The Al phaServer 8000 Series: High-end Server Platform Devel opnent

by David M Fenwick, Denis J. Foley, WIlliamB. G st,
St ephen R. VanDoren, and Daniel Wssell

ABSTRACT

The Al phaServer 8400 and the Al phaServer 8200 are Digital's
newest hi gh-end server products. Both servers are based on the
300- MHz Al pha 21164 mi croprocessor and on the Al phaServer
8000-series platform architecture. The Al phaServer 8000 pl atform
devel opnent team set aggressive system data bandw dth and nmenory
read | atency targets in order to achieve high-performance goals.
The low-| atency criterion was factored into design deci sions nade
at each of the seven | ayers of platform devel opnent. The

combi nation of industry-I|eading mcroprocessor technol ogy and a
system pl atform focused on |low | atency has resulted in a
12-processor server inplenmentation--the Al phaServer 8400--capabl e
of superconputer |evels of performance.

| NTRODUCTI ON

The new Al phaServer 8000 platformis the foundation for a series
of open, Al pha m croprocessor-based, high-end server products,
begi nning with the Al phaServer 8400 and Al phaServer 8200 systens
and continuing through at |east three generations of products.
When conbined with the power of the industry-Ieading

300- negahertz (MHz) Al pha 21164 nicroprocessor,[1] this

i nnovative server platformoffers the outstanding performance and
pricel/ performance required in technical and conmercial markets.

I n uni processor performance benchmark tests, the Al phaServer
8400/ 8200 SPECfp92 rating of 512 instructions per second is 1.4
times the rating of its nearest conpetitor, the SG Power
Chal l enge XL product. In rultiprocessor benchmark tests of
systems with 1 to 12 processors, the Al phaServer 8400 system
posts SPECrate | evels greater than 3.5 tinmes those of the

HP9000- 800 T500 system |In the category of cost for performance,
NAS Parall el Class B SP benchmarks show that the Al phaServer 8400
system provides 1.7 tinmes the performance per mllion dollars of
the SG Power Challenge XL system[2] Perhaps nost inpressive is
t he Al phaServer 8400 performance on the Linpack NxN benchmark. [3]
Wth a Linpack NxN result of 5 billion floating-point operations
(GFLOPS), a 12-processor Al phaServer 8400 achieves the
performance | evels of supercomputers such as the NEC SX-3/22
system and the massively parallel Thinking Machi nes CM 200
system

There are two keys to the remarkabl e perfornmance of the

Al phaServer 8400 and Al phaServer 8200 systens: the Al pha 21164
nm croprocessor chip and the Al phaServer 8000 platform
architecture. This paper is concerned with the second of these,
the Al phaServer 8000 platformarchitecture. Specifically, it

di scusses the principal design issues encountered and resolved in
the pursuit of the aggressive performance and product goals for
the Al phaServer 8000 series. The paper concludes with an

eval uation of the success of this platform devel opnment based on
the performance results of the first Al phaServer 8000-series
products, the Al phaServer 8400 and Al phaServer 8200 systens.

ALPHASERVER 8400 AND ALPHASERVER 8200 PRODUCT GOALS

The Al phaServer 8000 platformtechnical requirenents were derived
froma set of product goals. This set conprised m ni mum
performance goals and a nunber of specific configuration and
expandability requirements developed fromDigital's server

mar keting profiles. The notivations that shaped the |ist of goals
bel ow were many. Support for |egacy I/O subsystens and DEC

7000/ 10000 AXP conpatibility, for exanple, was notivated by the
need to provide Digital's customer installed base with a
cost-effective upgrade path from 7000-series hardware to

Al phaServer 8000-series hardware. The goals for |lowcost |/0O
subsystem peripheral conponent interconnect (PCl), and El SA
support and for racknount cabinet support were included to take
advant age of energing industry standards and open systens and
their markets. The processor, 1/0O and nenory capacity goals were
driven sinply by the conpetitive state of the server narket.

o] Provi de i ndustry-I|eading enterprise and open-office
server perfornmance.

o] Provi de twi ce the overall performnce of the DEC
7000/ 10000 AXP server products.

o] Support up to 12 Al pha 21164 processors.
o] Support at |east 14 gi gabytes (GB) of mmin nenory.

o] Support rmultiple 1/O port controllers--up to 144 1/0
sl ot s.

o] Provide a | owcost, integrated I/ O subsystem

o] Support new, industry-standard PCI and EISA I/ O
subsyst ens.

o] Continue to support |egacy |/ O subsystens, such as XM
and Futurebus+.

o] Make centerpl ane hardware conpatible with an
i ndustry-standard racknmount cabi net.

o] Make centerpl ane hardware nechanically conpatible with
t he DEC 7000/ 10000 AXP-series cabinet.

PERFORMANCE GOALS AND MEMORY READ LATENCY | SSUES

Al t hough "providing i ndustry-I|eadi ng performance" and "doubling
the performance" of an existing industry-I|eading server present
excel l ent goals for the devel opment of a new server, it is
difficult to design to such nebul ous goals. To quantify the

actual technical requirenents for the new Al phaServer 8000
platform the design teamutilized a performance study of the DEC
7000/ 10000 AXP systens and conducted a detail ed anal ysis of
symretric nultiprocessing (SMP) system operation. As a result of

t he anal yses, aggressive system data bandwi dth and nmenory read

| at ency goals were established, as well as a design phil osophy

t hat enphasi zed | ow nenory read latency in all aspects of the

pl at f orm devel opment. This section addresses the read | atency

i ssues and goal s consi dered by the design team The 8000 platform
devel opnent is the focus of the section follow ng.

Read latency is the tinme it takes a m croprocessor to read a

pi ece of data into a register in response to a |load instruction
If the data to be read is found in a processor's cache, the read
latency will typically be very small. If, however, the data to be
read resides in a conputer systemlis nain nenory, the read |atency
is typically nuch larger. In either case, a processor nmay have to
wait the duration of the read |latency to nmeke further progress.
The smaller the read latency, the less tine a processor waits for
data and thus the better the processor perforns.

Cache nenories are typically used to minimze read | atency. Wen
caches do not work well, either because data sets are |arger than
the cache size or as the result of non-locality of reference, a
conput er system s processor-nenory interconnect contributes
significantly to the average read | atency seen by a processor
The system characteristics that help determ ne a processor's
average read |l atency are the system s mini mum nenory read | atency
and data bandwi dth.

A system's minimumnenory read latency is the tine required for a
processor to fetch data froma systenmlis nain nmenory, unencunbered
by systemtraffic fromother processors and I/O ports. As
processors and |/ O ports are added to a system their conpetition
for menory and interconnect resources tends to degrade the
system s menory read |latency fromthe mni mrum nmenory read | atency
baseline. A systenlis data bandwi dth, i.e., the amobunt of data
that a system can transfer between nain nmenory and its processors
and I/O ports in a given period of tinme, will deternine the
extent to which processors and |/O ports will degrade each
other's read latency. As data bandwi dth increases, so too does a
system s ability to support concurrent data references from
various processors and I/O ports. This increased bandw dth and
concurrent data referencing serve to reduce conpetition for
resources and, as a result, to reduce nenory read | atency. Thus
we can conclude that the nore avail abl e data bandwi dth in a
system the closer the nenory read |atency will be to the

m ni mum This conclusion is supported by the results of a queuing

nodel used to support the Al phaServer 8000 pl atform devel opnent.
Thi s queui ng nodel, originally inplenmented to eval uate bus
arbitration schenes, outputs the average read | atencies
experienced by each processor in a system as the nunber of
processors and the nunber of menory resources are varied. It is
i mportant to note that in this nodel nmenory resources, or banks,
deternine the amobunt of system bandwi dth: the nore nenory banks,
the nore bandwidth. It is also inportant to note that the nininum
read latency in this nodel is 168 nanoseconds (ns). The results
of the nodel are shown in Table 1. These results clearly show
that | atency degrades as the nunber of system processors is

i ncreased and that |atency inproves as the systenls
bandwi dt h- - nunber of nmenory banks--is increased.

Table 1 Average Read Latency as a Function of the Nunmber of
Processors and Bandwi dth (Nunber of Menory Banks)

Nunber of { Aver age Read Latency (Nanoseconds) }
Processors

2 Menory Banks 4 Menory Banks 6 Menory Banks 8 Menory Banks

1 185 179 177 176
2 224 200 193 190
4 358 253 230 220
8 928 439 338 299

Many techni cal market benchmarks, such as the Linpack benchmarks
and the McCal pin Streans benchmark, stress a conputer systenis
data bandwi dth capability. The regularity of data reference
patterns in these benchmarks allows a high degree of data
prefetchi ng. Consequently, data can be streanmed into a processor
frommain nenory so that a piece of data has an unnaturally high
probability of being resident in the processor's cache when it is
needed for sone calculation. Ironically, this amunts to using
smart software to nminimze read |latency. By reading a piece of
data into a processor's cache before it is actually needed, the
software presents the processor with a small cache read | atency
instead of a long nenory |atency when the data is needed. Thus
the streaming techniques applied in these benchmarks all ow
processors in high-bandw dth systens to stall for a full nenory
read | atency period only when starting up a stream of data.
Therefore nenory |latency can be anortized over | engthy

hi gh-bandwi dth data streanms, minimzing its significance. It is

i mpportant to note, however, that although bandwidth is the system
attribute that domi nates performance in these workloads, it

dom nates performance through its effect on read | atency.

Commerci al workl oads |ike the Transacti on Processing Performance
Council's benchmark suite, on the other hand, typically have nore

conpl ex data patterns that frequently defy attenpts to prefetch
data. When sone of these codes parse data structures, in fact,
the address of each data access nmay depend on the results of the
| ast data access. |In any case where a processor nust wait for
menory read data to make progress, a systenls nmenory read | atency
will determne the period of tinme that the processor will be
stalled. Such stall periods directly affect the perfornmance of
conmput er systenms on conmerci al workl oads. These assertions
supported by a study on the performance of conmercial workl oads
on Digital's Al pha 20164-based DEC 7000/ 1000 AXP server.[4] It is
important to note here that the latency ills flagged in this
study cannot be cured with raw system data bandw dth or

sof t war e- enhanced | at ency reduction. Low nenory | atency al one can
address the needs of these workl oads.

Conpar abl e i ndustry systens from|IBM 5] and Hew ett-Packard
(HP)[6] do not stress |ow nenory | atency system devel opnent in
their respective Rl SC System 6000 SMP or Hawks (PA-8000-based)
SMP systens. In fact, neither directly acknow edges nenory

| atency as a significant systemattribute. This mind set is
reflected in the results: Based on |IBMs docunentation, we
estimate the RI SC System 6000 SMP's mini mum mai n nenory read

| atency to be in the nei ghborhood of 600 to 800 ns.

| BM and HP do enphasi ze system bandwi dth in their designs. HP
provi des a 960- MB- per-second (MB/s) "runway" processor-nenory bus
inits Hawks system The actual data bandwi dth of this bus is
slightly less than the quoted 960 MB/s, since the bus is shared
bet ween address and data traffic. IBM on the other hand, goes to
the extent of applying a data crossbar switch in conjunction with
a serial address bus to reach an 800-MB/s rate in its RISC
Systen’ 6000 SMP system The actual attainable data bandwi dth in
IBMs systemis determ ned by the bandwi dth of its address bus.

In the past, Digital's systenms have shown nuch the sanme bal ance
of bandwi dth and | atency as have their conpetitors. The DEC

7000/ 10000 AXP system has a mninmum nmain nmenory read | atency of
560 ns and a system data bandwi dth of 640 MB/s. The Al phaServer
8000 platform however, was devel oped with a marked enphasis on

| ow menory read |latency. This enphasis can be seen through nearly
all phases of system devel opnent, including the systemtopol ogy,
cl ocking strategy, and protocol. This latency- oriented m ndset
is reflected in the results: The Al phaServer 8000 pl atform boasts
m ni mum menory read | atencies of 200 ns. The Al phaServer 8400 and
8200 systens feature a mninmum nmenory read | atency of 260 ns. To
back up these latencies, the Al phaServer 8000 platform supports a
tremendous 2,100 MB/s of data bandwi dth. The Al phaServer 8400
and 8200 systemns, although not capable of providing the ful

2,100 MB/s, still provide 1,600 MB/s of bandw dth. This gives the
systens | ess than half the nenory |atency of conparable industry
systens while providing nearly twi ce the bandw dth. Furthernore,
these attributes inprove upon the DEC 7000/ 10000 AXP attri butes
by factors of 2 to 3. Although difficult to determ ne exactly
how these attri butes would translate into overall system

performance, they were accepted as sufficient to neet the

Al phaServer 8000 pl atform performance goals. A conparison of the
maxi nrum DEC 7000/ 10000 AXP SPECrates of approxi mtely 25,000

i nteger and 40,000 floating point wth the maxi num Al phaServer
8400 SPECrates of 91,580 integer and 14,0571 floating point

i ndicates that these attributes were sound choices.

ALPHASERVER 8000 PLATFORM DEVELOPMENT

Referring to the Al phaServer 8000 platformas a "foundation" for
a series of server products does not give a clear picture of what
constitutes a server platform The Al phaServer 8000 pl atform has
bot h physical and architectural conponents. The physica

conmponent consi sts of the basic physical structure from which
8000-series server products are built. This includes power
systens, thermal managenent systens, system enclosures, and a
centerplane card cage that inplenents the interconnect between
processor, nenory and |/ O port nodul es. The processor, nenory,
and |1 /0O nodul es are printed circuit board (PCB) assenblies that
can be inplenmented with varying conbi nati ons of processor

dynam ¢ random access nenory (DRAM, and application-specific
integrated circuit (ASIC) conponents. The assenblies are inserted
into the platformcenterplane card cage in varying configurations
and in varying enclosures to create the various 8000-series
products. The Al phaServer 8200 system for exanple, conprises up
to six Al pha 21164-based TLEP processor nodul es, TMEM nmenory
nmodul es, or ITIOP and TIOP I/O port nodules in an

i ndustry-standard rack-nount system The Al phaServer 8400 system
conprises up to nine TLEP processor nodul es, TMEM nenory nodul es,
or ITIOP and TIOP I/O port nodules in a DEC 7000 AXP-style data
center cabinet.

The architectural conponent of the Al phaServer 8000 platform
consists primarily of a collection of technol ogical, topol ogical
and protocol standards. This collection includes the
processor-nmenory interconnect strategy, the bus interface
technol ogy, the clock technol ogy and net hodol ogy, and the
signaling protocols. For exanple, the TLEP, TMEM and Tl OP
nmodul es all inplenent bus interfaces in the sane integrated
circuit (1C packages with the same silicon technology and drive
their comon interconnect bus with the same standard bus driver
cell. Furthernore, all these nodul es apply nearly identica
clocking circuits and conmuni cate by neans of a comon bus
protocol. The epheneral architectural standards that constitute
the "platforni specify exact physical requirenments for designing
t he Al phaServer processor-nenory-I1/0O port interconnect and the
various nodules that will populate it. It is inportant to note
that the key to Al phaServer 8000 performance is found in these
standards. As we explore the design decisions and trade-offs that
shaped the Al phaServer 8000 platform it is this collection of
architectural standards that we actually probe.

Throughout this analysis of the Al phaServer 8000 architecture,

two themes frequently recur: |low nenory |atency and practica

engi neering. As discussed in the context of the Al phaServer 8000
goals, low nenory read |latency was identified as the key to
system performance. As such, low | atency was factored into nearly
every system desi gn deci sion. Design decisions in general can be
t hought of as being resolved in one of two ways: by enphasi zi ng
Digital's superior silicon technology or by effecting
architectural finesse. Use of superior technology is self

expl anatory; it involves pushing |eadi ng-edge technology to
sinmply overwhel mand elininate a design issue. Architectura
finesse, on the other hand, typically involves a shift in
operating nmode or configuration that allows a problemto be

avoi ded altogether. Practical engineering is the art of finding a
bal ance between | eadi ng-edge technol ogy and architectural finesse
t hat produces the best product.

LAYERED PLATFORM DEVELOPMENT

Pl at f orm devel opnment typically involves a sinple three-I|ayer
process: (1) determ ne a basic systemtopol ogy, (2) establish the
el ectrical nmeans by which various conmputer conponents will
transmit signals across the systemtopol ogy, and (3) apply a
signaling protocol to the electrical transm ssions to give them
nmeani ng and to allow the computer conponents to communi cate.
System t opol ogy determ nes how processor, nmenory, and |/O
conmponents of a conputer systemare interconnected. Conputer

i nterconnects may involve sinple buses, nultiplexed buses,
switches, and nultitiered buses. The electrical neans for
transmtting signals across a conputer interconnect may involve
bus driver technol ogy, switch technol ogy, and clock technol ogy.
Signaling protocols apply nanes to systeminterconnect signals
and define cycles in which the signals have valid values. This
nanm ng and definition allows each conputer conponent to
understand the transm ssions of other conponents.

As the Al phaServer 8000 pl atform devel opnent progressed, this
sinple three-layer platform devel opnent nodel was found to be
insufficient. Efforts to achieve the |lowlatency perfornmance goa
and the sinple product goals uncovered unexpected design issues.
The resolution of these design issues led to the creation of a
nor e robust seven-layer platform devel opnent nodel. When certain
nmul ti-driver bus signals threatened the cycle tinme of the

Al phaServer 8000 system bus, for exanple, the systenls |atency
goals were threatened as well. The practical solution to this
mul ti-driver signal problemwas the creation of specific
signaling conventions for problematic classes of signals. This

i nnovation led to the birth of the Signaling Layer of the

devel opnent nmodel. Similarly, when the integration of PCl |/0O
into the systemwas found to conflict with primary protoco

el enents that were key to | ow | atency processor-nmenory

comuni cation, the concept of a "superset protocol" was created.
This led to the creation of the Superset Protocol Layer of the
devel opnent nmodel . The seven-1layer platform devel opnent nodel is

contrasted with the sinple three-layer devel opnment nodel in
Figure 1.

The anal ysis of the Al phaServer 8000 platform design presented
here traces the key system desi gn decisions through each of the
seven | ayers of the devel opnent process. Each layer will be
described in greater detail as this analysis proceeds.

[Figure 1 (Conparison of Conventional Three-Layer Mdel with
Seven-Layer Pl atform Devel opnent Mbdel) is not available in ASCl
format.]

Topol ogi cal Layer

Server-class conmputers typically conprise processor, nenory, and
I/ O port conmponents. These conponents are usually found in the
form of PCB nodul es. A conputer systenis topol ogy defines how

t hese conputer conponents are interconnected. Conputer topologies
are many and varied. The | BM RI SC System 6000 SMP, for exanple,
links its nmodul es by neans of an address bus and a data swi tch.
Its nenory nodul es are grouped into a single menory subsystem

wi th one connection to the address bus and one connection to the
data switch. The HP Hawks SMP system by conparison, links its
nodul es by neans of a single bus onto which address and data are
mul ti pl exed. The Hawks system al so groups its nmenory into a
single menory subsystemwi th one connection to the multiplexed
bus.[7] Digital's DEC 7000/ 10000 AXP al so uses a single

mul ti pl exed address and data bus. Unlike the | BM and HP systens,
the DEC 7000/ 10000 AXP systemallows its nenory to be
distributed, with nmultiple connections to its multiplexed bus.

None of the IBM HP, or prior Digital systems neet the | atency
goal s of the Al phaServer 8000 platform Exactly how nmuch system
topol ogy contributes to these systens' |latencies is unclear. A
nmul ti pl exed address and data bus certainly creates a system
bottl eneck and can contribute to | atency. Likew se, unified
menory subsystens can often have associ ated overhead that can
translate into latency. In addition to performance issues,

t opol ogi es such as the I BM switch-based system have significant
cost issues. If, for exanple, a customer were to purchase a
sparsely configured--two processors perhaps--1BM system such a
custoner would be required to pay for the switch support for up
to eight processors. This creates a high systementry cost and a
potentially | ower increnental cost as functionality is added to
the system In a sinple bused system a custoner pays only for
what is needed to support the specific functionality required.
This creates a nore nanageable entry cost and a snooth, if
slightly steeper, incremental cost. FromDigital's marketing
perspective, this makes a bused system preferable, provided it
can satisfy bandwi dth and | atency requirenents.

Uni processor conputer topol ogi es, an exanple of which is shown in
Figure 2, typically exhibit the | owest nmenory read | atencies of

any conputer class. As such, this sinple uniprocessor topol ogy
was chosen as the basis fromwhich to devel op the Al phaServer
8000 platformtopology. In the uniprocessor nodel, processor
chi ps comuni cate with DRAM arrays through separate address and
data paths. These paths include address and data interfaces and
buses. The Al phaServer 8000 topol ogy was created by adding a
second set of interfaces between the address and data buses and
the DRAM array, and connecting additional m croprocessors, menory
arrays, and |/O ports to the buses by means of sinilar
interfaces. The resultant topology is shown in Figure 3. This

t opol ogy features separate address and data buses. These buses
together are referred to as the Al phaServer 8000 system bus

[Figure 2 (Sinple Uniprocessor System Topol ogy) and Figure 3
(Al phaServer 8000 Multiprocessor System Topol ogy) are not
available in ASCI| format.]

The topol ogy presented in Figure 3 is an abstract. To flesh out
this abstract and neasure it against specific system goals,

signal counts, cycle tinmes, and bus connection (slot) counts nust
be added. It is in this effort that practical engineering nust be
applied. To achieve the systeni s bandwi dth goal, for exanple, the
data bus could be inplenmented as a wide bus with a high clock
frequency, or it could be replaced with a switch-based data

i nterconnect, like that of the IBM Rl SC System 6000 SMP. The

hi gh-frequency bus presents a significant technol ogical challenge
in ternms of drivers and clocking. This challenge grows as the
nunber of bus slots grows. The growth of the technol ogica
challenge is a significant issue given the system s configuration
goals. The switch interconnect, on the other hand, avoids the
technol ogi cal chal |l enges by providing nore data paths at | ower

cl ock frequencies. The | ower clock frequencies, however, can
translate directly into additional |atency. G ven the enphasis

pl aced on menory | atency and the advantages associated with

si npl e bused systens, the practical design choice was to adopt a
wi de, high-frequency data interconnect. The resultant Al phaServer
8000 system bus features 9 slots, an address bus that supports a
40-bit address space, and a 256-bit (plus error-correcting code
[ECC]) data bus. To neet configuration goals, processor nodul es
necessarily support at |east two mcroprocessors per nodul e,
menory nodul es support up to 2 GB of DRAM storage, and I/ O port
nodul es support up to 48 PCl slots. To neet performance goals,
bot h buses nust operate at a frequency of 100 MHz (10-ns cycle).

The Al phaServer 8000 platformtopol ogy has a nunber of

advant ages. The nobst significant advantage is that nenory read

| atency from any processor to any nenory array is conparable to
the |l atency of a uniprocessor system The delay associated with
two interfaces--one address interface and one data interface--is
all that is added into the path. In addition, the platforns
sinmpl e bus topology features a low entry cost, a sinple growh
path (just insert another nodule) and flexible configuration
(just about any nodul e can be placed in any slot).

Operational Layer

The Operational Layer is so nanmed for lack of a better
descriptor. The layer is actually a place to define a high-Ievel
system cl ocking strategy. This strategy has two key conponents:
definition of target operating frequencies and definition of a
desi gn net hodol ogy to support operation across all the defined
operating frequencies. The desi gn nethodol ogy conponent of this
strategy nmay seem better suited for a higher order devel opnent

| ayer, such as the Protocol Layer. However, because the

nmet hodol ogy is logically associated with the system s operating
frequency range and the operating frequency range provides a
foundation for the Electrical Transport Layer, it seened
appropriate to include both conponents of the strategy in the
Operational Layer.

In personal conmputer (PC)-class mcroprocessor systens, clock
rates are typically slow (33 MHz to 66 MHz). Conpl enentary
conmponents capabl e of operating at these speeds are readily

avail able, e.g., transceivers, static random access nenory
(SRAM), ASIC, DRAM and progranmable array logic (PAL). Therefore
entire PC systens are typically run synchronously, i.e., the

systemlogic (typically a notherboard) and the nicroprocessor run
at identical clock speeds. Al pha processors, on the other hand,
run at clock rates exceeding 250 MHz. The current state of

conpl ement ary conponents mekes running system | ogic at Al pha
processor rates inpractical if not inpossible. Many of these
conmponents cannot performinternal functions at a 250-MHz rate,

| et al one transfers between conponents.

Digital's DEC 7000/ 10000 AXP systens sol ved the problem of Al pha
m croprocessor and system cl ock disparity by running both the

Al pha nicroprocessor and the DEC 7000/ 10000 AXP system hardware
at their respective maxi num clock rates and synchroni zi ng address
and data transfers between the m croprocessor and the system
Each tine a transfer was synchroni zed, however, a synchronization
| atency penalty was added to the latency of the transfer. In the
DEC 7000/ 10000 AXP system two synchronization penalties--one for
an address transfer to the system and one for a data transfer to
the processor--are added to each nenory read |atency. Wth

mul tiple data transfers, the data transfer fromthe systemto the
processor can be particularly |arge. Wen conbi ned, the two
penal ti es added nearly 125 ns to the DEC 7000/ 10000 AXP read

| atency, or approxinmately 25 percent of the total 560-ns | atency.
The sane 125 ns, however, could add another 60 percent to the

Al phaServer 8000 platform s |ower target |atency of 200 ns.

G ven its latency goals, the Al phaServer 8000 platforminplenents
a cl ocking nethodol ogy that nininzes synchronization penalties
and thus mnimzes read | atency. This methodol ogy invol ves
clocking the entire Al phaServer system-up to the |I/0O

channel s--synchronous to the m croprocessor in such a way that
the Al pha m croprocessor operates at a clock frequency that is a

direct nultiple of the systemclock frequency. Wth a 100- MHz
(10-ns cycle) clock rate, for exanple, the Al phaServer 8000 could
support a 200-MHz (5-ns cycle) Al pha processor using a 2[X] clock
multiplier. Since the processor nust still synchronize with a
system cl ock edge when transferring address and data to the
system synchroni zation penalties are not elimnated altogether
They can, however, be linmted to less than 10 ns, or 5 percent of
the Al phaServer 8000 platform s total read | atency.

Synchronous cl ocki ng by neans of clock nultiples is not unique
and i nnovative in and of itself. The uni queness of the

Al phaServer 8000 clocking strategy lies in its flexibility. Since
t he Al phaServer 8000 platform nmust support at |east three
generations of Al pha processors to satisfy its product goals and
the specific operating frequencies of those processors is
difficult to predict, the Al phaServer 8000 platform nust be
capabl e of operating across a range of clock frequencies.
Specifically the Al phaServer 8000 platformis capabl e of
operating at clock frequencies between 62.5 MHz (16-ns cycle) and
100 MHz (10-ns cycle).

Operating across a range of frequencies may seema trivia
requirenent to neet; if logic were designed to operate at a 10-ns
cycle tinme, it should certainly continue to function electrically
at a 16-ns cycle time. The real issues that this frequency range
creates, however, are nuch nore subtle. DRAMs, for exanple,
require a periodic refresh. The refresh period for typical DRAM
may be 50 milliseconds (ms). If a system were designed to a 10-ns
clock rate, the system would be designed to initiate a DRAM
refresh every 5,000,000 cycles. If the systemwere to be slowed
to a 16-ns clock rate, the systemwould initiate a DRAM refresh
every 80 ns based on the sanme 5,000,000 cycles. This could cause
DRAMs to | ose state and corrupt system operation. Simlarly,
DRAMs have a fixed read access tinme. The Al phaServer 8400/ 8200
TMEM nmodul e, for exanple, uses 60-ns DRAMs. |f the DRAM s
controller is designed as a 7-cycle controller and clocked at a
10-ns clock rate, it would access the 60-ns DRAMin 70 ns. |If the
system were slowed to a 16-ns clock rate, the system woul d, using
the sane controller, consunme 112 ns in accessing the same 60-ns
DRAM This application of a single sinple controller over a
frequency range directly increases the DRAM s read | atency and
decreases the DRAM s bandwi dth. This non-opti mal DRAM performance
in turn directly increases the systemread | atency and decreases
t he system bandwi dt h.

The Al phaServer 8000 pl atform desi gn addresses these i ssues by

i mpl enmenting controllers that can be reconfigured based on the
system s specific operating frequency. The TMEM nodul e, for
exanpl e, inplenments a reconfigurable controller for sequencing
the reads and wites of its DRAMs. This controller has three
settings: one for cycle tinmes between 10 ns and 11.2 ns, one for
cycle tinmes between 11.3 ns and 12.9 ns, and one for cycle tines
between 13 ns and 16 ns. Each setting accesses the DRAMs in

di ffering nunmbers of systemclock cycles, but all three nodes

access the DRAMs in approximtely the same nunber of nanoseconds.
By allowi ng flexible reconfiguration, this controller allows the
TMEM to keep the DRAM s read | atency and bandwi dth as cl ose to

i deal as possible. O her exanples of reconfigurable controllers
are the TMEM s refresh tiner and the TLEP' s cache controller

It should be noted here that the Al phaServer 8000 operating
frequency range and processor-based frequency sel ecti on account
for the disparities between the Al phaServer 8000 platform s
bandwi dth capability and the Al phaServer 8400 and 8200 products
bandwi dth capabilities. The Al pha 21164 processor is the basis
for the 8400 and 8200 products. This 300-MHz (3.33-ns cycle)

m croprocessor, conmbined with a 4[X] clock frequency nultiplier,
sets the systemclock frequency at 75 MHz (13.3-ns cycle). This
13.3-ns cycle tinme, when applied to the 256-bit data bus,
produces the 1,600 MB/s of data bandwi dth. The cycle tine

i ncreases the read | atency of the 8400 and the 8200 to sone
extent as well, but the reconfigurable DRAM controllers help to
mtigate this effect.

El ectrical Transport Layer

When the bused system topol ogy was sel ected in the Topol ogi ca
Layer of the Al phaServer 8000 pl atform devel opnent, a practica
engi neering decision was nmade to enphasi ze | eadi ng- edge
technol ogy as the neans to acconplish our performance goals, as
opposed to el egant architectural chicanery. It was observed in

t he topol ogi cal discussion that, with the selected system

t opol ogy, bus cycle tine was critical to neeting the platform s
performance goals. The Electrical Transport Layer of the platform
devel opnent invol ved sel ecting or devel opi ng the centerplane,
connector, clocking, and silicon interface technol ogy that would
all ow the Al phaServer 8000 system bus to operate at a 100- MHz
clock frequency. The nobst innovative of the technol ogica

devel opnents that resulted fromthis effort were the platform s
cl ocking systemand its custom bus driver/receiver cell

To put the Al phaServer 8000 100- MHz system bus goal in
perspective, consider the operating frequencies of a nunber of
today's highly conpetitive m croprocessors.[8] The NexGen Nx586
operates at 93 MHz. The Intel Pentium Cyrix ML, and AMD K5 al
operate at 100 MHz. The Intel P6 operates at 133 MHz. In al

these m croprocessors, the 100+/-- Mz operation takes place on a
silicon die less than 1 inch square. To neet its goals, the

Al phaServer 8000 system bus nust transfer data froman interface
on a nodule in any slot on the systembus to an interface on

anot her nmodule in any other slot on the system bus across a
13-inch-l1ong wire etch, with nine etch stubs and nine connectors,
in the sane 10 ns in which these mcroprocessors transfer data
across l-inch dies. By any neasure this is a daunting task.

A breakdown of the elenments that determ ne mninmumcycle tine
aptly denonstrates the significance of clock system design, bus

driver design, and bus receiver design in the Al phaServer 8000
system bus devel opnent. M ni mum bus cycle tinme is the m ni num
time required between clock edges during which data is driven
froma bus driver cell on one clock edge and is received into a
bus receiver cell on the next clock edge. An equation for
deternmining the mnimumcycle tinme is shown below. Tcmin is the
m ni mum cycle time. Tprop is the time, nmeasured froma rising
clock edge, that is required for a bus driver to drive a new bus
signal level to all systembus receivers. Tsetup is the tine a
bus receiver needs to process a new bus signal |evel before the
signal can be clocked into the receiver cell. Tskewis the
variati on between the clock used to clock the bus driver and the
clock used to clock the bus receiver. Tprop, Tsetup, and Tskew
nmust all be minimzed to achi eve the | owest possible cycle tine.
The value of Tskew is determ ned by the system cl ock design. The
val ues of Tprop and Tsetup are determ ned by the bus
driver/receiver cell design.

Tcmin = Tprop + Tsetup + Tskew

Al phaServer 8000 System Bus Interface. To provide sone context
for the clock and bus driver/receiver discussions, it is
necessary to briefly describe the standard Al phaServer 8000
system bus interface. Each Al phaServer 8000 nodul e i npl enents a
standard system bus interface. This interface consists of five
ASICs: one interfaces to the Al phaServer 8000 address bus and
four interface to the Al phaServer 8000 data bus.[9] Each ASIC is
i mplemented in Digital's 0.75-micrometer, 3.3-volt (V)

conpl ement ary et al - oxi de semi conduct or (CMOS) technol ogy and
features up to 100,000 gates. Each ASIC is packaged in a 447-pin
interstitial pin grid array (I PGA) and features up to 273 user
I/ Cs.

Essential to the Al phaServer 8000 devel opment were the speed of
the CMOS interface ASIC technol ogy and the devel opment teanm s
ability to influence the ASIC design process. "Influencing the
desi gn process" translated to the ability to develop a standard
cell design library and process that is for and in concert with

t he devel opnment of the Al phaServer 8000 platform The standard
cell library, together with the CMOS silicon technol ogy, provided
the Al phaServer 8000 platform s required speed; conplex |ogic
functions (5 to 8 levels of conplex |ogic gates) can be perforned

within a 10-ns cycle. "Influencing the design process" also
translated to the ability to design a fully custom bus
driver/receiver cell. Thus the devel opnment team could create a

customdriver/receiver cell tailored to the specific needs of the
Al phaServer 8000 system bus

Cl ock Technol ogy. The primary goal of the Al phaServer 8000
platformclock distribution systemwas to nmaintain a skew (Tskew)
as small as possible between any two clocks in the system while
delivering clocks to all clocked system conponents. The goal of

m ni mum skew i s consistent with attaining the | owest possible bus
cycle tinme, the highest possible system data bandw dth, and the

| owest possible nmenory read latency. It is inportant to note that
in the Al phaServer 8000 platform skew between clocks is not
sinmply measured at the clock pins of the various clocked
conponents. Skew i s neasured and, nore inportant, managed at the
actual "point of use" of the clock, for exanple, at the clock
pins of ASIC flip-flops. This is an inportant point when dealing
with ASICs. Since different copies of even the sanme ASI C design
can have different clock insertion delays, additional skew can be
i njected between clocks after the clocks pass their ASIC pins.

The Al phaServer 8000 clock distribution systemis inplenmented
according to a two-tier schene. The first tier, the system clock
distribution, distributes a clean radio frequency (RF) sine wave
clock to each system bus nodul e. The second tier, the npdule
clock distribution, converts the system RF sine wave clock to a
digital clock and distributes the digital clock to each nodule's
conponents. The nmodul e clock distribution tier also nmanages the
skew between the system RF sine wave clock and all copies of each
nodul e's digital clock by nmeans of an innovative "renpte del ay
conpensati on" nmechani sm The system clock distribution delivers
clocks to the nine system bus nodule slots with a maxi mum of 40
pi coseconds (ps) of skew. The nodul e clock distribution delivers
clocks to the various nodul e conponents, nobst notably system bus
interface ASICs, with a maxi mum of 980 ps of skew. The skew
between any ASIC flip-flop on any Al phaServer 8000 nodul e and any
ASIC flip-flop on any ot her Al phaServer 8000 nodul e i s guaranteed
to be less than 1100 ps.

The Al phaServer 8000 system clock distribution begins on the
system cl ock nmodule with a single-ended RF oscillator, a constant
i npedance bandpass filter, and a nine-way power splitter. The
power splitter, by way of the bandpass filter, produces nine
spectrally clean, anplitude-reduced copies of the oscillator sine
wave. These nine outputs are tightly matched in phase and
anplitude. They are distributed to the nine system bus nodul e
connectors by neans of matched-1ength, shrouded,
control | ed-i npedance etch. This design provides the nodules with
| ow skew (30 to 40 ps), high-quality (greater than 20-decibe
signal -to-noi se ratio) clocks.

The RF sine wave clock was an ideal selection for system cl ock
distribution. By elimnating all high-order harnonics, the edge
rates and propagation tinmes of the clock wave are fixed and
predi ctabl e across the distribution network. This predictability
elimnates variation in the clock as perceived by the cl ock
recei ver on each nodule, thus mnimzing skew. It also greatly
reduces constraints on the design of connectors, etch

term nation, etc.

The Al phaServer 8000 nmodul e clock distribution is a boilerplate
design that is replicated on each Al phaServer 8000 nodule. On
each nodul e, the system sine wave clock is termnated by a

si ngl e-ended-to-dual -di fferential output transformer. This
transfornmer produces two phase- and anplitude-matched

differential clocks that are fed into one or two Al phaServer 8000
cl ock repeater chips (DC285 chips). These chips convert the sine
wave clocks into CMOS-conpatible digital clocks; distribute

nmul tiple copies of the digital clocks to various nodul e
conmponents, including the systembus interface ASICs; and perform
renote del ay clock regul ation on each cl ock copy.

The renote delay clock regulation is perforned by a custom
digital delay-locked |oop (DLL) circuit. This DLL circuit was
devi sed specifically to deskew clocks all the way to their point
of use in the systembus interface ASICs. The principles of

DLL- based renmpte delay clock regul ation are sinple. The sum of
the del ays associated with (1) the clock repeater chips, (2) the
nodul e cl ock distribution etch, and (3) the ASIC cl ock

di stribution network constitutes the insertion delay of the ASIC
poi nt-of -use clock with respect to the system sine wave cl ock
Wth no clock regulation, this delay appears as skew between the
system cl ock and the point-of-use ASIC clock. Between ASICs on
di fferent nodules, a fixed portion of the clock insertion delay
will correlate and need not be factored into the overall system
skew. Since the insertion delay can easily approach 7 ns,
however, the variation in the insertion delays to different

ASI Cs, which nmust be factored into the overall system skew, can
al so be significant. To reduce the skew between the system sine
wave clock and the point-of-use ASIC clock, the clock repeater
uses a digital delay Iine to add delay to the clock repeater

out put clock. Enough delay is added so that the insertion delay
plus the delay-line delay is equal to an integer multiple of the
system cl ock. This delay noves the point-of-use clock ahead to a
poi nt where it again lines up with the systemclock. As the
system operates, the system and poi nt-of-use clocks may drift
apart. In response, the clock repeater adjusts its delay line to
pull the clocks back together. This process of delaying clocks
and dynamically adjusting the delay is called renote delay cl ock
regul ati on. When the clock separation, or drift, is neasured by
a clock "replica | oop" and the clock delay is inserted by neans
of a digital delay line, the process is called DLL-based renote
del ay clock regulation.[10] Using the clock repeater chips in
this way, Al phaServer 8000 nodul es are able to achieve

poi nt -of -use to point-of-use skew of approxinmately 930 to 980 ps.
Combi ned with the system nodul e-t o-modul e skew of 30 to 40 ps,
this provides the quoted systemw de cl ock skew of no nore than
1,100 ps.

It is worth noting that although the Al phaServer clock repeater
was primarily devel oped for use with system bus interface ASICs,
it is a generally versatile part. It may, for instance, be used
with non-ASIC parts such as transceivers and synchronous SRAMs.
In these cases, the clock pin of the non-ASIC part is treated as
the point of use of the clock. The clock repeater may al so be
used for precise positioning of clock edges. On the TLEP nodul e,
for exanmple, the Al pha 21164 m croprocessor's systemclock is
synchroni zed to a clock repeater output by neans of a digita
phase-| ocked | oop (PLL) on the mcroprocessor. The Al pha 21164's

PLL operates in such a way that the 21164's clock is always in
phase with or always trailing the system (reference) clock. It
can trail by as much as 2 ns. Such a large clock disparity in
this fixed orientation can create setup tinme problens for
transfers fromthe Al pha 21164 to the system and hol d-tine
problenms for transfers fromthe systemto the Al pha 21164. The
TLEP desi gn addressed this problemby | engthening the replica

| oop associated with the Al pha 21164 cl ock and thereby shifting
the m croprocessor clock 1 ns earlier than the bal ance of the

cl ock repeater output clocks. Since the Al pha 21164 cl ock was
either in phase or 2 ns later than its associated cl ock repeater
clock, which is 1 ns earlier than the rest of the clock repeater
cl ocks, the 21164 cl ock now appears to be either 1 ns earlier or
1 ns later than the rest of the clock repeater system cl ocks.
This centering of the nodule clocks with respect to the 21164
clock halves the required setup or hold margin.[11, 12, 13, 14]

Bus Driver Technol ogy. Like the Al phaServer 8000 cl ock system

t he Al phaServer 8000 system bus driver/receiver cell was
specifically designed to minimze bus cycle tinme. As with the
clock logic, the goal of mnimzing cycle tinme was a result of
the effort to mininze systemread | atency and maxi nm ze system
data bandwidth. In the effort to mnimze the bus cycle tinme, the
desi gn of the Al phaServer 8000 bus driver/receiver cell was
focused on mnimzing the propagation delay (Tprop) of the
system bus driver circuit and mninizing the setup time (Tsetup)
of the system bus receiver.

The Al phaServer 8000 system bus driver/receiver cell is a fully
custom CMOS |/ O cell, which incorporates a bus driver, a bus
receiver, and an output flip-flop and an input flip-flop in a
single cell. Consisting of nearly 200 netal oxi de sem conduct or
field-effect transistors (MOSFETs), the bus driver cell is
powered by standard 3.3-V CMOS power, but drives the bus at a
much lower 1.5-V level (i.e., voltage swi ngs between 0 and 1.5
V). This | ow voltage output serves to reduce the bus driver's
power consunption and permts conmpatibility with future CMOS
technol ogi es that are powered by voltages less than 3.3 V. Many
of the bus driver cell's critical characteristics are
“progranmabl e," such as the 1.5 V output, the receiver swtching
point, the driver's drive current linmt, and the driver's rise
and fall tinmes. These val ues are programred and, nost inportant,
are held constant by nmeans of reference voltages and resistances
external to the bus driver/receiver cell's ASIC package. They
allow the cell to produce uniform predictable, high-performance
wavefornms and to transmit and receive data in a clock cycle of 10
ns.

The bus driver/receiver's high performance begins with its output
flip-flop and driver logic. The output flip-flop is designed for
m ni mum delay and is integrally linked to the output driver. This
configuration produces clock-to-output tines of 0.5 ns to 1 ns.
The output driver itself, with its progranmabl e output voltage
and edge rates, allows the shape of the output waveformto be

carefully controlled. The cell's programmbl e val ues are set such
that the Al phaServer system bus waveform bal ances the edge rate
ef fects of increased crosstalk with increased propagati on del ay.
Furthernore, the bus waveformis shaped in such a way that it

all ows incident wave transm ssion of signals. As such, a signa
can be received on its initial propagation across the bus
centerplane, as opposed to waiting for signal reflections to
settle. Al the driver characteristics serve to reduce bus
settling tinme. When conbined with the |ow cl ock-to-output tine of
the output flip-flop, this reduced settling tinme produces a very
| ow driver circuit propagation delay (Tprop).

The bus driver/receiver cell's receiver and input flip-flop
further contribute to its high performance. Designed with a
programmabl e reference voltage, the receiver has a very precise
swi tching point. Whereas typical receivers nmay have a
200-mllivolt (mv) to 300-nV switching wi ndow, the bus
driver/receiver cell's receiver has a swi tching wi ndow as snal
as 40 mvV. This dimnished switching uncertainty directly reduces
the receiver's maxi mum setup tine. The input flip-flop's nmaster
latch is a sense-anplifier-based |atch as opposed to a sinple

i nverter-based |atch. The sense anplifier, with its ability to
resolve small voltage differentials nuch faster than standard
inverters, allows the nmaster latch to deternmine its next state
much nore rapidly than a standard | atch. This characteristic
serves to reduce both the receiver's setup and hold tine

requi renents.

In general, the setup and hold tine requirenments of a state

el enent are interrelated. The setup tinme, for exanple, can be
reduced at the expense of hold tinme. Since setup tine contributes
to cycle tinme and hold time may not, reducing setup tine is
desirable. The Al phaServer 8000 bus driver/receiver cell requires
at nost 300 ps of conbined setup and hold tine. However, since
the edge rates of the cell driver are so well controlled, the

m ni mum propagation time for a bus signal is always guaranteed to
exceed 300 ps. As a result, the bus receiver circuit is designed
with all 300 ps charged as hold tinme. This renders a mnim zed
receiver setup tine (Tsetup) of 0 ps.

The Al phaServer 8000 bus driver/receiver cells have a nunber of
additional features that further reduce the propagation delay (
Tprop) of the driver circuit. The cell, for exanple, features
in-cell bus term nation, which provides the systembus with full
di stributed term nation. Sinmulations have shown that such
distributed term nation can provi de an advantage of 500 ps over
conmon end term nation. The bus driver/receiver cell's

term nation resistance, like other cell paraneters, is
programmbl e and nade identical throughout all system ASICs by
means of a reference resistor external to each ASIC.

The bus driver/receiver cell also features a specia
precondi tioning function that inproves the driver's propagation
delay by as much as 1,500 ps. This feature causes all bus drivers

to begin driving toward the opposite state each tinme they receive
a new value fromthe bus. If the bus is changing state from one
cycle to the next, the feature causes all drivers to begin
driving the bus to a new state in the next cycle. In doing so,

all bus driver cell drivers contribute current and accel erate
the bus transition. If the bus is not changing fromone cycle to
the next, the drivers sinply push the state of the bus toward the
opposite state, but only to a benign voltage well short of the
swi tching threshol d.

Al of the bus driver cell's programmbl e features, such as

swi tching point, output voltage, edge rates, and term nation

resi stance, nmeke the bus driver cell a very stable and

hi gh-performance interface cell. The exi stence of these features,
however, is an elenment of the bus driver cell's conplenentary
process-vol tage-tenperature (PVT) conpensation function. PVT
conpensation is neant to nmeke a device's operating
characteristics independent of variations in the sem conductor
process, power supply voltage, and operating tenperature. By
appl yi ng PVT conpensation in every Al phaServer system bus
interface ASIC, bus driver cells in different ASICs, for exanple,
can drive nearly identical system bus waveforns even if those

ASI Cs cone from manufacturing lots with varying speed
characteristics. Al phaServer 8000 PVT conpensation is based on
reference voltages and resistances provided by very precise,

| ow- cost, nodul e-l evel conponents. The PVT conpensation circuit
nmeasures these references and configures internal voltages and
resi stances so that all bus driver cells can operate uniformy
and predictably. By creating predictability and thus reducing
uncertainty and skew, bus cycle time is mnimzed.

Si gnal i ng Layer

Power ful though it nay be, the Al phaServer 8000 bus
driver/receiver cell is not without Iimtations. During its

devel opnent, it was found that the bus driver cell could be

devel oped to drive the Al phaServer 8000 system bus in 10 ns under
a limted nunber of conditions. When the driver cell asserted a
deasserted (near 0 V) bus line or deasserted a bus |ine that had
been asserted (near 1.5 V) for only one cycle, for exanple, 10-ns
timng could readily be nmet. Wen the driver attenpted to
deassert a bus line that had been asserted for nore than one
cycle by nultiple drivers, however, 10-ns timing could not be
nmet. These linmtations have significant inplications for protoco
devel opnent. Protocols typically have a nunber of signals that
can be driven by multiple drivers. These may include cache status
signals and bus flow control signals. Protocols also typically

i nclude a nunber of signals that can be asserted for many cycl es.
These may include bank busy signals or arbitration request
signals. Clearly the inplications are that the Iimtations of the
bus driver/receiver cell would cause the systemeither to fal
short of its cycle tinme and performance goals or to be incapable
of supporting a workabl e bus protocol

Wth the bus driver/receiver cell pushing technology to its
limts, the solutions to this problemwere extrenmely linmted. The
systemcycle tinme could be slowed down to accommdate all signa
transitions within a single cycle, regardless of the charge state
of the signal line; or a signaling protocol could be devel oped
that woul d avoid charging a signhal to the point where it could
not transition in 10 ns; or the physical topology of the system
could be reconsidered with the goal of finding a new topol ogy
that met the systemgoals at a slower clock rate. The first
option of slowing the clock was clearly unacceptable; it could
not satisfy the systenlis |atency and bandwi dth goal s given the
system s topology. The third option could potentially satisfy the
system s | atency and bandwi dth goals, but came at the expense of
the favorable qualities of the sinple bus outlined in the
Topol ogi cal Layer and at the risk that the new topol ogy woul d
suffer simlar, unforeseen pitfalls. The option of developing a
signaling protocol, on the other hand, could satisfy the systenls
performance goals with [ittle or no risk. A signaling protoco

was clearly the practical solution to the bus driver/receiver

cell limtations.

The Signaling Layer of the platform devel opnent nodel introduces
t he Al phaServer 8000 signaling protocol. This protocol was

devel oped by creating a |ist of signal classes, based on driver
counts and assertion and deassertion characteristics, and by
associating a specific signaling protocol with each class. The
signal classes and their protocols are listed in Table 2. As the
Al phaServer 8000 primary protocol was devel oped, each bus signa
was assigned a signal class. As Al phaServer 8400/8200 hardware
was devel oped, each bus signal was designhed to operate according
to the signaling protocol associated with its signaling class.
The system bus address and data signals, for exanple, fall into
the second class of signals. As a result, the Al phaServer

8400/ 8200 nmodul es are designed to |eave tristate cycles between
each address and data transfer on the system bus

The Al phaServer system bus cache status signals (TLSB_Shared and
TLSB Dirty) and the system bus flow control signals (TLSB Hol d
and TLSB _Arb_Suppress) denonstrate a noteworthy paradi gmthat
results fromthe Al phaServer 8000 signaling protocol. Al these
signals are defined such that at tines they nust be asserted for
mul tiple cycles. Al these signals also fall into the fourth
signal class, which expressly prohibits driving the signals for
nmul tiple cycles. When these two contradictory requirenments exist,
the result is a class of signals pulsed to indicate multiple
cycles of constant assertion. Logic inside each Al phaServer
8000- based nodul e nust be designed to convert these pul sed
signals to constantly asserted signals within its system bus
interface. Note that when signals such as these are discussed in
the protocol sections of this paper, the term"asserted" is used
to inply constant assertion, with the understanding that the
signals may in fact be pul sed.

Tabl e 2 Al phaServer 8000 Signal Cl asses

Si gha
Cl ass

Driver Count and Signa

Assertion/ Deassertion Characteristics

Single driver with multiple
receivers

Mul tiple drivers with
nmul tiple receivers

One driver at a tinme
Mul tiple drivers with
nmul tiple receivers

Many drivers at once
possi bl e

Assertion time may differ
fromdriver to driver

Deassertion tine is fixed

Mul tiple drivers with
nmul tiple receivers

Many drivers at once
possi bl e

Timng is fixed

Consi stency Check Layer

The Consi stency Check Layer
systemintegrity. Specifically,

defines a nethod for

Si gnal i ng Protoco

Never driven nore than two
consecutive cycles

Tristate cycle on the bus
when driver changes

Never driven nore than two
consecutive cycles

Val ue received on signa
deassertion is unpredictable
and nust be ignored

Tristate cycle on the bus
when driver changes

Never driven in two

consecutive cycles

Val ue received on signa
deassertion is unpredictable
and nust be ignored

Tristate cycle on the bus
when driver changes

Never driven in two
consecutive cycles

mai nt ai ni ng

it defines nethods for detecting

errors and inconsistencies in the system and, nore inportant,

nmet hods for
di sabling errors.
Al phaSer ver
goal s,

usef ul

t he Consi stency Check Layer

l ogging errors in the presence of historically

Al t hough it does not contribute directly to the
8000 platform s performance goals or stated product
contributes an extrenely
feature to the Al phaServer 8000 products.

It is included

in the paper for the sake of conpleteness in the analysis of the

seven-| ayer platform devel opnment nodel .

The Al phaServer

8000- based systens enpl oy a nunber of

error-checki ng mechani sns. These include transmt checks,
sequence checks, assertion checks,

detected by an Al phaServer
mechani sns,

and tinme-outs. If any error is
8000 nodul e by nmeans of these
t he nodul e responds by asserting a special "Fault"

signal on the Al phaServer 8000 system bus. This Fault signal has
the effect of partially resetting all system bus interfaces and
processors, and trapping the processors to "nachi ne check"
error-handling routines. The partial reset clears all system
state, with the exception of error registers. This resynchronizes
all systembus interfaces and elimnates all potentially

unservi ceabl e transactions left pending in the system Thus the
system can begi n execution of the machi ne-check routines in a
reset system Although the routines are not guaranteed to be able
to conplete an error log in the presence of an error, it is
believed that this nechanismw || increase the probability of a
successful error |og.

The Al phaServer 8000 platforms Fault error-handling feature is
particularly useful in recovering error state froma conputer in
a "hung" state. A conputer enters a hung state when an error
occurs that stops all progress in the conputer system If a
processor is waiting for a response to a read, for exanple, and
the read response is not forthcoming due to an error, the system
hangs while waiting for the response. The desktop nodel for error
handling woul d require a systemreset to recover from such an
error. The process of the systemreset, however, would purge
error state. The purge, in turn, makes error diagnosis extrenely
difficult. This desktop nodel is not unique to desktop systens.

It is also enployed in server-class machines such as Digital's
DEC 7000/ 10000 AXP systens. Although this nodel may be acceptable
on the desktop, it is npst undesirable in an enterprise server
system The Al phaServer 8000-based systens use a time-out counter
to detect a hung system and the Fault error-handling technique to
recover an error log in the event of a hung system The result is
a robust error-handling systemthat is appropriate in an
enterprise server.

Primary Protocol Layer

The Primary Protocol Layer of the platform devel opnent assigns
nanmes and characteristics to the various system bus signals and
uses these nanes and characteristics to define higher-order
system bus transactions and functions. System bus transactions
may include reads of data fromnmenory or wites of data to
menory. These transactions are the primary business of a conputer
systemand its protocol. If a systemefficiently executes read
and wite transactions, it will performbetter than a systemthat
does not. System bus functions may include mappi ng nenory
addresses to specific nenory banks or arbitrating for access to
system buses. These functions enabl e system bus transactions to
operate in environments with nmultiple processors arbitrating for
access to the system bus and nultiple banks of nenory.

Al phaServer 8000 system bus transactions relate directly into the
platform s performance netrics. The systenls nmenory read | atency,
for example, is equal to the tine it takes for a processor to

i ssue and conplete a system bus read transacti on. The nunber of

system bus transactions and their associated data that the system
bus can process in a given period of tinme define the system bus
bandwi dt h.

The conponents of a typical nenory read transaction are shown in
atinmeline in Figure 4. This tinmeline of conponents is based on a
systemthat is an abstract of the DEC 7000/ 10000 AXP systens. To
mnimze a systems nenory read | atency, each conponent of the
read transaction tineline nmust be mninized. Conponents 1, 3, 7,
and 8 of the tineline are sinply data and address transfers
across buses and through interfaces. The del ays associated with

t hese conponents are largely determ ned by systemcycle tineg;
they cannot be affected by the protocol to any great extent.
Conmponent 5 is the DRAM access tinme. It is mninmzed by the
reconfigurable controllers described in the Operational Layer.
The remai ni ng conponents, (2) address bus arbitration, (4) nmenory

bank decode, and (6) data bus arbitration, fall into the donain
of the primary protocol. These el enents must be designed to
contribute minimal delay to the overall |atency.

[Figure 4 (Conmponents of Menory Read Latency) is not avail able
in ASCII format.]

The effects of protocol on a systenis data bandwidth are a little
nmore difficult to quantify than the effects of protocol on nenory
read | atency. In general, the theoretical nmaxi num system

bandwi dth is equal to either the sum of the bandw dths of the
system s nmenory banks or the maxi mum system bus bandwi dt h,

whi chever is smaller. If the systembandwidth is limted by
menory nodul e bandwidth, it is essential to keep as many nenory
nodul es active as possible. If, for exanple, eight banks of
menory are required to sustain 100 percent of the maxi mum system
bandwi dth, but the system can support only four outstanding
commands, only four banks can be kept busy and only 50 percent of
t he maxi mum bandwi dth can be rendered. In another exanple, if 10
percent of the tine this systemfreezes all but one bank of
menory to perform special atomic functions on special data

bl ocks, the systenm s bandwidth will suffer nearly a 10 percent
penalty (73/80 possible nmenory accesses versus 80/ 80 possible
menory accesses). |If the systembandwidth is limted by the
bandwi dth of the system bus, the mexi mum system bandw dth can be
achi eved only when the protocol allows system nodules to drive
data onto the systemdata bus in every avail able cycle on the
data bus. When a processor reads a block of data froma second
processor's cache, for exanple, the second processor may have to
stall the data bus to allow it to drive the read data onto the
system s data bus as prescribed by the system protocol. A stal

of the data bus translates into unused data bus cycles and
degradation of real system bandwi dth. Thus to mexim ze rea

syst em bandwi dt h, system bus and nenory bank utilization nust be
maxi m zed, and stalls in systembus activity and stalls in nenory
bank activity nust be mnim zed.

The foll owi ng sections begin with an overvi ew of the basic

Al phaServer 8000 platform protocol and how this basic protoco

i nfluences system performance. This section is followed by a

di scussi on of how the various protocol conponents identified as
el enents of nmenory read |atency (i.e., nenory bank nmapping,
address bus arbitration, and data bus arbitration) affect the

| at ency. These sections conclude with a discussion of subbl ock
write transactions and their effects on system bandwi dt h.

Al phaServer 8000 Protocol Overview. The platform devel opnent
Topol ogi cal Layer defined the Al phaServer 8000 system bus as
havi ng separate address and data buses. The Al phaServer 8000
system bus protocol defines how system bus transactions are
performed using these two buses. According to the protocol
processor and |I/O port nodules initiate read and wite
transactions by issuing read and wite conmands to the system
address bus. These address bus conmands are foll owed sonetine

| ater by an associated data transfer on the data bus. All data
transfers are initiated in the order in which their associated
address bus commands are issued. Cache coherency information for
each system bus transaction is broadcast on the system bus as
each transaction's data bus transfer is initiated. Each data
transfer nmoves 64 bytes of data (only 32 bytes of which are valid
for programed |/ O transfers). Figure 5 shows an exanpl e of

Al phaServer 8000 system bus traffic. In cycle 1 a read
transaction, r0, is initiated on the system address bus. In cycle
X, the data transfer for read rO is initiated on the system data
bus by neans of the system bus Send Data signal, the assertion of
which is indicated with a value of i0. As this data transfer is
initiated, the status, sO, is also driven on the system bus. In
cycle X+2, all system bus nodul es have an opportunity to stall or
to control the flowto the systemdata bus. In this exanple, the
bus is not stalled, as indicated by a value of n. Finally, given
that the bus is not stalled, the 64 bytes of read data associ ated
with read r0O are transferred across the system bus during cycles
X+5 and X+6. In addition to read r0, Figure 5 also illustrates
the execution of a wite, wl, and another read, r2. Note that
data transfer initiation, data bus flow control, and data
transfer are pipelined on the systemdata bus in the sanme order
as their associ ated commands were issued to the address bus. Note
further that this diagramrepresents 100 percent utilization of
the system data bus (one data transfer every three cycles). Wth
a 10-ns cycle tine, this utilization would translate to 2.1 GB
per second of bandwi dt h.

[Figure 5 (Exanple of Al phaServer 8000 System Bus Traffic) is not
available in ASCI| format.]

The Al phaServer system address bus uses two nmechani sms to control
the fl ow of system bus transactions. First, processor and I/0O
port nmodul es are not allowed to i ssue conmands to nenory nodul es
that are busy perforni ng some DRAM access for a previously issued
system bus transaction. The state of each nmenory bank is

comuni cated to each processor by neans of system bus
Bank_Avail abl e signals. |f a processor or 1/0O port seeks access

to a given nmenory bank and that nmenory bank's Bank_Avail abl e
signal indicates that the bank is free, the processor or |1/0O port
may request access to the address bus and, if granted access by
the systemarbitration logic, issue its transaction to the
address bus. If a processor or |/O port seeks access to a given
menory bank and that nenory bank's Bank_Avail abl e signa

i ndicates that the bank is not free, the processor or 1/0O port
wi |l not request access to the system address bus. Thus, unless
all menory banks are busy or unless the total of the busy nmenory
banks includes all banks that are needed to service the systenm s

processors and |I/O ports, the address bus will continue to
transnmt commands. The second nmechani smfor controlling the flow
t hrough the address bus is the system bus Arb_Suppress signal. |f

any system bus nodul e runs out of any command/ address-rel ated
resource, such as command queue entries, it can assert this
signal and prevent the systemarbitration logic fromgranting any
nore transactions access to the bus. The Arb_Suppress signal is
useful, for exanple, in a systemconfiguration with 16 nmenory
banks but only eight entries worth of conmand queuing in a
processor.

The Al phaServer 8000 system data bus has its own flowcontro
mechani sm the system bus Hol d signal, which is independent of

t he address bus flow control nechanisns. The Hold signal, shown
as Data Bus Flow Control in Figure 5, is asserted in response to
the initiation of a data bus transfer. Normally, data bus
transfers are initiated on the data bus when an Al phaServer 8000
menory nodul e asserts the Send_Data signal. Send_Data is asserted
by a nenory nodul e based on the state of the nodul e's DRAMs: Wen

servicing a read transaction, the nmenory will assert Send_Dat a
when its DRAMread is conplete; when servicing a wite
transaction, the nmenory will assert Send_Data as soon as its turn

on the data bus cones up. Five cycles after the assertion of
Send_Data, sonme nodul e drives data onto the data bus. |If a nodule
is required to drive data in response to an assertion of
Send_Data and is unable to do so, it will assert the Hold signa
two cycles after the assertion of Send _Data. This may occur if a
processor modul e nust source read data fromits cache and cannot
fetch the data fromthe cache as quickly as the nmenory nodul e can
fetch data fromits DRAMs. |If, on the other hand, a nodule is
required to receive data in response to an assertion of Send_Data
and is unable to do so, it too will assert the Hold signal two
cycles after the assertion of Send_Data. This may occur if no
receiving nodule's data buffers are available to receive data.
Each nodul e that asserts Hold two cycles after Send_Data will
continue to assert Hold every other cycle--as prescribed by the
Al phaServer 8000 signaling protocol--until it is ready for the
data transfer. Three cycles after all nodul es are ready and
deassert the Hold line, data is finally transferred. Figure 6
shows a read, r0, that experiences one pulse of the system bus
Hol d si gnal

[Figure 6 (Read with One Cycle of Hold--Five Reads Sourced by a
Processor) is not available in ASCII format.]

It is inmportant to note that the address bus and the data bus
have i ndependent neans and criteria for initiating transactions
and controlling the flow of transactions. The address bus
initiates address bus commands based on processor and |/O port
nodul e requests and controls the fl ow based on the state of
address-rel ated resources. The data bus initiates data transfers
in the sane order as the address bus transnitted comrands by
means of the Send_Data signal. Send Data is usually asserted by a
menory nodul e based on the state of the nodule's DRAMs. The data
bus flow is controlled based on the state of various data-rel ated
resources. The differing nmeans and criteria for initiation and
flow control allow the two buses to operate al nost i ndependently
of one another. This independence translates into performance
because it allows the address bus to continue to initiate
commands even as the data bus nay be stalled because of a
conflict. Continuous conmand initiation translates into nore
conti nuous system parallelismand thus nore system bandw dt h.
Figures 6 and 7 illustrate this point. Both figures illustrate
systenms that are issuing a series of processor reads to bl ocks
that must be sourced from another processor's cache. In both
cases, processors require two nore cycles than main nenory banks
to source read data. As such, two cycles of Hold assertion mnust
periodically occur on the data bus. Figure 6 illustrates the
operation of the Al phaServer 8000 system bus, show ng that

al t hough the data bus had to be held in cycle 6, the address bus
was able to continue issuing conmands. As a result, each
processor sourcing data begins its read of cache data as soon as
possible and is guaranteed to be ready to drive data wi thout Hold
cycles when its turn conmes up on the data bus. Wth the
illustrated series of five reads, the two Hold cycles result in a
12 percent degradation in system bandwidth. If the series of
reads is | engthened toward infinity, the percent of degradation
approaches 0. Figure 7 illustrates the operation of a rigidly
slotted bus, like that of the DEC 7000/ 10000 AXP system
normal i zed to the Al phaServer 8000 topol ogy. As shown, each tine
the data bus is stalled, so too is the address bus. This prevents
the fourth and fifth reads fromgetting the headstart necessary
to prevent subsequent stalls of the data bus. The result is a 20
percent degradation in performance for the five reads
illustrated. If the series of reads is |engthened toward
infinity, the percent of degradation settles to 18 percent.
Clearly the Al phaServer 8000 approach produces superior data
bandwi dt h characteristics.

[Figure 7 (Five Reads Sourced by a Processor in a Rigidly Slotted
Systen) is not available in ASCII format.]

It is also inportant to note that the Al phaServer 8000 address
bus and data bus have different maxi num bandw dt hs. Commands can
be issued to the address bus every other cycle. Wth a 10-ns
cycle tinme, this translates into 50 mllion comands per second.
The data bus, on the other hand, can transfer one bl ock of data
every three cycles. Wth a 10-ns cycle tinme, this translates into

33.3 nillion data bl ocks per second. This excess of address bus
bandwi dth is useful in the devel opnent of [owlatency arbitration
schenes.

Menory Bank Mapping. Digital's previous server systens, |ike the
VAX 6000 series and the DEC 7000/ 10000 AXP-series, have enpl oyed
a comon approach to address-to-nenory-bank mapping. In this
approach, all nmenory nodul es inplenent address range registers.
As commands and addresses are transnitted across the system bus
the nenory banks conpare the addresses against their address
range registers to determne if they nmust respond to the command.
An address range conparison can involve a significant nunber of
address bits and, as a result, can beconme |ogically conplex
enough to consunme two 10-ns cycles of time. These two cycles can
be added directly to nenory read | atency.

The |l ow-| atency focus of the Al phaServer 8000 platform pronpted a
change in bank mappi ng schenes. In Al phaServer 8000 systens, the
address range regi sters have been noved onto the processor and
I/ O port nodul es. The range registers output a 4-bit bank nunber
that is shipped across the system bus with each command and
address. Each nmenory bank conpares each bank nunber transnitted
across the systembus to 4 bits in a programmbl e bank nunber
register to deternmine if it should respond to the system bus
conmand.

Thi s bank mapping | ogic configuration helps to reduce Al phaServer
8000 nenory read | atency. Because the bank mapping is done on the
nodes that issue conmands to the address bus, the | engthy address
conpari son can be done in parallel with address bus arbitration,
elimnating its two-cycle delay fromthe nmenory read | atency. The
address conparison traditionally done in the nenory bank logic is
now replaced with a sinple 4-bit conparison, which can easily be
done in a single cycle. The overall effect is that the

Al phaServer 8000 bank mappi ng protocol consunes at |east one
cycle less than Digital's traditional bank mapping protocol. This
equates to one |l ess cycle--10 ns mnimum -of nenory read | atency.

Address Bus Arbitration. Al phaServer 8000 systens enploy a
distributed, rotating-priority arbitration schene to grant access
to their address buses. Processor and |/ O port nodul es request
access to the address bus based on requests from m croprocessors
and |1/ 0O devices, and on the state of the systen s nenory banks,
as described in the section Al phaServer 8000 Protocol Overview.
Each nodul e eval uates the requests fromall other nodul es and,
based on a rotating list of nmodule priorities, determ nes whether
or not it is granted access to the bus. Each tine a nodule is
granted access to the bus, its priority is rotated to the | owest
priority spot on the priority list.

The Al phaServer 8000 arbitration schene operates in a pipelined
fashion. This neans that nmodul es request access to the bus in one
cycle, arbitrate for access to the bus in the next cycle, and
finally drive a conmand and address onto the bus one cycle |ater

In terns of processor-generated read requests, this neans that,

at best, a system bus read command can be driven onto the system
address bus two cycles after its corresponding cache read mss is
generated on the processor nodule. This adds two cycles of del ay
to the menmory read | atency.

To reduce nenory read | atency in conponents associated with
address bus arbitration, the Al phaServer 8000 pl atform enpl oys a
technique called "early arbitration." Early arbitration allows a
nodul e to request access to the address bus before it has
determined if it really needs access to the data bus. If the
nodul e is granted access to the address bus but determ nes that

it does not need or cannot use the access, it will drive a

No- Operation or NoOp command in the conmand slot that it is
granted. This feature is particularly useful on processor

nmodul es. It allows a processor to request access to the bus for a
read command in parallel with determining if the read command
will hit or miss in the processor's cache. If the read results in
a cache hit and the processor is granted access to the address
bus, then the processor issues a NoOp conmand. |f the read
results in a cache hit and the processor is not granted access to
t he address bus, the processor discontinues requesting access to
the bus. When applied in this manner, this feature can renove two
cycles of delay fromthe nmenory read |latency. This feature is

al so key to the Al phaServer 8000 nmenory bank decode feature that
al l ows address-to-nenory bank decode to proceed in parallel with
system bus arbitration. This is to say, it allows a processor or
I/O port nmodule to request access to the address bus before it
can deternmine which nenory bank it is trying to access and before
it can determine if that nmenory bank is available. If a nodule is
granted access the bus and the bank it is trying to access is not
avail abl e, then the nodule issues a NoOp command. |If a nodule is
not granted access to the bus and the bank it is trying to access
is not avail able, then the nodul e di sconti nues requesting access
to the bus until the bank beconmes avail abl e. Wen applied this
way, this feature elimnates at |east one cycle fromthe nmenory
read | atency, as described in the section Menory Bank Mapping.

The excess address bus bandwi dth noted in the protocol overview
al l ows sone anount of early arbitration to take place without

af fecting system performance. When systemtraffic increases,
however, excessive early arbitration can steal useful address bus
slots from nonspecul ative transacti ons and as a result degrade
bus bandwidth. In fact, in certain pathol ogical cases, excessive
early arbitration by nmodules with high arbitration priority can
permanently | ock out requests fromlower priority nodules. To
elimnate the negative effect of early arbitration, the

Al phaServer 8000 enpl oys a technique called "I ook-back-two"
arbitration. This technique relies on the fact that nodul es nust
resolve all cache m ss or bank availability uncertainties for
early arbitrations within the two cycles required for an early
request and its arbitration. This fact inplies that any nodul e
that has been requesting access to the address bus for nore than
two consecutive cycles is requesting in a nonspecul ati ve manner

As such, the Al phaServer 8000 arbiter keeps a history of address
bus requests and creates two prioritized groups of requests based
on this history. It creates a high-priority group of requests
fromthose requests that have been asserted for nore than two
cycles and a lowpriority group of requests fromthose requests

t hat have been asserted for two cycles or less. It applies the
single set of rotating priorities, described above, to both sets
of requests. If there are any requests in the high-priority
group, the arbiter selects one of these based on the rotating
priority set. If there are no high-priority requests, the arbiter
selects a request fromthe lower priority group based on the
rotating priority set. This functionality limts early
arbitration to only those tines when there are nonspecul ative
requests in the system It allows the Al phaServer 8000 platform
to take advantage of |atency gains associated with early
arbitration and processor and I/O port based bank decode, without
degradi ng bandwi dth in the process.

Data Bus Arbitration. The Al phaServer 8000 data bus transfers

bl ocks of data in the same order that the conmands correspondi ng
to those bl ocks are issued on the address bus. This elimnates
data bus arbitration per se. In-order data return is acconplished
by a sinple system of counters and sequence nunbers. Each tinme a
command is issued to the address bus, it is assigned a sequence
nunber. Sequence nunbers are assignhed in ascending order. Each
time a block of data is driven on the data bus, a data bus
counter is increnmented. Each nodule waiting to initiate a data
transfer in response to sonme address bus conmand comnpares the
sequence numnber associated with its command with the data bus
counter. When a nodul e's sequence nunber matches its data bus
counter, it is that nodule's turn to initiate a data bus
transfer.

It is arguable that in-order data return is not the opti mum data
scheduling algorithm If the scenario shown in Figure 6 were
reshaped such that only read r0 sourced data from anot her
processor and the penalty for sourcing data froma processor were
nore severe--a |onger data bus Hold requirenment--the result would
be nmore significant bandwi dth degradation. This new scenario is
illustrated in Figure 8. Wth nore efficient data scheduling, it
is conceivable that data bus utilization could be inproved by
usi ng data sl ots abandoned under the sizable Hold w ndow in
Figure 8. The latter scenario is illustrated in Figure 9. Clearly
the systemin Figure 9 has inproved upon the bandw dth of the
systemin Figure 8.

[Figure 8 (Bandw dth Degradation as a Result of In-Order Data
Transfers) and Figure 9 (Inproved Bandwi dth with Qut-of-Order
Data Transfers) are not available in ASCI| fornmat.]

What Figure 9 cannot show are all the inplications of

out-of -order data transfers. Wth as many as 16 outstandi ng
transactions (8 in the Al phaServer 8400/8200) active in the
system at any one tine, the task of producing a logic structure

capable of retiring the transactions in order is enornous.
Furthernore, the retiring of transactions out of order
conplicates the busi ness of nmintaining coherent, ordered nmenory
updates. Finally, it was felt that the parallelismnmde possible
by the independent address and data bus would help to mitigate
many of the negative effects associated with the in-order data
transfers. For these reasons, a practical decision was taken to
transfer data on the systemdata bus in the order that the
associ at ed commands were issued to the system address bus.

Subbl ock Wites. To support a range of 1/0O subsystens,

Al phaServer 8000 I/O port nodul es nust support wites of data as
small as |ongwords (32 bits), words (16 bits), and bytes. G ven
the Al phaServer system bus bl ock size of 64 bytes, these wites
are referred to as subblock wites. The execution of a subbl ock
write consists of reading a block of data froma system nenory
bank, overwiting just the portion of the block addressed by the
subbl ock wite, and witing the entire block back to nmenory. The
difficulty with perform ng this operation arises when a
"third-party" nmodul e--defined here as a nodul e other than the one
perform ng the subblock wite--nodifies the block between the
read portion of the subblock wite and the wite portion of the
subbl ock wite. To correctly conplete the subblock wite, the I/0O
port nmodul e must nerge the subblock wite data into the block as
it was after the third-party nmodule nodified it. This problem can
be resolved in one of two ways: (1) by neans of a small cache on
the I/O port nodule that updates the I/O port's copy of the bl ock
based on the third-party wite, or (2) by neans of an atom c
read-modi fy-wite that disallows the third-party wite

al t oget her.

In an ideal world, I/O port nodules would inplenment a smal

one-bl ock cache for the purpose of subblock wites. This cache
woul d allow the 1/0O nmodul e perfornming the subblock wite to
update its copy of the block targeted by the subblock wite with
nodi fied data fromthird-party nodul es. Unfortunately, not al
processors broadcast nodified data to the system Many
processors, for exanple, use a read-invalidate protocol. In a
read-inval i date protocol, when a processor wi shes to nodify a

bl ock, it issues a conmand that invalidates all other copies of
that block in the system and then nodifies the block of data in
its cache. If such an invalidate commuand invalidated the bl ock in
an I/ O port nmodul e's subblock wite cache, the I1/0O port nodul e
woul d be forced to re-read the block. There is no guarantee,
however, that another invalidate will not occur between the
re-read of the block and the wite of nerged data back to menory.
As such, the I/O port nodul e nay never be able to conplete the
subbl ock wite. 1/O port caching is therefore not a workabl e

sol ution.

Atom ¢ read-nodi fy-wite sequences disallow third-party wites to
a given bl ock between the read portion of a subblock wite and
the wite portion of a subblock wite. As such, the atomc
read-nmodi fy-wite sequence does guarantee the tinmely conpletion

of a subblock wite. Inplenmentations of atomic read-nodify-wite
sequences are designed to disallow accesses to some size portion
of the nenory region that contains the subbl ock address, between
the read and wite portions of the subblock wite. The size of
the nmenory region can vary froma single block of data to a
singl e bank of nmenory to the entirety of nenory. If the size of
the menory region is small, such as a single data bl ock, design
conplexity is significant; but the inpact of |ocking out access
to a single block of menmory is insignificant to bandwi dth.
Conversely, if the size of the nmenory region is |large, such as
the entirety of nenory, design conplexity is insignificant; but
the inmpact of |ocking out accesses to the entirety of nenory for
any period of time can be significant to system bandwi dth.

The Al phaServer 8000 platform supports atom c read-nmodify-wite
sequences by | ocking out accesses within nenory-bank-sized nmenory
regions. This mddle ground nmenory-region size provides the

Al phaServer 8000 with a practical bal ance between design

conpl exity and system bandwi dth. The Al phaServer 8000 platform

i mpl ements nenory bank granularity atomic read-modify-wite
accesses by nmeans of special Read_Bank_Lock and Wite_Bank_Unl ock
address bus comrmands, and by | everagi ng the existing nenory bank
fl ow control mechani sms. Specifically, Read_Bank_Lock conmands
function like normal read commands, except that their targeted
menory banks are left busy after the read transaction is
conplete. Menory banks | ocked by Read _Bank_Lock commands remain
busy until a Wite_Bank_Unl ock command is issued fromthe sane
nodul e that issued the Read_Bank_Lock conmmand. While a nmenory
bank is busy, no nodule other than the nodule that |ocked the
bank by means of a Read_Bank_Lock comrand will even request
access to the bank, as required by standard arbitration protocol
Thi s approach provides for atomc read-nodify-wite sequences and
coherent subblock wites. This protocol works regardl ess of the
nunber of 1/0O nodules in the system and regardl ess of arbitration
priorities.

Super set Protocol Layer

The Al phaServer 8000 primary protocol provides all the basic
constructs required to perform basic system functions, such as
menory reads and writes, local register reads and wites, and
mai | box-based 1/O register reads and wites. The protoco
performs these basic functions with a high level of efficiency
and performance. Some additional functionality, such as PCl
direct-programmed |/ O regi ster accesses, can be functionally
satisfied by the primary protocol but cannot be satisfied in a
way that does not severely degrade the performance of the entire
Al phaServer 8000 system As such, the Al phaServer 8000 platform
allows for Superset Protocols, i.e., protocols that are built
upon the basic constructs (reads and wites) of the Al phaServer
8000 primary protocol

PCl direct-progranmed |/ O regi ster reads can take nore than a

m crosecond to conplete. If these reads were conpl eted by neans
of the Al phaServer 8000 nonpended, strictly ordered prinmary
protocol, the Al phaServer system data bus would be stalled for a
full mcrosecond each tine a PCl programed |/ O read was
executed. Such stalls would have a disastrous effect on system
bus bandw dt h and system perfornmance.

The PClI progranmed |/ O problemis solved on the Al phaServer 8000
platform by inplenenting a PCl-specific pended read protoco
using the sinple read and wite commnds already included in the
basi ¢ Al phaServer 8000 primary protocol. This special superset
protocol works as follows:

o] When a m croprocessor issues a PCl programmed I/O read,
the read is issued to the Al phaServer 8000 system bus as
a register read. This read is pended with a unique
i dentification nunber that is associated with the issuing
processor by driving the identification nunber on the
syst em bank nunber |ines when the register read command
is issued to the system address bus. The bank nunber
lines are otherw se unused during regi ster accesses. The
i ssuing processor also sets a flag, indicating that it
has i ssued a PClI progranmed |/ O read comuand.

o] The I/ O port nodule interfacing to the addressed PCl
| ocal bus responds to the register read by forwarding the
read to the PCl, storing the processor identification
nunber specified by the address bus bank nunber |ines and
driving "dunmy data" onto the data bus in the register
read's associ ated data slot. The val ue of the dummy data
isirrelevant; it is ignored by all system bus nodul es
and is typically whatever was left in the I/O ports
register read buffer as a result of the last read it
servi ced.

o] When the PCl |ocal bus returns read data to the I/O port
nmodul e, the 1/O nodule issues a register wite to a
speci al PCl read-data-return regi ster address on the
system bus. This wite is pended with the issuing
processor's identification nunber, which was stored by
the I/O port nodule. This identification nunber is again
pended by driving it onto the system bank nunber |ines as
the register wite command is issued to the system
address bus. The PCl read data is returned in the data
cycle associated with this register wite.

o] When a processor nodule identifies a register wite that
addresses the PCl read-data-return regi ster address, it
checks the state of its PCl read flag and conpares the
val ue driven in the system bank nunber lines with it
uni que identification number. If the PCl read flag is set
and the value on the bank nunber |ines matches the
processor's identification nunber, then the processor
conpletes the PCl programed |I/Oread with the data

supplied by the register wite.

The Al phaServer 8000 PCl programred |/ O read superset protoco
al l ows Al phaServer 8000 systens to conplete PCl programed 1/0
reads without stalling system buses. Furthernore, it allows

Al phaServer systens to support PCI 1/Oin such a way that system
bus nmodul es not participating in the superset transaction need
not be alerted to the presence of special bus transactions and

t herefore need not contain logic that recogni zes and responds to
t hese special cases. This approach denobnstrates a practical way
to sinmplify overall system design w thout affecting system

per f or mance.

ALPHASERVER 8400 AND ALPHASERVER 8200 SYSTEMS

The Al phaServer 8400 and 8200 systens are the first products
based on the Al phaServer 8000 platform The Al phaServer 8200
systemis an "open office"-class server (i.e., the Al phaServer
8200 can be located in any office area, for exanple, where

phot ocopi er machines are typically placed). It features up to six
system bus nodul es in an industry-standard 47.5-centineter
(19-inch) rackmount cabinet. The 8200 system can support up to
si x 300-MHz Al pha 21164 nicroprocessors, 6 GB of main nenory, and
108 PCl 1/0O slots. The Al phaServer 8400 systemis an
"enterprise"-class server (i.e., a machine on which a business
can be run). It features up to nine system bus nodules in a DEC
7000-style cabinet. It can support up to twelve 300-MHz Al pha
21164 m croprocessors, 14 GB of nmmin nmenmory, and 144 PClI 1/0

sl ot s.

The cl ock frequencies of both the Al phaServer 8400 system and the
Al phaServer 8200 system are deternined by the clock frequency of
the 300-MHz (3.33-ns cycle tine) Al pha 21164 mi croprocessor chip
Both systens use a 4[X] clock nultiplier to arrive at a system
clock frequency of 75 MHz (13.3-ns cycle tinme). At this speed,
the systens feature 265-ns mninumread | atencies and 1,600 MB/s
of data bandwi dt h.

Both systens are based on the sane set of Al phaServer 8000
architecturally conpliant system bus nmodules. In addition, both
systenms support a new PCl 1/0O subsystem desi gned specifically for
these cl asses of systens. The constituent nmodules and I/ O
subsystens that conpose the Al phaServer 8400 and the Al phaServer
8200 systens are as foll ows.

TLEP Processor Modul e--Each TLEP processor nodul e supports two
300- MHz Al pha 21164 m croprocessors. Each Al pha 21164 processor
is paired with a 4-MB external cache. This cache is constructed
wi th 10-ns asynchronous SRAMs. The cache latency to first data is
20 ns, and with one 3.33-ns processor cycle of wave pipelining,
its maxi mum bandwi dth is 915 MB/s. The TLEP nodul e operates with
a 75-MHz (13.33-ns cycle tine) clock frequency.

TMEM Menory Modul e--Each TMEM nmenory nodule is inplenmented with
two equal -si zed DRAM banks. TMEM nodul es are available in 128-MB,
256- MB, 512- MB, 1024-MB, and 2048-MB sizes. The TMEM nodule is
designed to operate at a 100-MHz (10-ns cycle tinme) clock
frequency.

TIOP 1/0O Port Mdul e--The TIOP nodul e i nterfaces the Al phaServer
8000 system bus to four I/O channels, called "hoses." Each hose
can interface to one XM, Futurebus+, or PCI/ElISA |/ O subsystem
Each TI OP can support up to 400 MB/s of 1/O data bandwi dth and is
designed to operate at a 100-WMHz (10-ns cycle tine) clock
frequency.

I TIOP Integrated I/O Port Mdul e--The I TIOP nodule interfaces the
Al phaServer 8000 system bus to one hose |/ O channel and one

sem preconfigured PCl |ocal bus, which is integrated onto the

| TIOP nodul e. The integrated PClI bus features one single-ended
smal | conputer systens interface (SCSI) controller, three Fast
Wde Differential SCSI controllers, one N port, and optiona
FDDI and NVRAM controllers. Each |ITIOP can support up to 200 MB/s
of 1/O data bandwi dth and is designed to operate at a 100- MHz
(10-ns cycle tinme) clock frequency.

PCIA PCI I/0O Subsystem-The PCIA PCl |/O subsystem consi sts of
hose-to- PCl adapter logic and a 12-slot PClI |ocal bus. This
12-slot bus is created from4-slot PCl buses interfaced such that
they appear as a single bus. The high slot count provides the
connectivity essential in an enterprise-class server. The PCI A
optim zes direct nmenmory access (DMA) reads by means of the PCl
Read_ Memory_Mul tiple command. The Read_M ss_Miltiple command
allows the PCIA to stream DVMA read data from nenory to the PC
bus. Consequently, the PCIA can increase DVA read bandwi dt h,

of fsetting any | atency penalties that result fromthe Al phaServer
8000 platformis nmultilevel 1/O architecture. The PCI A s adapter

I ogic includes a 32K entry map RAM for converting PCl addresses
(32 bits) to Al phaServer 8000 system bus addresses (40 bits).
This mp RAM features a five-entry, fully associative
transl ati on cache.

ALPHASERVER 8400 AND ALPHASERVER 8200 PERFORMANCE

A nunber of performance benchmarks have been run on the
Al phaServer 8400 and Al phaServer 8200 systens. The results of
some of these benchmarks are summarized in Table 3.

The Al phaServer SPECi nt 92 and SPECfp92 ratings denonstrate

out standi ng performance. |In both ratings, the Al phaServer 8400
system performance is over 3.5 tines the ratings of the

HP9000- 800 T500 system The SPECfp92 rating of 512 instructions
per second is 1.4 tinmes its nearest conpetitor, the SA@ Power
Chal l enge XL system Simlarly, a six-processor Al phaServer 8400
system achi eves the sane 1,900 mllion floating-point operations
per second (MFLOPS) as an ei ght-processor SG Power Challenge XL

system Finally, the Al phaServer 8400 systenis 5-GFLOPS Li npack
NXN result is beyond the performance of all other open systens
servers, placing the Al phaServer at superconputer perfornmance
levels with systens such as the NEC SX-3/22 system and the
massi vel y paral |l el Thinking Machi nes CM 200 system

Tabl e 3 Al phaServer 8400 and 8200 System Perfornmance Benchmark Results

Benchmar k Processor Units Al phaServer 8200 Al phaServer 8400
Narme Count
SPECi nt 92 1 I nstructions/ 341. 4 341. 4
second
SPECSf p92 1 I nstructions/ 512.9 512.9
second
SPECrate_int92 1 I nstructions/ 8551 8551
second
6 I nstructions/ 50788 50788
second
12 I nstructions/ not applicable 91580
second
SPECr ate_f p92 1 I nstructions/ 11981 11981
second
6 I nstructions/ 71286 71286
second
12 I nstructions not applicable 140571
second
Li npack 1 MFLOPS 140.3 140.3
100x100
Li npack 1 MFLOPS 410.5 410.5
1000x1000
6 MFLOPS 1821 1902
8 MFLOPS not applicable 2282
12 MFLOPS not applicable 2675
Li npack NxN 1 MFLOPS 428. 3 428. 3

6 MFLOPS 2445 2445

12 GFLOPS not applicable 5.0

AIM I 8 Al Ms not applicable 1649. 8
Per f or mance
Rat i ng
AIM I 8 Maxi mum not applicable 9384
User Loads quantity
AIM I 8 Jobs/ mn not applicable 16168. 2
Thr oughput
McCal pin 1 VB/ s not avail abl e 186. 29
Copy

8 VB/ s not applicable 898. 61
McCal pin 1 VB/ s not avail abl e 174. 4
Scal e

8 VB/ s not applicable 829. 74
McCal pin 1 VB/ s not avail abl e 198. 3
Sum

8 VB/ s not applicable 891. 84
McCal pin 1 VB/ s not avail abl e 195. 15
Tri ad

8 VB/ s not applicable 982. 13
ACKNOW.EDGMVENTS

Several nmenbers of the Al phaServer 8000 Devel opnent Teamin
addition to the authors were key contributors to the generation
of this technical article. These individuals are John Bl oem

El bert Bl oom Dick Doucette, Dave Hartwell, Rick Hetherington
Dal e Keck, and Rich Watson.

REFERENCES

1. W Bowhill et al., "Circuit Inplenmentation of a 300-MHz,
64-bit Second-generati on CMOS Al pha CPU," Digital Technica
Journal, vol. 7 no.1 (1995, this issue): 100-118.

2. S. Saini and D. Bailey, "NAS Parallel Benchmarks Results
3-95," Report NAS-95-011 (Moffet Field, CA: Nunmerica
Aerodynanic Sinmulation Facility, NASA Anmes Research Center
sai ni @as. nasa. gov, April 1995).

3. J. Dongarra, "Performance of Various Conputers Using

10.

11.

12.

13.

14.

St andard Li near Equations Software," Docunent Number
CS-89-85, available on the Internet from Gak Ri dge Nationa
Laboratory, netlib@rnl.gov, April 13, 1995.

Z. Cventanovic and D. Bhandarkar, "Characterization of Al pha
AXP Performance Using TP and SPEC Workl oads," Proceedi ngs of
the 1994 International Synposium on Conputer Architecture:
60- 70.

J. N chol son, "The RI SC System 6000 SMP System " COMPCON
'95, March 1995: 102-109.

L. Staley, "A New MP HW Architecture for Technical and
Commerci al Environnents," COWPCON '95, March 1995: 129-132.

B. Allison and C. van Ingen, "Technical Description of the
DEC 7000 and DEC 1000 AXP Family," Digital Technica
Journal, vol. 4 no. 4 (Special Issue 1992): 100-110.

L. Gmennap, "Intel's P6 Uses Decoupl ed Superscal ar Design,"
M croprocessor Report, February 16, 1995: 15.

J. Basmpji et al., "Digital's High-perfornmance CMOS ASIC, "
Digital Technical Journal, vol. 7 no. 1 (1995, this issue):
66- 76.

R. Watson, H Collins, and R |I|knaian, "Clock Buffer Chip
wi th Absol ute Del ay Regul ati on Over Process and
Environnental Variations," 1992 CustomIntegrated Circuits
Conf erence, paper 25.2: 1-5.

E. Davi dson, "Delay Factors for Minframe Conputers,"
Proceedi ngs of the 1991 Bipolar Circuits and Technol ogy
Meeting: 116-123.

D. Cox et al., "VLSI Performance Conpensation for O f-Chip
Drivers and Clock Generation," Proceedings of | EEE 1989
Custom Integrated Circuits Conference: 14.3.1-14.3.4.

D. Chengson et al., "Dynamically Tracking Cl ock Distribution
Chip with Skew Control," 1990 Custom Integrated Circuits
Conf erence Proceedi ngs: 15.6.1-15.6.4.

M Johnson et al., "A Variable Delay Line Phase Locked Loop
for CPU--Coprocessor Synchronization," |SSCC88 Proceedings:
142- 143.

Bl OGRAPHI ES
David M Fenw ck

Dave Fenwi ck is the Al phaServer 8000-series systemarchitect. As
| eader of the advanced devel opnent group and of the design team
he has been responsible for definition of the product and its
characteristics, and for the systeminpl enentati on. Dave noved
fromDigital's European Engi neering organi zation in 1985 to join
the U. S.-based VAXBI program and subsequently was processor
architect for the VAX 6000 vector processor. A consulting

engi neer, he holds 3 mgjor U S. patents and has 13 patent
applications pending. He received an Honours Degree in Electrica
and El ectroni ¢ Engi neering from Loughborough University of
Technol ogy, United Ki ngdom

Denis J. Fol ey

A principal hardware engineer in the Al phaServer group, Denis is
the project |eader for the TLEP CPU nodule. He joined Digital in
Clonnel, Ireland, in 1983 after receiving a bachelors degree in
El ectrical Engineering from University College Cork, Ireland. He
has contributed to the devel opnent of several conmunications and
conmputing projects. Currently, he is working on the design of a
CPU nodul e for the Al phaServer 8000 platformthat is based on the
next generation of the Al pha microprocessor. Denis is listed on
12 patent applications that relate to his work on the Al phaServer
CPU and bus desi gns.

WlliamB. G st

Bill Gst's recent responsibility was the devel opnent of the

hi gh-performance 1/ 0O system bus circuit architecture for the

Al phaServer 8000-series ASICs. A principal engineer and a nenber
of the Server Platform Devel opnent G oup, he is currently
devel opi ng hi gh-performance 1/0O architectures for |ow- cost

pl asti ¢ packagi ng technol ogies. Joining Digital in 1977, he began
work on PDP-11 systens devel opnent and | ater becane a nenber of

t he VAX 6000-series engineering team focusing on clock chip
devel opnent and vector processor ASIC devel opnent. Bill has a
B.S. degree in Electrical Engineering from Wrcester Polytechnic
Institute and holds three patents for the Al phaServer 8000-series
/O circuit architecture.

St ephen R. VanDor en

In 1988, Steve VanDoren cane to Digital to work with the VAX 6000
vector processor design team He |ater joined an advanced

devel opnent team responsi ble for evaluating systemtechnol ogy
requi renents for what woul d becone the Al phaServer 8000 series of
products. During the Al phaServer project, he |l ead the design of
the address interface on the TLEP processor nmodule. He is listed
as a coinventor on 10 patents filed on the Al phaServer
8000-series architectural features. Steve is currently working on
new server processor designs. He is a nenber of Eta Kappa Nu and
Tau Beta Pi and holds a B.S. degree in Conputer Systens

Engi neering fromthe University of Massachusetts.

Dani el W ssel |

Consul ting engi neer Dan W ssell has nore than 20 years of
conmput er industry experience in analog and digital circuit design
and test. While at Digital, he has worked on the VAXcl uster and
DEC 7000/ 1000 systens devel opnent teans, and nore recently he
contributed to the Al phaServer 8000-series design effort. He is
recogni zed within Digital as an expert in the areas of

di stributed power systens, on-nodul e energy managenent, and

hi gh- speed cl ock systenms. Dan hol ds three patents and has filed
several patent applications for his work on current and future
Digital products. He has degrees in engineering from Kean Coll ege
and the M| waukee School of Engineering.

TRADEMARKS
Challenge is a trademark of Silicon Graphics, Inc.
Cyrix is a trademark of Cyrix Corporation.

Hew ett-Packard is a registered trademark of Hew ett-Packard
Conpany.

IBMis a registered trademark of International Business Machi nes
Cor poration.

Intel and Pentium are trademarks of Intel Corporation

SPECf p, SPECi nt, and SPECmark are regi stered trademarks of the
St andard Performance Eval uati on Counci |

Copyright 1995 Digital Equi pnent Corporation. Forwarding and copying of this
article is permtted for personal and educational purposes w thout fee

provi ded that Digital Equi pment Corporation's copyright is retained with the
article and that the content is not nodified. This article is not to be

di stributed for comrerci al advantage. Abstracting with credit of Digita

Equi pment Corporation's authorship is permtted. All rights reserved.

