
The AlphaServer 8000 Series: High-end Server Platform Development

by David M. Fenwick, Denis J. Foley, William B. Gist,
Stephen R. VanDoren, and Daniel Wissell

ABSTRACT

The AlphaServer 8400 and the AlphaServer 8200 are Digital's
newest high-end server products. Both servers are based on the
300-MHz Alpha 21164 microprocessor and on the AlphaServer
8000-series platform architecture. The AlphaServer 8000 platform
development team set aggressive system data bandwidth and memory
read latency targets in order to achieve high-performance goals.
The low-latency criterion was factored into design decisions made
at each of the seven layers of platform development. The
combination of industry-leading microprocessor technology and a
system platform focused on low latency has resulted in a
12-processor server implementation--the AlphaServer 8400--capable
of supercomputer levels of performance.

INTRODUCTION

The new AlphaServer 8000 platform is the foundation for a series
of open, Alpha microprocessor-based, high-end server products,
beginning with the AlphaServer 8400 and AlphaServer 8200 systems
and continuing through at least three generations of products.
When combined with the power of the industry-leading
300-megahertz (MHz) Alpha 21164 microprocessor,[1] this
innovative server platform offers the outstanding performance and
price/performance required in technical and commercial markets.
In uniprocessor performance benchmark tests, the AlphaServer
8400/8200 SPECfp92 rating of 512 instructions per second is 1.4
times the rating of its nearest competitor, the SGI Power
Challenge XL product. In multiprocessor benchmark tests of
systems with 1 to 12 processors, the AlphaServer 8400 system
posts SPECrate levels greater than 3.5 times those of the
HP9000-800 T500 system. In the category of cost for performance,
NAS Parallel Class B SP benchmarks show that the AlphaServer 8400
system provides 1.7 times the performance per million dollars of
the SGI Power Challenge XL system.[2] Perhaps most impressive is
the AlphaServer 8400 performance on the Linpack NxN benchmark.[3]
With a Linpack NxN result of 5 billion floating-point operations
(GFLOPS), a 12-processor AlphaServer 8400 achieves the
performance levels of supercomputers such as the NEC SX-3/22
system and the massively parallel Thinking Machines CM-200
system.

There are two keys to the remarkable performance of the
AlphaServer 8400 and AlphaServer 8200 systems: the Alpha 21164
microprocessor chip and the AlphaServer 8000 platform
architecture. This paper is concerned with the second of these,
the AlphaServer 8000 platform architecture. Specifically, it

discusses the principal design issues encountered and resolved in
the pursuit of the aggressive performance and product goals for
the AlphaServer 8000 series. The paper concludes with an
evaluation of the success of this platform development based on
the performance results of the first AlphaServer 8000-series
products, the AlphaServer 8400 and AlphaServer 8200 systems.

ALPHASERVER 8400 AND ALPHASERVER 8200 PRODUCT GOALS

The AlphaServer 8000 platform technical requirements were derived
from a set of product goals. This set comprised minimum
performance goals and a number of specific configuration and
expandability requirements developed from Digital's server
marketing profiles. The motivations that shaped the list of goals
below were many. Support for legacy I/O subsystems and DEC
7000/10000 AXP compatibility, for example, was motivated by the
need to provide Digital's customer installed base with a
cost-effective upgrade path from 7000-series hardware to
AlphaServer 8000-series hardware. The goals for low-cost I/O
subsystem, peripheral component interconnect (PCI), and EISA
support and for rackmount cabinet support were included to take
advantage of emerging industry standards and open systems and
their markets. The processor, I/O, and memory capacity goals were
driven simply by the competitive state of the server market.

 o Provide industry-leading enterprise and open-office
 server performance.

 o Provide twice the overall performance of the DEC
 7000/10000 AXP server products.

 o Support up to 12 Alpha 21164 processors.

 o Support at least 14 gigabytes (GB) of main memory.

 o Support multiple I/O port controllers--up to 144 I/O
 slots.

 o Provide a low-cost, integrated I/O subsystem.

 o Support new, industry-standard PCI and EISA I/O
 subsystems.

 o Continue to support legacy I/O subsystems, such as XMI
 and Futurebus+.

 o Make centerplane hardware compatible with an
 industry-standard rackmount cabinet.

 o Make centerplane hardware mechanically compatible with
 the DEC 7000/10000 AXP-series cabinet.

PERFORMANCE GOALS AND MEMORY READ LATENCY ISSUES

Although "providing industry-leading performance" and "doubling
the performance" of an existing industry-leading server present
excellent goals for the development of a new server, it is
difficult to design to such nebulous goals. To quantify the
actual technical requirements for the new AlphaServer 8000
platform, the design team utilized a performance study of the DEC
7000/10000 AXP systems and conducted a detailed analysis of
symmetric multiprocessing (SMP) system operation. As a result of
the analyses, aggressive system data bandwidth and memory read
latency goals were established, as well as a design philosophy
that emphasized low memory read latency in all aspects of the
platform development. This section addresses the read latency
issues and goals considered by the design team. The 8000 platform
development is the focus of the section following.

Read latency is the time it takes a microprocessor to read a
piece of data into a register in response to a load instruction.
If the data to be read is found in a processor's cache, the read
latency will typically be very small. If, however, the data to be
read resides in a computer system's main memory, the read latency
is typically much larger. In either case, a processor may have to
wait the duration of the read latency to make further progress.
The smaller the read latency, the less time a processor waits for
data and thus the better the processor performs.

 Cache memories are typically used to minimize read latency. When
caches do not work well, either because data sets are larger than
the cache size or as the result of non-locality of reference, a
computer system's processor-memory interconnect contributes
significantly to the average read latency seen by a processor.
The system characteristics that help determine a processor's
average read latency are the system's minimum memory read latency
and data bandwidth.

A system's minimum memory read latency is the time required for a
processor to fetch data from a system's main memory, unencumbered
by system traffic from other processors and I/O ports. As
processors and I/O ports are added to a system, their competition
for memory and interconnect resources tends to degrade the
system's memory read latency from the minimum memory read latency
baseline. A system's data bandwidth, i.e., the amount of data
that a system can transfer between main memory and its processors
and I/O ports in a given period of time, will determine the
extent to which processors and I/O ports will degrade each
other's read latency. As data bandwidth increases, so too does a
system's ability to support concurrent data references from
various processors and I/O ports. This increased bandwidth and
concurrent data referencing serve to reduce competition for
resources and, as a result, to reduce memory read latency. Thus
we can conclude that the more available data bandwidth in a
system, the closer the memory read latency will be to the
minimum. This conclusion is supported by the results of a queuing

model used to support the AlphaServer 8000 platform development.
This queuing model, originally implemented to evaluate bus
arbitration schemes, outputs the average read latencies
experienced by each processor in a system as the number of
processors and the number of memory resources are varied. It is
important to note that in this model memory resources, or banks,
determine the amount of system bandwidth: the more memory banks,
the more bandwidth. It is also important to note that the minimum
read latency in this model is 168 nanoseconds (ns). The results
of the model are shown in Table 1. These results clearly show
that latency degrades as the number of system processors is
increased and that latency improves as the system's
bandwidth--number of memory banks--is increased.

Table 1 Average Read Latency as a Function of the Number of
Processors and Bandwidth (Number of Memory Banks)

Number of { Average Read Latency (Nanoseconds) }
Processors

 2 Memory Banks 4 Memory Banks 6 Memory Banks 8 Memory Banks

1 185 179 177 176

2 224 200 193 190

4 358 253 230 220

8 928 439 338 299

Many technical market benchmarks, such as the Linpack benchmarks
and the McCalpin Streams benchmark, stress a computer system's
data bandwidth capability. The regularity of data reference
patterns in these benchmarks allows a high degree of data
prefetching. Consequently, data can be streamed into a processor
from main memory so that a piece of data has an unnaturally high
probability of being resident in the processor's cache when it is
needed for some calculation. Ironically, this amounts to using
smart software to minimize read latency. By reading a piece of
data into a processor's cache before it is actually needed, the
software presents the processor with a small cache read latency
instead of a long memory latency when the data is needed. Thus
the streaming techniques applied in these benchmarks allow
processors in high-bandwidth systems to stall for a full memory
read latency period only when starting up a stream of data.
Therefore memory latency can be amortized over lengthy
high-bandwidth data streams, minimizing its significance. It is
important to note, however, that although bandwidth is the system
attribute that dominates performance in these workloads, it
dominates performance through its effect on read latency.

Commercial workloads like the Transaction Processing Performance
Council's benchmark suite, on the other hand, typically have more

complex data patterns that frequently defy attempts to prefetch
data. When some of these codes parse data structures, in fact,
the address of each data access may depend on the results of the
last data access. In any case where a processor must wait for
memory read data to make progress, a system's memory read latency
will determine the period of time that the processor will be
stalled. Such stall periods directly affect the performance of
computer systems on commercial workloads. These assertions
supported by a study on the performance of commercial workloads
on Digital's Alpha 20164-based DEC 7000/1000 AXP server.[4] It is
important to note here that the latency ills flagged in this
study cannot be cured with raw system data bandwidth or
software-enhanced latency reduction. Low memory latency alone can
address the needs of these workloads.

Comparable industry systems from IBM[5] and Hewlett-Packard
(HP)[6] do not stress low memory latency system development in
their respective RISC System/6000 SMP or Hawks (PA-8000-based)
SMP systems. In fact, neither directly acknowledges memory
latency as a significant system attribute. This mind set is
reflected in the results: Based on IBM's documentation, we
estimate the RISC System/6000 SMP's minimum main memory read
latency to be in the neighborhood of 600 to 800 ns.

IBM and HP do emphasize system bandwidth in their designs. HP
provides a 960-MB-per-second (MB/s) "runway" processor-memory bus
in its Hawks system. The actual data bandwidth of this bus is
slightly less than the quoted 960 MB/s, since the bus is shared
between address and data traffic. IBM, on the other hand, goes to
the extent of applying a data crossbar switch in conjunction with
a serial address bus to reach an 800-MB/s rate in its RISC
System/6000 SMP system. The actual attainable data bandwidth in
IBM's system is determined by the bandwidth of its address bus.

In the past, Digital's systems have shown much the same balance
of bandwidth and latency as have their competitors. The DEC
7000/10000 AXP system has a minimum main memory read latency of
560 ns and a system data bandwidth of 640 MB/s. The AlphaServer
8000 platform, however, was developed with a marked emphasis on
low memory read latency. This emphasis can be seen through nearly
all phases of system development, including the system topology,
clocking strategy, and protocol. This latency- oriented mindset
is reflected in the results: The AlphaServer 8000 platform boasts
minimum memory read latencies of 200 ns. The AlphaServer 8400 and
8200 systems feature a minimum memory read latency of 260 ns. To
back up these latencies, the AlphaServer 8000 platform supports a
tremendous 2,100 MB/s of data bandwidth. The AlphaServer 8400
and 8200 systems, although not capable of providing the full
2,100 MB/s, still provide 1,600 MB/s of bandwidth. This gives the
systems less than half the memory latency of comparable industry
systems while providing nearly twice the bandwidth. Furthermore,
these attributes improve upon the DEC 7000/10000 AXP attributes
by factors of 2 to 3. Although difficult to determine exactly
how these attributes would translate into overall system

performance, they were accepted as sufficient to meet the
AlphaServer 8000 platform performance goals. A comparison of the
maximum DEC 7000/10000 AXP SPECrates of approximately 25,000
integer and 40,000 floating point with the maximum AlphaServer
8400 SPECrates of 91,580 integer and 14,0571 floating point
indicates that these attributes were sound choices.

ALPHASERVER 8000 PLATFORM DEVELOPMENT

Referring to the AlphaServer 8000 platform as a "foundation" for
a series of server products does not give a clear picture of what
constitutes a server platform. The AlphaServer 8000 platform has
both physical and architectural components. The physical
component consists of the basic physical structure from which
8000-series server products are built. This includes power
systems, thermal management systems, system enclosures, and a
centerplane card cage that implements the interconnect between
processor, memory and I/O port modules. The processor, memory,
and I/O modules are printed circuit board (PCB) assemblies that
can be implemented with varying combinations of processor,
dynamic random-access memory (DRAM), and application-specific
integrated circuit (ASIC) components. The assemblies are inserted
into the platform centerplane card cage in varying configurations
and in varying enclosures to create the various 8000-series
products. The AlphaServer 8200 system, for example, comprises up
to six Alpha 21164-based TLEP processor modules, TMEM memory
modules, or ITIOP and TIOP I/O port modules in an
industry-standard rack-mount system. The AlphaServer 8400 system
comprises up to nine TLEP processor modules, TMEM memory modules,
or ITIOP and TIOP I/O port modules in a DEC 7000 AXP-style data
center cabinet.

The architectural component of the AlphaServer 8000 platform
consists primarily of a collection of technological, topological,
and protocol standards. This collection includes the
processor-memory interconnect strategy, the bus interface
technology, the clock technology and methodology, and the
signaling protocols. For example, the TLEP, TMEM, and TIOP
modules all implement bus interfaces in the same integrated
circuit (IC) packages with the same silicon technology and drive
their common interconnect bus with the same standard bus driver
cell. Furthermore, all these modules apply nearly identical
clocking circuits and communicate by means of a common bus
protocol. The ephemeral architectural standards that constitute
the "platform" specify exact physical requirements for designing
the AlphaServer processor-memory-I/O port interconnect and the
various modules that will populate it. It is important to note
that the key to AlphaServer 8000 performance is found in these
standards. As we explore the design decisions and trade-offs that
shaped the AlphaServer 8000 platform, it is this collection of
architectural standards that we actually probe.

Throughout this analysis of the AlphaServer 8000 architecture,

two themes frequently recur: low memory latency and practical
engineering. As discussed in the context of the AlphaServer 8000
goals, low memory read latency was identified as the key to
system performance. As such, low latency was factored into nearly
every system design decision. Design decisions in general can be
thought of as being resolved in one of two ways: by emphasizing
Digital's superior silicon technology or by effecting
architectural finesse. Use of superior technology is self
explanatory; it involves pushing leading-edge technology to
simply overwhelm and eliminate a design issue. Architectural
finesse, on the other hand, typically involves a shift in
operating mode or configuration that allows a problem to be
avoided altogether. Practical engineering is the art of finding a
balance between leading-edge technology and architectural finesse
that produces the best product.

LAYERED PLATFORM DEVELOPMENT

Platform development typically involves a simple three-layer
process: (1) determine a basic system topology, (2) establish the
electrical means by which various computer components will
transmit signals across the system topology, and (3) apply a
signaling protocol to the electrical transmissions to give them
meaning and to allow the computer components to communicate.
System topology determines how processor, memory, and I/O
components of a computer system are interconnected. Computer
interconnects may involve simple buses, multiplexed buses,
switches, and multitiered buses. The electrical means for
transmitting signals across a computer interconnect may involve
bus driver technology, switch technology, and clock technology.
Signaling protocols apply names to system interconnect signals
and define cycles in which the signals have valid values. This
naming and definition allows each computer component to
understand the transmissions of other components.

As the AlphaServer 8000 platform development progressed, this
simple three-layer platform development model was found to be
insufficient. Efforts to achieve the low-latency performance goal
and the simple product goals uncovered unexpected design issues.
The resolution of these design issues led to the creation of a
more robust seven-layer platform development model. When certain
multi-driver bus signals threatened the cycle time of the
AlphaServer 8000 system bus, for example, the system's latency
goals were threatened as well. The practical solution to this
multi-driver signal problem was the creation of specific
signaling conventions for problematic classes of signals. This
innovation led to the birth of the Signaling Layer of the
development model. Similarly, when the integration of PCI I/O
into the system was found to conflict with primary protocol
elements that were key to low latency processor-memory
communication, the concept of a "superset protocol" was created.
This led to the creation of the Superset Protocol Layer of the
development model. The seven-layer platform development model is

contrasted with the simple three-layer development model in
Figure 1.

The analysis of the AlphaServer 8000 platform design presented
here traces the key system design decisions through each of the
seven layers of the development process. Each layer will be
described in greater detail as this analysis proceeds.

[Figure 1 (Comparison of Conventional Three-Layer Model with
Seven-Layer Platform Development Model) is not available in ASCII
format.]

Topological Layer

Server-class computers typically comprise processor, memory, and
I/O port components. These components are usually found in the
form of PCB modules. A computer system's topology defines how
these computer components are interconnected. Computer topologies
are many and varied. The IBM RISC System/6000 SMP, for example,
links its modules by means of an address bus and a data switch.
Its memory modules are grouped into a single memory subsystem
with one connection to the address bus and one connection to the
data switch. The HP Hawks SMP system, by comparison, links its
modules by means of a single bus onto which address and data are
multiplexed. The Hawks system also groups its memory into a
single memory subsystem with one connection to the multiplexed
bus.[7] Digital's DEC 7000/10000 AXP also uses a single
multiplexed address and data bus. Unlike the IBM and HP systems,
the DEC 7000/10000 AXP system allows its memory to be
distributed, with multiple connections to its multiplexed bus.

None of the IBM, HP, or prior Digital systems meet the latency
goals of the AlphaServer 8000 platform. Exactly how much system
topology contributes to these systems' latencies is unclear. A
multiplexed address and data bus certainly creates a system
bottleneck and can contribute to latency. Likewise, unified
memory subsystems can often have associated overhead that can
translate into latency. In addition to performance issues,
topologies such as the IBM switch-based system have significant
cost issues. If, for example, a customer were to purchase a
sparsely configured--two processors perhaps--IBM system, such a
customer would be required to pay for the switch support for up
to eight processors. This creates a high system entry cost and a
potentially lower incremental cost as functionality is added to
the system. In a simple bused system, a customer pays only for
what is needed to support the specific functionality required.
This creates a more manageable entry cost and a smooth, if
slightly steeper, incremental cost. From Digital's marketing
perspective, this makes a bused system preferable, provided it
can satisfy bandwidth and latency requirements.

Uniprocessor computer topologies, an example of which is shown in
Figure 2, typically exhibit the lowest memory read latencies of

any computer class. As such, this simple uniprocessor topology
was chosen as the basis from which to develop the AlphaServer
8000 platform topology. In the uniprocessor model, processor
chips communicate with DRAM arrays through separate address and
data paths. These paths include address and data interfaces and
buses. The AlphaServer 8000 topology was created by adding a
second set of interfaces between the address and data buses and
the DRAM array, and connecting additional microprocessors, memory
arrays, and I/O ports to the buses by means of similar
interfaces. The resultant topology is shown in Figure 3. This
topology features separate address and data buses. These buses
together are referred to as the AlphaServer 8000 system bus.

[Figure 2 (Simple Uniprocessor System Topology) and Figure 3
(AlphaServer 8000 Multiprocessor System Topology) are not
available in ASCII format.]

The topology presented in Figure 3 is an abstract. To flesh out
this abstract and measure it against specific system goals,
signal counts, cycle times, and bus connection (slot) counts must
be added. It is in this effort that practical engineering must be
applied. To achieve the system's bandwidth goal, for example, the
data bus could be implemented as a wide bus with a high clock
frequency, or it could be replaced with a switch-based data
interconnect, like that of the IBM RISC System/6000 SMP. The
high-frequency bus presents a significant technological challenge
in terms of drivers and clocking. This challenge grows as the
number of bus slots grows. The growth of the technological
challenge is a significant issue given the system's configuration
goals. The switch interconnect, on the other hand, avoids the
technological challenges by providing more data paths at lower
clock frequencies. The lower clock frequencies, however, can
translate directly into additional latency. Given the emphasis
placed on memory latency and the advantages associated with
simple bused systems, the practical design choice was to adopt a
wide, high-frequency data interconnect. The resultant AlphaServer
8000 system bus features 9 slots, an address bus that supports a
40-bit address space, and a 256-bit (plus error-correcting code
[ECC]) data bus. To meet configuration goals, processor modules
necessarily support at least two microprocessors per module,
memory modules support up to 2 GB of DRAM storage, and I/O port
modules support up to 48 PCI slots. To meet performance goals,
both buses must operate at a frequency of 100 MHz (10-ns cycle).

The AlphaServer 8000 platform topology has a number of
advantages. The most significant advantage is that memory read
latency from any processor to any memory array is comparable to
the latency of a uniprocessor system. The delay associated with
two interfaces--one address interface and one data interface--is
all that is added into the path. In addition, the platform's
simple bus topology features a low entry cost, a simple growth
path (just insert another module) and flexible configuration
(just about any module can be placed in any slot).

Operational Layer

The Operational Layer is so named for lack of a better
descriptor. The layer is actually a place to define a high-level
system clocking strategy. This strategy has two key components:
definition of target operating frequencies and definition of a
design methodology to support operation across all the defined
operating frequencies. The design methodology component of this
strategy may seem better suited for a higher order development
layer, such as the Protocol Layer. However, because the
methodology is logically associated with the system's operating
frequency range and the operating frequency range provides a
foundation for the Electrical Transport Layer, it seemed
appropriate to include both components of the strategy in the
Operational Layer.

In personal computer (PC)-class microprocessor systems, clock
rates are typically slow (33 MHz to 66 MHz). Complementary
components capable of operating at these speeds are readily
available, e.g., transceivers, static random-access memory
(SRAM), ASIC, DRAM, and programmable array logic (PAL). Therefore
entire PC systems are typically run synchronously, i.e., the
system logic (typically a motherboard) and the microprocessor run
at identical clock speeds. Alpha processors, on the other hand,
run at clock rates exceeding 250 MHz. The current state of
complementary components makes running system logic at Alpha
processor rates impractical if not impossible. Many of these
components cannot perform internal functions at a 250-MHz rate,
let alone transfers between components.

Digital's DEC 7000/10000 AXP systems solved the problem of Alpha
microprocessor and system clock disparity by running both the
Alpha microprocessor and the DEC 7000/10000 AXP system hardware
at their respective maximum clock rates and synchronizing address
and data transfers between the microprocessor and the system.
Each time a transfer was synchronized, however, a synchronization
latency penalty was added to the latency of the transfer. In the
DEC 7000/10000 AXP system, two synchronization penalties--one for
an address transfer to the system and one for a data transfer to
the processor--are added to each memory read latency. With
multiple data transfers, the data transfer from the system to the
processor can be particularly large. When combined, the two
penalties added nearly 125 ns to the DEC 7000/10000 AXP read
latency, or approximately 25 percent of the total 560-ns latency.
The same 125 ns, however, could add another 60 percent to the
AlphaServer 8000 platform's lower target latency of 200 ns.

Given its latency goals, the AlphaServer 8000 platform implements
a clocking methodology that minimizes synchronization penalties
and thus minimizes read latency. This methodology involves
clocking the entire AlphaServer system--up to the I/O
channels--synchronous to the microprocessor in such a way that
the Alpha microprocessor operates at a clock frequency that is a

direct multiple of the system clock frequency. With a 100-MHz
(10-ns cycle) clock rate, for example, the AlphaServer 8000 could
support a 200-MHz (5-ns cycle) Alpha processor using a 2[X] clock
multiplier. Since the processor must still synchronize with a
system clock edge when transferring address and data to the
system, synchronization penalties are not eliminated altogether.
They can, however, be limited to less than 10 ns, or 5 percent of
the AlphaServer 8000 platform's total read latency.

Synchronous clocking by means of clock multiples is not unique
and innovative in and of itself. The uniqueness of the
AlphaServer 8000 clocking strategy lies in its flexibility. Since
the AlphaServer 8000 platform must support at least three
generations of Alpha processors to satisfy its product goals and
the specific operating frequencies of those processors is
difficult to predict, the AlphaServer 8000 platform must be
capable of operating across a range of clock frequencies.
Specifically the AlphaServer 8000 platform is capable of
operating at clock frequencies between 62.5 MHz (16-ns cycle) and
100 MHz (10-ns cycle).

Operating across a range of frequencies may seem a trivial
requirement to meet; if logic were designed to operate at a 10-ns
cycle time, it should certainly continue to function electrically
at a 16-ns cycle time. The real issues that this frequency range
creates, however, are much more subtle. DRAMs, for example,
require a periodic refresh. The refresh period for typical DRAM
may be 50 milliseconds (ms). If a system were designed to a 10-ns
clock rate, the system would be designed to initiate a DRAM
refresh every 5,000,000 cycles. If the system were to be slowed
to a 16-ns clock rate, the system would initiate a DRAM refresh
every 80 ms based on the same 5,000,000 cycles. This could cause
DRAMs to lose state and corrupt system operation. Similarly,
DRAMs have a fixed read access time. The AlphaServer 8400/8200
TMEM module, for example, uses 60-ns DRAMs. If the DRAM's
controller is designed as a 7-cycle controller and clocked at a
10-ns clock rate, it would access the 60-ns DRAM in 70 ns. If the
system were slowed to a 16-ns clock rate, the system would, using
the same controller, consume 112 ns in accessing the same 60-ns
DRAM. This application of a single simple controller over a
frequency range directly increases the DRAM's read latency and
decreases the DRAM's bandwidth. This non-optimal DRAM performance
in turn directly increases the system read latency and decreases
the system bandwidth.

The AlphaServer 8000 platform design addresses these issues by
implementing controllers that can be reconfigured based on the
system's specific operating frequency. The TMEM module, for
example, implements a reconfigurable controller for sequencing
the reads and writes of its DRAMs. This controller has three
settings: one for cycle times between 10 ns and 11.2 ns, one for
cycle times between 11.3 ns and 12.9 ns, and one for cycle times
between 13 ns and 16 ns. Each setting accesses the DRAMs in
differing numbers of system clock cycles, but all three modes

access the DRAMs in approximately the same number of nanoseconds.
By allowing flexible reconfiguration, this controller allows the
TMEM to keep the DRAM's read latency and bandwidth as close to
ideal as possible. Other examples of reconfigurable controllers
are the TMEM's refresh timer and the TLEP's cache controller.

It should be noted here that the AlphaServer 8000 operating
frequency range and processor-based frequency selection account
for the disparities between the AlphaServer 8000 platform's
bandwidth capability and the AlphaServer 8400 and 8200 products'
bandwidth capabilities. The Alpha 21164 processor is the basis
for the 8400 and 8200 products. This 300-MHz (3.33-ns cycle)
microprocessor, combined with a 4[X] clock frequency multiplier,
sets the system clock frequency at 75 MHz (13.3-ns cycle). This
13.3-ns cycle time, when applied to the 256-bit data bus,
produces the 1,600 MB/s of data bandwidth. The cycle time
increases the read latency of the 8400 and the 8200 to some
extent as well, but the reconfigurable DRAM controllers help to
mitigate this effect.

Electrical Transport Layer

When the bused system topology was selected in the Topological
Layer of the AlphaServer 8000 platform development, a practical
engineering decision was made to emphasize leading-edge
technology as the means to accomplish our performance goals, as
opposed to elegant architectural chicanery. It was observed in
the topological discussion that, with the selected system
topology, bus cycle time was critical to meeting the platform's
performance goals. The Electrical Transport Layer of the platform
development involved selecting or developing the centerplane,
connector, clocking, and silicon interface technology that would
allow the AlphaServer 8000 system bus to operate at a 100-MHz
clock frequency. The most innovative of the technological
developments that resulted from this effort were the platform's
clocking system and its custom bus driver/receiver cell.

To put the AlphaServer 8000 100-MHz system bus goal in
perspective, consider the operating frequencies of a number of
today's highly competitive microprocessors.[8] The NexGen Nx586
operates at 93 MHz. The Intel Pentium, Cyrix M1, and AMD K5 all
operate at 100 MHz. The Intel P6 operates at 133 MHz. In all
these microprocessors, the 100+/-- MHz operation takes place on a
silicon die less than 1 inch square. To meet its goals, the
AlphaServer 8000 system bus must transfer data from an interface
on a module in any slot on the system bus to an interface on
another module in any other slot on the system bus across a
13-inch-long wire etch, with nine etch stubs and nine connectors,
in the same 10 ns in which these microprocessors transfer data
across 1-inch dies. By any measure this is a daunting task.

A breakdown of the elements that determine minimum cycle time
aptly demonstrates the significance of clock system design, bus

driver design, and bus receiver design in the AlphaServer 8000
system bus development. Minimum bus cycle time is the minimum
time required between clock edges during which data is driven
from a bus driver cell on one clock edge and is received into a
bus receiver cell on the next clock edge. An equation for
determining the minimum cycle time is shown below. Tcmin is the
minimum cycle time. Tprop is the time, measured from a rising
clock edge, that is required for a bus driver to drive a new bus
signal level to all system bus receivers. Tsetup is the time a
bus receiver needs to process a new bus signal level before the
signal can be clocked into the receiver cell. Tskew is the
variation between the clock used to clock the bus driver and the
clock used to clock the bus receiver. Tprop, Tsetup, and Tskew
must all be minimized to achieve the lowest possible cycle time.
The value of Tskew is determined by the system clock design. The
values of Tprop and Tsetup are determined by the bus
driver/receiver cell design.

 Tcmin = Tprop + Tsetup + Tskew

AlphaServer 8000 System Bus Interface. To provide some context
for the clock and bus driver/receiver discussions, it is
necessary to briefly describe the standard AlphaServer 8000
system bus interface. Each AlphaServer 8000 module implements a
standard system bus interface. This interface consists of five
ASICs: one interfaces to the AlphaServer 8000 address bus and
four interface to the AlphaServer 8000 data bus.[9] Each ASIC is
implemented in Digital's 0.75-micrometer, 3.3-volt (V)
complementary metal-oxide semiconductor (CMOS) technology and
features up to 100,000 gates. Each ASIC is packaged in a 447-pin
interstitial pin grid array (IPGA) and features up to 273 user
I/Os.

Essential to the AlphaServer 8000 development were the speed of
the CMOS interface ASIC technology and the development team's
ability to influence the ASIC design process. "Influencing the
design process" translated to the ability to develop a standard
cell design library and process that is for and in concert with
the development of the AlphaServer 8000 platform. The standard
cell library, together with the CMOS silicon technology, provided
the AlphaServer 8000 platform's required speed; complex logic
functions (5 to 8 levels of complex logic gates) can be performed
within a 10-ns cycle. "Influencing the design process" also
translated to the ability to design a fully custom bus
driver/receiver cell. Thus the development team could create a
custom driver/receiver cell tailored to the specific needs of the
AlphaServer 8000 system bus.

Clock Technology. The primary goal of the AlphaServer 8000
platform clock distribution system was to maintain a skew (Tskew)
as small as possible between any two clocks in the system, while
delivering clocks to all clocked system components. The goal of
minimum skew is consistent with attaining the lowest possible bus
cycle time, the highest possible system data bandwidth, and the

lowest possible memory read latency. It is important to note that
in the AlphaServer 8000 platform, skew between clocks is not
simply measured at the clock pins of the various clocked
components. Skew is measured and, more important, managed at the
actual "point of use" of the clock, for example, at the clock
pins of ASIC flip-flops. This is an important point when dealing
with ASICs. Since different copies of even the same ASIC design
can have different clock insertion delays, additional skew can be
injected between clocks after the clocks pass their ASIC pins.

The AlphaServer 8000 clock distribution system is implemented
according to a two-tier scheme. The first tier, the system clock
distribution, distributes a clean radio frequency (RF) sine wave
clock to each system bus module. The second tier, the module
clock distribution, converts the system RF sine wave clock to a
digital clock and distributes the digital clock to each module's
components. The module clock distribution tier also manages the
skew between the system RF sine wave clock and all copies of each
module's digital clock by means of an innovative "remote delay
compensation" mechanism. The system clock distribution delivers
clocks to the nine system bus module slots with a maximum of 40
picoseconds (ps) of skew. The module clock distribution delivers
clocks to the various module components, most notably system bus
interface ASICs, with a maximum of 980 ps of skew. The skew
between any ASIC flip-flop on any AlphaServer 8000 module and any
ASIC flip-flop on any other AlphaServer 8000 module is guaranteed
to be less than 1100 ps.

The AlphaServer 8000 system clock distribution begins on the
system clock module with a single-ended RF oscillator, a constant
impedance bandpass filter, and a nine-way power splitter. The
power splitter, by way of the bandpass filter, produces nine
spectrally clean, amplitude-reduced copies of the oscillator sine
wave. These nine outputs are tightly matched in phase and
amplitude. They are distributed to the nine system bus module
connectors by means of matched-length, shrouded,
controlled-impedance etch. This design provides the modules with
low skew (30 to 40 ps), high-quality (greater than 20-decibel
signal-to-noise ratio) clocks.

The RF sine wave clock was an ideal selection for system clock
distribution. By eliminating all high-order harmonics, the edge
rates and propagation times of the clock wave are fixed and
predictable across the distribution network. This predictability
eliminates variation in the clock as perceived by the clock
receiver on each module, thus minimizing skew. It also greatly
reduces constraints on the design of connectors, etch,
termination, etc.

The AlphaServer 8000 module clock distribution is a boilerplate
design that is replicated on each AlphaServer 8000 module. On
each module, the system sine wave clock is terminated by a
single-ended-to-dual-differential output transformer. This
transformer produces two phase- and amplitude-matched

differential clocks that are fed into one or two AlphaServer 8000
clock repeater chips (DC285 chips). These chips convert the sine
wave clocks into CMOS-compatible digital clocks; distribute
multiple copies of the digital clocks to various module
components, including the system bus interface ASICs; and perform
remote delay clock regulation on each clock copy.

The remote delay clock regulation is performed by a custom,
digital delay-locked loop (DLL) circuit. This DLL circuit was
devised specifically to deskew clocks all the way to their point
of use in the system bus interface ASICs. The principles of
DLL-based remote delay clock regulation are simple. The sum of
the delays associated with (1) the clock repeater chips, (2) the
module clock distribution etch, and (3) the ASIC clock
distribution network constitutes the insertion delay of the ASIC
point-of-use clock with respect to the system sine wave clock.
With no clock regulation, this delay appears as skew between the
system clock and the point-of-use ASIC clock. Between ASICs on
different modules, a fixed portion of the clock insertion delay
will correlate and need not be factored into the overall system
skew. Since the insertion delay can easily approach 7 ns,
however, the variation in the insertion delays to different
ASICs, which must be factored into the overall system skew, can
also be significant. To reduce the skew between the system sine
wave clock and the point-of-use ASIC clock, the clock repeater
uses a digital delay line to add delay to the clock repeater
output clock. Enough delay is added so that the insertion delay
plus the delay-line delay is equal to an integer multiple of the
system clock. This delay moves the point-of-use clock ahead to a
point where it again lines up with the system clock. As the
system operates, the system and point-of-use clocks may drift
apart. In response, the clock repeater adjusts its delay line to
pull the clocks back together. This process of delaying clocks
and dynamically adjusting the delay is called remote delay clock
regulation. When the clock separation, or drift, is measured by
a clock "replica loop" and the clock delay is inserted by means
of a digital delay line, the process is called DLL-based remote
delay clock regulation.[10] Using the clock repeater chips in
this way, AlphaServer 8000 modules are able to achieve
point-of-use to point-of-use skew of approximately 930 to 980 ps.
Combined with the system module-to-module skew of 30 to 40 ps,
this provides the quoted system-wide clock skew of no more than
1,100 ps.

It is worth noting that although the AlphaServer clock repeater
was primarily developed for use with system bus interface ASICs,
it is a generally versatile part. It may, for instance, be used
with non-ASIC parts such as transceivers and synchronous SRAMs.
In these cases, the clock pin of the non-ASIC part is treated as
the point of use of the clock. The clock repeater may also be
used for precise positioning of clock edges. On the TLEP module,
for example, the Alpha 21164 microprocessor's system clock is
synchronized to a clock repeater output by means of a digital
phase-locked loop (PLL) on the microprocessor. The Alpha 21164's

PLL operates in such a way that the 21164's clock is always in
phase with or always trailing the system (reference) clock. It
can trail by as much as 2 ns. Such a large clock disparity in
this fixed orientation can create setup time problems for
transfers from the Alpha 21164 to the system and hold-time
problems for transfers from the system to the Alpha 21164. The
TLEP design addressed this problem by lengthening the replica
loop associated with the Alpha 21164 clock and thereby shifting
the microprocessor clock 1 ns earlier than the balance of the
clock repeater output clocks. Since the Alpha 21164 clock was
either in phase or 2 ns later than its associated clock repeater
clock, which is 1 ns earlier than the rest of the clock repeater
clocks, the 21164 clock now appears to be either 1 ns earlier or
1 ns later than the rest of the clock repeater system clocks.
This centering of the module clocks with respect to the 21164
clock halves the required setup or hold margin.[11, 12, 13, 14]

Bus Driver Technology. Like the AlphaServer 8000 clock system,
the AlphaServer 8000 system bus driver/receiver cell was
specifically designed to minimize bus cycle time. As with the
clock logic, the goal of minimizing cycle time was a result of
the effort to minimize system read latency and maximize system
data bandwidth. In the effort to minimize the bus cycle time, the
design of the AlphaServer 8000 bus driver/receiver cell was
focused on minimizing the propagation delay (Tprop) of the
system bus driver circuit and minimizing the setup time (Tsetup)
of the system bus receiver.

The AlphaServer 8000 system bus driver/receiver cell is a fully
custom CMOS I/O cell, which incorporates a bus driver, a bus
receiver, and an output flip-flop and an input flip-flop in a
single cell. Consisting of nearly 200 metal oxide semiconductor
field-effect transistors (MOSFETs), the bus driver cell is
powered by standard 3.3-V CMOS power, but drives the bus at a
much lower 1.5-V level (i.e., voltage swings between 0 and 1.5
V). This low voltage output serves to reduce the bus driver's
power consumption and permits compatibility with future CMOS
technologies that are powered by voltages less than 3.3 V. Many
of the bus driver cell's critical characteristics are
"programmable," such as the 1.5 V output, the receiver switching
point, the driver's drive current limit, and the driver's rise
and fall times. These values are programmed and, most important,
are held constant by means of reference voltages and resistances
external to the bus driver/receiver cell's ASIC package. They
allow the cell to produce uniform, predictable, high-performance
waveforms and to transmit and receive data in a clock cycle of 10
ns.

The bus driver/receiver's high performance begins with its output
flip-flop and driver logic. The output flip-flop is designed for
minimum delay and is integrally linked to the output driver. This
configuration produces clock-to-output times of 0.5 ns to 1 ns.
The output driver itself, with its programmable output voltage
and edge rates, allows the shape of the output waveform to be

carefully controlled. The cell's programmable values are set such
that the AlphaServer system bus waveform balances the edge rate
effects of increased crosstalk with increased propagation delay.
Furthermore, the bus waveform is shaped in such a way that it
allows incident wave transmission of signals. As such, a signal
can be received on its initial propagation across the bus
centerplane, as opposed to waiting for signal reflections to
settle. All the driver characteristics serve to reduce bus
settling time. When combined with the low clock-to-output time of
the output flip-flop, this reduced settling time produces a very
low driver circuit propagation delay (Tprop).

The bus driver/receiver cell's receiver and input flip-flop
further contribute to its high performance. Designed with a
programmable reference voltage, the receiver has a very precise
switching point. Whereas typical receivers may have a
200-millivolt (mV) to 300-mV switching window, the bus
driver/receiver cell's receiver has a switching window as small
as 40 mV. This diminished switching uncertainty directly reduces
the receiver's maximum setup time. The input flip-flop's master
latch is a sense-amplifier-based latch as opposed to a simple
inverter-based latch. The sense amplifier, with its ability to
resolve small voltage differentials much faster than standard
inverters, allows the master latch to determine its next state
much more rapidly than a standard latch. This characteristic
serves to reduce both the receiver's setup and hold time
requirements.

In general, the setup and hold time requirements of a state
element are interrelated. The setup time, for example, can be
reduced at the expense of hold time. Since setup time contributes
to cycle time and hold time may not, reducing setup time is
desirable. The AlphaServer 8000 bus driver/receiver cell requires
at most 300 ps of combined setup and hold time. However, since
the edge rates of the cell driver are so well controlled, the
minimum propagation time for a bus signal is always guaranteed to
exceed 300 ps. As a result, the bus receiver circuit is designed
with all 300 ps charged as hold time. This renders a minimized
receiver setup time (Tsetup) of 0 ps.

The AlphaServer 8000 bus driver/receiver cells have a number of
additional features that further reduce the propagation delay (
Tprop) of the driver circuit. The cell, for example, features
in-cell bus termination, which provides the system bus with full,
distributed termination. Simulations have shown that such
distributed termination can provide an advantage of 500 ps over
common end termination. The bus driver/receiver cell's
termination resistance, like other cell parameters, is
programmable and made identical throughout all system ASICs by
means of a reference resistor external to each ASIC.

The bus driver/receiver cell also features a special
preconditioning function that improves the driver's propagation
delay by as much as 1,500 ps. This feature causes all bus drivers

to begin driving toward the opposite state each time they receive
a new value from the bus. If the bus is changing state from one
cycle to the next, the feature causes all drivers to begin
driving the bus to a new state in the next cycle. In doing so,
all bus driver cell drivers contribute current and accelerate
the bus transition. If the bus is not changing from one cycle to
the next, the drivers simply push the state of the bus toward the
opposite state, but only to a benign voltage well short of the
switching threshold.

All of the bus driver cell's programmable features, such as
switching point, output voltage, edge rates, and termination
resistance, make the bus driver cell a very stable and
high-performance interface cell. The existence of these features,
however, is an element of the bus driver cell's complementary
process-voltage-temperature (PVT) compensation function. PVT
compensation is meant to make a device's operating
characteristics independent of variations in the semiconductor
process, power supply voltage, and operating temperature. By
applying PVT compensation in every AlphaServer system bus
interface ASIC, bus driver cells in different ASICs, for example,
can drive nearly identical system bus waveforms even if those
ASICs come from manufacturing lots with varying speed
characteristics. AlphaServer 8000 PVT compensation is based on
reference voltages and resistances provided by very precise,
low-cost, module-level components. The PVT compensation circuit
measures these references and configures internal voltages and
resistances so that all bus driver cells can operate uniformly
and predictably. By creating predictability and thus reducing
uncertainty and skew, bus cycle time is minimized.

Signaling Layer

Powerful though it may be, the AlphaServer 8000 bus
driver/receiver cell is not without limitations. During its
development, it was found that the bus driver cell could be
developed to drive the AlphaServer 8000 system bus in 10 ns under
a limited number of conditions. When the driver cell asserted a
deasserted (near 0 V) bus line or deasserted a bus line that had
been asserted (near 1.5 V) for only one cycle, for example, 10-ns
timing could readily be met. When the driver attempted to
deassert a bus line that had been asserted for more than one
cycle by multiple drivers, however, 10-ns timing could not be
met. These limitations have significant implications for protocol
development. Protocols typically have a number of signals that
can be driven by multiple drivers. These may include cache status
signals and bus flow control signals. Protocols also typically
include a number of signals that can be asserted for many cycles.
These may include bank busy signals or arbitration request
signals. Clearly the implications are that the limitations of the
bus driver/receiver cell would cause the system either to fall
short of its cycle time and performance goals or to be incapable
of supporting a workable bus protocol.

With the bus driver/receiver cell pushing technology to its
limits, the solutions to this problem were extremely limited. The
system cycle time could be slowed down to accommodate all signal
transitions within a single cycle, regardless of the charge state
of the signal line; or a signaling protocol could be developed
that would avoid charging a signal to the point where it could
not transition in 10 ns; or the physical topology of the system
could be reconsidered with the goal of finding a new topology
that met the system goals at a slower clock rate. The first
option of slowing the clock was clearly unacceptable; it could
not satisfy the system's latency and bandwidth goals given the
system's topology. The third option could potentially satisfy the
system's latency and bandwidth goals, but came at the expense of
the favorable qualities of the simple bus outlined in the
Topological Layer and at the risk that the new topology would
suffer similar, unforeseen pitfalls. The option of developing a
signaling protocol, on the other hand, could satisfy the system's
performance goals with little or no risk. A signaling protocol
was clearly the practical solution to the bus driver/receiver
cell limitations.

The Signaling Layer of the platform development model introduces
the AlphaServer 8000 signaling protocol. This protocol was
developed by creating a list of signal classes, based on driver
counts and assertion and deassertion characteristics, and by
associating a specific signaling protocol with each class. The
signal classes and their protocols are listed in Table 2. As the
AlphaServer 8000 primary protocol was developed, each bus signal
was assigned a signal class. As AlphaServer 8400/8200 hardware
was developed, each bus signal was designed to operate according
to the signaling protocol associated with its signaling class.
The system bus address and data signals, for example, fall into
the second class of signals. As a result, the AlphaServer
8400/8200 modules are designed to leave tristate cycles between
each address and data transfer on the system bus.

The AlphaServer system bus cache status signals (TLSB_Shared and
TLSB_Dirty) and the system bus flow control signals (TLSB_Hold
and TLSB_Arb_Suppress) demonstrate a noteworthy paradigm that
results from the AlphaServer 8000 signaling protocol. All these
signals are defined such that at times they must be asserted for
multiple cycles. All these signals also fall into the fourth
signal class, which expressly prohibits driving the signals for
multiple cycles. When these two contradictory requirements exist,
the result is a class of signals pulsed to indicate multiple
cycles of constant assertion. Logic inside each AlphaServer
8000-based module must be designed to convert these pulsed
signals to constantly asserted signals within its system bus
interface. Note that when signals such as these are discussed in
the protocol sections of this paper, the term "asserted" is used
to imply constant assertion, with the understanding that the
signals may in fact be pulsed.

Table 2 AlphaServer 8000 Signal Classes

Signal Driver Count and Signal Signaling Protocol
Class Assertion/Deassertion Characteristics

1 Single driver with multiple Never driven more than two
 receivers consecutive cycles

2 Multiple drivers with Tristate cycle on the bus
 multiple receivers when driver changes

 One driver at a time Never driven more than two
 consecutive cycles

3 Multiple drivers with Value received on signal
 multiple receivers deassertion is unpredictable
 and must be ignored
 Many drivers at once
 possible Tristate cycle on the bus
 when driver changes
 Assertion time may differ
 from driver to driver Never driven in two
 consecutive cycles
 Deassertion time is fixed

4 Multiple drivers with Value received on signal
 multiple receivers deassertion is unpredictable
 and must be ignored
 Many drivers at once
 possible Tristate cycle on the bus
 when driver changes
 Timing is fixed
 Never driven in two
 consecutive cycles

Consistency Check Layer

The Consistency Check Layer defines a method for maintaining
system integrity. Specifically, it defines methods for detecting
errors and inconsistencies in the system and, more important,
methods for logging errors in the presence of historically
disabling errors. Although it does not contribute directly to the
AlphaServer 8000 platform's performance goals or stated product
goals, the Consistency Check Layer contributes an extremely
useful feature to the AlphaServer 8000 products. It is included
in the paper for the sake of completeness in the analysis of the
seven-layer platform development model.

The AlphaServer 8000-based systems employ a number of
error-checking mechanisms. These include transmit checks,
sequence checks, assertion checks, and time-outs. If any error is
detected by an AlphaServer 8000 module by means of these
mechanisms, the module responds by asserting a special "Fault"

signal on the AlphaServer 8000 system bus. This Fault signal has
the effect of partially resetting all system bus interfaces and
processors, and trapping the processors to "machine check"
error-handling routines. The partial reset clears all system
state, with the exception of error registers. This resynchronizes
all system bus interfaces and eliminates all potentially
unserviceable transactions left pending in the system. Thus the
system can begin execution of the machine-check routines in a
reset system. Although the routines are not guaranteed to be able
to complete an error log in the presence of an error, it is
believed that this mechanism will increase the probability of a
successful error log.

The AlphaServer 8000 platform's Fault error-handling feature is
particularly useful in recovering error state from a computer in
a "hung" state. A computer enters a hung state when an error
occurs that stops all progress in the computer system. If a
processor is waiting for a response to a read, for example, and
the read response is not forthcoming due to an error, the system
hangs while waiting for the response. The desktop model for error
handling would require a system reset to recover from such an
error. The process of the system reset, however, would purge
error state. The purge, in turn, makes error diagnosis extremely
difficult. This desktop model is not unique to desktop systems.
It is also employed in server-class machines such as Digital's
DEC 7000/10000 AXP systems. Although this model may be acceptable
on the desktop, it is most undesirable in an enterprise server
system. The AlphaServer 8000-based systems use a time-out counter
to detect a hung system and the Fault error-handling technique to
recover an error log in the event of a hung system. The result is
a robust error-handling system that is appropriate in an
enterprise server.

Primary Protocol Layer

The Primary Protocol Layer of the platform development assigns
names and characteristics to the various system bus signals and
uses these names and characteristics to define higher-order
system bus transactions and functions. System bus transactions
may include reads of data from memory or writes of data to
memory. These transactions are the primary business of a computer
system and its protocol. If a system efficiently executes read
and write transactions, it will perform better than a system that
does not. System bus functions may include mapping memory
addresses to specific memory banks or arbitrating for access to
system buses. These functions enable system bus transactions to
operate in environments with multiple processors arbitrating for
access to the system bus and multiple banks of memory.

AlphaServer 8000 system bus transactions relate directly into the
platform's performance metrics. The system's memory read latency,
for example, is equal to the time it takes for a processor to
issue and complete a system bus read transaction. The number of

system bus transactions and their associated data that the system
bus can process in a given period of time define the system bus
bandwidth.

The components of a typical memory read transaction are shown in
a timeline in Figure 4. This timeline of components is based on a
system that is an abstract of the DEC 7000/10000 AXP systems. To
minimize a system's memory read latency, each component of the
read transaction timeline must be minimized. Components 1, 3, 7,
and 8 of the timeline are simply data and address transfers
across buses and through interfaces. The delays associated with
these components are largely determined by system cycle time;
they cannot be affected by the protocol to any great extent.
Component 5 is the DRAM access time. It is minimized by the
reconfigurable controllers described in the Operational Layer.
The remaining components, (2) address bus arbitration, (4) memory
bank decode, and (6) data bus arbitration, fall into the domain
of the primary protocol. These elements must be designed to
contribute minimal delay to the overall latency.

[Figure 4 (Components of Memory Read Latency) is not available
in ASCII format.]

The effects of protocol on a system's data bandwidth are a little
more difficult to quantify than the effects of protocol on memory
read latency. In general, the theoretical maximum system
bandwidth is equal to either the sum of the bandwidths of the
system's memory banks or the maximum system bus bandwidth,
whichever is smaller. If the system bandwidth is limited by
memory module bandwidth, it is essential to keep as many memory
modules active as possible. If, for example, eight banks of
memory are required to sustain 100 percent of the maximum system
bandwidth, but the system can support only four outstanding
commands, only four banks can be kept busy and only 50 percent of
the maximum bandwidth can be rendered. In another example, if 10
percent of the time this system freezes all but one bank of
memory to perform special atomic functions on special data
blocks, the system's bandwidth will suffer nearly a 10 percent
penalty (73/80 possible memory accesses versus 80/80 possible
memory accesses). If the system bandwidth is limited by the
bandwidth of the system bus, the maximum system bandwidth can be
achieved only when the protocol allows system modules to drive
data onto the system data bus in every available cycle on the
data bus. When a processor reads a block of data from a second
processor's cache, for example, the second processor may have to
stall the data bus to allow it to drive the read data onto the
system's data bus as prescribed by the system protocol. A stall
of the data bus translates into unused data bus cycles and
degradation of real system bandwidth. Thus to maximize real
system bandwidth, system bus and memory bank utilization must be
maximized, and stalls in system bus activity and stalls in memory
bank activity must be minimized.

The following sections begin with an overview of the basic

AlphaServer 8000 platform protocol and how this basic protocol
influences system performance. This section is followed by a
discussion of how the various protocol components identified as
elements of memory read latency (i.e., memory bank mapping,
address bus arbitration, and data bus arbitration) affect the
latency. These sections conclude with a discussion of subblock
write transactions and their effects on system bandwidth.

AlphaServer 8000 Protocol Overview. The platform development
Topological Layer defined the AlphaServer 8000 system bus as
having separate address and data buses. The AlphaServer 8000
system bus protocol defines how system bus transactions are
performed using these two buses. According to the protocol,
processor and I/O port modules initiate read and write
transactions by issuing read and write commands to the system
address bus. These address bus commands are followed sometime
later by an associated data transfer on the data bus. All data
transfers are initiated in the order in which their associated
address bus commands are issued. Cache coherency information for
each system bus transaction is broadcast on the system bus as
each transaction's data bus transfer is initiated. Each data
transfer moves 64 bytes of data (only 32 bytes of which are valid
for programmed I/O transfers). Figure 5 shows an example of
AlphaServer 8000 system bus traffic. In cycle 1 a read
transaction, r0, is initiated on the system address bus. In cycle
X, the data transfer for read r0 is initiated on the system data
bus by means of the system bus Send_Data signal, the assertion of
which is indicated with a value of i0. As this data transfer is
initiated, the status, s0, is also driven on the system bus. In
cycle X+2, all system bus modules have an opportunity to stall or
to control the flow to the system data bus. In this example, the
bus is not stalled, as indicated by a value of n. Finally, given
that the bus is not stalled, the 64 bytes of read data associated
with read r0 are transferred across the system bus during cycles
X+5 and X+6. In addition to read r0, Figure 5 also illustrates
the execution of a write, w1, and another read, r2. Note that
data transfer initiation, data bus flow control, and data
transfer are pipelined on the system data bus in the same order
as their associated commands were issued to the address bus. Note
further that this diagram represents 100 percent utilization of
the system data bus (one data transfer every three cycles). With
a 10-ns cycle time, this utilization would translate to 2.1 GB
per second of bandwidth.

[Figure 5 (Example of AlphaServer 8000 System Bus Traffic) is not
available in ASCII format.]

The AlphaServer system address bus uses two mechanisms to control
the flow of system bus transactions. First, processor and I/O
port modules are not allowed to issue commands to memory modules
that are busy performing some DRAM access for a previously issued
system bus transaction. The state of each memory bank is
communicated to each processor by means of system bus
Bank_Available signals. If a processor or I/O port seeks access

to a given memory bank and that memory bank's Bank_Available
signal indicates that the bank is free, the processor or I/O port
may request access to the address bus and, if granted access by
the system arbitration logic, issue its transaction to the
address bus. If a processor or I/O port seeks access to a given
memory bank and that memory bank's Bank_Available signal
indicates that the bank is not free, the processor or I/O port
will not request access to the system address bus. Thus, unless
all memory banks are busy or unless the total of the busy memory
banks includes all banks that are needed to service the system's
processors and I/O ports, the address bus will continue to
transmit commands. The second mechanism for controlling the flow
through the address bus is the system bus Arb_Suppress signal. If
any system bus module runs out of any command/address-related
resource, such as command queue entries, it can assert this
signal and prevent the system arbitration logic from granting any
more transactions access to the bus. The Arb_Suppress signal is
useful, for example, in a system configuration with 16 memory
banks but only eight entries worth of command queuing in a
processor.

The AlphaServer 8000 system data bus has its own flow-control
mechanism, the system bus Hold signal, which is independent of
the address bus flow-control mechanisms. The Hold signal, shown
as Data Bus Flow Control in Figure 5, is asserted in response to
the initiation of a data bus transfer. Normally, data bus
transfers are initiated on the data bus when an AlphaServer 8000
memory module asserts the Send_Data signal. Send_Data is asserted
by a memory module based on the state of the module's DRAMs: When
servicing a read transaction, the memory will assert Send_Data
when its DRAM read is complete; when servicing a write
transaction, the memory will assert Send_Data as soon as its turn
on the data bus comes up. Five cycles after the assertion of
Send_Data, some module drives data onto the data bus. If a module
is required to drive data in response to an assertion of
Send_Data and is unable to do so, it will assert the Hold signal
two cycles after the assertion of Send_Data. This may occur if a
processor module must source read data from its cache and cannot
fetch the data from the cache as quickly as the memory module can
fetch data from its DRAMs. If, on the other hand, a module is
required to receive data in response to an assertion of Send_Data
and is unable to do so, it too will assert the Hold signal two
cycles after the assertion of Send_Data. This may occur if no
receiving module's data buffers are available to receive data.
Each module that asserts Hold two cycles after Send_Data will
continue to assert Hold every other cycle--as prescribed by the
AlphaServer 8000 signaling protocol--until it is ready for the
data transfer. Three cycles after all modules are ready and
deassert the Hold line, data is finally transferred. Figure 6
shows a read, r0, that experiences one pulse of the system bus
Hold signal.

[Figure 6 (Read with One Cycle of Hold--Five Reads Sourced by a
Processor) is not available in ASCII format.]

It is important to note that the address bus and the data bus
have independent means and criteria for initiating transactions
and controlling the flow of transactions. The address bus
initiates address bus commands based on processor and I/O port
module requests and controls the flow based on the state of
address-related resources. The data bus initiates data transfers
in the same order as the address bus transmitted commands by
means of the Send_Data signal. Send_Data is usually asserted by a
memory module based on the state of the module's DRAMs. The data
bus flow is controlled based on the state of various data-related
resources. The differing means and criteria for initiation and
flow control allow the two buses to operate almost independently
of one another. This independence translates into performance
because it allows the address bus to continue to initiate
commands even as the data bus may be stalled because of a
conflict. Continuous command initiation translates into more
continuous system parallelism and thus more system bandwidth.
Figures 6 and 7 illustrate this point. Both figures illustrate
systems that are issuing a series of processor reads to blocks
that must be sourced from another processor's cache. In both
cases, processors require two more cycles than main memory banks
to source read data. As such, two cycles of Hold assertion must
periodically occur on the data bus. Figure 6 illustrates the
operation of the AlphaServer 8000 system bus, showing that
although the data bus had to be held in cycle 6, the address bus
was able to continue issuing commands. As a result, each
processor sourcing data begins its read of cache data as soon as
possible and is guaranteed to be ready to drive data without Hold
cycles when its turn comes up on the data bus. With the
illustrated series of five reads, the two Hold cycles result in a
12 percent degradation in system bandwidth. If the series of
reads is lengthened toward infinity, the percent of degradation
approaches 0. Figure 7 illustrates the operation of a rigidly
slotted bus, like that of the DEC 7000/10000 AXP system,
normalized to the AlphaServer 8000 topology. As shown, each time
the data bus is stalled, so too is the address bus. This prevents
the fourth and fifth reads from getting the headstart necessary
to prevent subsequent stalls of the data bus. The result is a 20
percent degradation in performance for the five reads
illustrated. If the series of reads is lengthened toward
infinity, the percent of degradation settles to 18 percent.
Clearly the AlphaServer 8000 approach produces superior data
bandwidth characteristics.

[Figure 7 (Five Reads Sourced by a Processor in a Rigidly Slotted
System) is not available in ASCII format.]

It is also important to note that the AlphaServer 8000 address
bus and data bus have different maximum bandwidths. Commands can
be issued to the address bus every other cycle. With a 10-ns
cycle time, this translates into 50 million commands per second.
The data bus, on the other hand, can transfer one block of data
every three cycles. With a 10-ns cycle time, this translates into

33.3 million data blocks per second. This excess of address bus
bandwidth is useful in the development of low-latency arbitration
schemes.

Memory Bank Mapping. Digital's previous server systems, like the
VAX 6000 series and the DEC 7000/10000 AXP-series, have employed
a common approach to address-to-memory-bank mapping. In this
approach, all memory modules implement address range registers.
As commands and addresses are transmitted across the system bus,
the memory banks compare the addresses against their address
range registers to determine if they must respond to the command.
An address range comparison can involve a significant number of
address bits and, as a result, can become logically complex
enough to consume two 10-ns cycles of time. These two cycles can
be added directly to memory read latency.

The low-latency focus of the AlphaServer 8000 platform prompted a
change in bank mapping schemes. In AlphaServer 8000 systems, the
address range registers have been moved onto the processor and
I/O port modules. The range registers output a 4-bit bank number
that is shipped across the system bus with each command and
address. Each memory bank compares each bank number transmitted
across the system bus to 4 bits in a programmable bank number
register to determine if it should respond to the system bus
command.

This bank mapping logic configuration helps to reduce AlphaServer
8000 memory read latency. Because the bank mapping is done on the
nodes that issue commands to the address bus, the lengthy address
comparison can be done in parallel with address bus arbitration,
eliminating its two-cycle delay from the memory read latency. The
address comparison traditionally done in the memory bank logic is
now replaced with a simple 4-bit comparison, which can easily be
done in a single cycle. The overall effect is that the
AlphaServer 8000 bank mapping protocol consumes at least one
cycle less than Digital's traditional bank mapping protocol. This
equates to one less cycle--10 ns minimum--of memory read latency.

Address Bus Arbitration. AlphaServer 8000 systems employ a
distributed, rotating-priority arbitration scheme to grant access
to their address buses. Processor and I/O port modules request
access to the address bus based on requests from microprocessors
and I/O devices, and on the state of the system's memory banks,
as described in the section AlphaServer 8000 Protocol Overview.
Each module evaluates the requests from all other modules and,
based on a rotating list of module priorities, determines whether
or not it is granted access to the bus. Each time a module is
granted access to the bus, its priority is rotated to the lowest
priority spot on the priority list.

The AlphaServer 8000 arbitration scheme operates in a pipelined
fashion. This means that modules request access to the bus in one
cycle, arbitrate for access to the bus in the next cycle, and
finally drive a command and address onto the bus one cycle later.

In terms of processor-generated read requests, this means that,
at best, a system bus read command can be driven onto the system
address bus two cycles after its corresponding cache read miss is
generated on the processor module. This adds two cycles of delay
to the memory read latency.

To reduce memory read latency in components associated with
address bus arbitration, the AlphaServer 8000 platform employs a
technique called "early arbitration." Early arbitration allows a
module to request access to the address bus before it has
determined if it really needs access to the data bus. If the
module is granted access to the address bus but determines that
it does not need or cannot use the access, it will drive a
No-Operation or NoOp command in the command slot that it is
granted. This feature is particularly useful on processor
modules. It allows a processor to request access to the bus for a
read command in parallel with determining if the read command
will hit or miss in the processor's cache. If the read results in
a cache hit and the processor is granted access to the address
bus, then the processor issues a NoOp command. If the read
results in a cache hit and the processor is not granted access to
the address bus, the processor discontinues requesting access to
the bus. When applied in this manner, this feature can remove two
cycles of delay from the memory read latency. This feature is
also key to the AlphaServer 8000 memory bank decode feature that
allows address-to-memory bank decode to proceed in parallel with
system bus arbitration. This is to say, it allows a processor or
I/O port module to request access to the address bus before it
can determine which memory bank it is trying to access and before
it can determine if that memory bank is available. If a module is
granted access the bus and the bank it is trying to access is not
available, then the module issues a NoOp command. If a module is
not granted access to the bus and the bank it is trying to access
is not available, then the module discontinues requesting access
to the bus until the bank becomes available. When applied this
way, this feature eliminates at least one cycle from the memory
read latency, as described in the section Memory Bank Mapping.

The excess address bus bandwidth noted in the protocol overview
allows some amount of early arbitration to take place without
affecting system performance. When system traffic increases,
however, excessive early arbitration can steal useful address bus
slots from nonspeculative transactions and as a result degrade
bus bandwidth. In fact, in certain pathological cases, excessive
early arbitration by modules with high arbitration priority can
permanently lock out requests from lower priority modules. To
eliminate the negative effect of early arbitration, the
AlphaServer 8000 employs a technique called "look-back-two"
arbitration. This technique relies on the fact that modules must
resolve all cache miss or bank availability uncertainties for
early arbitrations within the two cycles required for an early
request and its arbitration. This fact implies that any module
that has been requesting access to the address bus for more than
two consecutive cycles is requesting in a nonspeculative manner.

As such, the AlphaServer 8000 arbiter keeps a history of address
bus requests and creates two prioritized groups of requests based
on this history. It creates a high-priority group of requests
from those requests that have been asserted for more than two
cycles and a low-priority group of requests from those requests
that have been asserted for two cycles or less. It applies the
single set of rotating priorities, described above, to both sets
of requests. If there are any requests in the high-priority
group, the arbiter selects one of these based on the rotating
priority set. If there are no high-priority requests, the arbiter
selects a request from the lower priority group based on the
rotating priority set. This functionality limits early
arbitration to only those times when there are nonspeculative
requests in the system. It allows the AlphaServer 8000 platform
to take advantage of latency gains associated with early
arbitration and processor and I/O port based bank decode, without
degrading bandwidth in the process.

Data Bus Arbitration. The AlphaServer 8000 data bus transfers
blocks of data in the same order that the commands corresponding
to those blocks are issued on the address bus. This eliminates
data bus arbitration per se. In-order data return is accomplished
by a simple system of counters and sequence numbers. Each time a
command is issued to the address bus, it is assigned a sequence
number. Sequence numbers are assigned in ascending order. Each
time a block of data is driven on the data bus, a data bus
counter is incremented. Each module waiting to initiate a data
transfer in response to some address bus command compares the
sequence number associated with its command with the data bus
counter. When a module's sequence number matches its data bus
counter, it is that module's turn to initiate a data bus
transfer.

It is arguable that in-order data return is not the optimum data
scheduling algorithm. If the scenario shown in Figure 6 were
reshaped such that only read r0 sourced data from another
processor and the penalty for sourcing data from a processor were
more severe--a longer data bus Hold requirement--the result would
be more significant bandwidth degradation. This new scenario is
illustrated in Figure 8. With more efficient data scheduling, it
is conceivable that data bus utilization could be improved by
using data slots abandoned under the sizable Hold window in
Figure 8. The latter scenario is illustrated in Figure 9. Clearly
the system in Figure 9 has improved upon the bandwidth of the
system in Figure 8.

[Figure 8 (Bandwidth Degradation as a Result of In-Order Data
Transfers) and Figure 9 (Improved Bandwidth with Out-of-Order
Data Transfers) are not available in ASCII format.]

What Figure 9 cannot show are all the implications of
out-of-order data transfers. With as many as 16 outstanding
transactions (8 in the AlphaServer 8400/8200) active in the
system at any one time, the task of producing a logic structure

capable of retiring the transactions in order is enormous.
Furthermore, the retiring of transactions out of order
complicates the business of maintaining coherent, ordered memory
updates. Finally, it was felt that the parallelism made possible
by the independent address and data bus would help to mitigate
many of the negative effects associated with the in-order data
transfers. For these reasons, a practical decision was taken to
transfer data on the system data bus in the order that the
associated commands were issued to the system address bus.

Subblock Writes. To support a range of I/O subsystems,
AlphaServer 8000 I/O port modules must support writes of data as
small as longwords (32 bits), words (16 bits), and bytes. Given
the AlphaServer system bus block size of 64 bytes, these writes
are referred to as subblock writes. The execution of a subblock
write consists of reading a block of data from a system memory
bank, overwriting just the portion of the block addressed by the
subblock write, and writing the entire block back to memory. The
difficulty with performing this operation arises when a
"third-party" module--defined here as a module other than the one
performing the subblock write--modifies the block between the
read portion of the subblock write and the write portion of the
subblock write. To correctly complete the subblock write, the I/O
port module must merge the subblock write data into the block as
it was after the third-party module modified it. This problem can
be resolved in one of two ways: (1) by means of a small cache on
the I/O port module that updates the I/O port's copy of the block
based on the third-party write, or (2) by means of an atomic
read-modify-write that disallows the third-party write
altogether.

In an ideal world, I/O port modules would implement a small
one-block cache for the purpose of subblock writes. This cache
would allow the I/O module performing the subblock write to
update its copy of the block targeted by the subblock write with
modified data from third-party modules. Unfortunately, not all
processors broadcast modified data to the system. Many
processors, for example, use a read-invalidate protocol. In a
read-invalidate protocol, when a processor wishes to modify a
block, it issues a command that invalidates all other copies of
that block in the system and then modifies the block of data in
its cache. If such an invalidate command invalidated the block in
an I/O port module's subblock write cache, the I/O port module
would be forced to re-read the block. There is no guarantee,
however, that another invalidate will not occur between the
re-read of the block and the write of merged data back to memory.
As such, the I/O port module may never be able to complete the
subblock write. I/O port caching is therefore not a workable
solution.

Atomic read-modify-write sequences disallow third-party writes to
a given block between the read portion of a subblock write and
the write portion of a subblock write. As such, the atomic
read-modify-write sequence does guarantee the timely completion

of a subblock write. Implementations of atomic read-modify-write
sequences are designed to disallow accesses to some size portion
of the memory region that contains the subblock address, between
the read and write portions of the subblock write. The size of
the memory region can vary from a single block of data to a
single bank of memory to the entirety of memory. If the size of
the memory region is small, such as a single data block, design
complexity is significant; but the impact of locking out access
to a single block of memory is insignificant to bandwidth.
Conversely, if the size of the memory region is large, such as
the entirety of memory, design complexity is insignificant; but
the impact of locking out accesses to the entirety of memory for
any period of time can be significant to system bandwidth.

The AlphaServer 8000 platform supports atomic read-modify-write
sequences by locking out accesses within memory-bank-sized memory
regions. This middle ground memory-region size provides the
AlphaServer 8000 with a practical balance between design
complexity and system bandwidth. The AlphaServer 8000 platform
implements memory bank granularity atomic read-modify-write
accesses by means of special Read_Bank_Lock and Write_Bank_Unlock
address bus commands, and by leveraging the existing memory bank
flow control mechanisms. Specifically, Read_Bank_Lock commands
function like normal read commands, except that their targeted
memory banks are left busy after the read transaction is
complete. Memory banks locked by Read_Bank_Lock commands remain
busy until a Write_Bank_Unlock command is issued from the same
module that issued the Read_Bank_Lock command. While a memory
bank is busy, no module other than the module that locked the
bank by means of a Read_Bank_Lock command will even request
access to the bank, as required by standard arbitration protocol.
This approach provides for atomic read-modify-write sequences and
coherent subblock writes. This protocol works regardless of the
number of I/O modules in the system and regardless of arbitration
priorities.

Superset Protocol Layer

The AlphaServer 8000 primary protocol provides all the basic
constructs required to perform basic system functions, such as
memory reads and writes, local register reads and writes, and
mailbox-based I/O register reads and writes. The protocol
performs these basic functions with a high level of efficiency
and performance. Some additional functionality, such as PCI
direct-programmed I/O register accesses, can be functionally
satisfied by the primary protocol but cannot be satisfied in a
way that does not severely degrade the performance of the entire
AlphaServer 8000 system. As such, the AlphaServer 8000 platform
allows for Superset Protocols, i.e., protocols that are built
upon the basic constructs (reads and writes) of the AlphaServer
8000 primary protocol.

PCI direct-programmed I/O register reads can take more than a

microsecond to complete. If these reads were completed by means
of the AlphaServer 8000 nonpended, strictly ordered primary
protocol, the AlphaServer system data bus would be stalled for a
full microsecond each time a PCI programmed I/O read was
executed. Such stalls would have a disastrous effect on system
bus bandwidth and system performance.

The PCI programmed I/O problem is solved on the AlphaServer 8000
platform by implementing a PCI-specific pended read protocol
using the simple read and write commands already included in the
basic AlphaServer 8000 primary protocol. This special superset
protocol works as follows:

 o When a microprocessor issues a PCI programmed I/O read,
 the read is issued to the AlphaServer 8000 system bus as
 a register read. This read is pended with a unique
 identification number that is associated with the issuing
 processor by driving the identification number on the
 system bank number lines when the register read command
 is issued to the system address bus. The bank number
 lines are otherwise unused during register accesses. The
 issuing processor also sets a flag, indicating that it
 has issued a PCI programmed I/O read command.

 o The I/O port module interfacing to the addressed PCI
 local bus responds to the register read by forwarding the
 read to the PCI, storing the processor identification
 number specified by the address bus bank number lines and
 driving "dummy data" onto the data bus in the register
 read's associated data slot. The value of the dummy data
 is irrelevant; it is ignored by all system bus modules
 and is typically whatever was left in the I/O ports
 register read buffer as a result of the last read it
 serviced.

 o When the PCI local bus returns read data to the I/O port
 module, the I/O module issues a register write to a
 special PCI read-data-return register address on the
 system bus. This write is pended with the issuing
 processor's identification number, which was stored by
 the I/O port module. This identification number is again
 pended by driving it onto the system bank number lines as
 the register write command is issued to the system
 address bus. The PCI read data is returned in the data
 cycle associated with this register write.

 o When a processor module identifies a register write that
 addresses the PCI read-data-return register address, it
 checks the state of its PCI read flag and compares the
 value driven in the system bank number lines with it
 unique identification number. If the PCI read flag is set
 and the value on the bank number lines matches the
 processor's identification number, then the processor
 completes the PCI programmed I/O read with the data

 supplied by the register write.

The AlphaServer 8000 PCI programmed I/O read superset protocol
allows AlphaServer 8000 systems to complete PCI programmed I/O
reads without stalling system buses. Furthermore, it allows
AlphaServer systems to support PCI I/O in such a way that system
bus modules not participating in the superset transaction need
not be alerted to the presence of special bus transactions and
therefore need not contain logic that recognizes and responds to
these special cases. This approach demonstrates a practical way
to simplify overall system design without affecting system
performance.

ALPHASERVER 8400 AND ALPHASERVER 8200 SYSTEMS

The AlphaServer 8400 and 8200 systems are the first products
based on the AlphaServer 8000 platform. The AlphaServer 8200
system is an "open office"-class server (i.e., the AlphaServer
8200 can be located in any office area, for example, where
photocopier machines are typically placed). It features up to six
system bus modules in an industry-standard 47.5-centimeter
(19-inch) rackmount cabinet. The 8200 system can support up to
six 300-MHz Alpha 21164 microprocessors, 6 GB of main memory, and
108 PCI I/O slots. The AlphaServer 8400 system is an
"enterprise"-class server (i.e., a machine on which a business
can be run). It features up to nine system bus modules in a DEC
7000-style cabinet. It can support up to twelve 300-MHz Alpha
21164 microprocessors, 14 GB of main memory, and 144 PCI I/O
slots.

The clock frequencies of both the AlphaServer 8400 system and the
AlphaServer 8200 system are determined by the clock frequency of
the 300-MHz (3.33-ns cycle time) Alpha 21164 microprocessor chip.
Both systems use a 4[X] clock multiplier to arrive at a system
clock frequency of 75 MHz (13.3-ns cycle time). At this speed,
the systems feature 265-ns minimum read latencies and 1,600 MB/s
of data bandwidth.

Both systems are based on the same set of AlphaServer 8000
architecturally compliant system bus modules. In addition, both
systems support a new PCI I/O subsystem designed specifically for
these classes of systems. The constituent modules and I/O
subsystems that compose the AlphaServer 8400 and the AlphaServer
8200 systems are as follows.

TLEP Processor Module--Each TLEP processor module supports two
300-MHz Alpha 21164 microprocessors. Each Alpha 21164 processor
is paired with a 4-MB external cache. This cache is constructed
with 10-ns asynchronous SRAMs. The cache latency to first data is
20 ns, and with one 3.33-ns processor cycle of wave pipelining,
its maximum bandwidth is 915 MB/s. The TLEP module operates with
a 75-MHz (13.33-ns cycle time) clock frequency.

TMEM Memory Module--Each TMEM memory module is implemented with
two equal-sized DRAM banks. TMEM modules are available in 128-MB,
256-MB, 512-MB, 1024-MB, and 2048-MB sizes. The TMEM module is
designed to operate at a 100-MHz (10-ns cycle time) clock
frequency.

TIOP I/O Port Module--The TIOP module interfaces the AlphaServer
8000 system bus to four I/O channels, called "hoses." Each hose
can interface to one XMI, Futurebus+, or PCI/EISA I/O subsystem.
Each TIOP can support up to 400 MB/s of I/O data bandwidth and is
designed to operate at a 100-MHz (10-ns cycle time) clock
frequency.

ITIOP Integrated I/O Port Module--The ITIOP module interfaces the
AlphaServer 8000 system bus to one hose I/O channel and one
semipreconfigured PCI local bus, which is integrated onto the
ITIOP module. The integrated PCI bus features one single-ended
small computer systems interface (SCSI) controller, three Fast
Wide Differential SCSI controllers, one NI port, and optional
FDDI and NVRAM controllers. Each ITIOP can support up to 200 MB/s
of I/O data bandwidth and is designed to operate at a 100-MHz
(10-ns cycle time) clock frequency.

PCIA PCI I/O Subsystem--The PCIA PCI I/O subsystem consists of
hose-to-PCI adapter logic and a 12-slot PCI local bus. This
12-slot bus is created from 4-slot PCI buses interfaced such that
they appear as a single bus. The high slot count provides the
connectivity essential in an enterprise-class server. The PCIA
optimizes direct memory access (DMA) reads by means of the PCI
Read_ Memory_Multiple command. The Read_Miss_Multiple command
allows the PCIA to stream DMA read data from memory to the PCI
bus. Consequently, the PCIA can increase DMA read bandwidth,
offsetting any latency penalties that result from the AlphaServer
8000 platform's multilevel I/O architecture. The PCIA's adapter
logic includes a 32K entry map RAM for converting PCI addresses
(32 bits) to AlphaServer 8000 system bus addresses (40 bits).
This map RAM features a five-entry, fully associative
translation cache.

ALPHASERVER 8400 AND ALPHASERVER 8200 PERFORMANCE

A number of performance benchmarks have been run on the
AlphaServer 8400 and AlphaServer 8200 systems. The results of
some of these benchmarks are summarized in Table 3.

The AlphaServer SPECint92 and SPECfp92 ratings demonstrate
outstanding performance. In both ratings, the AlphaServer 8400
system performance is over 3.5 times the ratings of the
HP9000-800 T500 system. The SPECfp92 rating of 512 instructions
per second is 1.4 times its nearest competitor, the SGI Power
Challenge XL system. Similarly, a six-processor AlphaServer 8400
system achieves the same 1,900 million floating-point operations
per second (MFLOPS) as an eight-processor SGI Power Challenge XL

system. Finally, the AlphaServer 8400 system's 5-GFLOPS Linpack
NxN result is beyond the performance of all other open systems
servers, placing the AlphaServer at supercomputer performance
levels with systems such as the NEC SX-3/22 system and the
massively parallel Thinking Machines CM-200 system.

Table 3 AlphaServer 8400 and 8200 System Performance Benchmark Results

Benchmark Processor Units AlphaServer 8200 AlphaServer 8400
Name Count

SPECint92 1 Instructions/ 341.4 341.4
 second

SPECfp92 1 Instructions/ 512.9 512.9
 second

SPECrate_int92 1 Instructions/ 8551 8551
 second

 6 Instructions/ 50788 50788
 second

 12 Instructions/ not applicable 91580
 second

SPECrate_fp92 1 Instructions/ 11981 11981
 second

 6 Instructions/ 71286 71286
 second

 12 Instructions not applicable 140571
 second

Linpack 1 MFLOPS 140.3 140.3
100x100

Linpack 1 MFLOPS 410.5 410.5
1000x1000

 6 MFLOPS 1821 1902

 8 MFLOPS not applicable 2282

 12 MFLOPS not applicable 2675

Linpack NxN 1 MFLOPS 428.3 428.3

 6 MFLOPS 2445 2445

 12 GFLOPS not applicable 5.0

AIM III 8 AIMs not applicable 1649.8
Performance
Rating

AIM III 8 Maximum not applicable 9384
User Loads quantity

AIM III 8 Jobs/min not applicable 16168.2
Throughput

McCalpin 1 MB/s not available 186.29
Copy

 8 MB/s not applicable 898.61

McCalpin 1 MB/s not available 174.4
Scale

 8 MB/s not applicable 829.74

McCalpin 1 MB/s not available 198.3
Sum

 8 MB/s not applicable 891.84

McCalpin 1 MB/s not available 195.15
Triad

 8 MB/s not applicable 982.13

ACKNOWLEDGMENTS

Several members of the AlphaServer 8000 Development Team in
addition to the authors were key contributors to the generation
of this technical article. These individuals are John Bloem,
Elbert Bloom, Dick Doucette, Dave Hartwell, Rick Hetherington,
Dale Keck, and Rich Watson.

REFERENCES

1. W. Bowhill et al., "Circuit Implementation of a 300-MHz,
 64-bit Second-generation CMOS Alpha CPU," Digital Technical
 Journal, vol. 7 no.1 (1995, this issue): 100-118.

2. S. Saini and D. Bailey, "NAS Parallel Benchmarks Results
 3-95," Report NAS-95-011 (Moffet Field, CA: Numerical
 Aerodynamic Simulation Facility, NASA Ames Research Center,
 saini@nas.nasa.gov, April 1995).

3. J. Dongarra, "Performance of Various Computers Using

 Standard Linear Equations Software," Document Number
 CS-89-85, available on the Internet from Oak Ridge National
 Laboratory, netlib@ornl.gov, April 13, 1995.

4. Z. Cventanovic and D. Bhandarkar, "Characterization of Alpha
 AXP Performance Using TP and SPEC Workloads," Proceedings of
 the 1994 International Symposium on Computer Architecture:
 60-70.

5. J. Nicholson, "The RISC System/6000 SMP System," COMPCON
 '95, March 1995: 102-109.

6. L. Staley, "A New MP HW Architecture for Technical and
 Commercial Environments," COMPCON '95, March 1995: 129-132.

7. B. Allison and C. van Ingen, "Technical Description of the
 DEC 7000 and DEC 1000 AXP Family," Digital Technical
 Journal, vol. 4 no. 4 (Special Issue 1992): 100-110.

8. L. Gwennap, "Intel's P6 Uses Decoupled Superscalar Design,"
 Microprocessor Report, February 16, 1995: 15.

9. J. Basmaji et al., "Digital's High-performance CMOS ASIC,"
 Digital Technical Journal, vol. 7 no. 1 (1995, this issue):
 66-76.

10. R. Watson, H. Collins, and R. Iknaian, "Clock Buffer Chip
 with Absolute Delay Regulation Over Process and
 Environmental Variations," 1992 Custom Integrated Circuits
 Conference, paper 25.2: 1-5.

11. E. Davidson, "Delay Factors for Mainframe Computers,"
 Proceedings of the 1991 Bipolar Circuits and Technology
 Meeting: 116-123.

12. D. Cox et al., "VLSI Performance Compensation for Off-Chip
 Drivers and Clock Generation," Proceedings of IEEE 1989
 Custom Integrated Circuits Conference: 14.3.1-14.3.4.

13. D. Chengson et al., "Dynamically Tracking Clock Distribution
 Chip with Skew Control," 1990 Custom Integrated Circuits
 Conference Proceedings: 15.6.1-15.6.4.

14. M. Johnson et al., "A Variable Delay Line Phase Locked Loop
 for CPU--Coprocessor Synchronization," ISSCC88 Proceedings:
 142-143.

BIOGRAPHIES

David M. Fenwick

Dave Fenwick is the AlphaServer 8000-series system architect. As
leader of the advanced development group and of the design team,
he has been responsible for definition of the product and its
characteristics, and for the system implementation. Dave moved
from Digital's European Engineering organization in 1985 to join
the U.S.-based VAXBI program and subsequently was processor
architect for the VAX 6000 vector processor. A consulting
engineer, he holds 3 major U.S. patents and has 13 patent
applications pending. He received an Honours Degree in Electrical
and Electronic Engineering from Loughborough University of
Technology, United Kingdom.

Denis J. Foley

A principal hardware engineer in the AlphaServer group, Denis is
the project leader for the TLEP CPU module. He joined Digital in
Clonmel, Ireland, in 1983 after receiving a bachelors degree in
Electrical Engineering from University College Cork, Ireland. He
has contributed to the development of several communications and
computing projects. Currently, he is working on the design of a
CPU module for the AlphaServer 8000 platform that is based on the
next generation of the Alpha microprocessor. Denis is listed on
12 patent applications that relate to his work on the AlphaServer
CPU and bus designs.

William B. Gist

Bill Gist's recent responsibility was the development of the
high-performance I/O system bus circuit architecture for the
AlphaServer 8000-series ASICs. A principal engineer and a member
of the Server Platform Development Group, he is currently
developing high-performance I/O architectures for low-cost
plastic packaging technologies. Joining Digital in 1977, he began
work on PDP-11 systems development and later became a member of
the VAX 6000-series engineering team, focusing on clock chip
development and vector processor ASIC development. Bill has a
B.S. degree in Electrical Engineering from Worcester Polytechnic
Institute and holds three patents for the AlphaServer 8000-series
I/O circuit architecture.

Stephen R. VanDoren

In 1988, Steve VanDoren came to Digital to work with the VAX 6000
vector processor design team. He later joined an advanced

development team responsible for evaluating system technology
requirements for what would become the AlphaServer 8000 series of
products. During the AlphaServer project, he lead the design of
the address interface on the TLEP processor module. He is listed
as a coinventor on 10 patents filed on the AlphaServer
8000-series architectural features. Steve is currently working on
new server processor designs. He is a member of Eta Kappa Nu and
Tau Beta Pi and holds a B.S. degree in Computer Systems
Engineering from the University of Massachusetts.

Daniel Wissell

Consulting engineer Dan Wissell has more than 20 years of
computer industry experience in analog and digital circuit design
and test. While at Digital, he has worked on the VAXcluster and
DEC 7000/1000 systems development teams, and more recently he
contributed to the AlphaServer 8000-series design effort. He is
recognized within Digital as an expert in the areas of
distributed power systems, on-module energy management, and
high-speed clock systems. Dan holds three patents and has filed
several patent applications for his work on current and future
Digital products. He has degrees in engineering from Kean College
and the Milwaukee School of Engineering.

TRADEMARKS

Challenge is a trademark of Silicon Graphics, Inc.

Cyrix is a trademark of Cyrix Corporation.

Hewlett-Packard is a registered trademark of Hewlett-Packard
Company.

IBM is a registered trademark of International Business Machines
Corporation.

Intel and Pentium are trademarks of Intel Corporation.

SPECfp, SPECint, and SPECmark are registered trademarks of the
Standard Performance Evaluation Council.

===
Copyright 1995 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

