
Functional Verification of a Multiple-issue, Pipelined,
Superscalar Alpha Processor -- the Alpha 21164 CPU Chip

by Michael Kantrowitz and Lisa M. Noack

ABSTRACT

Digital's Alpha 21164 processor is a complex quad-issue,
pipelined, superscalar implementation of the Alpha architecture.
Functional verification was performed on the logic design and the
PALcode interface. The simulation-based verification effort used
implementation-directed, pseudorandom exercisers, supplemented
with implementation-specific, hand-generated tests. Extensive
coverage analysis was performed to direct the verification
effort. Only eight logical bugs, all unobtrusive, were detected
in the first prototype design, and multiple operating systems
were booted with these chips in a prototype system. All bugs were
corrected before any 21164-based systems were shipped to
customers.

INTRODUCTION

The Alpha 21164 microprocessor is a quad-issue, superscalar
implementation of the Alpha architecture. The CPU chip required a
rigorous verification effort to ensure that there were no logical
bugs. World-class performance dictated the use of many advanced
architectural features, such as on-chip virtual instruction
caching with seven-bit address space numbers (ASNs), an on-chip
dual-read ported data cache, out-of-order instruction completion,
an on-chip three-way set-associative write-back second-level
cache, support for an optional third-level write-back cache,
branch prediction, a demand-paged memory management unit, a write
buffer unit, a miss-address file unit, and a complicated bus
interface unit with support for various CPU-system clock ratios,
system configurations, and third-level cache parameters.[1]

Functional verification was performed by a team of engineers from
Digital Semiconductor whose primary responsibility was to detect
and eliminate the logical errors in the Alpha 21164 design. The
detection and elimination of timing, electrical, and physical
design errors were separate efforts conducted by the chip design
team.[2]

Extensive functional verification prior to releasing the
first-pass design to the manufacturing process is a common
technique used to ensure that time-to-market goals are met for
complex processors. Increasingly, these verification efforts are
relying on pseudorandom test generation to improve the quality of
the verification effort. These techniques have been in use at
Digital for more than seven years and are also used elsewhere in
the industry and in academia.[3-6] This paper describes a

functional verification effort that significantly extended
pseudorandom testing with extensive coverage analysis and some
hand-generated tests to produce working first-pass parts.

GOALS

The verification team had several key goals. Goals for first-pass
silicon included ensuring that the first prototypes could boot
the operating system and providing a vehicle for debugging of
system-related hardware and software. An additional goal was to
execute a test to check every block of logic and every function
in the chip to ensure that no serious functional bugs remained.
The goal for second-pass silicon was to be bugfree so that these
chips could be shipped to customers for use in revenue-producing
systems. Secondary goals included assisting in the verification
of Privileged Architecture Library code (PALcode) and keeping
manufacturing test patterns in mind when creating the
verification environment and writing tests.

MODELING METHODOLOGY

Several different model representations of the Alpha 21164 CPU
were developed for testing prior to prototypes. The verification
team primarily used a register-transfer-level (RTL) model of the
Alpha 21164 CPU chip. This model accurately represented the
detailed logic of the design and delivered very high simulation
performance.

Modeling Environment

The design team wrote the RTL model in the C programming
language. The model represented all latches and combinatorial
logic of the design and was accurate to the clock-phase boundary.
The C programming language was chosen because C provides the
speed and flexibility needed for a large-scale design. Digital's
CAD group designed a user interface for access into the RTL model
of the Alpha 21164 CPU. The C command line interface (CCLI)
allowed access into the variables used to define signals and to
the routines that represented the actual design. It provided the
ability to create binary traces of signals for postprocessing
analysis and debugging. A standard set of macro-instructions
simplified bit manipulation of signals with arbitrary widths.

The use of C also allowed the team to simulate portions of the
gate-level design in the structural simulator, CHANGO, and to
perform cycle-by-cycle comparisons with various states in the RTL
model. These simulations, called shadow-mode simulations, were
fully utilized for testing the various functional units of the
chip.

Pseudosystem Models

The verification team developed several models to interface to
the Alpha 21164 CPU RTL model and to allow testing of
interactions with pseudosystems to occur. The C language provided
a level of flexibility in the creation of these models that was
not available on previous verification projects. One area in
which this flexibility was fully utilized was in the formation of
a sparsely populated memory model. By using a dynamic tree data
structure rather than a static array, the cache, duplicate tag
store, and memory system models could be written to support the
full range of 64-bit addressing. Hence, tests could be created to
use any set of addresses without restrictions. In addition,
comparisons with the reference model could be drawn from the
entire contents of memory. This significantly enhanced the
ability to detect possible errors in the design.

The verification engineers created a system model (the X-box) to
simulate transactions on the pin bus. The X-box model provided a
means to mimic the real system behavior that the Alpha 21164 CPU
would encounter when used with a variety of different platforms.
The team used C to develop an X-box model that could be connected
to every possible configuration and mode setting of the Alpha
21164 CPU chip. This allowed all modes of the Alpha 21164 CPU to
be tested with a single, multipurpose system interface model. The
X-box also performed many of the checks needed to ensure the
proper operation of the system bus.

STRATEGY

The verification strategy employed multiple techniques to achieve
full functional verification of the Alpha 21164 chip. The primary
technique used was pseudorandom exercisers. These programs
generated pseudorandom instruction sequences, executed the
sequences on both the 21164 model and a reference model, and
compared the results. A second major technique used focused,
hand-generated tests to cover specific areas of logic. Other
methods consisted of design reviews, executing existing tests and
benchmarks, and a few static analysis techniques. Figure 1 shows
the general flow for a single simulation.

[Figure 1 (Design Verification Test Environment) is not available
in ASCII format.]

This strategy was deployed in three parts: the try-anything
phase, the test-planning phase, and the structured completion
phase. Devising a test plan was not the first step. During the
early stage of the project, the primary goal was to stabilize the
design as quickly as possible. Any major bug that would have had
an impact on the architectural definition of the chip was
uncovered. Circuit design and layout could then commence without
fear of major revisions later. If time had been spent structuring
detailed test plans, less time would have been given to actual

testing, and at this point in the design, careful thought was not
needed to find bugs.

The main purpose of the try-anything phase was to exercise as
much functionality of the design as possible in the shortest time
in order to stabilize the design quickly. This phase began even
before the RTL model was ready, with the construction of the
pseudorandom exerciser programs. The pseudorandom exercisers and
the RTL model were debugged together. This produced an atmosphere
of intensity and challenge in which everyone was required to
interact constantly to help identify the source of problems. This
had a secondary benefit of bringing the design and verification
teams closer together.

Once the design stabilized and the bug rate declined, the design
team began focusing on circuit design and layout, and the
verification team took a step back and created a test plan. The
purpose of the test plan was to ensure that the verification team
understood what needed to be verified. The test plan provided a
mechanism for reviewing what would be tested with the design
team. The joint review ensured that the verification team did not
miss important aspects of the design. The test plan also allowed
a way for the design team to raise issues around specific problem
areas in the design or areas that employed special logic that
were not obvious from the specification. Finally, the test plan
provided a means for scheduling and prioritizing the rest of the
verification effort.

The test plan consisted of a description of every feature or
function of the design that needed to be tested, including any
special design features that might require special testing. It
did not describe how the test would actually be created. Past
experience had indicated that test plans describing the specific
sequence of instructions needed to test chip features quickly
became outdated. Instead, the test plan focused on the "what,"
not the "how."

The final verification step was the structured completion phase.
During this time, each item from the test plan was analyzed and
verified. The analysis consisted of deciding which mechanism was
appropriate for covering that particular piece of the design.
This might consist of a focused test, a pseudorandom exerciser
with coverage analysis, or an assertion checker. As the
verification of each item was completed, a review was held with
the design and architecture teams to examine what was verified
and how it was done. In this way, any problems with the
verification coverage were identified.

TEST STIMULUS

Both focused and pseudorandom exercisers were used during the
verification of the Alpha 21164 chip. More than 400 focused tests
were created during the verification effort, covering a wide

variety of chip functions. Six different pseudorandom exercisers
were used. One was a general-purpose exerciser that provided
coverage of the entire architecture. Each of the other five
exercised a specific section of the chip in a pseudorandom way.

The one general-purpose exerciser used was provided by a separate
group and generated pseudorandom streams of instructions, data,
and chip state. Its focus was at the architectural level and
generated pseudorandom stimulus that would work on any
implementation of the Alpha architecture.

Almost all focused design verification tests (DVTs) were written
using Alpha assembly code. This provided the right level of
abstraction to avoid the need to toggle ones and zeros directly
on each pin, yet allowed specific control over the timing of
transactions and instruction sequences that would not be possible
from a compiled language. The macro-preprocessor feature of the
Alpha macro-assembler was used heavily. This allowed the
assembly-level programs to be constructed in a modular manner.

PSEUDORANDOM TESTING

Pseudorandom testing offers several advantages in the
verification of increasingly complex chips. These include
producing test cases that would be time-consuming to generate by
hand, and providing the ability to generate multiple simultaneous
events that would be extremely difficult to think of explicitly.

Exercisers

In support of the pseudorandom testing strategy, various
exercisers were created that focused on different aspects of the
chip. The following areas were targeted explicitly:

 o Branching

 o Data-pattern-dependent transactions

 o Floating-point unit

 o Traps

 o Cache and memory transactions

Fundamentally, each exerciser was the same. The exerciser would
create pseudorandom assembly-language code, run the code on the
model under test and a reference model, collect results from
each, and compare the results from both model runs. Any errors or
discrepancies were then reported to the user.

The reference model used, called the ISP model, was a very
high-level abstraction of the Alpha architecture written in the
C language. The core of this model was created during the

design of the 21064, the first Alpha processor. It was modified
slightly to include Alpha 21164 specific features such as
internal register definitions. The ISP model integrated the same
sparsely populated memory model used in the pseudosystem model
in such a way that the freedom in creating addresses could be
duplicated.

SEGUE, a text generation/expansion tool, was used extensively to
create pseudorandom code and configurations. Each exerciser used
SEGUE templates to generate code. Variables were passed to the
SEGUE templates that would determine what percentage of certain
events or instructions would occur in the resultant code. Users
would vary the percentages and create additional templates to
target their exercisers to certain portions of the chip. An
exerciser could focus only on loads and stores, or templates
could be created that would generate trapping code. The
verification engineers had the flexibility to create whatever
code was needed. The verification engineers worked closely with
the designers to understand the details of the logic. As a
result, cases could be generated that would thoroughly test the
functions being designed into the Alpha 21164 CPU chip.

Configuration Selection

Each test, either pseudorandom or focused, also made use of a
configuration control block (CCB) parameter file. The CCB was
used to set up the type of system that would be emulated for a
given simulation. The parameter file consisted of variables that
could be weighted to make certain system events occur or to cause
certain configurations to be chosen. Once again, SEGUE scripts
were utilized to create the command files that controlled these
events. Examples of the type of events that could be chosen were
single-bit error-correcting code (ECC) errors, interrupts, the
presence of an external cache, the ratio between the system clock
and the CPU internal clock rate, cache size and configuration,
and other bus-interface timing events. These and other events
were varied throughout the course of the project to ensure that
the chip could be run in real systems using any given
configuration.

The configuration chosen was guided through the use of a
parameter file that contained various parameters and weightings
to be utilized by SEGUE. Once a configuration was chosen using
the parameter file, it was processed to produce two files used in
the simulation. The first was a CCLI control file used to set up
state internal to the pseudosystem-level model. The second file
was loaded into the memory model to be used by the DVT and to
provide information accessible through assembly code regarding
the configuration type.

Simulation

Once the pseudorandom code and configuration had been generated,
the test was loaded into the model under test or into the ISP
model to use as the stimulus. A DVT loader was created for both
models that would interpret selected data in the CCB and
determine the memory locations where the test should be located.
The additional information encoded in the CCB included whether
the test ran in I/O, where handlers should be placed, and what
page mapping was used.

After a DVT was loaded, the simulation would start. A PALcode
reset handler was executed first. It read information from the
CCB and loaded various registers with the configurations
specified. The DVT was executed after the PALcode completed.

Capturing Random Events

In some cases, pseudorandom exercisers were used to capture
events that were unlikely to occur and that would have been
difficult to obtain by a focused test. By using a new tool
(called FIGS), engineers were able to use the pseudorandom
exercisers and postprocessing to look for events that were needed
to achieve coverage of the various functions in the F-box. When
the event occurred, the event could be saved and re-created for
future regression testing.

CORRECTNESS CHECKING

A variety of mechanisms were used for checking whether the model
behaved correctly. Some handcrafted tests had comparisons
built-in to verify that they generated the expected answer. This
self-checking mechanism, however, is difficult to include with
pseudorandom testing. Three categories of checking mechanisms
were developed that could work with pseudorandom or focused
tests. These were checks performed during simulation of a model,
postsimulation checks done automatically every time a model
completes executing, and test-specific postsimulation checks. In
all cases, adjusting the checking mechanisms to eliminate
reporting false errors was important to keep the debugging time
low.

The RTL model was augmented with a wide variety of built-in
assertion checkers. These were active any time the model was run;
they verified that various assertions and rules of behavior were
not violated at any time during the test execution. Assertion
checkers ranged from the simple to the complex and were added to
the model by both the design and verification teams. Some
assertion checkers were added as the initial model was coded, and
others were added as needed to ensure that certain situations did
not occur. Examples of simple assertion checkers include watching
for a transition to an illegal state in a state machine, or
watching for the select lines of a multiplexer (MUX) to choose an
unused MUX input. More complex assertion checkers were used that

required explicit knowledge about illegal sequences. For example,
the system bus had a complicated set of checkers attached to it
that checked for violations of the bus protocol.

When a test completed executing on the model, several end-of-run
checks were done automatically. One simple check was to verify
that the test reached its normal completion point and had not
ended prematurely. Complete cache coherency checks were performed
to ensure that all three levels of cache contents were consistent
with the memory image.

A variety of very powerful end-of-run checks were used. These
compared the results of running a test on the model and on the
ISP model. Information about the state of the model was saved
while the test was executing and then compared with its
equivalent from the ISP model. State that was compared in this
way included a trace of the program counter (PC), a trace of the
updates made to each architectural register, and the final memory
image upon completion of a test.

The main problems encountered with this technique were due to
inconsistencies between the ISP model and the Alpha 21164 design.
The ISP model was used across multiple Alpha design projects. It
provided architecturally correct results but had no concept of
timing, pipelining, or caching. Several features of the Alpha
21164 implementation were difficult to verify with this reference
machine.

In the Alpha architecture, arithmetic traps are imprecise, in
that they might not be reported with the exact PC that caused
them. Since the ISP model had no concept of timing, it reported
traps at a different time than the real design. Thus, the
checking mechanisms needed to be intelligent enough to take this
possibility into account. Arithmetic traps also presented a
problem because the destination register of certain types of
traps is unpredictable after a trap occurs. Combined with the
imprecise nature of traps, unpredictable values could propagate
to other registers, making comparison against the reference
machine difficult. Normally, certain software conventions would
be followed to control these aspects of the architecture. To
achieve the full benefit from pseudorandom testing, however, no
restrictions were placed on which registers or instruction
sequences could be used. Instead, an elaborate method was devised
for tracking which registers were unpredictable at any given
time. This information was then used to filter false mismatches.

Optional checks made on a per-test basis could be viewed as more
complicated assertion checks. These were performed by tracing
internal signals. The specific signals to trace were selected
based on the particular postprocessing to be done. Then, by using
a library of routines (called SAVES) to simplify accessing and
manipulating these signal traces, particular interactions and
protocols were verified. These could be viewed as assertion
checks, but they were more complicated than the built-in variety.

One example involved representing the behavior of a large section
of the design as a single, complicated state machine. The
behavior of this state machine could be compared with the I/O
behavior of the actual design section. Another example was the
representation of the branch-prediction algorithm in a more
abstract form than the actual model. The behavior of the abstract
algorithm was compared with the behavior of the model itself.

COVERAGE ANALYSIS

The primary difficulty with functional verification is that it is
virtually impossible to know when the verification effort is
complete. Completing a predetermined set of tests merely
indicates that the tests are complete, not that the design has
been fully tested. Monitoring the bug rate provides useful
information, but a low bug rate might indicate that the testing
is not exercising the problem areas. To alleviate this problem
and provide increased visibility into the completeness of the
verification effort, extensive coverage analysis of the focused
tests and pseudorandom exercisers was done. Two types of coverage
checking were used: information gathered while a model was
executing, and information gathered by postprocessing signal
traces.

While a model was executing, information was being stored about
the occurrence of simple events. For example, a record was kept
on the number of times the machine issued instructions to four
pipes simultaneously, the number of times the translation buffers
filled up, or the number of times stalls occurred. Since the chip
operated in random configurations, a record was also kept about
the configuration information such as the B-cache size and timing
selected, the system interface options, and timing. At the end of
every model run, this recorded information was written to a
database to collect statistics across multiple runs.

In addition to these simple coverage checks, more elaborate
coverage analysis was done through postprocessing. By using the
SAVES library, signal traces were collected while the model was
executing; these were later analyzed for the specific occurrence
of predefined events. The events were composed of complicated
timing relationships among signals. Often, two-dimensional
matrices were created, in which each axis of the matrix
represented a list of events. Thus, the occurrence patterns of
every event in one list could be visualized happening with every
event in the second list. For example, it was verified that every
type of system command (read, invalidate, set-shared, etc.)
occurred followed by every type of bus response (ACK, NOACK,
etc.).

Automatic coverage-checking methods were also used. The most
common was a state machine coverage analyzer. It was a goal to
verify that every state/arc transition in every state machine was
being exercised. Programs were automatically generated to search

the trace files for these transitions and record the information
about what was and was not covered. This concept was extended to
sections of the chip that were not designed as simple state
machines. As described above, one large section of the design was
represented as a single, monolithic state machine to provide an
independent reference for the correct outputs of the section.
This conceptual state machine was processed through the coverage
analysis tool. Although the transitions that were checked did not
map directly to the physical design, they did provide an
excellent indication of how well that section of the design had
been tested.

The trace analysis tools could accumulate data across multiple
simulation runs. The data was analyzed periodically, and areas
that were lacking coverage were identified. This allowed the
identification of trends in the coverage and provided an
understanding as to how well the pseudorandom exercisers were
exercising the chip. With this insight, pseudorandom exercisers
were modified or new focused tests were created to improve the
test coverage. Running pseudorandom exercisers with coverage
analysis proved to be a very powerful technique in functional
verification.

BUG TRENDS

During the Alpha 21164 CPU verification effort, more than 600
bugs were logged and tracked before first-pass parts were
manufactured. Figure 2 shows the bug rate achieved as a function
of time for the duration of the project. To track bugs, an action
tracking system was set up. Tracking of bugs started after all
the subsections of the RTL-level model had been integrated and a
small subset of tests was run successfully. Since many areas of
the model were ready before others, the action tracking system
does not represent all the issues raised. However, it is
interesting to look at the trends presented by the data.

[Figure 2 (Bug Rate as a Function of Time) is not available in
ASCII format.]

The first trend to consider is the effectiveness of the
pseudorandom and focused efforts. As shown in Figure 3, more than
half the bugs were found using pseudorandom techniques.
Furthermore, one-third of the bugs found by the focused effort
were in the error-handling functionality of the design, which had
poor pseudorandom test coverage.

Figure 3 Effectiveness of Class of Test

PSEUDORANDOM TEST 61%
FOCUSED TEST 31%
STATIC TEST 1%
OTHER 7%

Bugs were thought to have been introduced in a variety of ways.
Figure 4 shows the breakdown of the causes of bugs. The majority
occurred in implementing the architectural ideas that were
decided upon for the project.

Figure 4 Introduction of Bugs

IMPLEMENTATION ERROR 61%

C PROGRAMMING MISTAKE 17%

PALCODE ERROR 9%

ARCHITECTURAL CONCEPTION 3%

BACK-ANNOTATION OF MODEL 3%
(TO MATCH SCHEMATICS)

DOCUMENTATION/SPECIFICATION 2%

SCHEMATIC ENTRY 1%

PROGRAMMABLE LOGIC 1%
PROGRAMMING ERROR

POOR COMMUNICATION 1%

OTHER 2%

Figure 5 shows the various detection mechanisms that were used to
detect bugs. As in the past, assertion checkers placed in the
design to quickly detect when something is not correct are the
most successful.

Figure 5 Effectiveness of Bug Detection Mechanisms

ASSERTION CHECKER 34%

SELF-CHECKING TEST 11%

CACHE COHERENCY CHECK 9%

REGISTER FILE TRACE COMPARE 8%

MEMORY STATE COMPARE 7%

MANUAL INSPECTION OF 7%
SIMULATION OUTPUT

SIMULATION HANG 6%

ARCHITECTURAL EXERCISER 6%
BUILT-IN CHECKS

PC TRACE COMPARE 4%

SAVES CHECK 3%

SIMULATOR BUILT-IN 2%
ERROR MESSAGE

OTHER 9%

RESULTS AND CONCLUSIONS

As of September 1, 1994, eight logical bugs were found in the
first-pass Alpha 21164 CPU design. Only one of these impacted
normal system operation, but it did not occur very often. The
first two issues were found while debugging test patterns on the
tester; the third was a variation on a known restriction; the
fourth occurred in a rare prototype system configuration that was
found through pseudorandom simulation testing (which had
continued even after the design was released to manufacturing);
the fifth was a race condition between two events that rarely
were stimulated in simulation; the sixth was a
performance-related issue on the pin interface that was found by
thinking about the design; the seventh was a very specific set of
events that resulted in a system hang; and the last was related
to not responding appropriately to an error condition.

These bugs escaped detection for the following reasons:

 o An exerciser running on a simulator was slow to encounter
 the conditions that would evoke the bug. Many conditions
 needed to occur concurrently, but all of them occurred
 infrequently.

 o An assertion checker did not work properly.

 o Comparisons between the RTL model and the structural
 model missed the bug.

All bugs were fixed before any systems were shipped to customers.

Details of these bugs follow. Included is information about how
the bug was detected, a hypothesis on why the bug eluded
detection before first-pass chips were fabricated, and lessons
learned from the detection and elimination of the bug.

 1. One bug was found by an exerciser running on the
 second-pass RTL model. A cache line victim failed to
 write back on a B-cache index match because a bypass
 occurred at the same time. This bug existed only in
 32-byte cache mode and B-cache speed configurations of 4,
 5, and 6. This bug could have been found in the

 first-pass model if this case had been generated
 pseudorandomly. Running many cases is crucial with a
 pseudorandom testing strategy. Given unlimited time and
 computation cycles, this bug might have been found
 earlier.

 2. A second bug was caused by the B-cache read/write timing
 being off by one cycle. This bug could have caused
 multiple drivers to drive the data bus at one time. An
 assertion checker for this bug was in the RTL model, but
 the checker itself was not working properly. In the
 future, assertion checkers should be verified by causing
 the failure to occur and watching to see that it detects
 the case. In some cases, assertion checkers are written
 to flag an error for events that should never happen.
 Forcing an illegal situation to occur can be very
 difficult.

 3. Another bug was found by an exerciser when a WRITE_BLOCK
 command was preceded by a single-cycle idle_BC signal
 assertion. This issue was directly related to a specific
 B-cache speed and was related to another system
 configuration restriction. This issue caused a
 restriction to be added, but the design was not changed.

 4. If the B-cache sequencer is performing a bypass
 immediately after a command loads in the B-cache address
 file and a reference is coming down the S-cache pipe, the
 B-cache index could change in back-to-back cycles. The
 index should change only every other cycle. An assertion
 checker should have been written to test for this
 situation and make sure it never occurred.

 5. The performance-monitoring logic that counted load merges
 was not counting these events correctly. This bug was not
 in the RTL model but only in the actual implementation.
 Possibly, more RTL-to-CHANGO comparisons needed to be run
 on this section of logic.

 6. Because of an LDxL/STxC bug, an invalidate to a locked
 address was not detected as a hit against the LDxL
 address. As a result, an STxC passed when it should have
 failed. This bug could have been detected if a focused
 test had been written with very specific timing of a FILL
 and an LDxL hitting the S-cache in consecutive cycles.
 Gaining control of this interaction on the system bus was
 not possible, however, and random simulations were relied
 upon to achieve this case. This was a rare event in the
 random simulations, but parameters could have been
 adjusted to make this occur more often.

 7. For one specific system configuration, a READ or FLUSH
 command sent by the system to the Alpha 21164 chip could
 cause the system to hang. For this to happen, three

 specific events, all with very tight timing windows,
 needed to occur. We could have found this bug during
 simulation if we had emphasized this type of condition
 during the pseudorandom testing.

 8. When responding to a command, the system had the option
 of asserting an error signal instead of its normal
 response. The error signal acted as an interrupt request
 to the Alpha 21164 chip. Under certain conditions, and
 for a narrow window of time, this error signal was not
 properly recognized. Testing of error conditions was a
 project goal but not a high priority compared to testing
 normal events. This bug could have been found earlier if
 additional error-mode tests had been run.

The above issues were fairly minor and all have been fixed in the
version of the design that will be released to customers. The
use of pseudorandom testing was very successful. Many major,
complicated bugs were found over the course of the project that
would never have been found using a focused effort. Because of
the number of system configurations possible, a verification
effort that consisted only of focused testing would have been
impossible.

ACKNOWLEDGMENTS

The Alpha 21164 functional verification effort was performed by a
team of engineers from the SEG microprocessor verification group.
Members of this team included Homayoon Akhiani, David Asher,
Darren Brown, Rick Calcagni, Erik DeBriae, Jim Ellis, Bill
Feaster, Mariano Fernandez, Jim Huggins, Mike Kantrowitz, Ginger
Lin, Chris Mikulis, Lisa Noack, Ray Ratchup, Carol Stolicny,
Scott Taylor, and Jonathan White. The CCLI user interface would
not have been possible without John Pierce. Walker Anderson
provided quality guidance through all phases of the project. The
Alpha Architecture Group RAX team (Matt Baddeley, Larry Camilli,
Ed Freedman, Joe Rantala, Pravin Santiago, Lucy Tancredi, Steve
Torchia), once again, provided and supported an effective
verification tool. Lastly, the success of the project and the
final quality of the Alpha 21164 chip logical design are as much
a tribute to the work of the architecture and design teams as
they are to the work of the verification team.

REFERENCES

1. J. Edmondson et al., "Internal Organization of the Alpha
 21164, a 300-MHz 64-bit Quad-issue CMOS RISC
 Microprocessor," Digital Technical Journal, vol. 7, no. 1
 (1995, this issue): 119-135.

2. W. Bowhill et al., "Implementation of a 300-MHz 64-bit
 Second-generation CMOS Alpha CPU," Digital Technical

 Journal, vol. 7, no. 1 (1995, this issue): 100-118.

3. W. Anderson, "Logical Verification of the NVAX CPU Chip
 Design," Digital Technical Journal, vol. 4, no. 3 (Summer
 1992): 38-46.

4. A. Aharon, A. Bar-David, B. Dorfman, E. Gofman, M.
 Leibowitz, and V. Schwartzburd, "Verification of the IBM
 RISC System/6000 by a Dynamic Biased Pseudo-random Test
 Program Generator," IBM Systems Journal, vol. 30, no. 4
 (1991): 527-538.

5. A. Ahi, G. Burroughs, A. Gore, S. LaMar, C-Y. Lin, and A.
 Wiemann, "Design Verification of the HP 9000 Series 700
 PA-RISC Workstations," Hewlett-Packard Journal (August
 1992): 34-42.

6. D. Wood, G. Gibson, and R. Katz, "Verifying a Multiprocessor
 Cache Controller Using Random Test Generation," IEEE Design
 and Test of Computers (August 1990): 13-25.

BIOGRAPHIES

Michael Kantrowitz

A principal engineer, Mike Kantrowitz is currently leading the
verification effort for a new Alpha microprocessor and developing
new verification tools and methods. Prior to this project, Mike
was co-leader of the 21164 chip verification, responsible for the
instruction fetch and execute units. He has also contributed to
the verification of the Mariah, NVAX+, 21064 floating-point unit,
and FAVOR vector unit. Before joining Digital in 1988, Mike
worked at Raytheon Company. He has a B.S.E.E. from Stevens
Institute of Technology and an M.S.E.E. from Worcester
Polytechnic Institute. Mike is a member of IEEE.

Lisa M. Noack

A principal engineer, Lisa Noack is currently co-leading the chip
verification effort for a new Alpha microprocessor. Prior to this
work, Lisa was a co-leader of the 21164 chip verification and was
responsible for memory, cache, and system interface units. Lisa
has also contributed to the verification of the NVAX+ and NEXMI
chips and the PVN module and chip set. Before she joined Digital
in 1989, Lisa was employed at Data General Corporation as a
design engineer responsible for the system design of I/O
subsystems and various gate array design projects. She earned her
B.S. and M.S. degrees in computer engineering from Syracuse
University.

TRADEMARKS

Digital is a trademark of Digital Equipment Corporation.
===
Copyright 1995 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

