ACMSxp Open Distributed Transaction Processing

by

Robert K. Baafi, J. lan Carrie, WlliamB. Drury, and Oren L. Wesler

ABSTRACT

Digital's ACMSxp portable transaction processing (TP) nonitor
supports open TP standards and provides an environment for the
devel opnent, execution, and adm nistration of robust,

distributed, client-server applications. The ACMSxp TP nonitor
supports the Structured Transaction Definition Language, a
nodul ar | anguage that sinplifies the devel opnment of transactiona
applications. ACMSxp software is |layered on the Open Software
Foundation's Distributed Conputing Environnent (DCE) and supports
XA- conpl i ant dat abases and ot her resource managers by using the
Encina tool kit from Transarc Corporation or Digital's distributed
transacti on manager (DECdtm) software. As a framework for

DCE- based applications, the ACMSxp TP nonitor sinplifies
application devel opment, integrates system adm nistration, and
provi des the additional capabilities of high availability, high
performance, fault tolerance, and data integrity.

| NTRODUCTI ON

Transaction processing (TP) is a style of conputing that
guar ant ees robustness and high availability for critical business
applications. TP typically involves a | arge nunber of users using
di splay devices to issue simlar and repetitive requests. The
requests result in the accessing and updating of one or nore

dat abases to reflect the current state of the business.

The basic building block in a TP systemis a transaction. A
transaction is an indivisible unit of work that represents the
fundamental construct of recovery, consistency, and concurrency.
Each transaction has the properties of atonmicity, consistency,

i solation, and durability (ACID). These properties are defined as
foll ows:

o] Atomicity. Either all the actions of a transaction
succeed or all fail. In case of failure, the actions are
rol | ed back.

o] Consi stency. After a transaction executes, it nust
either |eave the systemin a correct state or abort and
return the systemto its initial state.

o] Isolation. The actions carried out by a transaction

agai nst a shared database cannot becone visible to other
transactions until the transaction commts.

o] Durability. The effects of a comritted transaction are
per manent .

A TP noni tor manages and coordi nates the flow of transactions
through the system Transaction requests typically originate from
clients, are processed by one or nore servers, and end at the
originating client. Wen a transaction ends, the TP nonitor
ensures that all systens involved in the transaction are left in
a consistent state.

The devel opnent of powerful desktop systens and advances in
comuni cations technol ogy have fueled the growth of distributed
client-server conputing. The systens in a distributed environnent
may run different operating systens, possibly fromdifferent
vendors. Business-critical applications may run under the contro
of different TP nonitors. To coordinate their activities, TP
nmonitors on heterogeneous systens need to conformto standards
for open transaction processing.

Open standards for transaction processing have been adopted by
the International Organization for Standardizati on/ Open Systens

I nterconnection (ISOCSI), the X/ Open initiative, and the Service
Provi ders' Integrated Requirenments for Information Technol ogy
(SPIRIT) consortium|[1,2] The X/ Open initiative is a consortium
of vendors whose purpose is to define standards for application
portability. SPIRIT is a consortium of telecomrunications service
providers fromthe U.S., Europe, and Japan worki ng under the
general sponsorship of the Network Managenent Forum (NMF). [3-5]
The goal of the NMF's SPIRIT consortiumis to define standards
for portability and interoperability across heterogeneous systens
to be used as the basis for procurenent.

The main standards for open transaction processing are

o] X/ Open distributed transaction processing (DTP), which is
an architecture that allows nultiple prograns to share
resources (e.g., databases and files) provided by
nmul ti pl e resource nmanagers and allows their work to be
coordi nated. The architecture defines application
programm ng i nterfaces and interactions anong
transactional applications, transacti on managers,
resource managers, and conmuni cati ons resource menagers.
The transacti on nanager and the resource nanager
comuni cate by nmeans of the XA interface.[6]

o] X/ Open transactional renote procedure call (TxRPC), which
allows an application to i nvoke | ocal and renote resource
managers as if they were all local. TxRPC al so allows an
application to be deconposed into client and server
conmponents on different conputers interconnected by neans
of renote procedure calls (RPCs).

o] SPIRIT Structured Task Definition Language (STDL), which
is a block-structured | anguage for transaction
processing.[4,5,7] STDL provides transactional features
i ncl udi ng demarcation of transaction boundari es,
transaction recovery, exception handling, transactiona
communi cations, access to data queues, subm ssion of
gqueued work requests, and invocation of presentation
servi ces.

Digital's Application Control and Managenent Systen
Cross-platform (ACMSxp) software product is a portable TP nonitor
that supports the open TP standards. It provides an environnment
for the devel opnent, execution, and adm nistration of STDL
applications. ACMSxp software is |layered on the Open Software
Foundation's (OSF' s) Distributed Conmputing Environment (DCE) and
supports multiple resource managers through Transarc
Corporation's Encina toolkit on the UN X operating system and
Digital's distributed transacti on nmanager (DECdtn) services on
the OpenVMS operating system[8] This paper describes the design
of the ACMSxp TP nonitor

APPL| CATI ON DEVELOPMENT

ACMSxp applications are witten using a conbination of the STDL
and traditional |anguages such as C and COBOL. STDL is a nodul ar
bl ock-structured | anguage devel oped specifically for transaction
processing. It is based on the ACMS Task Definition Language
(TDL) and was devel oped as part of Ni ppon Tel egraph and

Tel ephone's (NTT's) Multivendor Integration Architecture (M A)
initiative.[9-11] The NMF's SPIRI T consortium subsequently
adopted STDL.

STDL Language Overvi ew

STDL provi des transactional features including transaction
demarcation, transactional renote procedure call, transactiona
task and data record queuing, transactional display managenent,
transacti onal exception handling, and transactional working
storage cal |l ed workspaces.

STDL divides an application into three parts: presentation
transaction flow control, and processing, as illustrated in
Figure 1. The presentation part interfaces with display devices
usi ng a presentation nanager, such as Mtif, Wndows, or forns
manager software. The transaction flow control part is witten in
STDL and controls the flow of execution, including transaction
demar cation, exception handling, and access to queues. The
processing part is witten in traditional |anguages, such as C,
COBOL, and SQL, and provides conputation and access to resource
managers such as dat abases and files.

[Figure 1 (STDL Application Mddel) is not available in ASCl
format.]

The application functions in the three parts of the STDL
application nodel are referred to respectively as presentation
procedures, tasks, and processing procedures. The application
functions are packaged into groups for the purposes of

conpil ation and execution. The groups are referred to as
presentation groups, task groups, and processing groups.

A group specification describes the functions in the group and
their interfaces. The interface specification includes the
argunments that are passed to the function and an indication of
whet her an argunent is input only, output only, or both input and
output. For a task, the interface specification also indicates
whet her the task begins a new transacti on (NONCOVPOSABLE) or
joins the caller's transacti on (COVWPOSABLE) .

STDL variables are defined in constructs call ed workspaces.

Wor kspaces may have the transactional attribute, thus allow ng an
application to coordinate internal data with the outcone of the
transaction along with other resource manager participants.

Wor kspaces have the scope of either PRIVATE or SHARED. A PRI VATE
wor kspace is accessible to only a single task; a SHARED wor kspace
is accessible to all tasks in a task group

STDL supports two types of queues: record and task. Record queues
provi de a transactional, durable scratch pad facility for
applications to store and retrieve internmedi ate results. Task
gueues provide a way of executing tasks independently of the
currently executing task in both time and | ocation. Storage of
the task queue el enent on the task queue nay or may not be
conditional on the outcone of the currently executing task.

Sanpl e STDL Application

Figure 2 shows a sanple STDL application program The sanple
program accepts an integer, increments it, and displays it. In
addition, shared workspaces are defined in the task group to
track the nunber of successful executions ("successes") and the
nunber of failed executions ("failures"). These operations al
take place within the context of a transaction defined by task
addl. If the transaction succeeds, the programincrenents
"nunber" and the shared workspace "successes." |If the transaction
fails, the programrestores "nunber" to its initial state and

i nvokes the exception handl er. The exception handl er then updates
the shared workspace "failures."”

Figure 2 Sanpl e STDL Application

RECORD ar gl
nunber | NTEGER;
END RECORD;

TASK GROUP exanpl el
TASK addl
TASK ARGUMENT 1S argl PASSED AS | NOUT;
END TASK GROUP;

TASK addl ARGUMENT | S argl PASSED AS | NOUT;
WORKSPACES ARE successes SHARED UPDATE RECOVERABLE,
failures SHARED UPDATE,
argl PRI VATE RECOVERABLE;
BLOCK W TH TRANSACTI ON
PROCESSI NG
COMPUTE successes = successes + 1
PROCESSI NG
COWPUTE nunber = nunmber + 1
EXCHANGE
SEND RECORD nunber TO i nscreen
END BLOCK
EXCEPTI ON HANDLER 1 S
PROCESSI NG
COWPUTE failures = failures + 1
END EXCEPTI ON HANDLER;
END TASK;

STDL Conpi l er

The STDL conpiler sinplifies the process of devel oping
distributed client-server applications. It generates all the code
necessary for supporting the application in the distributed

envi ronnent, including server initialization, namespace

regi stration, nanmespace |ookup, and application context
propagation. This allows the application programrer to focus on
the application problem at hand.

The ACMSxp STDL conpiler translates STDL specifications into
execut abl e code. The conpiler itself is witten in the ANSI C
programm ng | anguage using POSI X 1003.1 library interfaces for
platform portability; the generated code consists of only ACMSxp
run-time service calls and DCE service calls.[12] To the
application programrer, the ACMSxp STDL conpil er | ooks much |ike
a classical conpiler. The STDL conpil er reads source code,
converts it to object code, and then links it to create an
execut abl e program Figure 3 shows the elenments witten by the
application programrer and the transformations required to create
an executabl e program

[Figure 3 (STDL Conpiler Flows) is not available in ASCII fornmat.]

Internally, the STDL conpiler consists of a series of steps that
run under the control of a driver program This processing takes
pl ace in the steps shown inside the dashed-1ine box of Figure 3.
The STDL driver first reads STDL specifications in one pass and
constructs internal structures that represent each STDL entity in
the source file. Once an entity has been conpletely parsed and
the syntax has been checked for errors, the driver generates
internediate files by translating

o] STDL groups into ACMSxp client and server stubs and a DCE
RPC Interface Definition Language (IDL) file

o] STDL tasks into C code and ACMSxp run-tinme service calls

0] STDL record definitions into C structures contained in C
header files or COBOL copy files

After the STDL driver has generated all the internediate files,
it invokes the appropriate |anguage processor to convert the
files into object files. The DCE I DL conpiler processes the |IDL
files, and the C conpiler processes the tasks and the ACMSxp
stubs. To keep the nunmber of pieces visible to the application
programer within reason, the ACMSxp client and server stubs are
conbined with the DCE client and server stubs. The result is a
collection of object files simlar to those found in a
conventional DCE application. The platform|inker then combi nes
the resulting files into an executabl e program

The ACMSxp client and server stubs are simlar in concept to the
DCE RPC client and server stubs. The client stub is linked with
ot her applications that invoke this group's tasks or procedures.
The server stub is conmbined with application code to create the
application server imge. The ACMSxp stubs call ACMSxp run-tine
services to add to the base DCE RPC services features such as
transactions, failover and fail back, and tine-out.

EXECUTI ON ENVI RONMENT

The ACMSxp run-tinme system provides an environment for executing
and i nvoki ng STDL applications. It also provides services that
al l ow conponents in the execution environnent to be managed. The
execution environment provides many services typically needed in
TP environnents, such as resource scheduling, fault tol erance,
and queui ng.

Process Mbde

The ACMSxp environnent consists of client and server conponents.
A TPsystem conprises nultiple server conponents on a node that
are managed as a unit. A given TPsystem has a gl obally unique
nanme and is associated with only one node, but a node can have
mul tiple TPsystens associated with it. A TPsystem contains a
central process called the TPcontroller, which controls the
conponents within the TPsystem The processes in the execution
environnent are illustrated in Figure 4.

[Figure 4 (Processes in Execution Environment) is not avail able
in ASCII format.]

As the central point of control for the conponents within a
TPsystem the TPcontroller perfornms many functions, including

i cense checking, starting and stopping servers, and nonitoring
server processes and restarting them when they term nate
abnormally. It also receives adm nistration requests and perforns
the requested operations, maintains information in shared nenory
for comrunication with server processes, and nmaintains key files
for server authentication.

A task server executes STDL task group code and uses multiple
threads in a single process to achi eve concurrent execution
(mul tithreaded). A processing server executes STDL processing
group code and uses a pool of single-threaded processes to
achi eve concurrent execution (nultiprocess).

System servers provide specific run-tinme services to the

TPcontrol |l er, task servers, and processing servers. The system
servers include the event | og server, the request queue server,
and the record queue server. System servers are multithreaded.

Client processes invoke services provided by a TPsystemand its
servers. An administration client (also referred to as the
director) invokes adm nistration services provided by the
TPcontrol | er and system servers. An application client invokes
application services provided by task servers. An application
client can be a customer-witten client or an ACMS Deskt op
client. A custonmer-written client can consist of code necessary
to support a forns manager or device control such as an autonmatic
tell er machine or a gas punp. An ACMS Desktop client allows
popul ar desktop systens such as the Maci ntosh, SCO s UNI X,

M crosoft W ndows, and W ndows NT operating systens to be used to
access services provided by ACMSxp application servers.

Run-ti me Services

The ACMSxp run-tinme system provides services required for the
execution of client-server TP applications. The run-tinme services
are highly nodul ar and are |l ayered on the services provided by
the underlying transacti on manager, DCE, operating system
network, and other services, as shown in Figure 5.

[Figure 5 (Mbdular Run-tine Architecture) is not available in
ASClI | format.]

The run-tine services integrate the services of the underlying
pl atform and provide additional functionality. They export an
application programring interface (API) called the transaction
processing service interface (TPSI). The run-time services

i ncl ude

o] Communi cati on, which provides services for transactiona
and nontransactional conmuni cati on between clients and
servers using DCE RPC. The supported transports are
transm ssion control protocol/internet protocol (TCP/IP),
DECnet OSI, and Fast Local Transport.

o] Process managenent, which provides services for starting
and stopping server processes, nonitoring server
processes for abnormal term nation, and restarting new
ones to maintain the specified nunmber of processes.

o] Thread context managenment, which provi des services for
creating, setting, and propagating thread context. Thread
context includes request context, exception context,
transacti on context, and procedure context.

o] Timer alert, which provides services for accunul ati ng CPU
time and transaction (el apsed) tine.

o] Transaction demarcation, which integrates with the Encina
toolkit on the OSF/1 platformor the DECdt m software on
the OpenVMS platformto provide distributed transaction
support.

o] Queui ng, which provides services for request queuing and
record queui ng. Request queuing allows task requests to
be queued for deferred invocation. Record queuing allows
data records to be enqueued and dequeued.

o] Fil e managenent, which provides file managenment services
for COBOL and C prograns. It provides thread-based
transaction semantics for STDL file access and handl es
opening and closing of files, file positioning, and file
| ocki ng.

o] Wor kspace management, which provi des services for
managi ng private and shared workspaces. A workspace is an
STDL construct and represents an area of nenory used for
data storage and for argunments passed in a procedure
call. A workspace can be recoverabl e or nonrecoverabl e.

o] Security, which authenticates users and servers and
provi des access control, based on the DCE security
service, for application invocation as well as managenent
operations.

o] Event posting, which provides services for witing events
into a log. Logged events include error, security,
status, audit, and trace events.

o] Per f ormance nonitoring, which provides services for
capturing performance neasurenent data.

Client-Server Comruni cation

The ACMSxp communi cations services use OSF's DCE services for

| ocating servers, invoking servers, and ensuring secure

communi cations. The comruni cati ons services maximnm ze the

ef ficiency of DCE service usage, provide robustness in the event
of failure, and add distribution of transaction semantics to DCE
RPC conmuni cati ons.

Figure 6 shows the elenments and steps involved in the

conmuni cati on between a client and a server. The nuneric
annotations in the follow ng discussion refer to the nunbers that
appear in the figure.

[Figure 6 (Client-Server Conmunication Flow) is not available in
ASClI | format.]

The STDL client application calls the server (1). The ACMSxp
client stub issues run-tinme service calls (2) to initialize
context bl ocks and to obtain a binding handle (i.e., server
addressing information), and calls the DCE RPC client stub,
passi ng context blocks and application data (3). The DCE RPC
client stub marshals data and calls the server (4).

The DCE RPC server stub receives the call, unnmarshals data, and
calls the ACMSxp server stub (5). The ACMSxp server stub issues
run-time service calls (6) to establish [ocal context and to
check security authorization, and calls the server application
(7). The server application executes and returns the results to
the ACMSxp server stub, which propagates any error infornmation

Transaction Processing Characteristics

The run-tine system provides the TP nonitor with characteristics
such as high availability, |oad bal ancing, and hi gh perfornmance.
Some of the mechani sns used to achieve these characteristics are
di scussed bel ow.

Availability. The run-tine system provides failover and fail back
capabilities to enhance the availability of applications.

Failover is the redirection of an RPC to an alternate server if
the intended server is not reachable. The target server can be
unreachabl e for many reasons, including | oss of connectivity,
application failures, and nmachine failures. Failback is the
redirection of calls to the original server when it becones
avail abl e.

Fai |l over and fail back capabilities are supported for task servers
but not for processing servers. The DCE cell directory service
(CDS) nanespace profile nmechani sm supports failover and fail back
The system admi nistrator configures the primary and alternate
servers by placing themin the sane nanespace profile with
different priorities. The server with the |ower priority nunber
is the primary server.

Run-time support for failover and failback is inplenented in the
client stub. Failover is attenpted if an RPC fails and the
returned error indicates that no work had been done by the called
server in the current transaction. Failover is always attenpted
for a nontransactional RPC but is attenpted for a transactiona
RPC only if this is the first call to the intended server in the
transaction. The failover nmechanismis optinzed in three ways:
by reconnecting, by pinging, and by checking the failed servers
table. When a failure is detected, the failover nechanism
attenpts to reconnect to the server in case the failure was
caused by intermttent comunications problens. |If the reconnect
fails, the failover nechanismattenpts to find an alternate
server. \Wen an alternate server is selected, it is pinged to
ensure that it is reachable before being called with application
work. If a server cannot be reached, it is recorded in a "failed
servers" table and skipped on subsequent failover attenpts.

Fail back is attenpted if the binding found is for an alternate
server. Failback to the primary server is attenpted even if the
bi nding for the alternate server is good, as long as the fail back

timer has expired. The failback timer defaults to 300 seconds and
can be set by an environnent vari able.

Load Bal ancing. The ACMSxp run-tine system can achi eve | oad

bal anci ng for task servers through the DCE CDS. The DCE CDS group
entry contains nmultiple server entries that provide the sane
interface. Locating a server by neans of a group entry results in
the random sel ection of one server in the entry. A conbination of
static | oad bal ancing and failover can also be inplenented using
DCE CDS functionality.

Performance. Many parts of the ACMSxp system contain nmechani sns
that are designed to inprove performance. A discussion of sone of
t hese nechani sns fol |l ows.

The server stub caches server bindings to inprove perfornmance.
Server bindings are the addressing information that allows a
client process to call a server process. Binding caching is a
means of retaining the server addressing information for reuse.
Readi ng the binding fromthe namespace can be tine-consum ng. For
exanpl e, a DCE CDS nanespace | ookup requires a network connection
to fetch the data from another process, which may be on a
separate node. The cache of server bindings is shared anong al
the threads in the client process. This sharing provides a second
order of performance inprovenent in that work previously
performed on behalf of other threads can inprove the perfornmance
of all threads by prel oading the cache.

The schedul er subconponent of the communications services

all ocates and deal | ocates server processes. It naintains a | oca
nanmespace (also referred to as schedul er database) in shared
menory to keep track of server process allocation. The use of the
| ocal namespace instead of DCE CDS i nproves the performance of
RPC cal |l s between task servers and processing servers, which are
required to be in the sane TPsystem

The security service caches access control lists (ACLs) to

i mprove performance. The TPcontroller maintains in shared nmenory
the ACLs for managed objects that the ACMSxp TP nonitor accesses
at run tine (e.g., procedures). The security service caches each
object's ACL into the server process nenory when the object is
first accessed. The server process refreshes its cache if the
entry in shared nenory i s updated.

SYSTEM ADM NI STRATI ON

The distributed TP environment is inherently conmplex and requires
effective system adninistrati on. The ACMSxp TP nonitor provides
the foll owing system adm nistration facilities for configuring,
nmoni toring, and controlling conponents and resources within the
ACMSXp run-tinme environnent:

o] Integrated user interface. The director (see the
di scussion of Figure 7, which follows) provides a
consi stent user interface for invoking managenent
operations on all managed objects. The command |i ne
interface provides features such as conmand scripts,
synmbol substitution, session |ogging, default session
paranmeters, and on-line help

o] Centralized distributed managenent. A single director
can manage nultiple TPsystens on the |local or renote
nodes usi ng DCE RPC for comrunication

o] Extensibility. The object-oriented approach allows the
ACMSxp TP nonitor to represent managed resources in a
consi stent manner and to add new objects gracefully.

Managenment Mbde

The ACMSxp menagenent nodel is object oriented and is based on
the I SO OCSI standard for network and system
managenment . [2,13] Figure 7 illustrates the el enents of the nodel.

[Figure 7 (Managenent Model) is not available in ASCII format.]

A director initiates managenent requests on behalf of the system
adm ni strator and serves as the interface between a system
admi ni strator and the objects being nonitored and
controlled.[14] A director consists of two parts: the user
interface and the managenent service interface. The user
interface interacts with the user and is either command |ine or
graphi cal . The managenment service interface interacts with
managenment agents. This interface provides services for creating
an associ ation for communicati on between a director and
managenment agents, for initiating nmnagenent requests, for
returning results to the director, for canceling an outstandi ng
request without waiting for conpletion, and for term nating an
associ ation normally.

The managenent protocol specifies both the nmechani sm for

comuni cation between a director and managenent agents and the
nodel of interaction between them The nodel specifies how
requests and responses are passed between the director and the
managenment agents, the processing of requests that involve

wi |l d card object instances, and the buffering of multiple
responses to optinize performnce. The ACMSxp TP nonitor uses DCE
RPC for communi cation between a director and managenent agents.

A managenent agent perforns operations for a managed object. Each
obj ect class has a managenent agent that perforns managenent
operations for instances of that object class. The nanagenent
agent receives a managenent request fromthe director, perforns
the requested operation, and returns the results.

Management Functions

Managenment operations that can be perforned on managed objects
are grouped into the follow ng functional categories, as defined
by the OSI managenent framework:

o] Configuration managenent. Managed objects are
i nstanti ated, observed, and controlled. Persistent
i nformati on about managed objects is stored in a
configuration database.

o] Faul t managenent. Events generated by system operation
are recorded in a log file. The contents of the |og can
be exam ned using a variety of search criteria.

o] Per f ormance managenent. Performance netrics are
collected as the run-tinme system executes. The
performance data is captured as attributes of nmanaged
obj ects and can be exam ned using the director

o] Security managenent. Principals are authenticated using
the DCE. Access to system administration operations and
application procedures is controlled using an ACL
mechani sm based on the DCE nodel .

Managed Obj ects

The resources in the ACMSxp environnent that need to be managed
are represented as objects. A nanaged object encapsul ates the
functionality of a real resource and specifies as visible only
those aspects that need to be accessed by the manager. A managed
obj ect has the follow ng properties:

o] Attributes. Attributes are pieces of information that
descri be an object and represent internal state
vari abl es. Each attribute has a name and a val ue, which
can be exam ned or nodified as a result of a nanagenent
operation. Exanples of attributes are executable file
nanme and processing state (for a server).

o] Operations. Operations are activities that the manager
can performon the nmanaged object. Operations allow the
manager to examine attributes, nodify attributes, and
perform actions specific to the object. Exanples of
operations are create, delete, enable, disable, set, and
show.

0] Events. Events indicate the occurrence of normal and
abnormal conditions. Exanples of events are the detection
of an error and the arrival at a threshold.

o] Behavi or. Behavi or defines how attributes, operations,
and events work together and how they affect the nmanaged
resource.

For nam ng purposes, nmanaged objects are organized into a
cont ai nnent hierarchy. This hierarchy specifies which nmanaged
obj ect is contained within another and reflects the contai nnent
rel ati onship of all their correspondi ng nanaged resources. The
top-level object in the structure, referred to as a gl oba

obj ect, has a globally unique nane. Objects contained within the
gl obal object are referred to as |ocal objects and have nanes
that are unique only within the context of their level in the
structure. Table 1 describes the managed objects in the ACMSxp
system

Table 1 ACMSxp Managed Obj ects
bj ect C ass Description

TPsystem A collection of system and application conponents and
resources on a given node that is nmanaged as a unit. A
TPsystemis referred to as a global entity because it
cont ai ns ot her managed objects and is not contained in any
ot her managed obj ect.

Server A managed object that executes procedures. It
encapsul ates a collection of one or nore operating
system processes that execute the same program
i mage.

Process The basic unit schedul ed by the operating system
that provides the context within which a program
i mage executes. It represents an operating system
process.

Interface A set of procedures that is provided by a server
It represents a DCE RPC interface and has a
uni versally unique identifier (UU D) that
di stinguishes it from other instances.

Procedure A structured sequence of instructions executed to
achieve a particular result. It represents a DCE
RPC operati on.

Queue A repository for storing an ordered coll ection of
el enents. The supported queues include a request
gueue, which contains submt requests, and a record
gueue, which contains data records.

El ement A single entry in a queue.
Log A naned repository where event records are stored.
Request session The occurrence of a request at a particular

TPsystem A request is a series of operations
i nvoked by a client program on behalf of a user and
executed by one or nore servers.

CONCLUSI ON

The ACMSxp transaction processing nonitor enploys nodul ar design
techni ques and a proven transacti on processing architecture to
provide a truly open, distributed transaction processing system
The STDL application devel opment | anguage, which the ACMSxp TP
nmoni t or supports, has been endorsed by an international standards
consortium and has been inplenmented on other vendors' platforns.
The | ayering on both the Open Software Foundation's Distributed
Comput i ng Environment software and the Encina tool kit provides a
foundati on of open distributed processing that has been accepted
by the world's | argest conputer systens providers. The ACMsxp TP
noni t or provi des a conprehensive set of facilities for nmanagi ng
the run-tinme environnent. The object-oriented managenent approach
results in a consistent representati on of nanaged objects, a
consi stent user interface, a nodular inplenentation, and
extensibility.

ACKNOW.EDGVENTS

Throughout the course of this project, many people have
participated in the design, inplenmentation, and docunentation of
the product. The authors would |ike to thank all these people for
their dedication and their contributions.

REFERENCES

1. X/ Open Distributed Transacti on Processi ng Reference Mdel
| SBN 1-872630-16-2 (Reading, U K : X Open Conpany Ltd.

1991).
2. Information Processing Systems -- Open Systens
I nterconnection --Basic Reference Mddel -- Part 4: Mnagenent

Framework, |SO'|I EC 7498-4:1989 (Geneva: Internationa
Organi zation for Standardi zation, 1989).

3. SPIRIT PlatformBlueprint (SPIRIT 2.0, vol. 1), |ISBN
1-85912-059-8, Docunent No. J401 (Reading, U K : X/ Open
Conmpany Ltd., 1994).

4. SPIRIT STDL Language Specification (SPIRIT 2.0, vol. 3), ISBN
1-85912-063-6, Docunent No. J403 (Reading, U K : X/ Open
Conmpany Ltd., 1994).

5. SPIRI T STDL Environnent, Execution and Protocol Mapping
(SPIRIT 2.0, vol. 4), ISBN 1-85912-064-4, Docunent No. J404
(Reading, U K. : X/ Open Conpany Ltd., 1994).

6. X/ Open CAE Specification, Decenmber 1991, Distributed

8.

10.

11.

12.

13.

14.

Transaction Processing: The XA Specification, |SBN
1-872630-24-3, Docunent No. C193 or XO CAE/ 91/ 300 (Readi ng,
U. K. : X/ Open Conpany Ltd., 1994).

P. Bernstein, P. Gyllstrom and T. Wnberg, "STDL---Portable
Language for Transaction Processing," Proceedi ngs of the

Ni net eenth I nternational Conference on Very Large Databases,
Dublin, Ireland, 1993.

W Laing, J. Johnson, and R Landau, "Transaction Managenent
Support in the VM5 Operating System Kernel," Digita
Techni cal Journal, vol. 3, no. 1 (Wnter 1991): 33-44.

T. Speer and M Storm "Digital's Transaction Processing
Monitors," Digital Technical Journal, vol. 3, no. 1 (Wnter
1994): 18-32.

Mul ti vendor Integration Architecture, Division 1, Overview,
Techni cal Requirenments, TR550001 (Tokyo, Japan: Ni ppon
Tel egraph and Tel ephone Corporation, 1991).

E. Newcomer, "Pioneering Distributed Transacti on Managenent,"
Bulletin of the Technical Comrittee on Data Engi neering, vol.
17, no. 1 (March 1994).

I nformati on Technol ogy -- Portable Operating System Interface
(POSI X) -- Part 1. System Application Interface (APlI) [C
Language], | EEE 1003. 1-1990 (New York: The Institute of

El ectrical and El ectronics Engi neers, 1990).

M Sylor, F. Dolan, and D. Shurtleff, "Network Managenent,"
Digital Technical Journal, vol. 5, no. 1 (Wnter 1993):
117-129.

C. Strutt and J. Swist, "Design of the DEChcc Managenent
Director," Digital Technical Journal, vol. 5 no. 1 (Wnter
1993): 130-142.

Bl OGRAPHI ES
Robert K. Baaf

A principal software engineer in the Transaction Processing

Engi neeri ng Group, Robert Baafi is the primary architect for the
syst em managenent conponent of the ACMSxp transaction processing
nmonitor. Prior to joining Digital in 1989, he was the project

| eader for Cullinet Software's |IDMS-DC transaction processing
nmonitor. Bob received a B.S. in electrical engineering fromthe
Uni versity of Connecticut in 1971 and an MS. in information
systenms from Lehigh University in 1973. He is a nenber of ACM
Tau Beta Pi, and Eta Kappa Nu.

J. lan Carrie

lan Carrie is the project |eader for the ACMS Desktop product. He
is a nenber of the Transaction Processing Engi neeri ng Group.
Since joining Digital in 1989, lan has also contributed to the
ACMSxp transaction processing nonitor. He worked on the STDL
conpi |l er code generator, |anguage run-tinme support, file support,
and Encina transaction nmanager integration. In earlier work, he
was enpl oyed by Cullinet Software as a project |eader in the

| DMS/ R dat abase product's Comuni cations Group. lan holds a B. A
(1980) in conmputer science/managerial studies fromRice
University. He is a nmenber of ACM

WlliamB. Drury

Bill Drury is currently enployed by Stratus Conputer as

Engi neeri ng Manager, Transaction Processing and System
Performance. Wiile a consulting engineer at Digital, he led the
desi gn and devel opnent of the ACMSxp transaction processing
nmonitor. He presented the product at numerous technical foruns,
i ncluding the STDL | npl enmentors' Workshop, DECUS, DECORUM ' 94
(Transarc Corporation's user group), and the OSF DCE Devel opers
Conference. He al so contributed to the specification of the

Mul ti vendor Integration Architecture (MA) on which the ACMSxp
product is based. Bill received B.S.E.E. (1982) and MS.E. E.
(1986) degrees from Chio University.

Oren L. Wesler

Presently, Oren Wesler is a Factory Integrati on Manager at PR
Aut omat i on, a manufacturer of automation equi pnent used in

sem conduct or manufacturing. At Digital, he was a principa
software engi neer in the Transaction Processi ng Engi neering
Group. He led the ACMsxp for OSF/1 AXP version 2.0 effort and the

support team for ACMSxp for OpenVMs VAX version 1.0, and
contributed to the ACMSxp run-tine system Earlier, Oren worked
in a processor hardware group. He received a B.S.E.E. from

Wor cester Pol ytechnic Institute in 1984 and holds two patents:
one related to dynamic control of simnultaneously switching
outputs, the other on interleaved control store addressing.

TRADEMARKS

ACMS, ACMS Desktop, ACMSxp, DECdtm DECnet, Digital, and OpenVMS
are trademarks of Digital Equi pment Corporation.

Encina is a registered trademark of Transarc Corporation.
Hew ett-Packard is a registered trademark of Hew ett-Packard Conpany.

IBMis registered trademark of International Busi ness Machi nes
Cor poration.

Maci ntosh is a registered trademark of Apple Conputer, Inc.

M crosoft is a registered trademark and W ndows and W ndows NT are
trademar ks of M crosoft Corporation.

Motif, OSF, and OSF/1 are registered trademarks of the Open Software
Foundati on, Inc.

POSI X is a registered trademark of the Institute of Electrical and
El ectroni cs Engi neers, Inc.

SCOis a registered trademark of The Santa Cruz Operation, Inc.

UNI X is a registered trademark in the United States and ot her
countries, licensed exclusively through X/ Open Conpany Ltd.

X/ Open is a trademark of X/ Open Conpany Ltd.

Copyright 1995 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be

di stributed for comrerci al advantage. Abstracting with credit of Digital

Equi pment Corporation's authorship is permitted. All rights reserved.

