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ABSTRACT

The AlphaServer 8400  and the AlphaServer 8200 are Digital's 
newest high-end server products. Both servers are based on the 
300-MHz Alpha 21164 microprocessor and on the AlphaServer 
8000-series platform architecture. The AlphaServer 8000 platform 
development team set aggressive system data bandwidth and memory 
read latency targets in order to achieve high-performance goals. 
The low-latency criterion was factored into design decisions made 
at each of the seven layers of platform development. The 
combination of industry-leading microprocessor technology and a 
system platform focused on low latency has resulted in a 
12-processor server implementation--the AlphaServer 8400--capable 
of supercomputer levels of performance.

INTRODUCTION

The new AlphaServer 8000 platform is the foundation for a series 
of open, Alpha microprocessor-based, high-end server products, 
beginning with the AlphaServer 8400 and AlphaServer 8200 systems 
and continuing through at least three generations of products. 
When combined with the power of the industry-leading 
300-megahertz (MHz) Alpha 21164 microprocessor,[1] this 
innovative server platform offers the outstanding performance and 
price/performance required in technical and commercial markets. 
In uniprocessor performance benchmark tests, the AlphaServer 
8400/8200 SPECfp92 rating of 512 instructions per second is 1.4 
times the rating of its nearest competitor, the SGI Power 
Challenge XL product. In multiprocessor benchmark tests of 
systems with 1 to 12 processors, the AlphaServer 8400 system 
posts SPECrate levels greater than 3.5 times those of the 
HP9000-800 T500 system. In the category of cost for performance, 
NAS Parallel Class B SP benchmarks show that the AlphaServer 8400 
system provides 1.7 times the performance per million dollars of 
the SGI Power Challenge XL system.[2] Perhaps most impressive is 
the AlphaServer 8400 performance on the Linpack NxN benchmark.[3] 
With a Linpack NxN result of 5 billion floating-point operations 
(GFLOPS), a 12-processor AlphaServer 8400 achieves the 
performance levels of supercomputers such as the NEC SX-3/22 
system and the massively parallel Thinking Machines CM-200 
system.

There are two keys to the remarkable performance of the 
AlphaServer 8400 and AlphaServer 8200 systems: the Alpha 21164 
microprocessor chip and the AlphaServer 8000 platform 
architecture. This paper is concerned with the second of these, 
the AlphaServer 8000 platform architecture. Specifically, it 



discusses the principal design issues encountered and resolved in 
the pursuit of the aggressive performance and product goals for 
the AlphaServer 8000 series. The paper concludes with an 
evaluation of the success of this platform development based on 
the performance results of the first AlphaServer 8000-series 
products, the AlphaServer 8400 and AlphaServer 8200 systems.

ALPHASERVER 8400 AND ALPHASERVER 8200 PRODUCT GOALS

The AlphaServer 8000 platform technical requirements were derived 
from a set of product goals. This set comprised minimum 
performance goals and a number of specific configuration and 
expandability requirements developed from Digital's server 
marketing profiles. The motivations that shaped the list of goals 
below were many. Support for legacy I/O subsystems and DEC 
7000/10000 AXP compatibility, for example, was motivated by the 
need to provide Digital's customer installed base with a 
cost-effective upgrade path from 7000-series hardware to 
AlphaServer 8000-series hardware. The goals for low-cost I/O 
subsystem,  peripheral component interconnect (PCI), and EISA 
support and for rackmount cabinet support were included to take 
advantage of emerging industry standards and open systems and 
their markets. The processor, I/O, and memory capacity goals were 
driven simply by the competitive state of the server market.

    o   Provide industry-leading enterprise and open-office 
        server performance.

    o   Provide twice the overall performance of the DEC 
        7000/10000 AXP server products.

    o   Support up to 12 Alpha 21164 processors.

    o   Support at least 14 gigabytes (GB) of main memory.

    o   Support multiple I/O port controllers--up to 144 I/O 
        slots.

    o   Provide a low-cost, integrated I/O subsystem.

    o   Support  new, industry-standard PCI and EISA I/O 
        subsystems.

    o   Continue to support legacy I/O subsystems, such as XMI 
        and Futurebus+.

    o   Make centerplane hardware compatible with an 
        industry-standard rackmount cabinet.

    o   Make centerplane hardware mechanically compatible with 
        the DEC 7000/10000 AXP-series cabinet.



PERFORMANCE GOALS AND MEMORY READ LATENCY ISSUES

Although "providing industry-leading performance" and "doubling 
the performance" of an existing industry-leading server present 
excellent goals for the development of a new server, it is 
difficult to design to such nebulous goals. To quantify the 
actual technical requirements for the new AlphaServer 8000 
platform, the design team utilized a performance study of the DEC 
7000/10000 AXP systems and conducted a detailed analysis of 
symmetric multiprocessing (SMP) system operation. As a result of 
the analyses, aggressive system data bandwidth and memory read 
latency goals were established, as well as a design philosophy 
that emphasized low memory read latency in all aspects of the 
platform development. This section addresses the read latency 
issues and goals considered by the design team. The 8000 platform 
development is the focus of the section following.

Read latency is the time it takes a microprocessor to read a 
piece of data into a register in response to a load instruction. 
If the data to be read is found in a processor's cache, the read 
latency will typically be very small. If, however, the data to be 
read resides in a computer system's main memory, the read latency 
is typically much larger. In either case, a processor may have to 
wait the duration of the read latency to make further progress. 
The smaller the read latency, the less time a processor waits for 
data and thus the better the processor performs.

 Cache memories are typically used to minimize read latency. When 
caches do not work well, either because data sets are larger than 
the cache size or as the result of non-locality of reference, a 
computer system's processor-memory interconnect contributes 
significantly to the average read latency seen by a processor. 
The system characteristics that help determine a processor's 
average read latency are the system's minimum memory read latency 
and data bandwidth.

A system's minimum memory read latency is the time required for a 
processor to fetch data from a system's main memory, unencumbered 
by system traffic from other processors and I/O ports. As 
processors and I/O ports are added to a system, their competition 
for memory and interconnect resources tends to degrade the 
system's memory read latency from the minimum memory read latency 
baseline. A system's data bandwidth, i.e., the amount of data 
that a system can transfer between main memory and its processors 
and I/O ports in a given period of time, will determine the 
extent to which processors and I/O ports will degrade each 
other's read latency. As data bandwidth increases, so too does a 
system's ability to support concurrent data references from 
various processors and I/O ports. This increased bandwidth and 
concurrent data referencing serve to reduce competition for 
resources and, as a result, to reduce memory read latency. Thus 
we can conclude that the more available data bandwidth in a 
system, the closer the memory read latency will be to the 
minimum. This conclusion is supported by the results of a queuing 



model used to support the AlphaServer 8000 platform development. 
This queuing model, originally implemented to evaluate bus 
arbitration schemes, outputs the average read latencies 
experienced by each processor in a system as the number of 
processors and the number of memory resources are varied. It is 
important to note that in this model memory resources, or banks, 
determine the amount of system bandwidth: the more memory banks, 
the more bandwidth. It is also important to note that the minimum 
read latency in this model is 168 nanoseconds (ns). The results 
of the model are shown in Table 1. These results clearly show 
that latency degrades as the number of system processors is 
increased and that latency improves as the system's 
bandwidth--number of memory banks--is increased.

Table 1  Average Read Latency as a Function of the Number of
Processors and Bandwidth (Number of Memory Banks)

Number of    {             Average Read Latency (Nanoseconds)             }
Processors   

             2 Memory Banks  4 Memory Banks  6 Memory Banks  8 Memory Banks
                                                    
1            185             179             177             176
                                                    
2            224             200             193             190
                                                    
4            358             253             230             220
                                                    
8            928             439             338             299

Many technical market benchmarks, such as the Linpack benchmarks 
and the McCalpin Streams benchmark, stress a computer system's 
data bandwidth capability. The regularity of data reference 
patterns in these benchmarks allows a high degree of data 
prefetching. Consequently, data can be streamed into a processor 
from main memory so that a piece of data has an unnaturally high 
probability of being resident in the processor's cache when it is 
needed for some calculation. Ironically, this amounts to using 
smart software to minimize read latency. By reading a piece of 
data into a processor's cache before it is actually needed, the 
software presents the processor with a small cache read latency 
instead of a long  memory latency when the data is needed. Thus 
the streaming techniques applied in these benchmarks allow 
processors in high-bandwidth systems to stall for a full memory 
read latency period only when starting up a stream of data.  
Therefore memory latency can be amortized over lengthy 
high-bandwidth data streams, minimizing its significance. It is 
important to note, however, that although bandwidth is the system 
attribute that dominates performance in these workloads, it 
dominates performance through its effect on read latency.

Commercial workloads like the Transaction Processing Performance 
Council's benchmark suite, on the other hand, typically have more 



complex data patterns that frequently defy attempts to prefetch 
data. When some of these codes parse data structures, in fact, 
the address of each data access may depend on the results of the 
last data access. In any case where a processor must wait for 
memory read data to make progress, a system's memory read latency 
will determine the period  of time that the processor will be 
stalled. Such stall periods directly affect the performance of 
computer systems on commercial workloads. These assertions 
supported by a study on the performance of commercial workloads 
on Digital's Alpha 20164-based DEC 7000/1000 AXP server.[4] It is 
important to note here that the latency ills flagged in this 
study cannot be cured with raw system data bandwidth or 
software-enhanced latency reduction. Low memory latency alone can 
address the needs of these workloads.

Comparable industry systems from IBM[5] and Hewlett-Packard 
(HP)[6] do not stress low memory latency system development in 
their respective RISC System/6000 SMP or Hawks (PA-8000-based) 
SMP systems. In fact, neither directly acknowledges memory 
latency as a significant system attribute. This mind set is 
reflected in the results: Based on IBM's documentation, we 
estimate the RISC System/6000 SMP's minimum main memory read 
latency to be in the neighborhood of 600 to 800 ns.

IBM and HP do emphasize system bandwidth in their designs. HP 
provides a 960-MB-per-second (MB/s) "runway" processor-memory bus 
in its Hawks system. The actual data bandwidth of this bus is 
slightly less than the quoted 960 MB/s, since the bus is shared 
between address and data traffic. IBM, on the other hand, goes to 
the extent of applying a data crossbar switch in conjunction with 
a serial address bus to reach an 800-MB/s rate in its RISC 
System/6000 SMP system. The actual attainable data bandwidth in 
IBM's system is determined by the bandwidth of its address bus.

In the past, Digital's systems have shown much the same balance 
of bandwidth and latency as have their competitors. The DEC 
7000/10000 AXP system has a minimum main memory read latency of 
560 ns and a system data bandwidth of 640 MB/s. The AlphaServer 
8000 platform, however, was developed with a marked emphasis on 
low memory read latency. This emphasis can be seen through nearly 
all phases of system development, including the system topology, 
clocking strategy, and protocol. This latency- oriented mindset 
is reflected in the results: The AlphaServer 8000 platform boasts 
minimum memory read latencies of 200 ns. The AlphaServer 8400 and 
8200 systems feature a minimum memory read latency of 260 ns. To 
back up these latencies, the AlphaServer 8000 platform supports a 
tremendous 2,100 MB/s of  data bandwidth. The AlphaServer 8400 
and 8200 systems, although not capable of providing the full 
2,100 MB/s, still provide 1,600 MB/s of bandwidth. This gives the 
systems less than half the memory latency of comparable industry 
systems while providing nearly twice the bandwidth. Furthermore, 
these attributes improve upon the DEC 7000/10000 AXP attributes 
by  factors of 2 to 3. Although difficult to determine exactly 
how these attributes would translate into overall system 



performance, they were accepted as sufficient to meet the 
AlphaServer 8000 platform performance goals. A comparison of the 
maximum DEC 7000/10000 AXP SPECrates of approximately 25,000 
integer and 40,000 floating point  with the maximum AlphaServer 
8400 SPECrates of 91,580 integer and 14,0571 floating point 
indicates that these attributes were sound choices.

ALPHASERVER 8000 PLATFORM DEVELOPMENT

Referring to the AlphaServer 8000 platform as a "foundation" for 
a series of server products does not give a clear picture of what 
constitutes a server platform. The AlphaServer 8000 platform has 
both physical and architectural components. The physical 
component consists of the basic physical structure from which 
8000-series server products are built. This includes power 
systems, thermal management systems, system enclosures, and a 
centerplane card cage that implements the interconnect between 
processor, memory and I/O port modules. The processor, memory, 
and I/O modules are printed circuit board (PCB) assemblies that 
can be implemented with varying combinations of processor, 
dynamic random-access memory (DRAM), and application-specific 
integrated circuit (ASIC) components. The assemblies are inserted 
into the platform centerplane card cage in varying configurations 
and in varying enclosures to create the various 8000-series 
products. The AlphaServer 8200 system, for example, comprises up 
to six Alpha 21164-based TLEP processor modules, TMEM memory 
modules, or ITIOP and TIOP I/O port modules in an 
industry-standard rack-mount system. The AlphaServer 8400 system 
comprises up to nine TLEP processor modules, TMEM memory modules, 
or ITIOP and TIOP I/O port modules in a DEC 7000 AXP-style data 
center cabinet.

The architectural component of the AlphaServer 8000 platform 
consists primarily of a collection of technological, topological, 
and protocol standards. This collection includes the 
processor-memory interconnect strategy, the bus interface 
technology, the clock technology and methodology, and the 
signaling protocols. For example, the TLEP, TMEM, and TIOP 
modules all implement bus interfaces in the same integrated 
circuit (IC) packages with the same silicon technology and drive 
their common interconnect bus with the same standard bus driver 
cell. Furthermore, all these modules apply nearly identical 
clocking circuits and communicate by means of a common bus 
protocol. The ephemeral architectural standards that constitute 
the "platform" specify exact physical requirements for designing 
the AlphaServer processor-memory-I/O port interconnect and the 
various modules that will populate it. It is important to note 
that the key to AlphaServer 8000 performance is found in these 
standards. As we explore the design decisions and trade-offs that 
shaped the AlphaServer 8000 platform, it is this collection of 
architectural standards that we actually probe.

Throughout this analysis of the AlphaServer 8000 architecture, 



two themes frequently recur: low memory latency and practical 
engineering. As discussed in the context of the AlphaServer 8000 
goals, low memory read latency was identified as the key to 
system performance. As such, low latency was factored into nearly 
every system design decision. Design decisions in general can be 
thought of as being resolved in one of two ways: by emphasizing 
Digital's superior silicon technology or by effecting 
architectural finesse. Use of superior technology is self 
explanatory; it involves pushing leading-edge technology to 
simply overwhelm and eliminate a design issue. Architectural 
finesse, on the other hand, typically involves a shift in 
operating mode or configuration that allows a problem to be 
avoided altogether. Practical engineering is the art of finding a 
balance between leading-edge technology and architectural finesse 
that produces the best product.

LAYERED PLATFORM DEVELOPMENT

Platform development typically involves a simple three-layer 
process: (1) determine a basic system topology, (2) establish the 
electrical means by which various computer components will 
transmit signals across the system topology, and (3) apply a 
signaling protocol to the electrical transmissions to give them 
meaning and to allow the computer components to communicate. 
System topology determines how processor, memory, and I/O 
components of a computer system are interconnected. Computer 
interconnects may involve simple buses, multiplexed buses, 
switches, and multitiered buses. The electrical means for 
transmitting signals across a computer interconnect may involve 
bus driver technology, switch technology, and clock technology. 
Signaling protocols apply names to system interconnect signals 
and define cycles in which the signals have valid values. This 
naming and definition allows each computer component to 
understand the transmissions of other components.

As the AlphaServer 8000 platform development progressed, this 
simple three-layer platform development model was found to be 
insufficient. Efforts to achieve the low-latency performance goal 
and the simple product goals uncovered unexpected design issues. 
The resolution of these design issues led to the creation of a 
more robust seven-layer platform development model. When certain 
multi-driver bus signals threatened the cycle time of the 
AlphaServer 8000 system bus, for example, the system's latency 
goals were threatened as well. The practical solution to this 
multi-driver signal problem was the creation of specific 
signaling conventions for problematic classes of signals. This 
innovation led to the birth of the Signaling Layer of the 
development model. Similarly, when the integration of PCI I/O 
into the system was found to conflict with primary protocol 
elements that were key to low latency processor-memory 
communication, the concept of a "superset protocol" was created. 
This led to the creation of the Superset Protocol Layer of the 
development model. The seven-layer platform development model is 



contrasted with the simple three-layer development model in 
Figure 1.

The analysis of the AlphaServer 8000 platform design presented 
here traces the key system design decisions through each of the 
seven layers of the development process. Each layer will be 
described in greater detail as this analysis proceeds.

[Figure 1 (Comparison of Conventional Three-Layer Model with 
Seven-Layer Platform Development Model) is not available in ASCII 
format.]

Topological Layer

Server-class computers typically comprise processor, memory, and 
I/O port components. These components are usually found in the 
form of PCB modules. A computer system's topology defines how 
these computer components are interconnected. Computer topologies 
are many and varied. The IBM RISC System/6000 SMP, for example, 
links its modules by means of an address bus and a data switch. 
Its memory modules are grouped into a single memory subsystem 
with one connection to the address bus and one connection to the 
data switch. The HP Hawks SMP system, by comparison, links its 
modules by means of a single bus onto which address and data are 
multiplexed. The Hawks system also groups its memory into a 
single memory subsystem with one connection to the multiplexed 
bus.[7] Digital's DEC 7000/10000 AXP also uses a single 
multiplexed address and data bus. Unlike the IBM and HP systems, 
the DEC 7000/10000 AXP system allows its memory to be 
distributed, with multiple connections to its multiplexed bus.

None of the IBM, HP, or prior Digital systems meet the latency 
goals of the AlphaServer 8000 platform. Exactly how much system 
topology contributes to these systems' latencies is unclear. A 
multiplexed address and data bus certainly creates a system 
bottleneck and can contribute to latency. Likewise, unified 
memory subsystems can often have associated overhead that can 
translate into latency. In addition to performance issues, 
topologies such as the IBM switch-based system have significant 
cost issues. If, for example, a customer were to purchase a 
sparsely configured--two processors perhaps--IBM system, such a 
customer would be required to pay for the switch support for up 
to eight processors. This creates a high system entry cost and a 
potentially lower incremental cost as functionality is added to 
the system. In a simple bused system, a customer pays only for 
what is needed to support the specific functionality required. 
This creates a more manageable entry cost and a smooth, if 
slightly steeper, incremental cost. From Digital's marketing 
perspective, this makes a bused system preferable, provided it 
can satisfy bandwidth and latency requirements.

Uniprocessor computer topologies, an example of which is shown in 
Figure 2, typically exhibit the lowest memory read latencies of 



any computer class. As such, this simple uniprocessor topology 
was chosen as the basis from which to develop the AlphaServer 
8000 platform topology. In the uniprocessor model, processor 
chips communicate with DRAM arrays through separate address and 
data paths. These paths include address and data interfaces and 
buses. The AlphaServer 8000 topology was created by adding a 
second set of interfaces between the address and data buses and 
the DRAM array, and connecting additional microprocessors, memory 
arrays, and I/O ports to the buses by means of similar 
interfaces. The resultant topology is shown in Figure 3. This 
topology features separate address and data buses. These buses 
together are referred to as the AlphaServer 8000 system bus.

[Figure 2  (Simple Uniprocessor System Topology)  and Figure 3 
(AlphaServer 8000 Multiprocessor System Topology) are not 
available in ASCII format.]

The topology presented in Figure 3 is an abstract. To flesh out 
this abstract and measure it against specific system goals, 
signal counts, cycle times, and bus connection (slot) counts must 
be added. It is in this effort that practical engineering must be 
applied. To achieve the system's bandwidth goal, for example, the 
data bus could be implemented as a wide bus with a high clock 
frequency, or it could be replaced with a switch-based data 
interconnect, like that of the IBM RISC System/6000 SMP. The 
high-frequency bus presents a significant technological challenge 
in terms of drivers and clocking. This challenge grows as the 
number of bus slots grows. The growth of the technological 
challenge is a significant issue given the system's configuration 
goals. The switch interconnect, on the other hand, avoids the 
technological challenges by providing more data paths at lower 
clock frequencies. The lower clock frequencies, however, can 
translate directly into additional latency. Given the emphasis 
placed on memory latency and the advantages associated with 
simple bused systems, the practical design choice was to adopt a 
wide, high-frequency data interconnect. The resultant AlphaServer 
8000 system bus features 9 slots, an address bus that supports a 
40-bit address space, and a 256-bit (plus error-correcting code 
[ECC]) data bus. To meet configuration goals, processor modules 
necessarily support at least two microprocessors per module, 
memory modules support up to 2 GB of DRAM storage, and I/O port 
modules support up to 48 PCI slots. To meet performance goals, 
both buses must operate at a frequency of 100 MHz (10-ns cycle).

The AlphaServer 8000 platform topology has a number of 
advantages. The most significant advantage is that memory read 
latency from any processor to any memory array is comparable to 
the latency of a uniprocessor system. The delay associated with 
two interfaces--one address interface and one data interface--is 
all that is added into the path. In addition, the platform's 
simple bus topology features a low entry cost, a simple growth 
path (just insert another module) and flexible configuration 
(just about any module can be placed in any slot).



Operational Layer

The Operational Layer is so named for lack of a better 
descriptor. The layer is actually a place to define a high-level 
system clocking strategy. This strategy has two key components: 
definition of target operating frequencies and definition of a 
design methodology to support operation across all the defined 
operating frequencies. The design methodology component of this 
strategy may seem better suited for a higher order development 
layer, such as the Protocol Layer. However, because the 
methodology is logically  associated with the system's operating 
frequency range and the operating frequency range provides a 
foundation for the Electrical Transport Layer, it seemed 
appropriate to include both components of the strategy in the 
Operational Layer.

In personal computer (PC)-class microprocessor systems, clock 
rates are typically slow (33 MHz to 66 MHz). Complementary 
components capable of operating at these speeds are readily 
available, e.g.,  transceivers, static random-access memory 
(SRAM), ASIC, DRAM, and programmable array logic (PAL). Therefore 
entire PC systems are typically run synchronously, i.e., the 
system logic (typically a motherboard) and the microprocessor run 
at identical clock speeds. Alpha processors, on the other hand, 
run at clock rates exceeding 250 MHz. The current state of 
complementary components makes running system logic at Alpha 
processor rates impractical if not impossible. Many of these 
components cannot perform internal functions at a 250-MHz rate, 
let alone transfers between components.

Digital's DEC 7000/10000 AXP systems solved the problem of Alpha 
microprocessor and system clock disparity by running both the 
Alpha microprocessor and the DEC 7000/10000 AXP system hardware 
at their respective maximum clock rates and synchronizing address 
and data transfers between the microprocessor and the system. 
Each time a transfer was synchronized, however, a synchronization 
latency penalty was added to the latency of the transfer. In the 
DEC 7000/10000 AXP system, two synchronization penalties--one for 
an address transfer to the system and one for a data transfer to 
the processor--are added to each memory read latency. With 
multiple data transfers, the data transfer from the system to the 
processor can be particularly large. When combined, the two 
penalties added nearly 125 ns to the DEC 7000/10000 AXP read 
latency, or approximately 25 percent of the total 560-ns latency. 
The same 125 ns, however, could add another 60 percent to the 
AlphaServer 8000 platform's lower target latency of 200 ns.

Given its latency goals, the AlphaServer 8000 platform implements 
a clocking methodology that minimizes synchronization penalties 
and thus minimizes read latency. This methodology involves 
clocking the entire AlphaServer system--up to the I/O 
channels--synchronous to the microprocessor in such a way that 
the Alpha microprocessor operates at a clock frequency that is a 



direct multiple of the system clock frequency. With a 100-MHz 
(10-ns cycle) clock rate, for example, the AlphaServer 8000 could 
support a 200-MHz (5-ns cycle) Alpha processor using a 2[X] clock 
multiplier. Since the processor must still synchronize with a 
system clock edge when transferring address and data to the 
system, synchronization penalties are not eliminated altogether. 
They can, however, be limited to less than 10 ns, or 5 percent of 
the AlphaServer 8000 platform's total read latency.

Synchronous clocking by means of clock multiples is not unique 
and innovative in and of itself. The uniqueness of the 
AlphaServer 8000 clocking strategy lies in its flexibility. Since 
the AlphaServer 8000 platform must support at least three 
generations of Alpha processors to satisfy its product goals and 
the specific operating frequencies of those processors is 
difficult to predict, the AlphaServer 8000 platform must be 
capable of operating across a range of clock frequencies. 
Specifically the AlphaServer 8000 platform is capable of 
operating at clock frequencies between 62.5 MHz (16-ns cycle) and 
100 MHz (10-ns cycle).

Operating across a range of frequencies may seem a trivial 
requirement to meet; if logic were designed to operate at a 10-ns 
cycle time, it should certainly continue to function electrically 
at a 16-ns cycle time. The real issues that this frequency range 
creates, however, are much more subtle. DRAMs, for example, 
require a periodic refresh. The refresh period for typical DRAM 
may be 50 milliseconds (ms). If a system were designed to a 10-ns 
clock rate, the system would be designed to initiate a DRAM 
refresh every 5,000,000 cycles. If the system were to be slowed 
to a 16-ns clock rate, the system would initiate a DRAM refresh 
every 80 ms based on the same 5,000,000 cycles. This could cause 
DRAMs to lose state and corrupt system operation. Similarly, 
DRAMs have a fixed read access time. The AlphaServer 8400/8200 
TMEM module, for example, uses 60-ns DRAMs. If the DRAM's 
controller is designed as a 7-cycle controller and clocked at a 
10-ns clock rate, it would access the 60-ns DRAM in 70 ns. If the 
system were slowed to a 16-ns clock rate, the system would, using 
the same controller, consume 112 ns in accessing the same 60-ns 
DRAM. This application of a single simple controller over a 
frequency range directly increases the DRAM's read latency and 
decreases the DRAM's bandwidth. This non-optimal DRAM performance 
in turn directly increases the system read latency and decreases 
the system bandwidth.

The AlphaServer 8000 platform design addresses these issues by 
implementing controllers that can be reconfigured based on the 
system's specific operating frequency. The TMEM module, for 
example, implements a reconfigurable controller for sequencing 
the reads and writes of its DRAMs. This controller has three 
settings: one for cycle times between 10 ns and 11.2 ns, one for 
cycle times between 11.3 ns and 12.9 ns, and one for cycle times 
between 13 ns and 16 ns. Each setting accesses the DRAMs in 
differing numbers of system clock cycles, but all three modes 



access the DRAMs in approximately the same number of nanoseconds. 
By allowing flexible reconfiguration, this controller allows the 
TMEM to keep the DRAM's read latency and bandwidth as close to 
ideal as possible. Other examples of reconfigurable controllers 
are the TMEM's refresh timer and the TLEP's cache controller.

It should be noted here that the AlphaServer 8000 operating 
frequency range and processor-based frequency selection account 
for the disparities between the AlphaServer 8000 platform's 
bandwidth capability and the AlphaServer 8400 and 8200 products' 
bandwidth capabilities. The Alpha 21164 processor is the basis 
for the 8400 and 8200 products. This 300-MHz (3.33-ns cycle) 
microprocessor, combined with a 4[X] clock frequency multiplier, 
sets the system clock frequency at 75 MHz (13.3-ns cycle). This 
13.3-ns cycle time, when applied to the 256-bit data bus, 
produces the 1,600 MB/s of data bandwidth. The cycle time 
increases the read latency of the 8400 and the 8200 to some 
extent as well, but the reconfigurable DRAM controllers help to 
mitigate this effect.

Electrical Transport Layer

When the bused system topology was selected in the Topological 
Layer of the AlphaServer 8000 platform development, a practical 
engineering decision was made to emphasize leading-edge 
technology as the means to accomplish our performance goals, as 
opposed to elegant architectural chicanery. It was observed in 
the topological discussion that, with the selected system 
topology, bus cycle time was critical to meeting the platform's 
performance goals. The Electrical Transport Layer of the platform 
development involved selecting or developing the centerplane, 
connector, clocking, and silicon interface technology that would 
allow the AlphaServer 8000 system bus to operate at a 100-MHz 
clock frequency. The most innovative of the technological 
developments that resulted from this effort were the platform's 
clocking system and its custom bus driver/receiver cell.

To put the AlphaServer 8000 100-MHz system bus goal in 
perspective, consider the operating frequencies of a number of 
today's highly competitive microprocessors.[8] The NexGen Nx586 
operates at 93 MHz. The Intel Pentium, Cyrix M1, and AMD K5 all 
operate at 100 MHz. The Intel P6 operates at 133 MHz. In all 
these microprocessors, the 100+/-- MHz operation takes place on a 
silicon die less than 1 inch square. To meet its goals, the 
AlphaServer 8000 system bus must transfer data from an interface 
on a module in any slot on the system bus to an interface on 
another module in any other slot on the system bus across a 
13-inch-long wire etch, with nine etch stubs and nine connectors, 
in the same 10 ns in which these microprocessors transfer data 
across 1-inch dies. By any measure this is a daunting task.

A breakdown of the elements that determine minimum cycle time 
aptly demonstrates the significance of clock system design, bus 



driver design, and bus receiver design in the AlphaServer 8000 
system bus development. Minimum bus cycle time is the minimum 
time required between clock edges during which data is driven 
from a bus driver cell on one clock edge and is received into a 
bus receiver cell on the next clock edge. An equation for 
determining the minimum cycle time is shown below.  Tcmin is the 
minimum cycle time. Tprop is the time, measured from a rising 
clock edge, that is required for a bus driver to drive a new bus 
signal level to all system bus receivers.  Tsetup is the time a 
bus receiver needs to process a new bus signal level before the 
signal can be clocked into the receiver cell.  Tskew is the 
variation between the clock used to clock the bus driver and the 
clock used to clock the bus receiver.  Tprop, Tsetup, and  Tskew 
must all be minimized to achieve the lowest possible cycle time. 
The value of  Tskew is determined by the system clock design. The 
values of  Tprop and  Tsetup are determined by the bus 
driver/receiver cell design.

           Tcmin =  Tprop +  Tsetup +  Tskew

AlphaServer 8000 System Bus Interface. To provide some context 
for the clock and bus driver/receiver discussions, it is 
necessary to briefly describe the standard AlphaServer 8000 
system bus interface. Each AlphaServer 8000 module implements a 
standard system bus interface. This interface consists of five 
ASICs: one interfaces to the AlphaServer 8000 address bus and 
four interface to the AlphaServer 8000 data bus.[9] Each ASIC is 
implemented in Digital's 0.75-micrometer, 3.3-volt (V) 
complementary metal-oxide semiconductor (CMOS) technology and 
features up to 100,000 gates. Each ASIC is packaged in a 447-pin 
interstitial pin grid array (IPGA) and features up to 273 user 
I/Os.

Essential to the AlphaServer 8000 development were the speed of 
the CMOS interface ASIC technology and the development team's 
ability to influence the ASIC design process. "Influencing the 
design process" translated to the ability to develop a standard 
cell design library and process that is for and in concert with 
the development of the AlphaServer 8000 platform. The standard 
cell library, together with the CMOS silicon technology, provided 
the AlphaServer 8000 platform's required speed; complex logic 
functions (5 to 8 levels of complex logic gates) can be performed 
within a 10-ns cycle. "Influencing the design process" also 
translated to the ability to design a fully custom bus 
driver/receiver cell. Thus the development team could create a 
custom driver/receiver cell tailored to the specific needs of the 
AlphaServer 8000 system bus.

Clock Technology.  The primary goal of the AlphaServer 8000 
platform clock distribution system was to maintain a skew (Tskew) 
as small as possible between any two clocks in the system, while 
delivering clocks to all clocked system components. The goal of 
minimum skew is consistent with attaining the lowest possible bus 
cycle time, the highest possible system data bandwidth, and the 



lowest possible memory read latency. It is important to note that 
in the AlphaServer 8000 platform, skew between clocks is not 
simply measured at the clock pins of the various clocked 
components. Skew is measured and, more important, managed at the 
actual "point of use" of the clock, for example, at the clock 
pins of ASIC flip-flops. This is an important point when dealing 
with ASICs. Since different copies of even the same ASIC design 
can have different clock insertion delays, additional skew can be 
injected between clocks after the clocks pass their ASIC pins.

The AlphaServer 8000 clock distribution system is implemented 
according to a two-tier scheme. The first tier, the system clock 
distribution, distributes a clean radio frequency (RF) sine wave 
clock to each system bus module. The second tier, the  module 
clock distribution, converts the system RF sine wave clock to a 
digital clock and distributes the digital clock to each module's 
components. The module clock distribution tier also manages the 
skew between the system RF sine wave clock and all copies of each 
module's digital clock by means of an innovative "remote delay 
compensation" mechanism. The system clock distribution delivers 
clocks to the nine system bus module slots with a maximum of 40 
picoseconds (ps) of skew. The module clock distribution delivers 
clocks to the various module components, most notably system bus 
interface ASICs, with a maximum of 980 ps of skew. The skew 
between any ASIC flip-flop on any AlphaServer 8000 module and any 
ASIC flip-flop on any other AlphaServer 8000 module is guaranteed 
to be less than 1100 ps.

The AlphaServer 8000 system clock distribution begins on the 
system clock module with a single-ended RF oscillator, a constant 
impedance bandpass filter, and a nine-way power splitter. The 
power splitter, by way of the bandpass filter, produces nine 
spectrally clean, amplitude-reduced copies of the oscillator sine 
wave. These nine outputs are tightly matched in phase and 
amplitude. They are distributed to the nine system bus module 
connectors by means of matched-length, shrouded, 
controlled-impedance etch. This design provides the modules with 
low skew (30 to 40 ps), high-quality (greater than 20-decibel 
signal-to-noise ratio) clocks.

The RF sine wave clock was an ideal selection for system clock 
distribution. By eliminating all high-order harmonics, the edge 
rates and propagation times of the clock wave are fixed and  
predictable across the distribution network. This predictability 
eliminates variation in the clock as perceived by the clock 
receiver on each module, thus minimizing skew. It also greatly 
reduces constraints on the design of connectors, etch, 
termination, etc.

The AlphaServer 8000 module clock distribution is a boilerplate 
design that is replicated on each AlphaServer 8000 module. On 
each module, the system sine wave clock is terminated by a 
single-ended-to-dual-differential output transformer. This 
transformer produces two phase- and amplitude-matched 



differential clocks that are fed into one or two AlphaServer 8000 
clock repeater chips (DC285 chips). These chips convert the sine 
wave clocks into CMOS-compatible digital clocks; distribute 
multiple copies of the digital clocks to various module 
components, including the system bus interface ASICs; and perform 
remote delay clock regulation on each clock copy.

The remote delay clock regulation is performed by a custom, 
digital delay-locked loop (DLL) circuit. This DLL circuit was 
devised specifically to deskew clocks all the way to their point 
of use in the system bus interface ASICs. The principles of 
DLL-based remote delay clock regulation are simple. The sum of 
the delays associated with (1) the clock repeater chips, (2) the 
module clock distribution etch, and (3) the ASIC clock 
distribution network constitutes the insertion delay of the ASIC 
point-of-use clock with respect to the system sine wave clock. 
With no clock regulation, this delay appears as skew between the 
system clock and the point-of-use ASIC clock. Between ASICs on 
different modules, a fixed portion of the clock insertion delay 
will correlate and need not be factored into the overall system 
skew. Since the insertion delay can easily approach 7 ns, 
however, the variation in the insertion delays to different 
ASICs, which must be factored into the overall system skew, can 
also be significant.  To reduce the skew between the system sine 
wave clock and the point-of-use ASIC clock, the clock repeater 
uses a digital delay line to add delay to the clock repeater 
output clock. Enough delay is added so that the insertion delay 
plus the delay-line delay is equal to an integer multiple of the 
system clock. This delay moves the point-of-use clock ahead to a 
point where it again lines up with the system clock. As the 
system operates, the system and point-of-use clocks may drift 
apart. In response, the clock repeater adjusts its delay line to 
pull the clocks back together. This process of delaying clocks 
and dynamically adjusting the delay is called remote delay clock 
regulation.  When the clock separation, or drift, is measured by 
a clock "replica loop" and the clock delay is inserted by means 
of a digital delay line, the process is called DLL-based remote 
delay clock regulation.[10] Using the clock repeater chips in 
this way, AlphaServer 8000 modules are able to achieve 
point-of-use to point-of-use skew of approximately 930 to 980 ps. 
Combined with the system module-to-module skew of 30 to 40 ps, 
this provides the quoted system-wide clock skew of no more than 
1,100 ps.

It is worth noting that although the AlphaServer clock repeater 
was primarily developed for use with system bus interface ASICs, 
it is a generally versatile part. It may, for instance, be used 
with non-ASIC parts such as transceivers and synchronous SRAMs. 
In these cases, the clock pin of the non-ASIC part is treated as 
the point of use of the clock. The clock repeater may also be 
used for precise positioning of clock edges. On the TLEP module, 
for example, the Alpha 21164 microprocessor's system clock is 
synchronized to a clock repeater output by means of a digital 
phase-locked loop (PLL) on the microprocessor. The Alpha 21164's 



PLL operates in such a way that the 21164's clock is always in 
phase with or always trailing the system (reference) clock. It 
can trail by as much as 2 ns. Such a large clock disparity in 
this fixed orientation can create setup time problems for 
transfers from the Alpha 21164 to the system and hold-time 
problems for transfers from the system to the Alpha 21164.  The 
TLEP design addressed this problem by lengthening the replica 
loop associated with the Alpha 21164 clock and thereby shifting 
the microprocessor clock 1 ns earlier than the balance of the 
clock repeater output clocks. Since the Alpha 21164 clock was 
either in phase or 2 ns later than its associated clock repeater 
clock, which is 1 ns earlier than the rest of the clock repeater 
clocks, the 21164 clock now appears to be either 1 ns earlier or 
1 ns later than the rest of the clock repeater system clocks.  
This centering of the module clocks with respect to the 21164 
clock halves the required setup or hold margin.[11, 12, 13, 14]

Bus Driver Technology.  Like the AlphaServer 8000 clock system, 
the AlphaServer 8000 system bus driver/receiver cell was 
specifically designed to minimize bus cycle time. As with the 
clock logic, the goal of minimizing cycle time was a result of 
the effort to minimize system read latency and maximize system 
data bandwidth. In the effort to minimize the bus cycle time, the 
design of the AlphaServer 8000 bus driver/receiver cell was 
focused on minimizing the propagation delay ( Tprop) of the 
system bus driver circuit and minimizing the setup time ( Tsetup) 
of the system bus receiver.

The AlphaServer 8000 system bus driver/receiver cell is a fully 
custom CMOS I/O cell, which incorporates a bus driver, a bus 
receiver, and an output flip-flop and an input flip-flop in a 
single cell. Consisting of nearly 200 metal oxide semiconductor 
field-effect transistors (MOSFETs),  the bus driver cell is 
powered by standard 3.3-V CMOS power, but drives the bus at a 
much lower 1.5-V level (i.e., voltage swings between 0 and 1.5 
V). This low voltage output serves to reduce the bus driver's 
power consumption and  permits compatibility with future CMOS 
technologies that are powered by voltages less than 3.3 V. Many 
of the bus driver cell's critical characteristics are 
"programmable," such as the 1.5 V output, the receiver switching 
point, the driver's drive current limit, and the driver's rise 
and fall times. These values are programmed and, most important, 
are held constant by means of reference voltages and resistances 
external to the bus driver/receiver cell's ASIC package. They 
allow the cell to produce uniform, predictable, high-performance 
waveforms and to transmit and receive data in a clock cycle of 10 
ns.

The bus driver/receiver's high performance begins with its output 
flip-flop and driver logic. The output flip-flop is designed for 
minimum delay and is integrally linked to the output driver. This 
configuration produces clock-to-output times of 0.5 ns to 1 ns. 
The output driver itself, with its programmable output voltage 
and edge rates, allows the shape of the output waveform to be 



carefully controlled. The cell's programmable values are set such 
that the AlphaServer system bus waveform balances the edge rate 
effects of increased crosstalk with increased propagation delay. 
Furthermore, the bus waveform is shaped in such a way that it 
allows incident wave transmission of signals. As such, a signal 
can be received on its initial propagation across the bus 
centerplane, as opposed to waiting for signal reflections to 
settle. All the driver characteristics serve to reduce bus 
settling time. When combined with the low clock-to-output time of 
the output flip-flop, this reduced settling time produces a very 
low driver circuit propagation delay (Tprop).

The bus driver/receiver cell's receiver and input flip-flop 
further contribute to its high performance. Designed with a 
programmable reference voltage, the receiver has a  very precise 
switching point. Whereas typical receivers may have a 
200-millivolt (mV) to 300-mV switching window, the bus 
driver/receiver cell's receiver has a switching window as small 
as 40 mV. This diminished switching uncertainty directly reduces 
the receiver's maximum setup time. The input flip-flop's master 
latch is a sense-amplifier-based latch as opposed to a simple 
inverter-based latch. The sense amplifier, with its ability to 
resolve small voltage differentials much faster than standard 
inverters, allows the master latch to determine its next state 
much more rapidly than a standard latch. This characteristic 
serves to reduce both the receiver's setup and hold time 
requirements.

In general, the setup and hold time requirements of a state 
element are interrelated. The setup time, for example, can be 
reduced at the expense of hold time. Since setup time contributes 
to cycle time and hold time may not, reducing setup time is 
desirable. The AlphaServer 8000 bus driver/receiver cell requires 
at most 300 ps of  combined setup and hold time. However, since 
the edge rates of the cell driver are so well controlled, the 
minimum propagation time for a bus signal is always guaranteed to 
exceed 300 ps. As a result, the bus receiver circuit is designed  
with all 300 ps charged as hold time. This renders a minimized 
receiver setup time (Tsetup) of 0 ps.

The AlphaServer 8000 bus driver/receiver cells have a number of 
additional features that further reduce the propagation delay ( 
Tprop) of the driver circuit. The cell, for example, features 
in-cell bus termination, which provides the system bus with full, 
distributed termination. Simulations have shown that such 
distributed termination can provide an advantage of 500 ps over 
common end termination. The bus driver/receiver cell's 
termination resistance, like other cell parameters, is 
programmable and made identical throughout all system ASICs by 
means of a reference resistor external to each ASIC.

The bus driver/receiver cell also features a special 
preconditioning function that improves the driver's propagation 
delay by as much as 1,500 ps. This feature causes all bus drivers 



to begin driving toward the opposite state each time they receive 
a new value from the bus. If the bus is changing state from one 
cycle to the next, the feature causes all drivers to begin 
driving the bus to a new state in the next cycle. In doing so, 
all bus driver cell drivers  contribute current and accelerate 
the bus transition. If the bus is not changing from one cycle to 
the next, the drivers simply push the state of the bus toward the 
opposite state, but only to a benign voltage well short of the 
switching threshold.

All of the bus driver cell's programmable features, such as 
switching point, output voltage, edge rates, and termination 
resistance, make the bus driver cell a very stable and 
high-performance interface cell. The existence of these features, 
however, is an element of the bus driver cell's complementary 
process-voltage-temperature (PVT) compensation function. PVT 
compensation is meant to make a device's operating 
characteristics independent of variations in the semiconductor 
process, power supply voltage, and operating temperature. By 
applying PVT compensation in every AlphaServer system bus 
interface ASIC, bus driver cells in different ASICs, for example, 
can drive nearly identical system bus waveforms even if those 
ASICs come from manufacturing lots with varying speed 
characteristics. AlphaServer 8000 PVT compensation is based on 
reference voltages and resistances provided by very precise, 
low-cost, module-level components. The  PVT compensation circuit 
measures these references and configures internal voltages and 
resistances so that all bus driver cells can operate uniformly 
and predictably. By creating predictability and thus reducing 
uncertainty and skew,  bus cycle time is minimized.

Signaling Layer

Powerful though it may be, the AlphaServer 8000 bus 
driver/receiver cell is not without limitations. During its 
development, it was found that the bus driver cell could be 
developed to drive the AlphaServer 8000 system bus in 10 ns under 
a limited number of conditions. When the driver cell asserted a 
deasserted (near 0 V) bus line or deasserted a bus line that had 
been asserted (near 1.5 V) for only one cycle, for example, 10-ns 
timing could readily be met. When the driver attempted to 
deassert a bus line that had been asserted for more than one 
cycle by multiple drivers, however, 10-ns timing could not be 
met. These limitations have significant implications for protocol 
development. Protocols typically have a number of signals that 
can be driven by multiple drivers. These may include cache status 
signals and bus flow control signals. Protocols also typically 
include a number of signals that can be asserted for many cycles. 
These may include bank busy signals or arbitration request 
signals. Clearly the implications are that the limitations of the 
bus driver/receiver cell would cause the system either to fall 
short of its cycle time and performance goals or to be incapable 
of supporting a workable bus protocol.



With the bus driver/receiver cell pushing technology to its 
limits, the solutions to this problem were extremely limited. The 
system cycle time could be slowed down to accommodate all signal 
transitions within a single cycle, regardless of the charge state 
of the signal line; or a signaling protocol could be developed 
that would avoid charging a signal to the point where it could 
not transition in 10 ns; or the physical topology of the system 
could be reconsidered with the goal of finding a new topology 
that met the system goals at a slower clock rate. The first 
option of slowing the clock was clearly unacceptable; it could 
not satisfy the system's latency and bandwidth goals given the 
system's topology. The third option could potentially satisfy the 
system's latency and bandwidth goals, but came at the expense of 
the favorable qualities of the simple bus outlined in the 
Topological Layer and at the risk that the new topology would 
suffer similar, unforeseen pitfalls. The option of developing a 
signaling protocol, on the other hand, could satisfy the system's 
performance goals with little or no risk. A signaling protocol 
was clearly the practical solution to the bus driver/receiver 
cell limitations.

The Signaling Layer of the platform development model introduces 
the AlphaServer 8000 signaling protocol. This protocol was 
developed by creating a list of signal classes, based on driver 
counts and assertion and deassertion characteristics, and by 
associating  a specific signaling protocol with each class. The 
signal classes and their protocols are listed in Table 2. As the 
AlphaServer 8000 primary protocol was developed, each bus signal 
was assigned a signal class. As AlphaServer 8400/8200 hardware 
was developed, each bus signal was designed to operate according 
to the signaling protocol associated with its signaling class. 
The system bus address and data signals, for example, fall into 
the second class of signals. As a result, the AlphaServer 
8400/8200 modules are designed to leave tristate cycles between 
each address and data transfer on the system bus.

The AlphaServer system bus cache status signals (TLSB_Shared and 
TLSB_Dirty) and the system bus flow control signals (TLSB_Hold 
and TLSB_Arb_Suppress) demonstrate a noteworthy paradigm that 
results from the AlphaServer 8000 signaling protocol. All these 
signals are defined such that at times they must be asserted for 
multiple cycles. All these signals also fall into the fourth 
signal class, which expressly prohibits driving the signals for 
multiple cycles. When these two contradictory requirements exist, 
the result is a class of signals pulsed to indicate multiple 
cycles of constant assertion. Logic inside each AlphaServer 
8000-based module must be designed to convert these pulsed 
signals to constantly asserted signals within its system bus 
interface. Note that when signals such as these are discussed in 
the protocol sections of this paper, the term "asserted" is used 
to imply constant assertion, with the understanding that the 
signals may in fact be pulsed.



Table 2 AlphaServer 8000 Signal Classes

Signal  Driver Count and Signal                 Signaling Protocol
Class   Assertion/Deassertion Characteristics
 

1       Single driver with multiple             Never driven more than two
        receivers                               consecutive cycles
                                    
2       Multiple drivers with                   Tristate cycle on the bus
        multiple receivers                      when driver changes
                                    
        One driver at a time                    Never driven more than two
                                                consecutive cycles
                                    
3       Multiple drivers with                   Value received on signal
        multiple receivers                      deassertion is unpredictable
                                                and must be ignored
        Many drivers at once          
        possible                                Tristate cycle on the bus
                                                when driver changes
        Assertion time may differ     
        from driver to driver                   Never driven in two
                                                consecutive cycles
        Deassertion time is fixed     
      
4       Multiple drivers with                   Value received on signal
        multiple receivers                      deassertion is unpredictable
                                                and must be ignored
        Many drivers at once          
        possible                                Tristate cycle on  the bus
                                                when driver changes
        Timing is fixed               
                                                Never driven in two
                                                consecutive cycles            

Consistency Check Layer

The Consistency Check Layer defines a method for maintaining 
system integrity. Specifically, it defines methods for detecting 
errors and inconsistencies in the system and, more important, 
methods for logging errors in the presence of historically 
disabling errors. Although it does not contribute directly to the 
AlphaServer 8000 platform's performance goals or stated product 
goals, the Consistency Check Layer contributes an extremely 
useful feature to the AlphaServer 8000 products. It is included 
in the paper for the sake of completeness in the analysis of the 
seven-layer platform development model.

The AlphaServer 8000-based systems employ a number of 
error-checking mechanisms. These include transmit checks, 
sequence checks, assertion checks, and time-outs. If any error is 
detected by an AlphaServer 8000 module by means of these 
mechanisms, the module responds by asserting a special "Fault" 



signal on the AlphaServer 8000 system bus. This Fault signal has 
the effect of partially resetting all system bus interfaces and 
processors, and trapping the processors to "machine check" 
error-handling routines. The partial reset clears all system 
state, with the exception of error registers. This resynchronizes 
all system bus interfaces and eliminates all potentially 
unserviceable transactions left pending in the system. Thus the 
system can begin execution of the machine-check routines in a 
reset system. Although the routines are not guaranteed to be able 
to complete an error log in the presence of an error, it is 
believed that this mechanism will increase the probability of a 
successful error log.

The AlphaServer 8000 platform's Fault error-handling feature is 
particularly useful in recovering error state from a computer in 
a "hung" state. A computer enters a hung state when an error 
occurs that stops all progress in the computer system. If a 
processor is waiting for a response to a read, for example, and 
the read response is not forthcoming due to an error, the system 
hangs while waiting for the response. The desktop model for error 
handling would require a system reset to recover from such an 
error. The process of the system reset, however, would purge 
error state. The purge, in turn, makes error diagnosis extremely 
difficult. This desktop model is not unique to desktop systems. 
It is also employed in server-class machines such as Digital's 
DEC 7000/10000 AXP systems. Although this model may be acceptable 
on the desktop, it is most undesirable in an enterprise server 
system. The AlphaServer 8000-based systems use a time-out counter 
to detect a hung system and the Fault error-handling technique to 
recover an error log in the event of a hung system. The result is 
a robust error-handling system that is appropriate in an 
enterprise server.

Primary Protocol Layer

The Primary Protocol Layer of the platform development assigns 
names and characteristics to the various system bus signals and 
uses these names and characteristics to define higher-order 
system bus transactions and functions. System bus transactions 
may include reads of data from memory or writes of data to 
memory. These transactions are the primary business of a computer 
system and its protocol. If a system efficiently executes read 
and write transactions, it will perform better than a system that 
does not. System bus functions may include mapping memory 
addresses to specific memory banks or arbitrating for access to 
system buses. These functions enable system bus transactions to 
operate in environments with multiple processors arbitrating for 
access to the system bus and multiple banks of memory.

AlphaServer 8000 system bus transactions relate directly into the 
platform's performance metrics. The system's memory read latency, 
for example, is equal to the time it takes for a processor to 
issue and complete a system bus read transaction. The number of 



system bus transactions and their associated data that the system 
bus can process in a given period of time define the system bus 
bandwidth.

The components of  a typical memory read transaction are shown in 
a timeline in Figure 4. This timeline of components is based on a 
system that is an abstract of the DEC 7000/10000 AXP systems. To 
minimize a system's memory read latency, each component of the 
read transaction timeline must be minimized. Components 1, 3, 7, 
and 8 of the timeline are simply data and address transfers 
across buses and through interfaces. The delays associated with 
these components are largely determined by system cycle time; 
they cannot be affected by the protocol to any great extent. 
Component 5 is the DRAM access time. It is minimized by the 
reconfigurable controllers described in the Operational Layer. 
The remaining components, (2) address bus arbitration, (4) memory 
bank decode, and (6) data bus arbitration, fall into the domain 
of the primary protocol. These elements must be designed to 
contribute minimal delay to the overall latency.

[Figure 4  (Components of Memory Read Latency) is not available 
in ASCII format.]

The effects of protocol on a system's data bandwidth are a little 
more difficult to quantify than the effects of protocol on memory 
read latency. In general, the theoretical maximum system 
bandwidth is equal to either the sum of the bandwidths of the 
system's memory banks or the maximum system bus bandwidth, 
whichever is smaller. If the system bandwidth is limited by 
memory module bandwidth, it is essential to keep as many memory 
modules active as possible. If, for example, eight  banks of 
memory are required to sustain 100 percent of the maximum system 
bandwidth, but the system can support only four outstanding 
commands, only four banks can be kept busy and only 50 percent of 
the maximum bandwidth can be rendered. In another example, if 10 
percent of the time this system freezes all but one bank of 
memory to perform special atomic functions on special data 
blocks, the system's bandwidth will suffer nearly a 10 percent 
penalty (73/80 possible memory accesses versus 80/80 possible 
memory accesses). If the system bandwidth is limited by the 
bandwidth of the system bus, the maximum system bandwidth can be 
achieved only when the protocol allows system modules to drive 
data onto the system data bus in every available cycle on the 
data bus. When a processor reads a block of data from a second 
processor's cache, for example, the second processor may have to 
stall the data bus to allow it to drive the read data onto the 
system's data bus as prescribed by the system protocol. A stall 
of the data bus translates into unused data bus cycles and 
degradation of real system bandwidth. Thus to maximize real 
system bandwidth, system bus and memory bank utilization must be 
maximized, and stalls in system bus activity and stalls in memory 
bank activity must be minimized.

The following sections begin with an overview of the basic 



AlphaServer 8000 platform protocol and how this basic protocol 
influences system performance. This section is followed by a 
discussion of how the various protocol components identified as 
elements of memory read latency (i.e., memory bank mapping, 
address bus arbitration, and data bus arbitration) affect the 
latency. These sections conclude with a discussion of subblock 
write transactions and their effects on system bandwidth.

AlphaServer 8000 Protocol Overview.  The platform development 
Topological Layer defined the AlphaServer 8000 system bus as 
having separate address and data buses. The AlphaServer 8000 
system bus protocol defines how system bus transactions are 
performed using these two buses. According to the protocol, 
processor and I/O port modules initiate read and write 
transactions by issuing read and write commands to the system 
address bus. These address bus commands are followed sometime 
later by an associated data transfer on the data bus. All data 
transfers are initiated in the order in which their associated 
address bus commands are issued. Cache coherency information for 
each system bus transaction is broadcast on the system bus as 
each transaction's data bus transfer is initiated. Each data 
transfer moves 64 bytes of data (only 32 bytes of which are valid 
for programmed I/O transfers). Figure 5 shows an example of 
AlphaServer 8000 system bus traffic. In cycle 1 a read 
transaction, r0, is initiated on the system address bus. In cycle 
X, the data transfer for read r0 is initiated on the system data 
bus by means of the system bus Send_Data signal, the assertion of 
which is indicated with a value of i0. As this data transfer is 
initiated, the status, s0, is also driven on the system bus. In 
cycle X+2, all system bus modules have an opportunity to stall or 
to control the flow to the system data bus. In this example, the 
bus is not stalled, as indicated by a value of n. Finally, given 
that the bus is not stalled, the 64 bytes of read data associated 
with read r0 are transferred across the system bus during cycles 
X+5 and X+6. In addition to read r0, Figure 5 also illustrates 
the execution of a write, w1, and another read, r2. Note that 
data transfer initiation, data bus flow control, and data 
transfer are pipelined on the system data bus in the same order 
as their associated commands were issued to the address bus. Note 
further that this diagram represents 100 percent utilization of 
the system data bus (one data transfer every three cycles). With 
a 10-ns cycle time, this utilization would translate to 2.1 GB 
per second of bandwidth.

[Figure 5 (Example of AlphaServer 8000 System Bus Traffic) is not 
available in ASCII format.]

The AlphaServer system address bus uses two mechanisms to control 
the flow of system bus transactions. First, processor and I/O 
port modules are not allowed to issue commands to memory modules 
that are busy performing some DRAM access for a previously issued 
system bus transaction. The state of each memory bank is 
communicated to each processor by means of system bus  
Bank_Available signals. If a processor or I/O port seeks access 



to a given memory bank and that memory bank's  Bank_Available 
signal indicates that the bank is free, the processor or I/O port 
may request access to the address bus and, if granted access by 
the system arbitration logic, issue its transaction to the 
address bus. If a processor or I/O port seeks access to a given 
memory bank and that memory bank's  Bank_Available signal 
indicates that the bank is not free, the processor or I/O port 
will not request access to the system address bus. Thus, unless 
all memory banks are busy or unless the total of the busy memory 
banks includes all banks that are needed to service the system's 
processors and I/O ports, the address bus will continue to 
transmit commands. The second mechanism for controlling the flow 
through the address bus is the system bus Arb_Suppress signal. If 
any system bus module runs out of any command/address-related 
resource, such as command queue entries, it can assert this 
signal and prevent the system arbitration logic from granting any 
more transactions access to the bus. The Arb_Suppress signal is 
useful, for example, in a system configuration with 16 memory 
banks but only eight entries worth of command queuing in a 
processor.

The AlphaServer 8000 system data bus has its own flow-control 
mechanism, the system bus Hold signal, which is independent of 
the address bus flow-control mechanisms. The Hold signal, shown 
as Data Bus Flow Control in Figure 5, is asserted in response to 
the initiation of a data bus transfer. Normally, data bus 
transfers are initiated on the data bus when an AlphaServer 8000 
memory module asserts the Send_Data signal. Send_Data is asserted 
by a memory module based on the state of the module's DRAMs: When 
servicing a read transaction, the memory will assert Send_Data 
when its DRAM read is complete; when servicing a write 
transaction, the memory will assert Send_Data as soon as its turn 
on the data bus comes up. Five cycles after the assertion of 
Send_Data, some module drives data onto the data bus. If a module 
is required to drive data in response to an assertion of 
Send_Data and is unable to do so, it will assert the Hold signal 
two cycles after the assertion of Send_Data. This may occur if a 
processor module must source read data from its cache and cannot 
fetch the data from the cache as quickly as the memory module can 
fetch data from its DRAMs.  If, on the other hand, a module is 
required to receive data in response to an assertion of Send_Data 
and is unable to do so, it too will assert the Hold signal two 
cycles after the assertion of Send_Data. This may occur if no 
receiving module's data buffers are available to receive data. 
Each module that asserts Hold two cycles after Send_Data will 
continue to assert Hold every other cycle--as prescribed by the 
AlphaServer 8000 signaling protocol--until it is ready for the 
data transfer. Three cycles after all modules are ready and 
deassert the Hold line, data is finally transferred. Figure 6 
shows a read, r0, that experiences one pulse of the system bus 
Hold signal.

[Figure 6  (Read with One Cycle of Hold--Five Reads Sourced by a 
Processor) is not available in ASCII format.]



It is important to note that the address bus and the data bus 
have independent means and criteria for initiating transactions 
and controlling the flow of transactions. The address bus 
initiates address bus commands based on processor and I/O port 
module requests and controls the flow based on the state of 
address-related resources. The data bus initiates data transfers 
in the same order as the address bus transmitted commands by 
means of the Send_Data signal. Send_Data is usually asserted by a 
memory module based on the state of the module's DRAMs. The data 
bus flow is controlled based on the state of various data-related 
resources. The differing means and criteria for initiation and 
flow control allow the two buses to operate almost independently 
of one another. This independence translates into performance 
because it allows the address bus to continue to initiate 
commands even as the data bus may be stalled because of a 
conflict. Continuous command initiation translates into more 
continuous system parallelism and thus more system bandwidth. 
Figures 6 and 7 illustrate this point. Both figures illustrate 
systems that are issuing a series of processor reads to blocks 
that must be sourced from another processor's cache. In both 
cases, processors require two more cycles than main memory banks 
to source read data. As such, two cycles of Hold assertion must 
periodically occur on the data bus. Figure 6 illustrates the 
operation of the AlphaServer 8000 system bus, showing that 
although the data bus had to be held in cycle 6, the address bus 
was able to continue issuing commands. As a result, each 
processor sourcing data begins its read of cache data as soon as 
possible and is guaranteed to be ready to drive data without Hold 
cycles when its turn comes up on the data bus. With the 
illustrated series of five reads, the two Hold cycles result in a 
12 percent degradation in system bandwidth. If the series of 
reads is lengthened toward infinity, the percent of degradation 
approaches 0. Figure 7 illustrates the operation of a rigidly 
slotted bus, like that of the DEC 7000/10000 AXP system, 
normalized to the AlphaServer 8000 topology. As shown, each time 
the data bus is stalled, so too is the address bus. This prevents 
the fourth and fifth reads from getting the headstart necessary 
to prevent subsequent stalls of the data bus. The result is a 20 
percent degradation in performance for the five reads 
illustrated. If the series of reads is lengthened toward 
infinity, the percent of degradation settles to 18 percent. 
Clearly the AlphaServer 8000 approach produces superior data 
bandwidth characteristics.

[Figure 7 (Five Reads Sourced by a Processor in a Rigidly Slotted 
System) is not available in ASCII format.]

It is also important to note that the AlphaServer 8000 address 
bus and data bus have different maximum bandwidths. Commands can 
be issued to the address bus every other cycle. With a 10-ns 
cycle time, this translates into 50 million commands per second. 
The data bus, on the other hand, can transfer one block of data 
every three cycles. With a 10-ns cycle time, this translates into 



33.3 million data blocks per second. This excess of address bus 
bandwidth is useful in the development of low-latency arbitration 
schemes.

Memory Bank Mapping.  Digital's previous server systems, like the 
VAX 6000 series and the DEC 7000/10000 AXP-series, have employed 
a common approach to address-to-memory-bank mapping. In this 
approach, all memory modules implement address range registers. 
As commands and addresses are transmitted across the system bus, 
the memory banks compare the addresses against their address 
range registers to determine if they must respond to the command. 
An address range comparison can involve a significant number of 
address bits and, as a result, can become logically complex 
enough to consume two 10-ns cycles of time. These two cycles can 
be added directly to memory read latency.

The low-latency focus of the AlphaServer 8000 platform prompted a 
change in bank mapping schemes. In AlphaServer 8000 systems, the 
address range registers have been moved onto the processor and 
I/O port modules. The range registers output a 4-bit bank number 
that is shipped across the system bus with each command and 
address. Each memory bank compares each bank number transmitted 
across the system bus to 4 bits in a programmable bank number 
register to determine if it should respond to the system bus 
command.

This bank mapping logic configuration helps to reduce AlphaServer 
8000 memory read latency. Because the bank mapping is done on the 
nodes that issue commands to the address bus, the lengthy address 
comparison can be done in parallel with address bus arbitration, 
eliminating its two-cycle delay from the memory read latency. The 
address comparison traditionally done in the memory bank logic is 
now replaced with a simple 4-bit comparison, which can easily be 
done in a single cycle. The overall effect is that the 
AlphaServer 8000 bank mapping protocol consumes at least one 
cycle less than Digital's traditional bank mapping protocol. This 
equates to one less cycle--10 ns minimum--of memory read latency.

Address Bus Arbitration.  AlphaServer 8000 systems employ a 
distributed, rotating-priority arbitration scheme to grant access 
to their address buses. Processor and I/O port modules request 
access to the address bus based on requests from microprocessors 
and I/O devices, and on the state of the system's memory banks, 
as described in the section AlphaServer 8000 Protocol Overview. 
Each module evaluates the requests from all other modules and, 
based on a rotating list of module priorities, determines whether 
or not it is granted access to the bus. Each time a module is 
granted access to the bus, its priority is rotated to the lowest 
priority spot on the priority list.

The AlphaServer 8000 arbitration scheme operates in a pipelined 
fashion. This means that modules request access to the bus in one 
cycle, arbitrate for access to the bus in the next cycle, and 
finally drive a command and address onto the bus one cycle later. 



In terms of processor-generated read requests, this means that, 
at best, a system bus read command can be driven onto the system 
address bus two cycles after its corresponding cache read miss is 
generated on the processor module. This adds two cycles of delay 
to the memory read latency.

To reduce memory read latency in components associated with 
address bus arbitration, the AlphaServer 8000 platform employs a 
technique called "early arbitration." Early arbitration allows a 
module to request access to the address bus before it has 
determined if it really needs access to the data bus. If the 
module is granted access to the address bus but determines that 
it does not need or cannot use the access, it will drive a 
No-Operation or NoOp command in the command slot that it is 
granted. This feature is particularly useful on processor 
modules. It allows a processor to request access to the bus for a 
read command in parallel with determining if the read command 
will hit or miss in the processor's cache. If the read results in 
a cache hit and the processor is granted access to the address 
bus, then the processor issues a NoOp command. If the read 
results in a cache hit and the processor is not granted access to 
the address bus, the processor discontinues requesting access to 
the bus. When applied in this manner, this feature can remove two 
cycles of delay from the memory read latency. This feature is 
also key to the AlphaServer 8000 memory bank decode feature that 
allows address-to-memory bank decode to proceed in parallel with 
system bus arbitration. This is to say, it allows a processor or 
I/O port module to request access to the address bus before it 
can determine which memory bank it is trying to access and before 
it can determine if that memory bank is available. If a module is 
granted access the bus and the bank it is trying to access is not 
available, then the module issues a NoOp command. If a module is 
not granted access to the bus and the bank it is trying to access 
is not available, then the module discontinues requesting access 
to the bus until the bank becomes available. When applied this 
way,  this feature eliminates at least one cycle from the memory 
read latency, as described in the section Memory Bank Mapping.

The excess address bus bandwidth noted in the protocol overview 
allows some amount of early arbitration to take place without 
affecting system performance. When system traffic increases, 
however, excessive early arbitration can steal useful address bus 
slots from nonspeculative transactions and as a result degrade 
bus bandwidth. In fact, in certain pathological cases, excessive 
early arbitration by modules with high arbitration priority can 
permanently lock out requests from lower priority modules. To 
eliminate the negative effect of early arbitration, the 
AlphaServer 8000 employs a technique called "look-back-two" 
arbitration. This technique relies on the fact that modules must 
resolve all cache miss or bank availability uncertainties for 
early arbitrations within the two cycles required for an early 
request and its arbitration. This fact implies that any module 
that has been requesting access to the address bus for more than 
two consecutive cycles is requesting in a nonspeculative manner. 



As such, the AlphaServer 8000 arbiter keeps a history of address 
bus requests and creates two prioritized groups of requests based 
on this history. It creates a high-priority group of requests 
from those requests that have been asserted for more than two 
cycles and a low-priority group of requests from those requests 
that have been asserted for two cycles or less. It applies the 
single set of rotating priorities, described above, to both sets 
of  requests. If there are any requests in the high-priority 
group, the arbiter selects one of these based on the rotating 
priority set. If there are no high-priority requests, the arbiter 
selects a request from the lower priority group based on the 
rotating priority set. This functionality limits early 
arbitration to only those times when there are nonspeculative 
requests in the system. It allows the AlphaServer 8000 platform 
to take advantage of latency gains associated with early 
arbitration and processor and I/O port based bank decode, without 
degrading bandwidth in the process.

Data Bus Arbitration.  The AlphaServer 8000 data bus transfers 
blocks of data in the same order that the commands corresponding 
to those blocks are issued on the address bus. This eliminates 
data bus arbitration per se. In-order data return is accomplished 
by a simple system of counters and sequence numbers. Each time a 
command is issued to the address bus, it is assigned a sequence 
number. Sequence numbers are assigned in ascending order. Each 
time a block of data is driven on the data bus, a data bus 
counter is incremented. Each module waiting to initiate a data 
transfer in response to some address bus command compares the 
sequence number associated with its command with the data bus 
counter. When a module's sequence number matches its data bus 
counter, it is that module's turn to initiate a data bus 
transfer.

It is arguable that in-order data return is not the optimum data 
scheduling algorithm. If the scenario shown in Figure 6 were 
reshaped such that only read r0 sourced data from another 
processor and the penalty for sourcing data from a processor were 
more severe--a longer data bus Hold requirement--the result would 
be more significant bandwidth degradation. This new scenario is 
illustrated in Figure 8. With more efficient data scheduling, it 
is conceivable that data bus utilization could be improved by 
using data slots abandoned under the sizable Hold window in 
Figure 8. The latter scenario is illustrated in Figure 9. Clearly 
the system in Figure 9 has improved upon the bandwidth of the 
system in Figure 8.

[Figure 8  (Bandwidth Degradation as a Result of In-Order Data 
Transfers) and Figure 9 (Improved Bandwidth with Out-of-Order 
Data Transfers) are not available in ASCII format.]

What Figure 9 cannot show are all the implications of 
out-of-order data transfers. With as many as 16 outstanding 
transactions (8 in the AlphaServer 8400/8200) active in the 
system at any one time, the task of producing a logic structure 



capable of retiring the transactions in order is enormous. 
Furthermore, the retiring of transactions out of order 
complicates the business of maintaining coherent, ordered memory 
updates. Finally, it was felt that the parallelism made possible 
by the independent address and data bus would help to mitigate 
many of the negative effects associated with the in-order data 
transfers. For these reasons, a practical decision was taken to 
transfer data on the system data bus in the order that the 
associated commands were issued to the system address bus.

Subblock Writes.  To support a range of I/O subsystems, 
AlphaServer 8000 I/O port  modules must support writes of data as 
small as longwords (32 bits), words (16 bits), and bytes. Given 
the AlphaServer system bus block size of 64 bytes, these writes 
are referred to as subblock writes. The execution of a subblock 
write consists of reading a block of data from a system memory 
bank, overwriting just the portion of the block addressed by the 
subblock write, and writing the entire block back to memory. The 
difficulty with performing this operation arises when a 
"third-party" module--defined here as a module other than the one 
performing the subblock write--modifies the block between the 
read portion of the subblock write and the write portion of the 
subblock write. To correctly complete the subblock write, the I/O 
port module must merge the subblock write data into the block as 
it was after the third-party module modified it. This problem can 
be resolved in one of two ways: (1) by means of a small cache on 
the I/O port module that updates the I/O port's copy of the block 
based on the third-party write, or (2) by means of an atomic 
read-modify-write that disallows the third-party write 
altogether.

In an ideal world, I/O port modules would implement a small 
one-block cache for the purpose of subblock writes. This cache 
would allow the I/O module performing the subblock write to 
update its copy of the block targeted by the subblock write with 
modified data from third-party modules. Unfortunately, not all 
processors broadcast modified data to the system. Many 
processors, for example, use a read-invalidate protocol. In a 
read-invalidate protocol, when a processor wishes to modify a 
block, it issues a command that invalidates all other copies of 
that block in the system and then modifies the block of data in 
its cache. If such an invalidate command invalidated the block in 
an I/O port module's subblock write cache, the I/O port module 
would be forced to re-read the block. There is no guarantee, 
however, that another invalidate will not occur between the 
re-read of the block and the write of merged data back to memory. 
As such, the I/O port module may never be able to complete the 
subblock write. I/O port caching is therefore not a workable 
solution.

Atomic read-modify-write sequences disallow third-party writes to 
a given block between the read portion of a subblock write and 
the write portion of a subblock write. As such, the atomic 
read-modify-write sequence does guarantee the timely completion 



of  a subblock write. Implementations of atomic read-modify-write 
sequences are designed to disallow accesses to some size portion 
of the memory region that contains the subblock address, between 
the read and write portions of the subblock write. The size of 
the memory region can vary from a single block of data to a 
single bank of memory to the entirety of memory. If the size of 
the memory region is small, such as a single data block, design 
complexity is significant; but the impact of locking out access 
to a single block of memory is insignificant to bandwidth. 
Conversely, if the size of the memory region is large, such as 
the entirety of memory, design complexity is insignificant; but 
the impact of locking out accesses to the entirety of memory for 
any period of time can be significant to system bandwidth.

The AlphaServer 8000 platform supports atomic read-modify-write 
sequences by locking out accesses within memory-bank-sized memory 
regions. This middle ground memory-region size provides the 
AlphaServer 8000 with a practical balance between design 
complexity and system bandwidth. The AlphaServer 8000 platform 
implements memory bank granularity atomic read-modify-write 
accesses by means of special Read_Bank_Lock and Write_Bank_Unlock 
address bus commands, and by leveraging the existing memory bank 
flow control mechanisms. Specifically, Read_Bank_Lock commands 
function like normal read commands, except that their targeted 
memory banks are left busy after the read transaction is 
complete. Memory banks locked by Read_Bank_Lock commands  remain 
busy until a Write_Bank_Unlock command is issued from the same 
module that issued the Read_Bank_Lock command. While a memory 
bank is busy, no module other than the module that locked the 
bank by means of a Read_Bank_Lock command will even request 
access to the bank, as required by standard arbitration protocol. 
This approach provides for atomic read-modify-write sequences and 
coherent subblock  writes. This protocol works regardless of the 
number of I/O modules in the system and regardless of arbitration 
priorities.

Superset Protocol Layer

The AlphaServer 8000 primary protocol provides all the basic 
constructs required to perform basic system functions, such as 
memory reads and writes, local register reads and writes, and 
mailbox-based I/O register reads and writes. The protocol 
performs these basic functions with a high level of efficiency 
and performance. Some additional functionality, such as PCI 
direct-programmed I/O register accesses, can be functionally 
satisfied by the primary protocol but cannot be satisfied in a 
way that does not severely degrade the performance of the entire 
AlphaServer 8000 system. As such, the AlphaServer 8000 platform 
allows for Superset Protocols, i.e., protocols that are built 
upon the basic constructs (reads and writes) of the AlphaServer 
8000 primary protocol.

PCI direct-programmed I/O register reads can take more than a 



microsecond to complete. If these reads were completed by means 
of the AlphaServer 8000 nonpended, strictly ordered primary 
protocol, the AlphaServer system data bus would be stalled for a 
full microsecond each time a PCI programmed I/O read was 
executed. Such stalls would have a disastrous effect on system 
bus bandwidth and system performance.

The PCI programmed I/O problem is solved on the AlphaServer 8000 
platform by implementing a PCI-specific pended read protocol 
using the simple read and write commands already included in the 
basic AlphaServer 8000 primary protocol. This special superset 
protocol works as follows:

    o   When a microprocessor issues a PCI programmed I/O read, 
        the read is issued to the AlphaServer 8000 system bus as 
        a register read. This read is pended with a unique 
        identification number that is associated with the issuing 
        processor by driving the identification number on the 
        system bank number lines when the register read command 
        is issued to the system address bus. The bank number 
        lines are otherwise unused during register accesses. The 
        issuing processor also sets a flag, indicating that it 
        has issued a PCI programmed I/O read command.

    o   The I/O port module interfacing to the addressed PCI 
        local bus responds to the register read by forwarding the 
        read to the PCI, storing the processor identification 
        number specified by the address bus bank number lines and 
        driving "dummy data" onto the data bus in the register 
        read's associated data slot. The value of the dummy data 
        is irrelevant; it is ignored by all system bus modules 
        and is typically whatever was left in the I/O ports 
        register read buffer as a result of the last read it 
        serviced.

    o   When the PCI local bus returns read data to the I/O port 
        module, the I/O module issues a register write to a 
        special PCI read-data-return register address on the 
        system bus. This write is pended with the issuing 
        processor's identification number, which was stored by 
        the I/O port module. This identification number is again 
        pended by driving it onto the system bank number lines as 
        the register write command is issued to the system 
        address bus. The PCI read data is returned in the data 
        cycle associated with this register write.

    o   When a processor module identifies a register write that 
        addresses the  PCI read-data-return register address, it 
        checks the state of its PCI read flag and compares the 
        value driven in the system bank number lines with it 
        unique identification number. If the PCI read flag is set 
        and the value on the bank number lines matches the 
        processor's identification number, then the processor 
        completes the PCI programmed I/O read with the data 



        supplied by the register write.

The AlphaServer 8000 PCI programmed I/O read superset protocol 
allows AlphaServer 8000 systems to complete PCI programmed I/O 
reads without stalling system buses. Furthermore, it allows 
AlphaServer systems to support PCI I/O in such a way that system 
bus modules not participating in the superset transaction need 
not be alerted to the presence of special bus transactions and 
therefore need not contain logic that recognizes and responds to 
these special cases. This approach demonstrates a practical way 
to simplify overall system design without affecting system 
performance.

ALPHASERVER 8400 AND ALPHASERVER 8200 SYSTEMS

The AlphaServer 8400 and 8200 systems are the first products 
based on the AlphaServer 8000 platform. The AlphaServer 8200 
system is an "open office"-class server (i.e., the AlphaServer 
8200 can be located in any office area, for example, where 
photocopier machines are typically placed). It features up to six 
system bus modules in an industry-standard 47.5-centimeter 
(19-inch) rackmount cabinet. The 8200 system can support up to 
six 300-MHz Alpha 21164 microprocessors, 6 GB of main memory, and 
108 PCI I/O slots. The AlphaServer 8400 system is an 
"enterprise"-class server (i.e., a machine on which a business 
can be run). It features up to nine system bus modules in a DEC 
7000-style cabinet. It can support up to twelve 300-MHz Alpha 
21164 microprocessors, 14 GB of main memory, and 144 PCI I/O 
slots.

The clock frequencies of both the AlphaServer 8400 system and the 
AlphaServer 8200 system are determined by the clock frequency of 
the 300-MHz (3.33-ns cycle time) Alpha 21164 microprocessor chip. 
Both systems use a 4[X] clock multiplier to arrive at a system 
clock frequency of  75 MHz (13.3-ns cycle time). At this speed, 
the systems feature 265-ns minimum read latencies and 1,600 MB/s 
of data bandwidth.

Both systems are based on the same set of AlphaServer 8000 
architecturally compliant system bus modules. In addition, both 
systems support a new PCI I/O subsystem designed specifically for 
these classes of systems. The constituent modules and I/O 
subsystems that compose the AlphaServer 8400 and the AlphaServer 
8200 systems are as follows.

TLEP Processor Module--Each TLEP processor module supports two 
300-MHz Alpha 21164 microprocessors. Each Alpha 21164 processor 
is paired with a 4-MB external cache. This cache is constructed 
with 10-ns asynchronous SRAMs. The cache latency to first data is 
20 ns, and with one 3.33-ns processor cycle of wave pipelining, 
its maximum bandwidth is 915 MB/s. The TLEP module operates with 
a 75-MHz  (13.33-ns cycle time) clock frequency.



TMEM Memory Module--Each TMEM memory module is implemented with 
two equal-sized DRAM banks. TMEM modules are available in 128-MB, 
256-MB, 512-MB, 1024-MB, and 2048-MB sizes. The TMEM module is 
designed to operate at a 100-MHz (10-ns cycle time) clock 
frequency.

TIOP I/O Port Module--The TIOP module interfaces the AlphaServer 
8000 system bus to four I/O channels, called "hoses." Each hose 
can interface to one XMI, Futurebus+, or PCI/EISA I/O subsystem. 
Each TIOP can support up to 400 MB/s of I/O data bandwidth and is 
designed to operate at  a 100-MHz (10-ns cycle time) clock 
frequency.

ITIOP Integrated I/O Port Module--The ITIOP module interfaces the 
AlphaServer 8000 system bus to one hose I/O channel and one 
semipreconfigured PCI local bus, which is integrated onto the 
ITIOP module. The integrated PCI bus features one single-ended 
small computer systems interface (SCSI) controller, three Fast 
Wide Differential SCSI controllers, one  NI port, and optional 
FDDI and NVRAM controllers. Each ITIOP can support up to 200 MB/s 
of I/O data bandwidth and is designed to operate at a 100-MHz 
(10-ns cycle time) clock frequency.

PCIA PCI I/O Subsystem--The PCIA PCI I/O subsystem consists of 
hose-to-PCI adapter logic and a 12-slot PCI local bus. This 
12-slot bus is created from 4-slot PCI buses interfaced such that 
they appear as a single bus. The high slot count provides the 
connectivity essential in an enterprise-class server. The PCIA 
optimizes direct memory access (DMA) reads by means of the PCI 
Read_ Memory_Multiple command. The Read_Miss_Multiple command 
allows the PCIA to stream DMA read data from memory to the PCI 
bus. Consequently, the PCIA can increase DMA read bandwidth, 
offsetting any latency penalties that result from the AlphaServer 
8000 platform's multilevel I/O architecture. The PCIA's adapter 
logic includes a 32K entry map RAM for converting PCI addresses 
(32 bits) to AlphaServer 8000 system bus addresses (40 bits). 
This  map RAM features a five-entry, fully associative 
translation cache.

ALPHASERVER 8400 AND ALPHASERVER 8200 PERFORMANCE

A number of performance benchmarks have been run on the 
AlphaServer 8400 and AlphaServer 8200 systems. The results of 
some of these benchmarks are summarized in Table 3.

The AlphaServer SPECint92 and SPECfp92 ratings demonstrate 
outstanding performance. In both ratings, the AlphaServer 8400 
system performance is over 3.5 times the ratings of the 
HP9000-800 T500 system. The SPECfp92 rating of 512 instructions 
per second is 1.4 times its nearest competitor, the SGI Power 
Challenge XL system. Similarly, a six-processor AlphaServer 8400 
system achieves the same 1,900 million floating-point operations 
per second (MFLOPS) as an eight-processor SGI Power Challenge XL 



system. Finally, the AlphaServer 8400 system's 5-GFLOPS Linpack 
NxN result is beyond the performance of all other open systems 
servers, placing the AlphaServer at supercomputer performance 
levels with  systems such as the NEC SX-3/22 system and the 
massively parallel Thinking Machines CM-200 system.

Table 3 AlphaServer 8400 and 8200 System Performance Benchmark Results

Benchmark    Processor  Units           AlphaServer 8200  AlphaServer 8400
Name         Count                           
             
             
SPECint92       1       Instructions/   341.4             341.4
                        second                    
                     
                     
SPECfp92        1       Instructions/   512.9             512.9
                        second
                     
SPECrate_int92  1       Instructions/   8551              8551
                        second
                     
                6       Instructions/   50788             50788
                        second
                     
                12      Instructions/   not applicable    91580
                        second
                     
SPECrate_fp92   1       Instructions/   11981             11981
                        second
                     
                6       Instructions/   71286             71286
                        second
                     
                12      Instructions    not applicable    140571
                        second
                     
Linpack         1       MFLOPS          140.3             140.3
100x100                                          

Linpack         1       MFLOPS          410.5             410.5
1000x1000                                        

                6       MFLOPS          1821              1902
                                                 
                8       MFLOPS          not applicable    2282
                                                 
                12      MFLOPS          not applicable    2675
                                                 
Linpack NxN     1       MFLOPS          428.3             428.3
                                                 
                6       MFLOPS          2445              2445
                                                 



                12      GFLOPS          not applicable    5.0
                                                 
AIM III         8       AIMs            not applicable    1649.8
Performance                                      
Rating

AIM III         8       Maximum         not applicable    9384
User Loads              quantity                    
                     
AIM III         8       Jobs/min        not applicable    16168.2
Throughput                                       

McCalpin        1       MB/s            not available     186.29
Copy                                             

                8       MB/s            not applicable    898.61
                                                 
McCalpin        1       MB/s            not available     174.4
Scale                                            

                8       MB/s            not applicable    829.74
                                                 
McCalpin        1       MB/s            not available     198.3
Sum                                              

                8       MB/s            not applicable    891.84
                                                 
McCalpin        1       MB/s            not available     195.15
Triad                                            

                8       MB/s            not applicable    982.13
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