
 ACMSxp Open Distributed Transaction Processing

 by

Robert K. Baafi, J. Ian Carrie, William B. Drury, and Oren L. Wiesler

ABSTRACT

Digital's ACMSxp portable transaction processing (TP) monitor
supports open TP standards and provides an environment for the
development, execution, and administration of robust,
distributed, client-server applications. The ACMSxp TP monitor
supports the Structured Transaction Definition Language, a
modular language that simplifies the development of transactional
applications. ACMSxp software is layered on the Open Software
Foundation's Distributed Computing Environment (DCE) and supports
XA-compliant databases and other resource managers by using the
Encina toolkit from Transarc Corporation or Digital's distributed
transaction manager (DECdtm) software. As a framework for
DCE-based applications, the ACMSxp TP monitor simplifies
application development, integrates system administration, and
provides the additional capabilities of high availability, high
performance, fault tolerance, and data integrity.

INTRODUCTION

Transaction processing (TP) is a style of computing that
guarantees robustness and high availability for critical business
applications. TP typically involves a large number of users using
display devices to issue similar and repetitive requests. The
requests result in the accessing and updating of one or more
databases to reflect the current state of the business.

The basic building block in a TP system is a transaction. A
transaction is an indivisible unit of work that represents the
fundamental construct of recovery, consistency, and concurrency.
Each transaction has the properties of atomicity, consistency,
isolation, and durability (ACID). These properties are defined as
follows:

 o Atomicity. Either all the actions of a transaction
 succeed or all fail. In case of failure, the actions are
 rolled back.

 o Consistency. After a transaction executes, it must
 either leave the system in a correct state or abort and
 return the system to its initial state.

 o Isolation. The actions carried out by a transaction

 against a shared database cannot become visible to other
 transactions until the transaction commits.

 o Durability. The effects of a committed transaction are
 permanent.

A TP monitor manages and coordinates the flow of transactions
through the system. Transaction requests typically originate from
clients, are processed by one or more servers, and end at the
originating client. When a transaction ends, the TP monitor
ensures that all systems involved in the transaction are left in
a consistent state.

The development of powerful desktop systems and advances in
communications technology have fueled the growth of distributed
client-server computing. The systems in a distributed environment
may run different operating systems, possibly from different
vendors. Business-critical applications may run under the control
of different TP monitors. To coordinate their activities, TP
monitors on heterogeneous systems need to conform to standards
for open transaction processing.

Open standards for transaction processing have been adopted by
the International Organization for Standardization/Open Systems
Interconnection (ISO/OSI), the X/Open initiative, and the Service
Providers' Integrated Requirements for Information Technology
(SPIRIT) consortium.[1,2] The X/Open initiative is a consortium
of vendors whose purpose is to define standards for application
portability. SPIRIT is a consortium of telecommunications service
providers from the U.S., Europe, and Japan working under the
general sponsorship of the Network Management Forum (NMF).[3-5]
The goal of the NMF's SPIRIT consortium is to define standards
for portability and interoperability across heterogeneous systems
to be used as the basis for procurement.

The main standards for open transaction processing are

 o X/Open distributed transaction processing (DTP), which is
 an architecture that allows multiple programs to share
 resources (e.g., databases and files) provided by
 multiple resource managers and allows their work to be
 coordinated. The architecture defines application
 programming interfaces and interactions among
 transactional applications, transaction managers,
 resource managers, and communications resource managers.
 The transaction manager and the resource manager
 communicate by means of the XA interface.[6]

 o X/Open transactional remote procedure call (TxRPC), which
 allows an application to invoke local and remote resource
 managers as if they were all local. TxRPC also allows an
 application to be decomposed into client and server
 components on different computers interconnected by means
 of remote procedure calls (RPCs).

 o SPIRIT Structured Task Definition Language (STDL), which
 is a block-structured language for transaction
 processing.[4,5,7] STDL provides transactional features
 including demarcation of transaction boundaries,
 transaction recovery, exception handling, transactional
 communications, access to data queues, submission of
 queued work requests, and invocation of presentation
 services.

Digital's Application Control and Management System/
Cross-platform (ACMSxp) software product is a portable TP monitor
that supports the open TP standards. It provides an environment
for the development, execution, and administration of STDL
applications. ACMSxp software is layered on the Open Software
Foundation's (OSF's) Distributed Computing Environment (DCE) and
supports multiple resource managers through Transarc
Corporation's Encina toolkit on the UNIX operating system and
Digital's distributed transaction manager (DECdtm) services on
the OpenVMS operating system.[8] This paper describes the design
of the ACMSxp TP monitor.

APPLICATION DEVELOPMENT

ACMSxp applications are written using a combination of the STDL
and traditional languages such as C and COBOL. STDL is a modular,
block-structured language developed specifically for transaction
processing. It is based on the ACMS Task Definition Language
(TDL) and was developed as part of Nippon Telegraph and
Telephone's (NTT's) Multivendor Integration Architecture (MIA)
initiative.[9-11] The NMF's SPIRIT consortium subsequently
adopted STDL.

STDL Language Overview

STDL provides transactional features including transaction
demarcation, transactional remote procedure call, transactional
task and data record queuing, transactional display management,
transactional exception handling, and transactional working
storage called workspaces.

STDL divides an application into three parts: presentation,
transaction flow control, and processing, as illustrated in
Figure 1. The presentation part interfaces with display devices
using a presentation manager, such as Motif, Windows, or forms
manager software. The transaction flow control part is written in
STDL and controls the flow of execution, including transaction
demarcation, exception handling, and access to queues. The
processing part is written in traditional languages, such as C,
COBOL, and SQL, and provides computation and access to resource
managers such as databases and files.

[Figure 1 (STDL Application Model) is not available in ASCII
format.]

The application functions in the three parts of the STDL
application model are referred to respectively as presentation
procedures, tasks, and processing procedures. The application
functions are packaged into groups for the purposes of
compilation and execution. The groups are referred to as
presentation groups, task groups, and processing groups.

A group specification describes the functions in the group and
their interfaces. The interface specification includes the
arguments that are passed to the function and an indication of
whether an argument is input only, output only, or both input and
output. For a task, the interface specification also indicates
whether the task begins a new transaction (NONCOMPOSABLE) or
joins the caller's transaction (COMPOSABLE).

STDL variables are defined in constructs called workspaces.
Workspaces may have the transactional attribute, thus allowing an
application to coordinate internal data with the outcome of the
transaction along with other resource manager participants.
Workspaces have the scope of either PRIVATE or SHARED. A PRIVATE
workspace is accessible to only a single task; a SHARED workspace
is accessible to all tasks in a task group.

STDL supports two types of queues: record and task. Record queues
provide a transactional, durable scratch pad facility for
applications to store and retrieve intermediate results. Task
queues provide a way of executing tasks independently of the
currently executing task in both time and location. Storage of
the task queue element on the task queue may or may not be
conditional on the outcome of the currently executing task.

Sample STDL Application

Figure 2 shows a sample STDL application program. The sample
program accepts an integer, increments it, and displays it. In
addition, shared workspaces are defined in the task group to
track the number of successful executions ("successes") and the
number of failed executions ("failures"). These operations all
take place within the context of a transaction defined by task
add1. If the transaction succeeds, the program increments
"number" and the shared workspace "successes." If the transaction
fails, the program restores "number" to its initial state and
invokes the exception handler. The exception handler then updates
the shared workspace "failures."

Figure 2 Sample STDL Application

RECORD arg1
 number INTEGER;
END RECORD;

TASK GROUP example1
 TASK add1
 TASK ARGUMENT IS arg1 PASSED AS INOUT;
END TASK GROUP;

TASK add1 ARGUMENT IS arg1 PASSED AS INOUT;
 WORKSPACES ARE successes SHARED UPDATE RECOVERABLE,
 failures SHARED UPDATE,
 arg1 PRIVATE RECOVERABLE;
BLOCK WITH TRANSACTION
 PROCESSING
 COMPUTE successes = successes + 1
 PROCESSING
 COMPUTE number = number + 1
 EXCHANGE
 SEND RECORD number TO inscreen
END BLOCK
EXCEPTION HANDLER IS
 PROCESSING
 COMPUTE failures = failures + 1
END EXCEPTION HANDLER;
END TASK;

STDL Compiler

The STDL compiler simplifies the process of developing
distributed client-server applications. It generates all the code
necessary for supporting the application in the distributed
environment, including server initialization, namespace
registration, namespace lookup, and application context
propagation. This allows the application programmer to focus on
the application problem at hand.

The ACMSxp STDL compiler translates STDL specifications into
executable code. The compiler itself is written in the ANSI C
programming language using POSIX 1003.1 library interfaces for
platform portability; the generated code consists of only ACMSxp
run-time service calls and DCE service calls.[12] To the
application programmer, the ACMSxp STDL compiler looks much like
a classical compiler. The STDL compiler reads source code,
converts it to object code, and then links it to create an
executable program. Figure 3 shows the elements written by the
application programmer and the transformations required to create
an executable program.

[Figure 3 (STDL Compiler Flows) is not available in ASCII format.]

Internally, the STDL compiler consists of a series of steps that
run under the control of a driver program. This processing takes
place in the steps shown inside the dashed-line box of Figure 3.
The STDL driver first reads STDL specifications in one pass and
constructs internal structures that represent each STDL entity in
the source file. Once an entity has been completely parsed and
the syntax has been checked for errors, the driver generates
intermediate files by translating

 o STDL groups into ACMSxp client and server stubs and a DCE
 RPC Interface Definition Language (IDL) file

 o STDL tasks into C code and ACMSxp run-time service calls

 o STDL record definitions into C structures contained in C
 header files or COBOL copy files

After the STDL driver has generated all the intermediate files,
it invokes the appropriate language processor to convert the
files into object files. The DCE IDL compiler processes the IDL
files, and the C compiler processes the tasks and the ACMSxp
stubs. To keep the number of pieces visible to the application
programmer within reason, the ACMSxp client and server stubs are
combined with the DCE client and server stubs. The result is a
collection of object files similar to those found in a
conventional DCE application. The platform linker then combines
the resulting files into an executable program.

The ACMSxp client and server stubs are similar in concept to the
DCE RPC client and server stubs. The client stub is linked with
other applications that invoke this group's tasks or procedures.
The server stub is combined with application code to create the
application server image. The ACMSxp stubs call ACMSxp run-time
services to add to the base DCE RPC services features such as
transactions, failover and failback, and time-out.

EXECUTION ENVIRONMENT

The ACMSxp run-time system provides an environment for executing
and invoking STDL applications. It also provides services that
allow components in the execution environment to be managed. The
execution environment provides many services typically needed in
TP environments, such as resource scheduling, fault tolerance,
and queuing.

Process Model

The ACMSxp environment consists of client and server components.
A TPsystem comprises multiple server components on a node that
are managed as a unit. A given TPsystem has a globally unique
name and is associated with only one node, but a node can have
multiple TPsystems associated with it. A TPsystem contains a
central process called the TPcontroller, which controls the
components within the TPsystem. The processes in the execution
environment are illustrated in Figure 4.

[Figure 4 (Processes in Execution Environment) is not available
in ASCII format.]

As the central point of control for the components within a
TPsystem, the TPcontroller performs many functions, including
license checking, starting and stopping servers, and monitoring
server processes and restarting them when they terminate
abnormally. It also receives administration requests and performs
the requested operations, maintains information in shared memory
for communication with server processes, and maintains key files
for server authentication.

A task server executes STDL task group code and uses multiple
threads in a single process to achieve concurrent execution
(multithreaded). A processing server executes STDL processing
group code and uses a pool of single-threaded processes to
achieve concurrent execution (multiprocess).

System servers provide specific run-time services to the
TPcontroller, task servers, and processing servers. The system
servers include the event log server, the request queue server,
and the record queue server. System servers are multithreaded.

Client processes invoke services provided by a TPsystem and its
servers. An administration client (also referred to as the
director) invokes administration services provided by the
TPcontroller and system servers. An application client invokes
application services provided by task servers. An application
client can be a customer-written client or an ACMS Desktop
client. A customer-written client can consist of code necessary
to support a forms manager or device control such as an automatic
teller machine or a gas pump. An ACMS Desktop client allows
popular desktop systems such as the Macintosh, SCO's UNIX,
Microsoft Windows, and Windows NT operating systems to be used to
access services provided by ACMSxp application servers.

Run-time Services

The ACMSxp run-time system provides services required for the
execution of client-server TP applications. The run-time services
are highly modular and are layered on the services provided by
the underlying transaction manager, DCE, operating system,
network, and other services, as shown in Figure 5.

[Figure 5 (Modular Run-time Architecture) is not available in
ASCII format.]

The run-time services integrate the services of the underlying
platform and provide additional functionality. They export an
application programming interface (API) called the transaction
processing service interface (TPSI). The run-time services
include

 o Communication, which provides services for transactional
 and nontransactional communication between clients and
 servers using DCE RPC. The supported transports are
 transmission control protocol/internet protocol (TCP/IP),
 DECnet OSI, and Fast Local Transport.

 o Process management, which provides services for starting
 and stopping server processes, monitoring server
 processes for abnormal termination, and restarting new
 ones to maintain the specified number of processes.

 o Thread context management, which provides services for
 creating, setting, and propagating thread context. Thread
 context includes request context, exception context,
 transaction context, and procedure context.

 o Timer alert, which provides services for accumulating CPU
 time and transaction (elapsed) time.

 o Transaction demarcation, which integrates with the Encina
 toolkit on the OSF/1 platform or the DECdtm software on
 the OpenVMS platform to provide distributed transaction
 support.

 o Queuing, which provides services for request queuing and
 record queuing. Request queuing allows task requests to
 be queued for deferred invocation. Record queuing allows
 data records to be enqueued and dequeued.

 o File management, which provides file management services
 for COBOL and C programs. It provides thread-based
 transaction semantics for STDL file access and handles
 opening and closing of files, file positioning, and file
 locking.

 o Workspace management, which provides services for
 managing private and shared workspaces. A workspace is an
 STDL construct and represents an area of memory used for
 data storage and for arguments passed in a procedure
 call. A workspace can be recoverable or nonrecoverable.

 o Security, which authenticates users and servers and
 provides access control, based on the DCE security
 service, for application invocation as well as management
 operations.

 o Event posting, which provides services for writing events
 into a log. Logged events include error, security,
 status, audit, and trace events.

 o Performance monitoring, which provides services for
 capturing performance measurement data.

Client-Server Communication

The ACMSxp communications services use OSF's DCE services for
locating servers, invoking servers, and ensuring secure
communications. The communications services maximize the
efficiency of DCE service usage, provide robustness in the event
of failure, and add distribution of transaction semantics to DCE
RPC communications.

Figure 6 shows the elements and steps involved in the
communication between a client and a server. The numeric
annotations in the following discussion refer to the numbers that
appear in the figure.

[Figure 6 (Client-Server Communication Flow) is not available in
ASCII format.]

The STDL client application calls the server (1). The ACMSxp
client stub issues run-time service calls (2) to initialize
context blocks and to obtain a binding handle (i.e., server
addressing information), and calls the DCE RPC client stub,
passing context blocks and application data (3). The DCE RPC
client stub marshals data and calls the server (4).

The DCE RPC server stub receives the call, unmarshals data, and
calls the ACMSxp server stub (5). The ACMSxp server stub issues
run-time service calls (6) to establish local context and to
check security authorization, and calls the server application
(7). The server application executes and returns the results to
the ACMSxp server stub, which propagates any error information.

Transaction Processing Characteristics

The run-time system provides the TP monitor with characteristics
such as high availability, load balancing, and high performance.
Some of the mechanisms used to achieve these characteristics are
discussed below.

Availability. The run-time system provides failover and failback
capabilities to enhance the availability of applications.
Failover is the redirection of an RPC to an alternate server if
the intended server is not reachable. The target server can be
unreachable for many reasons, including loss of connectivity,
application failures, and machine failures. Failback is the
redirection of calls to the original server when it becomes
available.

Failover and failback capabilities are supported for task servers
but not for processing servers. The DCE cell directory service
(CDS) namespace profile mechanism supports failover and failback.
The system administrator configures the primary and alternate
servers by placing them in the same namespace profile with
different priorities. The server with the lower priority number
is the primary server.

Run-time support for failover and failback is implemented in the
client stub. Failover is attempted if an RPC fails and the
returned error indicates that no work had been done by the called
server in the current transaction. Failover is always attempted
for a nontransactional RPC but is attempted for a transactional
RPC only if this is the first call to the intended server in the
transaction. The failover mechanism is optimized in three ways:
by reconnecting, by pinging, and by checking the failed servers
table. When a failure is detected, the failover mechanism
attempts to reconnect to the server in case the failure was
caused by intermittent communications problems. If the reconnect
fails, the failover mechanism attempts to find an alternate
server. When an alternate server is selected, it is pinged to
ensure that it is reachable before being called with application
work. If a server cannot be reached, it is recorded in a "failed
servers" table and skipped on subsequent failover attempts.

Failback is attempted if the binding found is for an alternate
server. Failback to the primary server is attempted even if the
binding for the alternate server is good, as long as the failback

timer has expired. The failback timer defaults to 300 seconds and
can be set by an environment variable.

Load Balancing. The ACMSxp run-time system can achieve load
balancing for task servers through the DCE CDS. The DCE CDS group
entry contains multiple server entries that provide the same
interface. Locating a server by means of a group entry results in
the random selection of one server in the entry. A combination of
static load balancing and failover can also be implemented using
DCE CDS functionality.

Performance. Many parts of the ACMSxp system contain mechanisms
that are designed to improve performance. A discussion of some of
these mechanisms follows.

The server stub caches server bindings to improve performance.
Server bindings are the addressing information that allows a
client process to call a server process. Binding caching is a
means of retaining the server addressing information for reuse.
Reading the binding from the namespace can be time-consuming. For
example, a DCE CDS namespace lookup requires a network connection
to fetch the data from another process, which may be on a
separate node. The cache of server bindings is shared among all
the threads in the client process. This sharing provides a second
order of performance improvement in that work previously
performed on behalf of other threads can improve the performance
of all threads by preloading the cache.

The scheduler subcomponent of the communications services
allocates and deallocates server processes. It maintains a local
namespace (also referred to as scheduler database) in shared
memory to keep track of server process allocation. The use of the
local namespace instead of DCE CDS improves the performance of
RPC calls between task servers and processing servers, which are
required to be in the same TPsystem.

The security service caches access control lists (ACLs) to
improve performance. The TPcontroller maintains in shared memory
the ACLs for managed objects that the ACMSxp TP monitor accesses
at run time (e.g., procedures). The security service caches each
object's ACL into the server process memory when the object is
first accessed. The server process refreshes its cache if the
entry in shared memory is updated.

SYSTEM ADMINISTRATION

The distributed TP environment is inherently complex and requires
effective system administration. The ACMSxp TP monitor provides
the following system administration facilities for configuring,
monitoring, and controlling components and resources within the
ACMSxp run-time environment:

 o Integrated user interface. The director (see the
 discussion of Figure 7, which follows) provides a
 consistent user interface for invoking management
 operations on all managed objects. The command line
 interface provides features such as command scripts,
 symbol substitution, session logging, default session
 parameters, and on-line help.

 o Centralized distributed management. A single director
 can manage multiple TPsystems on the local or remote
 nodes using DCE RPC for communication.

 o Extensibility. The object-oriented approach allows the
 ACMSxp TP monitor to represent managed resources in a
 consistent manner and to add new objects gracefully.

Management Model

The ACMSxp management model is object oriented and is based on
the ISO/OSI standard for network and system
management.[2,13] Figure 7 illustrates the elements of the model.

[Figure 7 (Management Model) is not available in ASCII format.]

A director initiates management requests on behalf of the system
administrator and serves as the interface between a system
administrator and the objects being monitored and
controlled.[14] A director consists of two parts: the user
interface and the management service interface. The user
interface interacts with the user and is either command line or
graphical. The management service interface interacts with
management agents. This interface provides services for creating
an association for communication between a director and
management agents, for initiating management requests, for
returning results to the director, for canceling an outstanding
request without waiting for completion, and for terminating an
association normally.

The management protocol specifies both the mechanism for
communication between a director and management agents and the
model of interaction between them. The model specifies how
requests and responses are passed between the director and the
management agents, the processing of requests that involve
wild card object instances, and the buffering of multiple
responses to optimize performance. The ACMSxp TP monitor uses DCE
RPC for communication between a director and management agents.

A management agent performs operations for a managed object. Each
object class has a management agent that performs management
operations for instances of that object class. The management
agent receives a management request from the director, performs
the requested operation, and returns the results.

Management Functions

Management operations that can be performed on managed objects
are grouped into the following functional categories, as defined
by the OSI management framework:

 o Configuration management. Managed objects are
 instantiated, observed, and controlled. Persistent
 information about managed objects is stored in a
 configuration database.

 o Fault management. Events generated by system operation
 are recorded in a log file. The contents of the log can
 be examined using a variety of search criteria.

 o Performance management. Performance metrics are
 collected as the run-time system executes. The
 performance data is captured as attributes of managed
 objects and can be examined using the director.

 o Security management. Principals are authenticated using
 the DCE. Access to system administration operations and
 application procedures is controlled using an ACL
 mechanism based on the DCE model.

Managed Objects

The resources in the ACMSxp environment that need to be managed
are represented as objects. A managed object encapsulates the
functionality of a real resource and specifies as visible only
those aspects that need to be accessed by the manager. A managed
object has the following properties:

 o Attributes. Attributes are pieces of information that
 describe an object and represent internal state
 variables. Each attribute has a name and a value, which
 can be examined or modified as a result of a management
 operation. Examples of attributes are executable file
 name and processing state (for a server).

 o Operations. Operations are activities that the manager
 can perform on the managed object. Operations allow the
 manager to examine attributes, modify attributes, and
 perform actions specific to the object. Examples of
 operations are create, delete, enable, disable, set, and
 show.

 o Events. Events indicate the occurrence of normal and
 abnormal conditions. Examples of events are the detection
 of an error and the arrival at a threshold.

 o Behavior. Behavior defines how attributes, operations,
 and events work together and how they affect the managed
 resource.

For naming purposes, managed objects are organized into a
containment hierarchy. This hierarchy specifies which managed
object is contained within another and reflects the containment
relationship of all their corresponding managed resources. The
top-level object in the structure, referred to as a global
object, has a globally unique name. Objects contained within the
global object are referred to as local objects and have names
that are unique only within the context of their level in the
structure. Table 1 describes the managed objects in the ACMSxp
system.

Table 1 ACMSxp Managed Objects

Object Class Description

TPsystem A collection of system and application components and
 resources on a given node that is managed as a unit. A
 TPsystem is referred to as a global entity because it
 contains other managed objects and is not contained in any
 other managed object.

Server A managed object that executes procedures. It
 encapsulates a collection of one or more operating
 system processes that execute the same program
 image.

Process The basic unit scheduled by the operating system
 that provides the context within which a program
 image executes. It represents an operating system
 process.

Interface A set of procedures that is provided by a server.
 It represents a DCE RPC interface and has a
 universally unique identifier (UUID) that
 distinguishes it from other instances.

Procedure A structured sequence of instructions executed to
 achieve a particular result. It represents a DCE
 RPC operation.

Queue A repository for storing an ordered collection of
 elements. The supported queues include a request
 queue, which contains submit requests, and a record
 queue, which contains data records.

Element A single entry in a queue.

Log A named repository where event records are stored.

Request session The occurrence of a request at a particular
 TPsystem. A request is a series of operations
 invoked by a client program on behalf of a user and
 executed by one or more servers.

CONCLUSION

The ACMSxp transaction processing monitor employs modular design
techniques and a proven transaction processing architecture to
provide a truly open, distributed transaction processing system.
The STDL application development language, which the ACMSxp TP
monitor supports, has been endorsed by an international standards
consortium and has been implemented on other vendors' platforms.
The layering on both the Open Software Foundation's Distributed
Computing Environment software and the Encina toolkit provides a
foundation of open distributed processing that has been accepted
by the world's largest computer systems providers. The ACMSxp TP
monitor provides a comprehensive set of facilities for managing
the run-time environment. The object-oriented management approach
results in a consistent representation of managed objects, a
consistent user interface, a modular implementation, and
extensibility.

ACKNOWLEDGMENTS

Throughout the course of this project, many people have
participated in the design, implementation, and documentation of
the product. The authors would like to thank all these people for
their dedication and their contributions.

REFERENCES

 1. X/Open Distributed Transaction Processing Reference Model,
 ISBN 1-872630-16-2 (Reading, U.K.: X/Open Company Ltd.,
 1991).

 2. Information Processing Systems -- Open Systems
 Interconnection --Basic Reference Model -- Part 4: Management
 Framework, ISO/IEC 7498-4:1989 (Geneva: International
 Organization for Standardization, 1989).

 3. SPIRIT Platform Blueprint (SPIRIT 2.0, vol. 1), ISBN
 1-85912-059-8, Document No. J401 (Reading, U.K.: X/Open
 Company Ltd., 1994).

 4. SPIRIT STDL Language Specification (SPIRIT 2.0, vol. 3), ISBN
 1-85912-063-6, Document No. J403 (Reading, U.K.: X/Open
 Company Ltd., 1994).

 5. SPIRIT STDL Environment, Execution and Protocol Mapping
 (SPIRIT 2.0, vol. 4), ISBN 1-85912-064-4, Document No. J404
 (Reading, U.K.: X/Open Company Ltd., 1994).

 6. X/Open CAE Specification, December 1991, Distributed

 Transaction Processing: The XA Specification, ISBN
 1-872630-24-3, Document No. C193 or XO/CAE/91/300 (Reading,
 U.K.: X/Open Company Ltd., 1994).

 7. P. Bernstein, P. Gyllstrom, and T. Wimberg, "STDL---Portable
 Language for Transaction Processing," Proceedings of the
 Nineteenth International Conference on Very Large Databases,
 Dublin, Ireland, 1993.

 8. W. Laing, J. Johnson, and R. Landau, "Transaction Management
 Support in the VMS Operating System Kernel," Digital
 Technical Journal, vol. 3, no. 1 (Winter 1991): 33-44.

 9. T. Speer and M. Storm, "Digital's Transaction Processing
 Monitors," Digital Technical Journal, vol. 3, no. 1 (Winter
 1994): 18-32.

10. Multivendor Integration Architecture, Division 1, Overview,
 Technical Requirements, TR550001 (Tokyo, Japan: Nippon
 Telegraph and Telephone Corporation, 1991).

11. E. Newcomer, "Pioneering Distributed Transaction Management,"
 Bulletin of the Technical Committee on Data Engineering, vol.
 17, no. 1 (March 1994).

12. Information Technology -- Portable Operating System Interface
 (POSIX) -- Part 1: System Application Interface (API) [C
 Language], IEEE 1003.1-1990 (New York: The Institute of
 Electrical and Electronics Engineers, 1990).

13. M. Sylor, F. Dolan, and D. Shurtleff, "Network Management,"
 Digital Technical Journal, vol. 5, no. 1 (Winter 1993):
 117-129.

14. C. Strutt and J. Swist, "Design of the DECmcc Management
 Director," Digital Technical Journal, vol. 5, no. 1 (Winter
 1993): 130-142.

BIOGRAPHIES

Robert K. Baafi

A principal software engineer in the Transaction Processing
Engineering Group, Robert Baafi is the primary architect for the
system management component of the ACMSxp transaction processing
monitor. Prior to joining Digital in 1989, he was the project
leader for Cullinet Software's IDMS-DC transaction processing
monitor. Bob received a B.S. in electrical engineering from the
University of Connecticut in 1971 and an M.S. in information
systems from Lehigh University in 1973. He is a member of ACM,
Tau Beta Pi, and Eta Kappa Nu.

J. Ian Carrie

Ian Carrie is the project leader for the ACMS Desktop product. He
is a member of the Transaction Processing Engineering Group.
Since joining Digital in 1989, Ian has also contributed to the
ACMSxp transaction processing monitor. He worked on the STDL
compiler code generator, language run-time support, file support,
and Encina transaction manager integration. In earlier work, he
was employed by Cullinet Software as a project leader in the
IDMS/R database product's Communications Group. Ian holds a B.A.
(1980) in computer science/managerial studies from Rice
University. He is a member of ACM.

William B. Drury

Bill Drury is currently employed by Stratus Computer as
Engineering Manager, Transaction Processing and System
Performance. While a consulting engineer at Digital, he led the
design and development of the ACMSxp transaction processing
monitor. He presented the product at numerous technical forums,
including the STDL Implementors' Workshop, DECUS, DECORUM '94
(Transarc Corporation's user group), and the OSF DCE Developers'
Conference. He also contributed to the specification of the
Multivendor Integration Architecture (MIA) on which the ACMSxp
product is based. Bill received B.S.E.E. (1982) and M.S.E.E.
(1986) degrees from Ohio University.

Oren L. Wiesler

Presently, Oren Wiesler is a Factory Integration Manager at PRI
Automation, a manufacturer of automation equipment used in
semiconductor manufacturing. At Digital, he was a principal
software engineer in the Transaction Processing Engineering
Group. He led the ACMSxp for OSF/1 AXP version 2.0 effort and the

support team for ACMSxp for OpenVMS VAX version 1.0, and
contributed to the ACMSxp run-time system. Earlier, Oren worked
in a processor hardware group. He received a B.S.E.E. from
Worcester Polytechnic Institute in 1984 and holds two patents:
one related to dynamic control of simultaneously switching
outputs, the other on interleaved control store addressing.

TRADEMARKS

ACMS, ACMS Desktop, ACMSxp, DECdtm, DECnet, Digital, and OpenVMS
are trademarks of Digital Equipment Corporation.

Encina is a registered trademark of Transarc Corporation.

Hewlett-Packard is a registered trademark of Hewlett-Packard Company.

IBM is registered trademark of International Business Machines
Corporation.

Macintosh is a registered trademark of Apple Computer, Inc.

Microsoft is a registered trademark and Windows and Windows NT are
trademarks of Microsoft Corporation.

Motif, OSF, and OSF/1 are registered trademarks of the Open Software
Foundation, Inc.

POSIX is a registered trademark of the Institute of Electrical and
Electronics Engineers, Inc.

SCO is a registered trademark of The Santa Cruz Operation, Inc.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Ltd.

X/Open is a trademark of X/Open Company Ltd.
===
Copyright 1995 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

