = 'Y';

Suppose the following query is submitted

SQL> SELECT * FROM ALL_EMPLOYEES 
              WHERE (CITY = 'MUNICH') 
                 OR (CITY = 'NASHUA');

First, partition P2 is eliminated at compile time. Now suppose 
partition P3 is presently not available due to network 
connectivity problems (Figure 11). For each partition that is 
unavailable, a message is returned indicating that some rows are 
missing from the result table: %DBI-W-HAHPV_UNAVAILABLE Partition 
P3 is currently unavailable. However, DBI still attempts to 
return as much data as is accessible.

[Figure 11 (High Availability with Partitioned Views) is not 
available in ASCII format.]

Catalog Replication.  To prevent the DBI global catalog from 



becoming a single point of failure, multiple copies of a catalog 
table can be maintained by using replication techniques. Catalog 
table copies can be created easily and maintained using 
replication tools such as the DEC Data Distributor.[5]

Performance

In addition to its distributed query optimizer, DBI uses a series 
of techniques to increase the speed of query processing, most 
notably in the areas of data transfer, memory management, join 
processing, parallelism, and stored procedures.

Data Transfer.  The DBI execution engine performs bulk data 
transfer using the bulk fetch mechanisms provided by the SDI 
interface. With bulk data transfer, a single request message to a 
local or remote data source returns many tuples with a single 
response message. Bulk transfer techniques are mandatory in a 
distributed environment; they reduce both message traffic and 
stall waits due to message delays. The data transfer bandwidth 
between the DBI engine and the gateway drivers is further 
increased through the use of asynchronous SDI operations. 

Memory Management.  An MDBMS needs to be able to process large 
amounts of data efficiently without exceeding platform- or 
user-specific operational quotas such as the page file size or 
the working set limit. In addition, standard operating system 
paging techniques may easily result in heavy I/O thrashing for 
database-centric work loads.

The DBI executor places data streams, intermediate query results, 
or hash buckets into individual workspaces. A workspace is 
organized as a linear sequence of fixed-size pages. A standard 
page-table mechanism identifies the allocated pages and records 
status such as whether a page is present in memory or whether it 
is paged out to secondary storage. The workspace manager operates 
as an intelligent buffer manager and paging system that controls 
fair access to memory across all active workspaces of a given DBI 
user. A buffer pool manager holds the workspace pages that reside 
in memory.

The buffer pool manager supports multiple buffer replacement 
policies, which is important for database workloads that involve 
sequential access to data that is subsequently no longer needed. 
The two supported strategies are least recently used (LRU) and 
most recently used (MRU).[16] Finally, the workspace manager 
supports write-behind for newly allocated pages. This allows 
newly allocated pages that have been filled to be written 
asynchronously.

Join Processing.  Highly efficient processing of joins and unions 
is important in any commercial database; it is crucial for a 



multidatabase system. DBI supports nested loop join, index join, 
and hash join. In fact, DBI supports both a regular hash-join 
mechanism and a hybrid, hash-partitioned variant that is 
augmented with Bloom filtering.[17,18,19]

For both hash-join variants, the inner table rows are read 
asynchronously into a DBI workspace. This first pass is used to 
estimate whether or not to use the hash-partitioned variant. An 
exact estimate for the number of partitions to use is well worth 
the overhead of this initial pass.[20] In addition, a Bloom 
filter with 64 kilobits is populated as part of this pass. The 
inner table cardinality, an estimate for the outer table 
cardinality, and an estimate of the presently available memory 
are used to determine whether the simple hash-join technique is 
sufficient, or whether the use of the hybrid hash-partitioned 
join technique is warranted.

In general, hash-partitioned join processing is indicated when 
the inner table and its hash-table buckets do not fit in memory. 
In this case, both the build phase for the inner-table hash 
buckets as well as the probe phase of outer-table tuples against 
the inner-table hash buckets may incur massive amounts of random 
I/O. When the hash-partitioned variant is selected, the following 
steps are performed.

    o   Each partition receives a separate workspace.

    o   The inner table is partitioned first. During this 
        partitioning step, a Bloom filter is generated from the 
        join column of inner-table tuples and is applied when the 
        outer table rows are partitioned. This results in a 
        potentially massive reduction of the number of rows that 
        are placed into the outer partitions, thus eliminating 
        expensive I/O operations.

    o   The workspaces that hold the inner-table partition 1 and 
        the hash-table buckets for that partition are aged LRU, 
        which keeps them in memory for the join operation on the 
        first partition pair.

    o   The workspaces that hold the remaining inner-table 
        partitions 2 through (n) are aged MRU; these pages become 
        immediately available for buffer replacement selection 
        once they have been filled and their frames unpinned.

    o   Once the partitioning phase is complete, each pair of 
        inner and outer partitions is joined starting with 
        partition pair 1. The inner partitions are aged LRU, and 
        the outer partitions are aged MRU to keep the inner 
        partition tuples in memory.

The use of flexible buffer replacement strategies is crucial for 
good buffer cache behavior.



Parallelism.  DBI employs two types of parallelism: pipelined 
parallelism and independent parallelism.[8]

With hash-join processing, for instance, the outer table rows are 
read by separate DBI execution threads from the underlying 
database. This means that the outer table tuple stream is 
effectively generated in parallel with the probe phase processing 
of the hash-join operator on the inner table rows. The 
outer-table tuple stream is directed into the hash-join probe 
phase.

For UNION processing on partitioned views, the individual input 
streams to the UNION operator are generated by separate DBI 
execution threads. The streams are provided in parallel and 
independently to the UNION operator.

Stored Procedures.  Stored procedures provide a critical 
performance enhancement for client-server processing. They allow 
the DBA to encapsulate a set of SQL statements plus control 
logic. The client sends one message containing a stored procedure 
rather than several messages, each containing one SQL statement. 
This reduces processing delays that otherwise would be incurred 
due to network traffic.

DBI Server Configuration

In a standard DBI configuration, one execution process is created 
for each DBI client. As the number of clients increases, more and 
more operating system resources are consumed. The DBI server 
configuration addresses this problem.

Server Components.  A DBI server configuration includes minimally 
a monitor process, a dispatcher process, and a set of DBI 
executor processes. The monitor process supports on-line system 
management of the server configuration. One or more dispatcher 
processes manage all client communications context. Dispatchers 
route client messages to an appropriate DBI executor process 
through high-speed shared memory queues. Figure 12 shows a 
typical DBI server configuration. 

[Figure 12 (DBI Server Configuration) is not available in ASCII 
format.]

Server Infrastructure.  In the DBI server environment, an ODBC 
client logically connects to a service object that provides 
access to a specific DBI database.[1]  A service is instantiated 
by a pool of DBI executor processes that contain the DBI image. 
The amount of processes of the pool is configurable, both 
off-line and on-line. This allows the administrator to match the 
throughput requirements for a given DBI database with the 



appropriate amount of executor processes.

Multithreading.  DBI executor processes may presently 
be configured as session-reusable or transaction-reusable. 
Session-reusable means that a client is bound to an executor 
process for the duration of the entire database session. 
Transaction-reusable means that multiple clients may share the 
same executor process; a client is scheduled to a DBI 
executor for one transaction at a time.

SUMMARY 

The DB Integrator product contains many features that enable it 
to provide open, robust, and high-performance data access. DBI 
guarantees open data access by supporting de facto and de jure 
interface standards such as SQL92 and ODBC. Client-server 
connectivity is available over the DECnet, TCP/IP, and SPX/IPX 
transports. The MDI/DDI interface allows users to extend the use 
of DBI to gain access to any number of data sources.

DBI provides robust data access by supporting heterogeneous query 
optimization, location transparency, global consistency, 
resolution of semantic differences, and security checks. The DBI 
query optimizer takes cost factors and capabilities into account 
to determine the optimal plan. A global catalog provides location 
transparency and operates as an autonomous metadata repository. 
Global transactions are coordinated through two-phase commit. 
Highly available horizontal partitioned views support continuous 
distributed processing in the presence of loss of connectivity. 
Definitions of views and stored procedures allow the user to hide 
semantic differences among the underlying databases. Finally, DBI 
enables security checks without interfering with the access 
controls specified in the underlying data sources. 

DBI offers high-performance data access through a combination of 
sophisticated query optimization, advanced query execution 
algorithms, and efficient use of network resources. The query 
optimizer decomposes a distributed query by using as many 
features of the underlying database as possible and by employing 
state-of-the-art techniques such as query unnesting and partition 
elimination. The DBI query processor is capable of driving index 
joins and hybrid hash-partitioned joins. All intermediate data is 
cached I/O optimized. Connections to remote data sources are 
established solely on demand. Finally, parallel query execution 
is supported.

In the future, performance will continue to be an important 
factor for any data access product as will support for 
object-oriented data models. By combining data-integration 
technologies such as DBI with application-integration standards 
such as Object Request Brokers, a merger of data integration and 
application integration will be feasible.
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