
The Design and Verification of the AlphaStation 600 5-series
Workstation

by John H. Zurawski, John E. Murray, and Paul J. Lemmon

ABSTRACT

The AlphaStation 600 5-series workstation is a high-performance,
uniprocessor design based on the Alpha 21164 microprocessor and
on the PCI bus. Six CMOS ASICs provide high-bandwidth,
low-latency interconnects between the CPU, the main memory, and
the I/O subsystem. The verification effort used directed,
pseudorandom testing on a VERILOG software model. A
hardware-based verification technique provided a test throughput
that resulted in a significant improvement over software tests.
This technique currently involves the use of graphics cards to
emulate generic DMA devices. A PCI hardware demon is under
development to further enhance the capability of the
hardware-based verification.

INTRODUCTION

The high-performance AlphaStation 600 5-series workstation is
based on the fastest Alpha microprocessor to date -- the Alpha
21164.[1] The I/O subsystem uses the 64-bit version of the
Peripheral Component Interconnect (PCI) and the Extended Industry
Standard Architecture (EISA) bus. The AlphaStation 600 supports
three operating systems: Digital UNIX (formerly DEC OSF/1),
OpenVMS, and Microsoft's Windows NT. This workstation series uses
the DECchip 21171 chip set designed and built by Digital. These
chips provide high-bandwidth, low-latency interconnects between
the CPU, the main memory, and the PCI bus.

This paper describes the architecture and features of the
AlphaStation 600 5-series workstation and the DECchip 21171 chip
set. The system overview is first presented, followed by a
detailed discussion of the chip set. The paper then describes the
cache and memory designs, detailing how the memory design evolved
from the workstation's requirements. The latter part of the paper
describes the functional verification of the workstation. The
paper concludes with a description of the hardware-based
verification effort.

SYSTEM OVERVIEW

The AlphaStation 600 5-series workstation consists of the Alpha
21164 microprocessor, a third-level cache that is external to the
CPU chip, and a system chip set that interfaces between the CPU,
the memory, and the PCI bus. The DECchip 21171 chip set consists
of three designs: a data slice, one PCI interface and
memory-control chip (called the control chip), and a

miscellaneous chip that includes the PCI interrupt logic and
flash read-only memory (ROM) control. The Intel 82374 and 82375
chip sets provide the bridge to the EISA bus.[2] Figure 1 shows a
block diagram of the workstation.

[Figure 1 (AlphaStation 600 5-series Workstation Block Diagram)
is not available in ASCII format.]

The SysData bus transfers data between the processor, the CPU's
tertiary cache, and the data slices. The 128-bit-wide SysData bus
is protected by error-correcting code (ECC) and is clocked every
30 nanoseconds (ns). The data slices provide a 256-bit-wide data
path to memory. Data transfers between the PCI and the processor,
the external cache (typically 4 megabytes [MB]), and memory take
place through the control chip and four data slices. The control
chip and the data slices communicate over the 64-bit,
ECC-protected I/O data bus.

The major components and features of the system board are the
following:

 o The Alpha 21164 microprocessor supports all speed
 selections from 266 to 333 megahertz (MHz).

 o The plug-in, external write-back cache (2 MB to 16 MB)
 has a block size of 64 bytes. Access time is a multiple
 of the processor cycle time and is dependent on the
 static random-access memory (SRAM) part used. With 12-ns
 SRAMs, typical access times are 24 ns for the first 128
 bits of data, 21 ns for remaining data.

 o The system board contains a 256-bit data path to memory
 (284 megabytes per second [MB/s] for sustained CPU reads
 of memory).

 o From 32 MB to 1 gigabyte (GB) of main memory can be used
 in industry-standard, 36-bit, single in-line memory
 modules (SIMMs). All memory banks support single-sided
 and double-sided SIMMs.

 o Eight option slots are available for expansion: four PCI,
 three EISA, and one PCI/EISA shared slot. The system
 design minimized logic on the mother board in favor of
 more expansion slots, which allow customers to configure
 to their requirements. The system uses option cards for
 small computer systems interface (SCSI), Ethernet,
 graphics, and audio.

 o The system supports 64-bit PCI address and data
 capability.

 o Due to its synchronous design, the system's memory,
 cache, and PCI timing are multiples of processor cycle
 time.

 o The system provides an X bus for the real-time clock,
 keyboard controller, control panel logic, and the
 configuration RAM.

Data Slice Chips

Four data slice chips implement the primary data path in the
system. Collectively, the data slices constitute a 32-byte bus to
main memory, a 16-byte bus to the CPU and its secondary cache,
and an 8-byte bus to the control chip (and then to the PCI bus).

Figure 2 shows a block diagram of the data slice chip. The data
slice contains internal buffers that provide temporary storage
for direct memory access (DMA), I/O, and CPU traffic. A 64-byte
victim buffer holds the displaced cache entry for a CPU fill
operation. The Memory-Data-In register accepts 288 bits
(including ECC) of memory data every 60 ns. This register clocks
the memory data on the optimal 15-ns clock to reduce memory
latency. The memory data then proceeds to the CPU on the 30-ns,
144-bit bidirectional data bus. A set of four, 32-byte I/O write
buffers help maximize the performance of copy operations from
memory to I/O space. A 32-byte buffer holds the I/O read data.
Finally, there are a pair of DMA buffers, each consisting of
three 64-byte storage areas. DMA read operations use two of these
three locations: the first holds the requested memory data, and
the other holds the external cache data in the case of a cache
hit. DMA writes use all three locations: one location holds the
DMA write data, and the other two hold the memory and cache data
used during a DMA write merge.

The data slice allows for simultaneous operations. For instance,
the I/O write buffers can empty to the control chip (and then to
the PCI) while a concurrent read from CPU to main memory is in
progress.

[Figure 2 (Data Slice Block Diagram) is not available in ASCII
format.]

Control Chip

The control chip controls the data slices and main memory and
provides a fully compliant host interface to the 64-bit PCI local
bus. The PCI local bus is a high-performance,
processor-independent bus, intended to interconnect peripheral
controller components to a processor and memory subsystem. The
PCI local bus offers the promise of an industry-standard
interconnect, suitable for a large class of computers ranging
from personal computers to large servers.

Figure 3 shows a block diagram of the control chip. The control
chip contains five segments of logic:

 o The address and command interface to the Alpha 21164
 microprocessor

 o The data path from the PCI bus to the data slices by
 means of the I/O data bus

 o DMA address logic, including a 32-entry scatter/gather
 (S/G) map (This is discussed in the section
 Scatter/Gather Address Map.)

 o Programmed I/O read/write address logic

 o The memory address and control logic

[Figure 3 (Control Chip Block Diagram) is not available in ASCII
format.]

CPU Interface. A three-deep queue can hold two outstanding read
requests, together with the address of a victim block associated
with one of these read requests. During a DMA write, the Flush
Address register holds the address of the cache block that the
CPU must move to memory (and invalidate in the cache). In this
manner, the system maintains cache coherency during DMA write
operations.

PCI Address Space Windows. PCI devices use address space windows
to access main memory. During discussions with the developers of
the operating system, we determined that four PCI address space
windows would be desirable. EISA devices use one window. S/G
mapping uses a second. The third window directly maps a
contiguous PCI address region to a contiguous region of main
memory. The fourth window supports 64-bit PCI addresses. Future
system designs may provide more than 4 GB of main memory, thus
requiring the 64-bit address window.

DMA Write Buffering. The control chip provides a single-entry,
64-byte DMA write buffer. Once the buffer is full, the data is
transferred to the DMA buffers in the data slices. The design can
support 97-MB/s DMA write bandwidth from a 32-bit PCI device.

DMA Read Buffering. In addition to the two 64-byte buffers
inside the data slice, the control chip has two 32-byte DMA read
buffers. These buffers prefetch DMA read data when the initiating
PCI read command so indicates. This arrangement provides data to
a 64-bit PCI device at a rate of more than 260 MB/s.

Scatter/Gather Address Map. The S/G mapping address table
translates contiguous PCI addresses to any arbitrary memory

address on an 8-kilobyte (KB) granularity. For software
compatibility with other Alpha system designs, the S/G map uses a
translation lookaside buffer (TLB).[3] The designers enhanced the
TLB: First, each of the eight TLB entries holds four consecutive
page table entries (PTEs). This is useful when addressing large
32-KB contiguous regions on the PCI bus. For instance, the NCR810
PCI-to-SCSI device requires nearly 24 KB of script space.[4]
Second, software can lock as many as one half of the TLB entries
to prevent the hardware-controlled replacement algorithm from
displacing them. This feature reduces TLB thrashing.

Programmed I/O (PIO) Writes. The designers focused on improving
the performance of the functionality that allows a processor to
copy from memory to I/O space. High-end graphics device drivers
use this functionality to load the graphics command into the
device's first-in, first-out (FIFO) buffer. The data slice has
four buffers, and the control chip contains the corresponding
four-entry address queue. Four buffers hold enough I/O write
transactions to mask the latency of the processor's read of
memory. The control chip provides two additional 32-byte data
buffers. While one drives data on the PCI bus, the other accepts
the next 32 bytes of data from the data slices.

Memory Controller. The memory controller logic in the control
chip supports as many as eight banks of dynamic random-access
memory (DRAM). The current memory backplane, however, provides
for only 4 banks, allowing from 32 MB to 1 GB of memory. The
memory controller supports a wide range of DRAM sizes and speeds
across multiple banks in a system. Registers program the DRAM
timing parameters, the DRAM configuration, and the base address
and size for each memory bank. The memory timing uses a 15-ns
granularity and supports SIMM speeds ranging from 80 ns down to
50 ns.

CACHE DESIGN

The Alpha 21164 microprocessor contains significant on-chip
caching: an 8-KB virtual instruction cache; an 8-KB data cache;
and a 96-KB, 3-way, set-associative, write-back, second-level
mixed instruction and data cache. The system allows for an
external cache as a plug-in option. This cache is typically 2 MB
to 4 MB in size, and the block size is 64 bytes. The access time
for the external cache depends on the CPU frequency and the speed
variant of the cache. Typically, the first data requires 7 to 8
CPU cycles; subsequent data items require 1 or 2 fewer cycles.
The actual value depends on both the minimum propagation time
through the cache loop and on the CPU cycle time. The external
cache data bus is 16 bytes wide, providing almost 1 GB/s of
bandwidth with a 333-MHz CPU and a 5-cycle cache access.

The processor always controls the external cache, but during a

cache miss, the system and the processor work together to update
the cache or displace the cache victim. For an external cache
miss, the system performs four 16-byte loads at 30 ns. Any dirty
cache block is sent to the victim buffer in the data slices, in
parallel with the read of memory. Fast page-mode memory writes
are used to write the victim into memory quickly. (This is
discussed in the section Memory Addressing Scheme.)

During DMA transactions, the system interrogates the CPU for
relevant cache data. There is no duplicate tag in the system. DMA
reads cause main memory to be read in parallel with probes of the
CPU's caches. If a cache probe hits, the cache data is used for
the DMA read; otherwise main memory data is used. Each DMA write
to memory results in a FLUSH command to the CPU. If the block is
present in any of the caches, then the data is sent to the DMA
buffers in the data slice and the cache blocks are invalidated.
This cache data is discarded if the DMA write is sent to a
complete block. In the case of a DMA write to a partial block,
the DMA write data is merged with cache data or the memory data
as appropriate. In this manner, the system maintains cache
coherency, removing this burden from the software.

MEMORY BANDWIDTH

The memory bandwidth realized by the CPU depends on a number of
factors. These include the cache block size, the latency of the
memory system, and the data bandwidth into the CPU.

Cache Block Size

The Alpha 21164 microprocessor supports either a 32- or 64-byte
cache block size. The AlphaStation 600 workstation uses the
64-byte size, which is ideal for many applications, but suffers
on certain vector-type programs with contiguous memory
references.[5] An example of a larger block size design is the
RISC System/6000 Model 590 workstation from International
Business Machines Corporation.[6] This design supports a 256-byte
cache block size, allowing it to amortize a long memory latency
by a large memory fetch. For certain vector programs, the Model
590 performs well; but in other applications, the large block
size wastes bandwidth by fetching more data than the CPU
requires.

The AlphaStation 600 provides a hardware feature to gain the
benefit of a larger block size when appropriate. The Alpha 21164
microprocessor can issue a pair of read requests to memory. If
these two reads reside in the same memory page, the control chip
treats them as a single 128-byte memory read. In this way, the
system approximates the benefit of a larger block and achieves
284 MB/s of memory read bandwidth.

Memory Latency

The 180-ns memory latency consists of five parts. First, the
address is transferred from the microprocessor to the control
chip in 15 ns. The control chip sends the memory row-address
pulse 15 ns later, and the data is received by the data slices
105 ns later. The data slices require 15 ns to merge the wider
memory data onto the narrower SysData bus, and the last 30 ns are
spent updating the external cache and loading the Alpha 21164
microprocessor.

Although the 105 ns to access the memory may appear to be
generous, the designers had to meet the significant challenge of
implementing the required 1 GB of memory with inexpensive 36-bit
SIMMs. The JEDEC standard for these SIMMs only specifies the
pinning and dimensions. It does not specify the etch lengths,
which can vary by many inches from vendor to vendor. Neither does
it specify the electrical loading distribution, nor the DRAM type
or location (1-bit parts have 2 data loads whereas 4-bit parts
have a single, bidirectional load). With a 1-GB memory system,
the loading variation between a lightly loaded memory and a fully
loaded memory is significant. All these factors contributed to
significant signal-integrity problems with severe signal
reflections. The memory mother-board etch was carefully placed
and balanced, and numerous termination schemes were investigated
to dampen the signal reflections.

Data Bandwidth

The SysData bus transfers data between the processor, the
tertiary cache, and the data slices. This 128-bit bus is clocked
every 30 ns to satisfy the write timing of the external cache and
to be synchronous with the PCI bus. Typical memory DRAM parts
cycle at 60 ns, thus requiring a 32-byte-wide memory bus to match
the bandwidth of the SysData bus. The data slice chips reduce
each 32-byte-wide memory data transfer to two 16-byte transfers
on the SysData bus. Consequently, the memory system is logically
equivalent to a 2-way interleaved memory design.

New memory technologies with superior data bandwidths are
becoming available. Synchronous DRAMs are an exciting technology,
but they lack a firm standard and are subject to a significant
price premium over plain 5-volt DRAM parts. Extended-data-out
(EDO) DRAMs allow greater burst memory bandwidth, but the latency
to the first data is not reduced. Consequently, the memory
bandwidth to the CPU is not significantly improved. The major
advantage of using EDO parts is their easier memory timing: The
output data of EDO parts is valid for a longer period than
standard DRAMs. In addition, an EDO memory can be cycled at 30
ns, which allows a 128-bit memory width instead of the 256-bit
width. The designers would have used EDO parts had they been
available earlier.

MEMORY ADDRESSING SCHEME

The adopted addressing scheme helps improve memory bandwidth.
Whenever the CPU requests a new block of data, the write-back
cache may have to displace current data (the victim block) to
allow space for the incoming data. The writing of the victim
block to memory should occur quickly, otherwise it will impede
the CPU's request for new data.

Figure 4 shows the method used to address the external cache and
memory. The CPU address <31:6> directly accesses the cache: the
low-order bits <19:6> form the index for a 1-MB cache, and the
remaining bits <31:20> form the cache tag. The CPU address does
not directly address memory. Instead, the memory address
interchanges the index portion of the address field with the tag
portion. The number of address bits interchanged depends on the
row and column dimensions of the DRAM used.

For the sake of discussion, assume a 4-megabit (Mb) DRAM
configured with 11 row address bits and 11 column address bits.
Hence, bits <30:20> interchange with bits <16:6>, and the
remaining bits select the memory bank. This addressing scheme has
the following effect: a CPU address that is incrementing by units
of 1 MB now accesses consecutive memory locations. DRAM memory
provides a fast addressing mode, called page mode, whenever
accessing consecutive locations. For a 1-MB cache, objects
separated by a multiple of 1 MB correspond to cache victim
blocks. Consequently, a CPU read request of memory that involves
a victim write to memory gains the benefit of page mode and
proceeds faster than it would with a traditionally addressed
memory.

Although this address scheme is ideal for CPU memory accesses, it
creates the converse effect for DMA transactions. It scatters
consecutive DMA blocks by 1 MB in memory. These locations fall
outside the DRAM page-mode region, resulting in lower
performance. The solution is to enlarge the memory blocks; for
example, start the memory interchange at bit <8> instead of bit
<6>. This compromise allows 256-byte DMA bursts to run at full
speed. Slightly fewer victim blocks, however, gain the benefit of
page mode.

The bit assignment for this address scheme depends on the row and
column structure of the DRAM part and on the external cache size.
Power-on software automatically configures the
address-interchange hardware in the system.

[Figure 4 (Memory Address Scheme) is not available in ASCII
format.]

DESIGN CONSIDERATIONS

In this section, we discuss the design choices made for system
clocking, timing verification, and the application-specific
integrated circuit (ASIC) design.

System Clocking

The chip set is a synchronous design: The system clock is an
integer multiple of the CPU cycle time. Consequently, the PCI
clock, the memory clock, and the cache loop are all synchronous
to each other. The designers avoided an asynchronous design for
two reasons. It suffers from longer latencies due to the
synchronizers, and it is more difficult to verify its timing.

Unlike the memory controller, which uses a double-frequency clock
to provide a finer 15-ns resolution for the memory timing pulses,
the synchronous design of the chip set uses a single-phase clock.
This simplified clocking scheme eased the timing verification
work. Phase-locked-loop (PLL) devices control the clock skew on
the system board and in the ASICs. The PLL in the ASICs also
generates the double-frequency clock.

Timing Verification

The complete system was verified for static timing. A
signal-integrity tool similar to SPICE was used to analyze all
the module etch and to feed the delays into the module timing
verification effort. The final ASIC timing verification used the
actual ASIC etch delays. This process was so successful that the
actual hardware was free of any timing-related bug or
signal-integrity problem.

ASIC Design

The chip designers chose to implement the gate array using the
300K technology from LSI Logic Corporation. The control chip uses
over 100K gates, and each data slice consumes 24K gates.
Originally, the designers considered the slower 100K technology,
but it proved unable to satisfy the timing requirements for a
64-bit-wide PCI bus.

The designers used the VERILOG hardware description language to
define all the logic within the ASICs. Schematics were not used.
The SYNOPSIS gate-synthesizer tool generated the gates. The
designers had to partition the logic into small 3,000 to 8,000
gate segments to allow SYNOPSIS to complete within 12 to 15 hours
on a DECstation 5000 workstation. Currently, the same synthesis
requires 1 hour on the AlphaStation 600 5/260. The designers
developed a custom program that helped balance the timing
constraints across these small gate segments. This allowed the
SYNOPSIS tool to focus its attention on the segments with the
greatest potential for improvement.

PERFORMANCE

Table 1 gives the bandwidths of the workstation for the 32-bit
and 64-bit PCI options. A structural simulation model verified
this data, using a 180-ns memory latency and a 30-ns system
clock. The 285-MB/s read bandwidth of the CPU memory is
impressive considering that the memory system is 1 GB.
Eventually, the memory size will reach 4 GB when 64-Mb memory
chips become available.

The I/O write bandwidth is important for certain 3D graphics
options that rely on PIO to fill the command queue. Current
high-end graphics devices require approximately 80 MB/s to 100
MB/s. The 213 MB/s of I/O write bandwidth on the 64-bit PCI can
support a double-headed 3D graphics configuration without
saturating the PCI bus. Other 3D graphics options use large DMA
reads to fill their command queue. This approach offers
additional bandwidth at 263 MB/s. The system did not optimize DMA
writes to the same extent as DMA reads. Most options are amply
satisfied with 100 MB/s of bandwidth.

Table 1 Bandwidth Data

Transaction 32-bit 64-bit
Type PCI PCI
--
CPU memory read:
 64 bytes 284 284

I/O write:
 Contiguous 32 bytes 119 213
 Random 4 bytes 44 44

I/O read:
 4 bytes 12 12
 32 bytes 56 56

DMA read:
 64 bytes 79 112
 8 KB 132 263

DMA write:
 64 bytes 97 102

Table 2 gives the performance for several benchmarks. The data is
for a system with a 300-MHz processor and a 4-MB cache built out
of 12-ns SRAM parts. The SPECmark data is preliminary and clearly
world-class. The LINPACK data is for double-precision operands.
Even greater performance is possible with faster cache options
(for instance, a cache using 8-ns parts) and faster speed

variants of the Alpha 21164 microprocessor.

Table 2 Benchmark Performance

Benchmark Performance
--
SPECint92 331
SPECfp92 503

LINPACK 100 X 100 144
LINPACK 1000 X 1000 380

FUNCTIONAL VERIFICATION

The functional verification is an ongoing effort. Three factors
contribute to the need for greater, more efficient verification.
First, the design complexity of each new project increases with
the quest for more performance. Next, the quality expectations
are rising -- the prototype hardware must boot an operating
system with no hardware problems. Finally, time to market is
decreasing, providing less time for functional verification.

A number of projects at Digital have successfully used the SEGUE
high-level language for functional verification.[3,7] SEGUE
allows simple handling of randomness and percentage weightings.
As an example, a code sequence may express that 30 percent of the
DMA tests should target the scatter/gather TLB, and that the DMA
length should be selected at random from a specified range. Each
evocation of SEGUE generates a test sequence with different
random variations. These test sequences are run across many
workstations to achieve a high throughput. The project used 20
workstations for 12 months.

The test suite focused on the ASIC verification in the context of
the complete system. It was not a goal to verify the Alpha 21164
microprocessor; neither was the EISA logic verified (this logic
was copied from other projects). The test environment used the
VERILOG simulator and included the Alpha 21164 behavioral model,
a PCI transactor (a bus functional model), and a memory and cache
model. The SEGUE code generated C-language test programs for
CPU-to-memory and CPU-to-I/O transactions, as well as DMA scripts
for the PCI transactor.

The goal of verification went beyond ensuring that the prototype
hardware functioned correctly. The major objective was to ensure
that the hardware is reliable many years hence, when new, as yet
undeveloped, PCI options populate the system. Today, the PCI bus
uses only a small number of expansion option cards. It is quite
probable that a perfunctory verification of the PCI logic would
result in a working system at the time of hardware power-on and
for many months thereafter. It is only as more option cards
become available that the likelihood of system failure grows.

Consequently, the verification team developed a detailed PCI
transactor and subjected the PCI interface in the control chip to
heavy stressors. The complexity of the PCI transactor far exceeds
that of the PCI interface logic within the ASIC. The reason is
that the ASIC design implements only the subset of the PCI
architecture appropriate to its design. The PCI transactor,
however, has to emulate any possible PCI device and thus must
implement all possible cases. Furthermore, it must model poorly
designed PCI option cards (the word "should" is common in the PCI
specification).

The verification experience included the following:

 o Directed tests. Specific, directed tests are needed to
 supplement pseudorandom testing. For example, a certain
 intricate sequence of events is best verified with a
 specific test, rather than relying on the random process
 to generate the sequence by chance.

 o Staff hours. In prior projects, the hardware team
 exceeded the verification team in size. Over the years,
 the importance of verification has grown. On this
 project, twice as much time was spent on the verification
 effort as on the hardware coding.

 o Degree of randomness. Pure randomness is not always
 desirable. For instance, an interesting test can be
 conducted when a DMA write and a CPU read target the same
 block in memory (although, for coherency reasons, not the
 same data). Random addresses are unlikely to create this
 interaction; instead careful address selection is
 necessary.

 o Error tests. The pseudorandom test process added a
 different error condition, such as a PCI addressing
 error, within each test. The hardware logic, upon
 detecting the error, would vector by sending an interrupt
 to the error-handling code. The handler would check if
 the hardware had captured the correct error status and,
 if it had, would resume the execution of the test
 program. This strategy uncovered bugs when the hardware
 continued functioning after an error condition, only to
 fail many cycles later.

 o Hardware simulation accelerator. The project team did
 not use a hardware simulation accelerator for a number of
 reasons. In the early phase of verification, bugs are so
 frequent that there is no value in finding more bugs. The
 limiting resource is the isolation and fixing of the
 bugs. Second, porting the code onto the hardware
 simulator uses resources that are better spent improving
 the test suite: running poor tests faster is of no value.
 Finally, the hardware-based verification technique offers
 far greater performance.

 o Bug curve. The project team maintained a bug curve. The
 first-pass ASIC was released when the bug curve was
 falling but was still above zero. The tests were
 structured to test the important functionality first.
 This allowed verification to continue while the operating
 system developers debugged their code on the prototype.
 To help this strategy, any performance-enhancement logic
 in the ASICs could be disabled in case an error was
 discovered in that logic. Experience on prior projects
 had shown that such logic has a predilection toward bugs.

HARDWARE-BASED VERIFICATION

The hardware-based verification was developed to achieve a
significant, five-orders-of-magnitude improvement in test
throughput. The CPU performs pseudorandom memory and I/O-space
transactions, and a number of PCI graphics options emulate
generic PCI devices. The hardware-based verification has so far
uncovered three bugs. To further improve this technique, a
hardware PCI demon is under development. This device has the
capability to mimic any PCI device.

The random nature of the test suite means that the bug curve has
a long tail: The probability of finding the next bug decreases as
each bug is discovered. For example, an earlier project team
discovered the last bug after six months but needed only one week
to find the penultimate bug. Greater test throughput helps
uncover the final bug(s) sooner. Our project team achieved
greater throughput by migrating the test strategy onto the actual
hardware.

A self-checking, pseudorandom, test-generating program runs on
the hardware, testing the memory, the cache, and the PCI. On
detecting a mismatch, the software triggers a digital analyzer
connected to visibility points on the hardware. Currently, a
number of PCI graphics cards are emulating different DMA devices.
Eventually, a custom PCI test device, the PCI demon, will replace
the graphics cards and provide greater flexibility and
functionality (especially with regard to error cases).

The software-based verification, running across 20 workstations,
averaged approximately 100 DMA transactions per minute (with
concurrent memory and PIO activity). The hardware-based
verification runs 60 million comparable DMA transactions per
minute per workstation. This 5-orders-of-magnitude improvement
suggests that all the tests performed in the past 12 months of
software-based verification can be completed during the
hardware-based debugging in 5 minutes.

A secondary, but very useful, advantage of hardware-based
testing is the ability to stress the chips electrically. For
instance, by selecting a data pattern of 1's and 0's for the DMA,

memory, and PIO tests, verification engineers can severely test
the capability of the chips to switch simultaneously.

Hardware Test Strategy

The SEGUE software proved not to be useful for the hardware-based
verification effort. Instead new software was written in the C
language for the following reasons:

 o Verification must have full control of the hardware and
 thus cannot run on top of an operating system.
 Consequently, SEGUE and the operating system
 functionality are not available.

 o Unlike the software environment, visibility into the
 logic signals is restricted in the hardware environment.
 The test software has to be written to make debugging
 simpler.

 o One possible strategy is to download the SEGUE tests onto
 the hardware and thus treat the hardware as a simulation
 accelerator. However, the resultant performance
 improvement is small: The SEGUE code takes 2 minutes to
 generate a 1-hour software-simulation run. These tests
 run across 20 workstations with a resultant throughput of
 1 test every 3 minutes. Assuming the same test executed
 in zero time on the hardware, the total test time would
 equal 1 test every 2 minutes -- a minor improvement.

The hardware-based verification software relies on the following
rationale: The hardware is almost totally bug free, and any
remaining bugs are most likely to be due to a rare interaction of
events. Indeed, one of the bugs discovered was a special-case DMA
prefetch coinciding with a memory refresh. Consequently, no test
is likely to detect more than one bug. For instance, if a DMA
operation suffers an error, then it is unlikely that a
subsequent, identical DMA operation will suffer an error. The
second DMA will experience a different set of interactions inside
the chip set.

The adopted test environment has two graphics cards, each
performing identical DMA operations to two different regions of
memory. Because of the serial nature of the PCI bus, however,
these cards will perform the DMA operations at different times.
Furthermore, other traffic on the PCI bus (for instance, the CPU
will be executing random PIO) will further randomize the cards'
behavior. While the DMA transactions run, self-checking, random
CPU traffic to memory and I/O will also run. These events provide
the random mix of interacting instructions. At the completion of
the test, a miscomparsion of the two DMA write regions indicates
an error.

Graphics Demon

A number of PCI option cards were investigated as potential PCI
demon cards. The requirements for a PCI demon card are twofold:
it must be able to perform DMA of various lengths, and it must
have memory for the storage of DMA and PIO data. The DEC ZLXp_E1
graphics card was selected because it offers the following
advantages:

 o Independent DMA. Most PCI options start a DMA operation
 instantly after the CPU has written to a specific
 register in the option. This is undesirable because it
 makes it impossible to emulate options that start DMA
 operations autonomously (e.g., a network card). To break
 this coupling, the test program should first make the
 graphics card paint a portion of the screen. While the
 graphics device is busy, the graphics command FIFO buffer
 is filled with the DMA commands. The graphics device will
 not start the DMA until it has finished painting.
 Furthermore, the delay is programmable by varying the
 number of pixels painted.

 o Programmable DMA. The graphics card allows the DMA to be
 any size, whereas most PCI options are constrained to a
 fixed length. Moreover, it is possible to arrange for PCI
 disconnects on a DMA read. The graphics card modifies
 incoming data with the contents of the frame buffer
 (e.g., frame buffer = frame buffer XOR data). This
 feature throttles the internal bandwidth of the graphics
 card, which disconnects it from the PCI.

 o Frame buffer. The graphics frame buffer is the target of
 the DMA and PIO operations. A useful software debugging
 feature was to observe the frame buffer while running the
 tests.

PCI Demon

The PCI demon is designed to mimic any possible PCI device.
Software has total control of the behavior of the device,
including the assertion of error conditions (e.g., parity errors
on any specified data word). The architecture of the PCI demon is
very simple so that the debugging of the PCI demon is
straightforward. (The objective is to find bugs in the chip set
and not in the PCI demon.) Consequently, the complexity in using
the PCI demon is completely in the software.

The ideal architecture of a PCI demon is a large memory whose
output drives the PCI data and control signals directly; the
software programs the desired PCI operation by loading the
appropriate pattern into this memory. In reality, the
architecture of the PCI demon has to diverge from this ideal
model for at least two reasons. First, the PCI demon has to be

able to emulate the fastest possible PCI device, and this forces
the use of an ASIC. However, ASICs have limited memory capacity.
It is desirable to store the scripts for many thousands of DMAs
in this memory. The scripts are approximately 100-bits wide
(64-bit PCI data and control) and require several megabytes of
memory. This memory requirement forces the design to use external
memory. Second, the PCI architecture has a few handshake control
signals that require the use of a fast state machine.

The PCI demon has the functionality to act as a histogram unit (a
PCI event counter). Internal counters measure timing information
such as DMA latency and the frequency of specified PCI
transactions. The PCI demon observes these states by snooping the
PCI bus.

SUMMARY

The AlphaStation 600 5-series workstation offers high compute
performance, together with substantial I/O subsystem performance.
The project team designed a low-cost, 1-GB memory system with a
180-ns memory latency. Timing verification and placement of the
plug-in, external cache resulted in a workstation with
considerable flexibility in memory expansion, cache variants, and
I/O option slots.

The most time-consuming portion of the project was the functional
verification. To date, different test programs have run
concurrently across 20 high-performance workstations, day and
night, for over 12 months. The release of the prototype chip set
occurred after 5 months of verification; this chip set
successfully booted the operating system. The remaining 7 months
of verification were focused on the lower priority functionality
(e.g., error cases and slow memory configurations).

The hardware-based verification approach proved its value by
uncovering three bugs. The most significant bug involved the
interaction of a number of events, including an optimized,
prefetching DMA read and a memory refresh. The verification
process helped create a very high quality product.

ACKNOWLEDGMENTS

Many individuals contributed to the success of this project. The
design was a team effort involving far more people in many
diverse groups than can be acknowledged here. However,
recognition is due to the core hardware and verification team: Ed
Arthur, Connie Bielawski, Ernie Crocker, Tracey Gustafson, J.
Grady, John Hackenberg, Rick Hagen, Randy Hinrichs, Laura
Mendyke, Sudhin Mishra, Sandy McPherson, Jim Nietupski, Sub Pal,
Nick Paluzzi, Rick Rudman, Jim Reilley, Manoo Siarkowski, Bob
Stewart, Hugh Kurth, Tony Camuso, Jim Hamel, Rick Calcagni, Carl
Mower, Peter Spacek, and Ned Utzig.

REFERENCES

1. J. Edmondson et al., "Internal Organization of the Alpha
 21164, a 300-MHz 64-bit Quad-issue CMOS RISC
 Microprocessor," Digital Technical Journal, vol. 7, no. 1
 (1995, this issue): 119-135.

2. 82420/82430 PCI ISA and EISA Bridges (Santa Clara, Calif.:
 Intel Corporation, 1993).

3. S. Nadkarni et al., "Development of Digital's PCI Chip Sets
 and Evaluation Kit for the DECchip 21064 Microprocessor,"
 Digital Technical Journal, vol. 6, no. 2 (Spring 1994):
 49-61.

4. NCR 53C810 Data Manual (Dayton, Ohio: NCR Corporation,
 1992).

5. A. Agarwal, Analysis of Cache Performance for Operating
 Systems and Multiprogramming (Boston: Kluwer Academic
 Publishers, 1989).

6. S. W. White and S. Dhawan, "POWER2: Next Generation of the
 RISC System/6000 Family," IBM Journal of Research and
 Development, vol. 38, no. 5 (September 1994).

7. W. Anderson, "Logical Verification of the NVAX CPU Chip
 Design," Digital Technical Journal, vol. 4, no. 3 (Summer
 1992): 38-46.

BIOGRAPHIES

John H. Zurawski

John Zurawski was the system architect for the AlphaStation 600
5-series workstation. Prior to this project, John was the system
architect for the DECstation 5000 series of MIPS R4000
workstations. He has also led the verification effort for the DEC
3000 workstation and led the team that designed the
floating-point unit for the VAX 8800 family. John holds a B.Sc.
degree in physics (1976), and M.Sc. (1977) and Ph.D. (1980)
degrees in computer science, all from Manchester University. John
is a member of IEEE. He holds seven patents and has published six
papers on computer technology. He joined Digital in 1982 after
completing post-doctoral research at Manchester University.

John E. Murray

A consulting engineer in the Alpha Personal Systems Group, John
Murray was the logic design architect for the AlphaStation 600

5-series. In previous work, John led the design team for the
instruction fetch and decode unit on the VAX 9000 system. Prior
to joining Digital in 1982, he was with ICL in the United
Kingdom. He holds eleven patents.

Paul J. Lemmon

Paul Lemmon joined Digital in 1987; he is a principal engineer.
Paul was the ASIC team leader and the architect of the control
ASIC for the AlphaStation 600 5-series. He was previously
employed at Datapoint, where he was a design engineer/project
engineer. Paul received a B.S. in electrical engineering from
Ohio State University in 1980. He holds two patents.

TRADEMARKS

AlphaStation, DEC, DECchip, DEC OSF/1, Digital, Digital UNIX, and
OpenVMS are trademarks of Digital Equipment Corporation.

Intel is a trademark of Intel Corporation.

Microsoft is a registered trademark and Windows NT is a trademark
of Microsoft Corporation.

RISC System/6000 is a registered trademark of International
Business Machines Corporation.

SPECfp, SPECint, and SPECmark are registered trademarks of the
Standard Performance Evaluation Council.

UNIX is a registered trademark licensed exclusively by X/Open
Company, Ltd.

===
Copyright 1995 Digital Equipment Corporation. Forwarding and copying of this
article is permitted for personal and educational purposes without fee
provided that Digital Equipment Corporation's copyright is retained with the
article and that the content is not modified. This article is not to be
distributed for commercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted. All rights reserved.
===

