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ABSTRACT

Digital's Alpha 21164 processor is a complex quad-issue, 
pipelined, superscalar implementation of the Alpha architecture. 
Functional verification was performed on the logic design and the 
PALcode interface. The simulation-based verification effort used 
implementation-directed, pseudorandom exercisers, supplemented 
with implementation-specific, hand-generated tests. Extensive 
coverage analysis was performed to direct the verification 
effort. Only eight logical bugs, all unobtrusive, were detected 
in the first prototype design, and multiple operating systems 
were booted with these chips in a prototype system. All bugs were 
corrected before any 21164-based systems were shipped to 
customers.
 

INTRODUCTION 

The Alpha 21164 microprocessor is a quad-issue, superscalar 
implementation of the Alpha architecture. The CPU chip required a 
rigorous verification effort to ensure that there were no logical 
bugs. World-class performance dictated the use of many advanced 
architectural features, such as on-chip virtual instruction 
caching with seven-bit address space numbers (ASNs), an on-chip 
dual-read ported data cache, out-of-order instruction completion, 
an on-chip three-way set-associative write-back second-level 
cache, support for an optional third-level write-back cache, 
branch prediction, a demand-paged memory management unit, a write 
buffer unit, a miss-address file unit, and a complicated bus 
interface unit with support for various CPU-system clock ratios, 
system configurations, and third-level cache parameters.[1]

Functional verification was performed by a team of engineers from 
Digital Semiconductor whose primary responsibility was to detect 
and eliminate the logical errors in the Alpha 21164 design. The 
detection and elimination of timing, electrical, and physical 
design errors were separate efforts conducted by the chip design 
team.[2]

Extensive functional verification prior to releasing the 
first-pass design to the manufacturing process is a common 
technique used to ensure that time-to-market goals are met for 
complex processors. Increasingly, these verification efforts are 
relying on pseudorandom test generation to improve the quality of 
the verification effort. These techniques have been in use at 
Digital for more than seven years and are also used elsewhere in 
the industry and in academia.[3-6] This paper describes a 



functional verification effort that significantly extended 
pseudorandom testing with extensive coverage analysis and some 
hand-generated tests to produce working first-pass parts.

GOALS

The verification team had several key goals. Goals for first-pass 
silicon included ensuring that the first prototypes could boot 
the operating system and providing a vehicle for debugging of 
system-related hardware and software. An additional goal was to 
execute a test to check every block of logic and every function 
in the chip to ensure that no serious functional bugs remained. 
The goal for second-pass silicon was to be bugfree so that these 
chips could be shipped to customers for use in revenue-producing 
systems. Secondary goals included assisting in the verification 
of Privileged Architecture Library code (PALcode) and keeping 
manufacturing test patterns in mind when creating the 
verification environment and writing tests.

MODELING METHODOLOGY

Several different model representations of the Alpha 21164 CPU 
were developed for testing prior to prototypes. The verification 
team primarily used a register-transfer-level (RTL) model of the 
Alpha 21164 CPU chip. This model accurately represented the 
detailed logic of the design and delivered very high simulation 
performance.

Modeling Environment

The design team wrote the RTL model in the C programming 
language. The model represented all latches and combinatorial 
logic of the design and was accurate to the clock-phase boundary.  
The C programming language was chosen because C provides the 
speed and flexibility needed for a large-scale design. Digital's 
CAD group designed a user interface for access into the RTL model 
of the Alpha 21164 CPU. The C command line interface (CCLI) 
allowed access into the variables used to define signals and to 
the routines that represented the actual design. It provided the 
ability to create binary traces of signals for postprocessing 
analysis and debugging. A standard set of macro-instructions 
simplified bit manipulation of signals with arbitrary widths.

The use of C also allowed the team to simulate portions of the 
gate-level design in the structural simulator, CHANGO, and to  
perform cycle-by-cycle comparisons with various states in the RTL 
model. These simulations, called shadow-mode simulations, were 
fully utilized for testing the various functional units of the 
chip.

Pseudosystem Models                                                    



The verification team developed several models to interface to 
the Alpha 21164 CPU RTL model and to allow testing of 
interactions with pseudosystems to occur. The C language provided 
a level of flexibility in the creation of these models that was 
not available on previous verification projects. One area in 
which this flexibility was fully utilized was in the formation of 
a sparsely populated memory model. By using a dynamic tree data 
structure rather than a static array, the cache, duplicate tag 
store, and memory system models could be written to support the 
full range of 64-bit addressing. Hence, tests could be created to 
use any set of addresses without restrictions. In addition, 
comparisons with the reference model could be drawn from the 
entire contents of memory. This significantly enhanced the 
ability to detect possible errors in the design.

The verification engineers created a system model (the X-box) to 
simulate transactions on the pin bus. The X-box model provided a 
means to mimic the real system behavior that the Alpha 21164 CPU 
would encounter when used with a variety of different platforms. 
The team used C to develop an X-box model that could be connected 
to every possible configuration and mode setting of the Alpha 
21164 CPU chip. This allowed all modes of the Alpha 21164 CPU to 
be tested with a single, multipurpose system interface model. The 
X-box also performed many of the checks needed to ensure the 
proper operation of the system bus.

STRATEGY

The verification strategy employed multiple techniques to achieve 
full functional verification of the Alpha 21164 chip. The primary 
technique used was pseudorandom exercisers. These programs 
generated pseudorandom instruction sequences, executed the 
sequences on both the 21164 model and a reference model, and 
compared the results. A second major technique used focused, 
hand-generated tests to cover specific areas of logic. Other 
methods consisted of design reviews, executing existing tests and 
benchmarks, and a few static analysis techniques. Figure 1 shows 
the general flow for a single simulation.

[Figure 1 (Design Verification Test Environment) is not available 
in ASCII format.]

This strategy was deployed in three parts: the try-anything 
phase, the test-planning phase, and the structured completion 
phase. Devising a test plan was not the first step. During the 
early stage of the project, the primary goal was to stabilize the 
design as quickly as possible. Any major bug that would have had 
an impact on the architectural definition of the chip was 
uncovered. Circuit design and layout could then commence without 
fear of major revisions later. If time had been spent structuring 
detailed test plans, less time would have been given to actual 



testing, and at this point in the design, careful thought was not 
needed to find bugs.

The main purpose of the try-anything phase was to exercise as 
much functionality of the design as possible in the shortest time 
in order to stabilize the design quickly. This phase began even 
before the RTL model was ready, with the construction of the 
pseudorandom exerciser programs. The pseudorandom exercisers and 
the RTL model were debugged together. This produced an atmosphere 
of intensity and challenge in which everyone was required to 
interact constantly to help identify the source of problems. This 
had a secondary benefit of bringing the design and verification 
teams closer together.

Once the design stabilized and the bug rate declined, the design 
team began focusing on circuit design and layout, and the 
verification team took a step back and created a test plan. The 
purpose of the test plan was to ensure that the verification team 
understood what needed to be verified. The test plan provided a 
mechanism for reviewing what would be tested with the design 
team. The joint review ensured that the verification team did not 
miss important aspects of the design. The test plan also allowed 
a way for the design team to raise issues around specific problem 
areas in the design or areas that employed special logic that 
were not obvious from the specification. Finally, the test plan 
provided a means for scheduling and prioritizing the rest of the 
verification effort.

The test plan consisted of a description of every feature or 
function of the design that needed to be tested, including any 
special design features that might require special testing. It 
did not describe how the test would actually be created. Past 
experience had indicated that test plans describing the specific 
sequence of instructions needed to test chip features quickly 
became outdated. Instead, the test plan focused on the "what," 
not the "how."

The final verification step was the structured completion phase. 
During this time, each item from the test plan was analyzed and 
verified. The analysis consisted of deciding which mechanism was 
appropriate for covering that particular piece of the design. 
This might consist of a focused test, a pseudorandom exerciser 
with coverage analysis, or an assertion checker. As the 
verification of each item was completed, a review was held with 
the design and architecture teams to examine what was verified 
and how it was done. In this way, any problems with the 
verification coverage were identified.

               
TEST STIMULUS

Both focused and pseudorandom exercisers were used during the 
verification of the Alpha 21164 chip. More than 400 focused tests 
were created during the verification effort, covering a wide 



variety of chip functions. Six different pseudorandom exercisers 
were used. One was a general-purpose exerciser that provided 
coverage of the entire architecture. Each of the other five 
exercised a specific section of the chip in a pseudorandom way.

The one general-purpose exerciser used was provided by a separate 
group and generated pseudorandom streams of instructions, data, 
and chip state. Its focus was at the architectural level and 
generated pseudorandom stimulus that would work on any 
implementation of the Alpha architecture.

Almost all focused design verification tests (DVTs) were written 
using Alpha assembly code. This provided the right level of 
abstraction to avoid the need to toggle ones and zeros directly 
on each pin, yet allowed specific control over the timing of 
transactions and instruction sequences that would not be possible 
from a compiled language. The macro-preprocessor feature of the 
Alpha macro-assembler was used heavily. This allowed the 
assembly-level programs to be constructed in a modular manner.

PSEUDORANDOM TESTING

Pseudorandom testing offers several advantages in the 
verification of increasingly complex chips. These include 
producing test cases that would be time-consuming to generate by 
hand, and providing the ability to generate multiple simultaneous 
events that would be extremely difficult to think of explicitly.

Exercisers

In support of the pseudorandom testing strategy, various 
exercisers were created that focused on different aspects of the 
chip. The following areas were targeted explicitly:

    o   Branching

    o   Data-pattern-dependent transactions

    o   Floating-point unit

    o   Traps
    
    o   Cache and memory transactions

Fundamentally, each exerciser was the same. The exerciser would 
create pseudorandom assembly-language code, run the code on the 
model under test and a reference model, collect results from 
each, and compare the results from both model runs. Any errors or 
discrepancies were then reported to the user.

The reference model used, called the ISP model, was a very 
high-level abstraction of the Alpha architecture written in the 
C language. The core of this model was created during the 



design of the 21064, the first Alpha processor. It was modified 
slightly to include Alpha 21164 specific features such as 
internal register definitions. The ISP model integrated the same 
sparsely populated memory model used in the pseudosystem model 
in such a way that the freedom in creating addresses could be 
duplicated.

SEGUE, a text generation/expansion tool, was used extensively to 
create pseudorandom code and configurations. Each exerciser used 
SEGUE templates to generate code. Variables were passed to the 
SEGUE templates that would determine what percentage of certain 
events or instructions would occur in the resultant code. Users 
would vary the percentages and create additional templates to 
target their exercisers to certain portions of the chip. An 
exerciser could focus only on loads and stores, or templates 
could be created that would generate trapping code. The 
verification engineers had the flexibility to create whatever 
code was needed. The verification engineers worked closely with 
the designers to understand the details of the logic. As a 
result, cases could be generated that would thoroughly test the 
functions being designed into the Alpha 21164 CPU chip.

Configuration Selection

Each test, either pseudorandom or focused, also made use of a 
configuration control block (CCB) parameter file. The CCB was 
used to set up the type of system that would be emulated for a 
given simulation. The parameter file consisted of variables that 
could be weighted to make certain system events occur or to cause 
certain configurations to be chosen. Once again, SEGUE scripts 
were utilized to create the command files that controlled these 
events. Examples of the type of events that could be chosen were 
single-bit error-correcting code (ECC) errors, interrupts, the 
presence of an external cache, the ratio between the system clock 
and the CPU internal clock rate, cache size and configuration, 
and other bus-interface timing events. These and other events 
were varied throughout the course of the project to ensure that 
the chip could be run in real systems using any given 
configuration.

The configuration chosen was guided through the use of a 
parameter file that contained various parameters and weightings 
to be utilized by SEGUE. Once a configuration was chosen using 
the parameter file, it was processed to produce two files used in 
the simulation. The first was a CCLI control file used to set up 
state internal to the pseudosystem-level model. The second file 
was loaded into the memory model to be used by the DVT and to 
provide information accessible through assembly code regarding 
the configuration type.

Simulation



Once the pseudorandom code and configuration had been generated, 
the test was loaded into the model under test or into the ISP 
model to use as the stimulus. A DVT loader was created for both 
models that would interpret selected data in the CCB and 
determine the memory locations where the test should be located. 
The additional information encoded in the CCB included whether 
the test ran in I/O, where handlers should be placed, and what 
page mapping was used.

After a DVT was loaded, the simulation would start. A PALcode 
reset handler was executed first. It read information from the 
CCB and loaded various registers with the configurations 
specified. The DVT was executed after the PALcode completed.

Capturing Random Events

In some cases, pseudorandom exercisers were used to capture 
events that were unlikely to occur and that would have been 
difficult to obtain by a focused test. By using a new tool 
(called FIGS), engineers were able to use the pseudorandom 
exercisers and postprocessing to look for events that were needed 
to achieve coverage of the various functions in the F-box. When 
the event occurred, the event could be saved and re-created for 
future regression testing.

CORRECTNESS CHECKING

A variety of mechanisms were used for checking whether the model 
behaved correctly. Some handcrafted tests had comparisons 
built-in to verify that they generated the expected answer. This 
self-checking mechanism, however, is difficult to include with 
pseudorandom testing. Three categories of checking mechanisms 
were developed that could work with pseudorandom or focused 
tests. These were checks performed during simulation of a model, 
postsimulation checks done automatically every time a model 
completes executing, and test-specific postsimulation checks. In 
all cases, adjusting the checking mechanisms to eliminate 
reporting false errors was important to keep the debugging time 
low.

The RTL model was augmented with a wide variety of built-in 
assertion checkers. These were active any time the model was run; 
they verified that various assertions and rules of behavior were 
not violated at any time during the test execution. Assertion 
checkers ranged from the simple to the complex and were added to 
the model by both the design and verification teams. Some 
assertion checkers were added as the initial model was coded, and 
others were added as needed to ensure that certain situations did 
not occur. Examples of simple assertion checkers include watching 
for a transition to an illegal state in a state machine, or 
watching for the select lines of a multiplexer (MUX) to choose an 
unused MUX input. More complex assertion checkers were used that 



required explicit knowledge about illegal sequences. For example, 
the system bus had a complicated set of checkers attached to it 
that checked for violations of the bus protocol.

When a test completed executing on the model, several end-of-run 
checks were done automatically. One simple check was to verify 
that the test reached its normal completion point and had not 
ended prematurely. Complete cache coherency checks were performed 
to ensure that all three levels of cache contents were consistent 
with the memory image.

A variety of very powerful end-of-run checks were used. These 
compared the results of running a test on the model and on the 
ISP model. Information about the state of the model was saved 
while the test was executing and then compared with its 
equivalent from the ISP model. State that was compared in this 
way included a trace of the program counter (PC), a trace of the 
updates made to each architectural register, and the final memory 
image upon completion of a test.

The main problems encountered with this technique were due to 
inconsistencies between the ISP model and the Alpha 21164 design. 
The ISP model was used across multiple Alpha design projects. It 
provided architecturally correct results but had no concept of 
timing, pipelining, or caching. Several features of the Alpha 
21164 implementation were difficult to verify with this reference 
machine.

In the Alpha architecture, arithmetic traps are imprecise, in 
that they might not be reported with the exact PC that caused 
them. Since the ISP model had no concept of timing, it reported 
traps at a different time than the real design. Thus, the 
checking mechanisms needed to be intelligent enough to take this 
possibility into account. Arithmetic traps also presented a 
problem because the destination register of certain types of 
traps is unpredictable after a trap occurs. Combined with the 
imprecise nature of traps, unpredictable values could propagate 
to other registers, making comparison against the reference 
machine difficult. Normally, certain software conventions would 
be followed to control these aspects of the architecture. To 
achieve the full benefit from pseudorandom testing, however, no 
restrictions were placed on which registers or instruction 
sequences could be used. Instead, an elaborate method was devised 
for tracking which registers were unpredictable at any given 
time. This information was then used to filter false mismatches.

Optional checks made on a per-test basis could be viewed as more 
complicated assertion checks. These were performed by tracing 
internal signals. The specific signals to trace were selected 
based on the particular postprocessing to be done. Then, by using 
a library of routines (called SAVES) to simplify accessing and 
manipulating these signal traces, particular interactions and 
protocols were verified. These could be viewed as assertion 
checks, but they were more complicated than the built-in variety. 



One example involved representing the behavior of a large section 
of the design as a single, complicated state machine. The 
behavior of this state machine could be compared with the I/O 
behavior of the actual design section. Another example was the 
representation of the branch-prediction algorithm in a more 
abstract form than the actual model. The behavior of the abstract 
algorithm was compared with the behavior of the model itself.

COVERAGE ANALYSIS

The primary difficulty with functional verification is that it is 
virtually impossible to know when the verification effort is 
complete. Completing a predetermined set of tests merely 
indicates that the tests are complete, not that the design has 
been fully tested. Monitoring the bug rate provides useful 
information, but a low bug rate might indicate that the testing 
is not exercising the problem areas. To alleviate this problem 
and provide increased visibility into the completeness of the 
verification effort, extensive coverage analysis of the focused 
tests and pseudorandom exercisers was done. Two types of coverage 
checking were used: information gathered while a model was 
executing, and information gathered by postprocessing signal 
traces.

While a model was executing, information was being stored about 
the occurrence of simple events. For example, a record was kept 
on the number of times the machine issued instructions to four 
pipes simultaneously, the number of times the translation buffers 
filled up, or the number of times stalls occurred. Since the chip 
operated in random configurations, a record was also kept about 
the configuration information such as the B-cache size and timing 
selected, the system interface options, and timing. At the end of 
every model run, this recorded information was written to a 
database to collect statistics across multiple runs.

In addition to these simple coverage checks, more elaborate 
coverage analysis was done through postprocessing. By using the 
SAVES library, signal traces were collected while the model was 
executing; these were later analyzed for the specific occurrence 
of predefined events. The events were composed of complicated 
timing relationships among signals. Often, two-dimensional 
matrices were created, in which each axis of the matrix 
represented a list of events. Thus, the occurrence patterns of 
every event in one list could be visualized happening with every 
event in the second list. For example, it was verified that every 
type of system command (read, invalidate, set-shared, etc.) 
occurred followed by every type of bus response (ACK, NOACK, 
etc.).

Automatic coverage-checking methods were also used. The most 
common was a state machine coverage analyzer. It was a goal to 
verify that every state/arc transition in every state machine was 
being exercised. Programs were automatically generated to search 



the trace files for these transitions and record the information 
about what was and was not covered. This concept was extended to 
sections of the chip that were not designed as simple state 
machines. As described above, one large section of the design was 
represented as a single, monolithic state machine to provide an 
independent reference for the correct outputs of the section. 
This conceptual state machine was processed through the coverage 
analysis tool. Although the transitions that were checked did not 
map directly to the physical design, they did provide an 
excellent indication of how well that section of the design had 
been tested.

The trace analysis tools could accumulate data across multiple 
simulation runs. The data was analyzed periodically, and areas 
that were lacking coverage were identified. This allowed the 
identification of trends in the coverage and provided an 
understanding as to how well the pseudorandom exercisers were 
exercising the chip. With this insight, pseudorandom exercisers 
were modified or new focused tests were created to improve the 
test coverage. Running pseudorandom exercisers with coverage 
analysis proved to be a very powerful technique in functional 
verification.

BUG TRENDS

During the Alpha 21164 CPU verification effort, more than 600 
bugs were logged and tracked before first-pass parts were 
manufactured. Figure 2 shows the bug rate achieved as a function 
of time for the duration of the project. To track bugs, an action 
tracking system was set up. Tracking of bugs started after all 
the subsections of the RTL-level model had been integrated and a 
small subset of tests was run successfully.  Since many areas of 
the model were ready before others, the action tracking system 
does not represent all the issues raised. However, it is 
interesting to look at the trends presented by the data.

[Figure 2 (Bug Rate as a Function of Time) is not available in 
ASCII format.]

The first trend to consider is the effectiveness of the 
pseudorandom and focused efforts. As shown in Figure 3, more than 
half the bugs were found using pseudorandom techniques. 
Furthermore, one-third of the bugs found by the focused effort 
were in the error-handling functionality of the design, which had 
poor pseudorandom test coverage.

Figure 3 Effectiveness of Class of Test

PSEUDORANDOM TEST  61%
FOCUSED TEST       31%
STATIC TEST         1%
OTHER               7%



Bugs were thought to have been introduced in a variety of ways. 
Figure 4 shows the breakdown of the causes of bugs. The majority 
occurred in implementing the architectural ideas that were 
decided upon for the project.

Figure 4 Introduction of Bugs

IMPLEMENTATION ERROR         61%

C PROGRAMMING MISTAKE        17%

PALCODE ERROR                 9%

ARCHITECTURAL CONCEPTION      3%

BACK-ANNOTATION OF MODEL      3%
(TO MATCH SCHEMATICS)

DOCUMENTATION/SPECIFICATION   2%

SCHEMATIC ENTRY               1%

PROGRAMMABLE LOGIC            1%
PROGRAMMING ERROR

POOR COMMUNICATION            1%

OTHER                         2%

Figure 5 shows the various detection mechanisms that were used to 
detect bugs. As in the past, assertion checkers placed in the 
design to quickly detect when something is not correct are the 
most successful.

Figure 5 Effectiveness of Bug Detection Mechanisms

ASSERTION CHECKER            34%

SELF-CHECKING TEST           11%

CACHE COHERENCY CHECK         9%

REGISTER FILE TRACE COMPARE   8%

MEMORY STATE COMPARE          7%

MANUAL INSPECTION OF          7%
SIMULATION OUTPUT

SIMULATION HANG               6%

ARCHITECTURAL EXERCISER       6%
BUILT-IN CHECKS



PC TRACE COMPARE              4%

SAVES CHECK                   3%

SIMULATOR BUILT-IN            2%
ERROR MESSAGE

OTHER                         9%

RESULTS AND CONCLUSIONS

As of September 1, 1994, eight logical bugs were found in the 
first-pass Alpha 21164 CPU design. Only one of these impacted 
normal system operation, but it did not occur very often. The 
first two issues were found while debugging test patterns on the 
tester; the third was a variation on a known restriction; the 
fourth occurred in a rare prototype system configuration that was 
found through pseudorandom simulation testing (which had 
continued even after the design was released to manufacturing); 
the fifth was a race condition between two events that rarely 
were stimulated in simulation; the sixth was a 
performance-related issue on the pin interface that was found by 
thinking about the design; the seventh was a very specific set of 
events that resulted in a system hang; and the last was related 
to not responding appropriately to an error condition.

These bugs escaped detection for the following reasons: 
        
     o  An exerciser running on a simulator was slow to encounter 
        the conditions that would evoke the bug. Many conditions 
        needed to occur concurrently, but all of them occurred 
        infrequently.

     o  An assertion checker did not work properly.

     o  Comparisons between the RTL model and the structural 
        model missed the bug.

All bugs were fixed before any systems were shipped to customers.

Details of these bugs follow. Included is information about how 
the bug was detected, a hypothesis on why the bug eluded 
detection before first-pass chips were fabricated, and lessons 
learned from the detection and elimination of the bug.

    1.  One bug was found by an exerciser running on the 
        second-pass RTL model. A cache line victim failed to 
        write back on a B-cache index match because a bypass 
        occurred at the same time. This bug existed only in 
        32-byte cache mode and B-cache speed configurations of 4, 
        5, and 6. This bug could have been found in the 



        first-pass model if this case had been generated 
        pseudorandomly. Running many cases is crucial with a 
        pseudorandom testing strategy. Given unlimited time and 
        computation cycles, this bug might have been found 
        earlier.

    2.  A second bug was caused by the B-cache read/write timing 
        being off by one cycle. This bug could have caused 
        multiple drivers to drive the data bus at one time. An 
        assertion checker for this bug was in the RTL model, but 
        the checker itself was not working properly. In the 
        future, assertion checkers should be verified by causing 
        the failure to occur and watching to see that it detects 
        the case. In some cases, assertion checkers are written 
        to flag an error for events that should never happen. 
        Forcing an illegal situation to occur can be very 
        difficult.

    3.  Another bug was found by an exerciser when a WRITE_BLOCK 
        command was preceded by a single-cycle idle_BC signal 
        assertion. This issue was directly related to a specific 
        B-cache speed and was related to another system 
        configuration restriction. This issue caused a 
        restriction to be added, but the design was not changed.
    
    4.  If the B-cache sequencer is performing a bypass 
        immediately after a command loads in the B-cache address 
        file and a reference is coming down the S-cache pipe, the 
        B-cache index could change in back-to-back cycles. The 
        index should change only every other cycle. An assertion 
        checker should have been written to test for this 
        situation and make sure it never occurred.

    5.  The performance-monitoring logic that counted load merges 
        was not counting these events correctly. This bug was not 
        in the RTL model but only in the actual implementation. 
        Possibly, more RTL-to-CHANGO comparisons needed to be run 
        on this section of logic.

    6.  Because of an LDxL/STxC bug, an invalidate to a locked 
        address was not detected as a hit against the LDxL 
        address. As a result, an STxC passed when it should have 
        failed. This bug could have been detected if a focused 
        test had been written with very specific timing of a FILL 
        and an LDxL hitting the S-cache in consecutive cycles. 
        Gaining control of this interaction on the system bus was 
        not possible, however, and random simulations were relied 
        upon to achieve this case. This was a rare event in the 
        random simulations, but parameters could have been 
        adjusted to make this occur more often.

    7.  For one specific system configuration, a READ or FLUSH 
        command sent by the system to the Alpha 21164 chip could 
        cause the system to hang. For this to happen, three 



        specific events, all with very tight timing windows, 
        needed to occur. We could have found this bug during 
        simulation if we had emphasized this type of condition 
        during the pseudorandom testing.

   8.   When responding to a command, the system had the option 
        of asserting an error signal instead of its normal 
        response. The error signal acted as an interrupt request 
        to the Alpha 21164 chip.  Under certain conditions, and 
        for a narrow window of time, this error signal was not 
        properly recognized. Testing of error conditions was a 
        project goal but not a high priority compared to testing 
        normal events. This bug could have been found earlier if 
        additional error-mode tests had been run.

The above issues were fairly minor and all have been fixed in the 
version of the design that will be released to customers.  The 
use of pseudorandom testing was very successful. Many major, 
complicated bugs were found over the course of the project that 
would never have been found using a focused effort. Because of 
the number of system configurations possible, a verification 
effort that consisted only of focused testing would have been 
impossible.
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