Functional Verification of a Miultiple-issue, Pipelined,
Super scal ar Al pha Processor -- the Al pha 21164 CPU Chip

by M chael Kantrowitz and Lisa M Noack

ABSTRACT

Digital's Al pha 21164 processor is a conplex quad-issue,

pi pel i ned, superscal ar inplenentation of the Al pha architecture.
Functional verification was perforned on the |ogic design and the
PALcode interface. The simulation-based verification effort used
i mpl ement ati on-directed, pseudorandom exercisers, supplenmented
with inplenmentation-specific, hand-generated tests. Extensive
coverage analysis was perforned to direct the verification
effort. Only eight |ogical bugs, all unobtrusive, were detected
in the first prototype design, and nmultiple operating systens
were booted with these chips in a prototype system All bugs were
corrected before any 21164-based systens were shipped to

cust oners.

| NTRODUCTI ON

The Al pha 21164 microprocessor is a quad-issue, superscalar

i mpl ementation of the Al pha architecture. The CPU chip required a
rigorous verification effort to ensure that there were no | ogica
bugs. Worl d-class performance dictated the use of many advanced
architectural features, such as on-chip virtual instruction
caching with seven-bit address space nunmbers (ASNs), an on-chip
dual -read ported data cache, out-of-order instruction conpletion,
an on-chip three-way set-associative wite-back second-Ieve
cache, support for an optional third-level wite-back cache,
branch prediction, a demand-paged nenory managenent unit, a wite
buffer unit, a miss-address file unit, and a conplicated bus
interface unit with support for various CPU-system clock ratios,
system configurations, and third-|evel cache paraneters.[1]

Functional verification was perforned by a team of engi neers from
Di gital Sem conductor whose primary responsibility was to detect
and elinmnate the logical errors in the Al pha 21164 design. The
detection and elimnation of timng, electrical, and physica
design errors were separate efforts conducted by the chip design
team [2]

Ext ensi ve functional verification prior to releasing the
first-pass design to the manufacturing process is a common

techni que used to ensure that time-to-market goals are met for
conpl ex processors. Increasingly, these verification efforts are
relying on pseudorandomtest generation to inprove the quality of
the verification effort. These techni ques have been in use at
Digital for nore than seven years and are also used el sewhere in
the industry and in academ a.[3-6] This paper describes a

functional verification effort that significantly extended
pseudorandom testing with extensive coverage anal ysis and sone
hand- generated tests to produce working first-pass parts.

GOALS

The verification team had several key goals. Goals for first-pass
silicon included ensuring that the first prototypes could boot
the operating system and providing a vehicle for debuggi ng of
systemrel ated hardware and software. An additional goal was to
execute a test to check every block of logic and every function
in the chip to ensure that no serious functional bugs remai ned.
The goal for second-pass silicon was to be bugfree so that these
chi ps coul d be shipped to custonmers for use in revenue-producing
systenms. Secondary goals included assisting in the verification
of Privileged Architecture Library code (PALcode) and keepi ng
manuf acturing test patterns in mind when creating the
verification environment and writing tests.

MODELI NG METHODOL OGY

Several different nodel representations of the Al pha 21164 CPU
wer e devel oped for testing prior to prototypes. The verification
teamprimarily used a register-transfer-level (RTL) nodel of the
Al pha 21164 CPU chip. This nodel accurately represented the
detailed I ogic of the design and delivered very high sinulation
per f or mance.

Model i ng Envi ronment

The design teamwote the RTL nodel in the C progranmm ng

| anguage. The nodel represented all | atches and conbi natoria

| ogic of the design and was accurate to the cl ock-phase boundary.
The C progranm ng | anguage was chosen because C provides the
speed and flexibility needed for a | arge-scale design. Digital's
CAD group designed a user interface for access into the RTL node
of the Al pha 21164 CPU. The C conmand line interface (CCLI)

al l owed access into the variables used to define signals and to
the routines that represented the actual design. It provided the
ability to create binary traces of signals for postprocessing
anal ysis and debuggi ng. A standard set of mmcro-instructions
sinmplified bit manipulation of signals with arbitrary w dths.

The use of C also allowed the teamto sinmulate portions of the
gate-level design in the structural simulator, CHANGO, and to
perform cycl e-by-cycl e conpari sons with various states in the RTL
nodel . These sinul ations, called shadow node sinul ations, were
fully utilized for testing the various functional units of the
chi p.

Pseudosyst em Model s

The verification team devel oped several nodels to interface to
the Al pha 21164 CPU RTL nodel and to allow testing of
interactions with pseudosystens to occur. The C | anguage provided
a level of flexibility in the creation of these nodels that was
not avail able on previous verification projects. One area in
which this flexibility was fully utilized was in the formation of
a sparsely popul ated nenory nodel. By using a dynamc tree data
structure rather than a static array, the cache, duplicate tag
store, and nenory system nodels could be wwitten to support the
full range of 64-bit addressing. Hence, tests could be created to
use any set of addresses without restrictions. In addition
conparisons with the reference nodel could be drawn fromthe
entire contents of memory. This significantly enhanced the
ability to detect possible errors in the design.

The verification engineers created a system nodel (the X-box) to
simul ate transactions on the pin bus. The X-box nmodel provided a
nmeans to mmc the real system behavior that the Al pha 21164 CPU
woul d encounter when used with a variety of different platfornms.
The team used C to devel op an X-box nodel that could be connected
to every possible configuration and node setting of the Al pha
21164 CPU chip. This allowed all nmodes of the Al pha 21164 CPU to
be tested with a single, multipurpose systeminterface nodel. The
X-box al so perfornmed many of the checks needed to ensure the
proper operation of the system bus.

STRATEGY

The verification strategy enployed nultiple techniques to achieve
full functional verification of the Al pha 21164 chip. The prinmary
t echni que used was pseudorandom exerci sers. These prograns

gener ated pseudorandom i nstruction sequences, executed the
sequences on both the 21164 nodel and a reference nodel, and
conpared the results. A second mgjor technique used focused,

hand- generated tests to cover specific areas of logic. O her

nmet hods consi sted of design reviews, executing existing tests and
benchmarks, and a few static analysis techniques. Figure 1 shows
the general flow for a single simulation

[Figure 1 (Design Verification Test Environment) is not available
in ASCII format.]

This strategy was deployed in three parts: the try-anything
phase, the test-planning phase, and the structured conpletion
phase. Devising a test plan was not the first step. During the
early stage of the project, the primary goal was to stabilize the
design as quickly as possible. Any mjor bug that would have had
an inpact on the architectural definition of the chip was
uncovered. Circuit design and | ayout could then conmrence wi thout
fear of major revisions later. If time had been spent structuring
detailed test plans, less tine woul d have been given to actua

testing, and at this point in the design, careful thought was not
needed to find bugs.

The main purpose of the try-anything phase was to exercise as
much functionality of the design as possible in the shortest tine
in order to stabilize the design quickly. This phase began even
before the RTL nodel was ready, with the construction of the
pseudor andom exerci ser prograns. The pseudorandom exerci sers and
the RTL nodel were debugged together. This produced an atnosphere
of intensity and challenge in which everyone was required to
interact constantly to help identify the source of problens. This
had a secondary benefit of bringing the design and verification
teans cl oser together

Once the design stabilized and the bug rate declined, the design
t eam began focusing on circuit design and |ayout, and the
verification teamtook a step back and created a test plan. The
purpose of the test plan was to ensure that the verification team
under st ood what needed to be verified. The test plan provided a
mechani sm for review ng what would be tested with the design

team The joint review ensured that the verification teamdid not
m ss inportant aspects of the design. The test plan also all owed
a way for the design teamto raise issues around specific problem
areas in the design or areas that enployed special |ogic that
were not obvious fromthe specification. Finally, the test plan
provi ded a neans for scheduling and prioritizing the rest of the
verification effort.

The test plan consisted of a description of every feature or
function of the design that needed to be tested, including any
speci al design features that m ght require special testing. It
did not describe how the test would actually be created. Past
experience had indicated that test plans describing the specific
sequence of instructions needed to test chip features quickly
becanme outdated. Instead, the test plan focused on the "what,"
not the "how. "

The final verification step was the structured conpl etion phase.
During this tinme, each itemfromthe test plan was anal yzed and
verified. The analysis consisted of deciding which mechani sm was
appropriate for covering that particular piece of the design.
This m ght consist of a focused test, a pseudorandom exerci ser
Wi th coverage analysis, or an assertion checker. As the
verification of each item was conpleted, a review was held with
the design and architecture teans to exam ne what was verified
and how it was done. In this way, any problens with the
verification coverage were identified.

TEST STI MJLUS

Bot h focused and pseudorandom exerci sers were used during the
verification of the Al pha 21164 chip. Mre than 400 focused tests
were created during the verification effort, covering a w de

variety of chip functions. Six different pseudorandom exercisers
were used. One was a general - purpose exerci ser that provided
coverage of the entire architecture. Each of the other five
exercised a specific section of the chip in a pseudorandom way.

The one general - purpose exerci ser used was provi ded by a separate
group and generated pseudorandom streans of instructions, data,
and chip state. Its focus was at the architectural |evel and
gener ated pseudorandom stinul us that would work on any

i mpl enmentation of the Al pha architecture.

Al nost all focused design verification tests (DVTs) were witten
usi ng Al pha assenbly code. This provided the right |evel of
abstraction to avoid the need to toggle ones and zeros directly
on each pin, yet allowed specific control over the timng of
transactions and instruction sequences that would not be possible
froma conpiled | anguage. The macro-preprocessor feature of the
Al pha macro-assenbl er was used heavily. This allowed the
assenbl y-l evel prograns to be constructed in a nodul ar manner

PSEUDORANDOM TESTI NG

Pseudorandom testing of fers several advantages in the
verification of increasingly conplex chips. These include
produci ng test cases that would be tinme-consuming to generate by
hand, and providing the ability to generate nultiple sinultaneous
events that would be extrenely difficult to think of explicitly.

Exerci sers
In support of the pseudorandomtesting strategy, various
exercisers were created that focused on different aspects of the
chip. The followi ng areas were targeted explicitly:

o] Br anchi ng

o] Dat a- patt ern- dependent transactions

o] Fl oati ng- poi nt wunit

o] Tr aps

o] Cache and nenory transactions
Fundanental | y, each exerciser was the sane. The exerciser would
create pseudorandom assenbl y-1 anguage code, run the code on the
nodel under test and a reference nodel, collect results from
each, and conpare the results from both nodel runs. Any errors or
di screpancies were then reported to the user
The reference nodel used, called the ISP nodel, was a very

hi gh-1 evel abstraction of the Al pha architecture witten in the
C language. The core of this nodel was created during the

design of the 21064, the first Al pha processor. It was nodified
slightly to include Al pha 21164 specific features such as
internal register definitions. The | SP nodel integrated the sane
sparsely popul ated nmenory nodel used in the pseudosystem node

in such a way that the freedomin creating addresses could be
dupl i cat ed.

SEGUE, a text generation/expansion tool, was used extensively to
create pseudorandom code and configurations. Each exerciser used
SEGUE tenpl ates to generate code. Variabl es were passed to the
SEGUE tenpl ates that woul d deterni ne what percentage of certain
events or instructions would occur in the resultant code. Users
woul d vary the percentages and create additional tenplates to
target their exercisers to certain portions of the chip. An
exerci ser could focus only on | oads and stores, or tenplates
could be created that woul d generate trappi ng code. The
verification engineers had the flexibility to create whatever
code was needed. The verification engineers worked closely with
the designers to understand the details of the logic. As a
result, cases could be generated that would thoroughly test the
functions being designed into the Al pha 21164 CPU chip

Configuration Sel ection

Each test, either pseudorandom or focused, also nmade use of a
configuration control block (CCB) paraneter file. The CCB was
used to set up the type of systemthat would be ernul ated for a

gi ven sinulation. The paraneter file consisted of variables that
could be weighted to make certain system events occur or to cause
certain configurations to be chosen. Once again, SEGUE scripts
were utilized to create the command files that controlled these
events. Exanples of the type of events that could be chosen were
single-bit error-correcting code (ECC) errors, interrupts, the
presence of an external cache, the ratio between the system cl ock
and the CPU internal clock rate, cache size and configuration,
and ot her bus-interface timng events. These and other events
were varied throughout the course of the project to ensure that
the chip could be run in real systens using any given
configuration.

The configuration chosen was gui ded through the use of a
paranmeter file that contained various paraneters and wei ghtings
to be utilized by SEGUE. Once a configuration was chosen using
the paraneter file, it was processed to produce two files used in
the simulation. The first was a CCLI control file used to set up
state internal to the pseudosystem|evel nodel. The second file
was | oaded into the nmenory nodel to be used by the DVT and to
provi de i nformati on accessi bl e through assenbly code regarding
the configuration type.

Si mul ati on

Once t he pseudorandom code and configuration had been generat ed,
the test was | oaded into the nodel under test or into the ISP
nodel to use as the stinulus. A DVT | oader was created for both
nodel s that would interpret selected data in the CCB and
deternine the nenory | ocations where the test should be | ocated.
The additional information encoded in the CCB included whet her
the test ran in 1/O where handl ers should be placed, and what
page mappi ng was used.

After a DVT was | oaded, the sinmulation would start. A PALcode
reset handler was executed first. It read information fromthe
CCB and | oaded various registers with the configurations

speci fied. The DVT was executed after the PALcode conpl et ed.

Capt uri ng Random Events

In some cases, pseudorandom exercisers were used to capture
events that were unlikely to occur and that woul d have been
difficult to obtain by a focused test. By using a new too

(called FIGS), engineers were able to use the pseudorandom

exerci sers and postprocessing to |l ook for events that were needed
to achi eve coverage of the various functions in the F-box. Wen
the event occurred, the event could be saved and re-created for
future regression testing.

CORRECTNESS CHECKI NG

A variety of nmechanisns were used for checki ng whet her the node
behaved correctly. Sone handcrafted tests had conpari sons
built-in to verify that they generated the expected answer. This
sel f-checki ng nechani sm however, is difficult to include with
pseudorandom testing. Three categories of checki ng nechani sns
wer e devel oped that could work with pseudorandom or focused
tests. These were checks perforned during sinmulation of a nodel,
post si mul ati on checks done automatically every tine a node

conpl etes executing, and test-specific postsinulation checks. In
all cases, adjusting the checking nmechanisns to elininate
reporting false errors was inportant to keep the debugging tine
| ow.

The RTL nodel was augnmented with a wide variety of built-in
assertion checkers. These were active any tinme the nodel was run;
they verified that various assertions and rul es of behavior were
not violated at any tinme during the test execution. Assertion
checkers ranged fromthe sinple to the conplex and were added to
the nodel by both the design and verification teans. Sone
assertion checkers were added as the initial nodel was coded, and
ot hers were added as needed to ensure that certain situations did
not occur. Exanples of sinple assertion checkers include watching
for a transition to an illegal state in a state machine, or

wat ching for the select lines of a nmultiplexer (MJX) to choose an
unused MUX input. Mre conplex assertion checkers were used that

required explicit know edge about illegal sequences. For exanple,
the system bus had a conplicated set of checkers attached to it
that checked for violations of the bus protocol.

When a test conpl eted executing on the nodel, several end-of-run
checks were done automatically. One sinple check was to verify
that the test reached its normal conpletion point and had not
ended prematurely. Conplete cache coherency checks were perforned
to ensure that all three levels of cache contents were consistent
with the nmenory i mge.

A variety of very powerful end-of-run checks were used. These
conpared the results of running a test on the nodel and on the

| SP model . I nformation about the state of the nodel was saved
while the test was executing and then conpared with its
equivalent fromthe ISP nodel. State that was conpared in this
way included a trace of the program counter (PC), a trace of the
updat es made to each architectural register, and the final nenory
i mage upon conpletion of a test.

The main probl ens encountered with this techni que were due to

i nconsi stenci es between the | SP nodel and the Al pha 21164 design
The | SP nodel was used across multiple Al pha design projects. It
provi ded architecturally correct results but had no concept of
timng, pipelining, or caching. Several features of the Al pha
21164 inplenentation were difficult to verify with this reference
machi ne.

In the Al pha architecture, arithmetic traps are inprecise, in
that they m ght not be reported with the exact PC that caused
them Since the ISP nodel had no concept of timng, it reported
traps at a different tinme than the real design. Thus, the
checki ng nechani snms needed to be intelligent enough to take this
possibility into account. Arithnmetic traps al so presented a
probl em because the destination register of certain types of
traps is unpredictable after a trap occurs. Conbined with the

i mpreci se nature of traps, unpredictable values could propagate
to other registers, nmaking conparison against the reference
machine difficult. Normally, certain software conventions woul d
be followed to control these aspects of the architecture. To
achieve the full benefit from pseudorandom testing, however, no
restrictions were placed on which registers or instruction
sequences coul d be used. Instead, an el aborate nethod was devi sed
for tracking which registers were unpredictable at any given
time. This information was then used to filter false m smatches.

Optional checks made on a per-test basis could be viewed as nore
conplicated assertion checks. These were perforned by tracing
internal signals. The specific signals to trace were sel ected
based on the particul ar postprocessing to be done. Then, by using
a library of routines (called SAVES) to sinplify accessing and
mani pul ati ng these signal traces, particular interactions and
protocols were verified. These could be viewed as assertion
checks, but they were nore conplicated than the built-in variety.

One exanpl e invol ved representing the behavior of a large section
of the design as a single, conplicated state nachine. The
behavi or of this state nmachine could be conpared with the 1/0
behavi or of the actual design section. Another exanple was the
representation of the branch-prediction algorithmin a nore
abstract formthan the actual nodel. The behavior of the abstract
al gorithm was conpared with the behavior of the nodel itself.

COVERAGE ANALYSI S

The primary difficulty with functional verification is that it is
virtually inmpossible to know when the verification effort is
conpl ete. Conpleting a predeterm ned set of tests nerely
indicates that the tests are conplete, not that the design has
been fully tested. Monitoring the bug rate provides usefu
information, but a low bug rate mght indicate that the testing
is not exercising the problemareas. To alleviate this problem
and provide increased visibility into the conpl eteness of the
verification effort, extensive coverage anal ysis of the focused
tests and pseudorandom exerci sers was done. Two types of coverage
checki ng were used: information gathered while a nodel was
executing, and information gathered by postprocessing signal
traces.

Wil e a nodel was executing, information was being stored about
the occurrence of sinple events. For exanple, a record was kept
on the nunber of times the machine issued instructions to four

pi pes simul taneously, the nunber of tines the translation buffers
filled up, or the nunber of times stalls occurred. Since the chip
operated in random configurations, a record was al so kept about
the configuration information such as the B-cache size and timng
sel ected, the systeminterface options, and timng. At the end of
every nodel run, this recorded infornmation was witten to a

dat abase to collect statistics across multiple runs.

In addition to these sinple coverage checks, nore el aborate
coverage anal ysis was done through postprocessing. By using the
SAVES library, signal traces were collected while the nodel was
executing; these were |ater analyzed for the specific occurrence
of predefined events. The events were conposed of conplicated
timng relationships anong signals. Oten, two-di nensiona
matrices were created, in which each axis of the matrix
represented a list of events. Thus, the occurrence patterns of
every event in one list could be visualized happening with every
event in the second |ist. For exanple, it was verified that every
type of system command (read, invalidate, set-shared, etc.)
occurred followed by every type of bus response (ACK, NOACK
etc.).

Aut omat i c coverage-checki ng net hods were al so used. The npst
common was a state machi ne coverage analyzer. It was a goal to
verify that every state/arc transition in every state nachi ne was
bei ng exercised. Prograns were autonmatically generated to search

the trace files for these transitions and record the information
about what was and was not covered. This concept was extended to
sections of the chip that were not designed as sinple state

machi nes. As descri bed above, one | arge section of the design was
represented as a single, nmonolithic state machine to provide an

i ndependent reference for the correct outputs of the section
Thi s conceptual state machi ne was processed through the coverage
anal ysis tool. Although the transitions that were checked did not
map directly to the physical design, they did provide an
excel l ent indication of how well that section of the design had
been tested.

The trace analysis tools could accunul ate data across multiple
simul ation runs. The data was anal yzed periodically, and areas
that were | acking coverage were identified. This allowed the
identification of trends in the coverage and provi ded an
understandi ng as to how well the pseudorandom exerci sers were
exercising the chip. Wth this insight, pseudorandom exercisers
were nodified or new focused tests were created to inprove the
test coverage. Runni ng pseudorandom exercisers with coverage
anal ysis proved to be a very powerful technique in functiona
verification.

BUG TRENDS

During the Al pha 21164 CPU verification effort, nore than 600
bugs were | ogged and tracked before first-pass parts were

manuf actured. Figure 2 shows the bug rate achieved as a function
of tinme for the duration of the project. To track bugs, an action
tracki ng system was set up. Tracking of bugs started after al

the subsections of the RTL-1evel nodel had been integrated and a
smal | subset of tests was run successfully. Since many areas of
the nodel were ready before others, the action tracking system
does not represent all the issues raised. However, it is
interesting to | ook at the trends presented by the data.

[Figure 2 (Bug Rate as a Function of Tine) is not available in
ASClI | format.]

The first trend to consider is the effectiveness of the

pseudor andom and focused efforts. As shown in Figure 3, nore than
hal f the bugs were found using pseudorandom t echni ques.
Furthernore, one-third of the bugs found by the focused effort
were in the error-handling functionality of the design, which had
poor pseudorandom test coverage.

Figure 3 Effectiveness of Class of Test

PSEUDORANDOM TEST 61%
FOCUSED TEST 31%
STATI C TEST 1%
OTHER 7%

Bugs were thought to have been introduced in a variety of ways.
Figure 4 shows the breakdown of the causes of bugs. The mgjority
occurred in inplementing the architectural ideas that were

deci ded upon for the project.

Figure 4 Introduction of Bugs

| MPLEMENTATI ON ERROR 61%
C PROGRAMM NG M STAKE 17%
PALCODE ERROR 9%
ARCHI TECTURAL CONCEPTI ON 3%
BACK- ANNOTATI ON OF MODEL 3%

(TO MATCH SCHEMATI CS)
DOCUMENTATI ON/ SPECI FI CATION 2%
SCHEMATI C ENTRY 1%

PROGRAMVABLE LOG C 1%
PROGRAMM NG ERROR

POOR COVMUNI CATI ON 1%

OTHER 2%

Figure 5 shows the various detection nmechani snms that were used to
detect bugs. As in the past, assertion checkers placed in the
design to quickly detect when sonething is not correct are the

most successful .

Figure 5 Effectiveness of Bug Detection Mechani sns

ASSERTI ON CHECKER 34%
SELF- CHECKI NG TEST 11%
CACHE COHERENCY CHECK 9%

REGQ STER FI LE TRACE COWARE 8%

MEMORY STATE COMPARE 7%

MANUAL | NSPECTI ON OF 7%
SI MULATI ON OUTPUT

SI MULATI ON HANG 6%

ARCHI TECTURAL EXERCI SER 6%
BUI LT-1 N CHECKS

PC TRACE COVPARE 4%
SAVES CHECK 3%

SI MULATOR BUI LT-I N 2%
ERROR MESSAGE

OTHER 9%

RESULTS AND CONCLUSI ONS

As of Septenmber 1, 1994, eight |ogical bugs were found in the
first-pass Al pha 21164 CPU design. Only one of these inpacted
normal system operation, but it did not occur very often. The
first two issues were found while debugging test patterns on the
tester; the third was a variation on a known restriction; the
fourth occurred in a rare prototype system configuration that was
found through pseudorandom sinul ati on testing (which had

conti nued even after the design was rel eased to manufacturing);
the fifth was a race condition between two events that rarely
were stinulated in sinulation; the sixth was a
performance-rel ated i ssue on the pin interface that was found by
t hi nki ng about the design; the seventh was a very specific set of
events that resulted in a system hang; and the | ast was rel ated
to not responding appropriately to an error condition.

These bugs escaped detection for the follow ng reasons:

o An exerciser running on a sinmulator was sl ow to encounter
the conditions that woul d evoke the bug. Many conditions
needed to occur concurrently, but all of them occurred
i nfrequently.

0 An assertion checker did not work properly.

o Conparisons between the RTL nodel and the structura
nodel m ssed the bug.

Al'l bugs were fixed before any systens were shipped to customers.

Details of these bugs follow Included is information about how
the bug was detected, a hypothesis on why the bug el uded
detection before first-pass chips were fabricated, and | essons

| earned fromthe detection and elimnation of the bug.

1. One bug was found by an exerciser running on the
second- pass RTL nodel. A cache line victimfailed to
write back on a B-cache index match because a bypass
occurred at the sane tinme. This bug existed only in
32-byte cache node and B-cache speed configurations of 4,
5, and 6. This bug could have been found in the

first-pass nodel if this case had been generated
pseudorandom y. Running many cases is crucial with a
pseudorandom testing strategy. Gven unlimted tinme and
conmput ation cycles, this bug m ght have been found
earlier.

A second bug was caused by the B-cache read/wite tining
bei ng off by one cycle. This bug could have caused
multiple drivers to drive the data bus at one tinme. An
assertion checker for this bug was in the RTL nodel, but
the checker itself was not working properly. In the
future, assertion checkers should be verified by causing
the failure to occur and watching to see that it detects
the case. In some cases, assertion checkers are written
to flag an error for events that should never happen.
Forcing an illegal situation to occur can be very
difficult.

Anot her bug was found by an exerciser when a WRI TE_BLOCK
command was preceded by a single-cycle idle_BC signa
assertion. This issue was directly related to a specific
B- cache speed and was rel ated to another system
configuration restriction. This issue caused a
restriction to be added, but the design was not changed.

If the B-cache sequencer is perform ng a bypass

i medi ately after a command | oads in the B-cache address
file and a reference is com ng down the S-cache pipe, the
B- cache i ndex coul d change in back-to-back cycles. The

i ndex shoul d change only every other cycle. An assertion
checker should have been witten to test for this
situation and nake sure it never occurred.

The performance-nonitoring |logic that counted | oad merges
was not counting these events correctly. This bug was not
in the RTL nodel but only in the actual inplenentation
Possi bly, nmore RTL-to- CHANGO conpari sons needed to be run
on this section of |ogic.

Because of an LDxL/STxC bug, an invalidate to a | ocked
address was not detected as a hit against the LDxL
address. As a result, an STxC passed when it shoul d have
failed. This bug could have been detected if a focused
test had been written with very specific timng of a FILL
and an LDxL hitting the S-cache in consecutive cycles.

Gai ning control of this interaction on the system bus was
not possible, however, and random sinul ations were relied
upon to achieve this case. This was a rare event in the
random si nul ati ons, but paranmeters could have been

adj usted to make this occur nore often.

For one specific system configuration, a READ or FLUSH
command sent by the systemto the Al pha 21164 chip could
cause the systemto hang. For this to happen, three

specific events, all with very tight tinmng w ndows,
needed to occur. We could have found this bug during
simulation if we had enphasi zed this type of condition
during the pseudorandom testing.

8. When responding to a command, the system had the option
of asserting an error signal instead of its nornal
response. The error signal acted as an interrupt request
to the Al pha 21164 chip. Under certain conditions, and
for a narrow wi ndow of tinme, this error signal was not
properly recogni zed. Testing of error conditions was a
project goal but not a high priority conpared to testing
normal events. This bug could have been found earlier if
addi ti onal error-node tests had been run.

The above issues were fairly mnor and all have been fixed in the
version of the design that will be released to custoners. The
use of pseudorandom testing was very successful. Many ngjor,
conplicated bugs were found over the course of the project that
woul d never have been found using a focused effort. Because of

t he nunber of system configurations possible, a verification
effort that consisted only of focused testing would have been

i mpossi bl e.

ACKNOW.EDGVENTS

The Al pha 21164 functional verification effort was perfornmed by a
team of engi neers fromthe SEG m croprocessor verification group
Menbers of this teamincluded Homayoon Akhi ani, David Asher,
Darren Brown, Rick Calcagni, Erik DeBriae, JimEllis, Bil
Feaster, Mariano Fernandez, Ji m Huggins, M ke Kantrowi tz, G nger
Lin, Chris Mkulis, Lisa Noack, Ray Ratchup, Carol Stolicny,
Scott Taylor, and Jonathan White. The CCLI user interface would
not have been possible without John Pierce. Wal ker Anderson
provi ded quality guidance through all phases of the project. The
Al pha Architecture Group RAX team (Matt Baddel ey, Larry Camlli,
Ed Freedman, Joe Rantala, Pravin Santiago, Lucy Tancredi, Steve
Torchia), once again, provided and supported an effective
verification tool. Lastly, the success of the project and the
final quality of the Al pha 21164 chip |ogical design are as nuch
atribute to the work of the architecture and design teans as
they are to the work of the verification team

REFERENCES

1. J. Edmondson et al., "Internal Organization of the Al pha
21164, a 300-MHz 64-bit Quad-issue CMOS RI SC
M croprocessor," Digital Technical Journal, vol. 7, no. 1
(1995, this issue): 119-135.

2. W Bowhill et al., "lInplenentation of a 300-MHz 64-bit
Second-generati on CMOS Al pha CPU," Digital Technica

Journal, vol. 7, no. 1 (1995, this issue): 100-118.

W Anderson, "Logical Verification of the NVAX CPU Chip
Design," Digital Technical Journal, vol. 4, no. 3 (Sumrer
1992): 38-46.

A. Aharon, A Bar-David, B. Dorfrman, E. Gofman, M

Lei bowitz, and V. Schwartzburd, "Verification of the |BM
RI SC Systen’ 6000 by a Dynam ¢ Bi ased Pseudo-random Test
Program Generator," |BM Systenms Journal, vol. 30, no. 4
(1991): 527-538.

A. Ahi, G Burroughs, A GCore, S. LaMar, C Y. Lin, and A
W ermann, "Design Verification of the HP 9000 Series 700
PA- Rl SC Wor kst ations," Hew ett-Packard Journal (August
1992): 34-42.

D. Wwod, G G bson, and R Katz, "Verifying a Multiprocessor
Cache Controller Using Random Test Ceneration," | EEE Design
and Test of Conputers (August 1990): 13-25.

Bl OGRAPHI ES
M chael Kantrow tz

A principal engineer, Mke Kantrowitz is currently |leading the
verification effort for a new Al pha m croprocessor and devel opi ng
new verification tools and nmethods. Prior to this project, M ke
was co-|eader of the 21164 chip verification, responsible for the
instruction fetch and execute units. He has also contributed to
the verification of the Mariah, NVAX+, 21064 floating-point unit,
and FAVOR vector unit. Before joining Digital in 1988, M ke

wor ked at Rayt heon Conpany. He has a B.S.E.E. from Stevens
Institute of Technology and an MS.E.E. from Wrcester

Pol ytechnic Institute. Mke is a nmenber of |EEE

Lisa M Noack

A principal engineer, Lisa Noack is currently co-leading the chip
verification effort for a new Al pha m croprocessor. Prior to this
work, Lisa was a co-leader of the 21164 chip verification and was
responsi bl e for nmenory, cache, and systeminterface units. Lisa
has al so contributed to the verification of the NVAX+ and NEXM
chi ps and the PVN nodul e and chip set. Before she joined Digita
in 1989, Lisa was enployed at Data General Corporation as a
desi gn engi neer responsible for the systemdesign of I1/0O
subsystens and various gate array design projects. She earned her
B.S. and M S. degrees in conputer engineering from Syracuse

Uni versity.

TRADEMARKS

Digital is a trademark of Digital Equi pment Corporation

Copyright 1995 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be
distributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permitted. All rights reserved.

